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Abstract

Mitochondrial functions are intimately reliant on proteins and RNAs encoded in 

both the nuclear and mitochondrial genomes, leading to inter-genomic coevolution within

taxa. Hybridization can break apart coevolved mitonuclear genotypes, resulting in 

decreased mitochondrial performance and reduced fitness. This hybrid breakdown is an 

important component of outbreeding depression and early-stage reproductive isolation. 

However, the mechanisms contributing to mitonuclear interactions remain poorly 

resolved. Here we scored variation in developmental rate (a proxy for fitness) among 

reciprocal F2 inter-population hybrids of the intertidal copepod Tigriopus californicus, 

and used RNA sequencing to assess differences in gene expression between fast- and 

slow-developing hybrids. In total, differences in expression associated with 

developmental rate were detected for 2,925 genes, whereas only 135 genes were 

differentially expressed as a result of differences in mitochondrial genotype. Up-regulated

expression in fast developers was enriched for genes involved in chitin-based cuticle 

development, oxidation-reduction processes, hydrogen peroxide catabolic processes and 

mitochondrial respiratory chain complex I. In contrast, up-regulation in slow developers 

was enriched for DNA replication, cell division, DNA damage and DNA repair. Eighty-

four nuclear-encoded mitochondrial genes were differentially expressed between fast- 

and slow-developing copepods, including twelve subunits of the electron transport 

system (ETS) which all had higher expression in fast developers than in slow developers. 

Nine of these genes were subunits of ETS complex I. Our results emphasize the major 

roles that mitonuclear interactions within the ETS, particularly in complex I, play in 
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hybrid breakdown, and resolve strong candidate genes for involvement in mitonuclear 

interactions.
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Introduction

Coevolved genetic interactions within a population or species can be disrupted by 

hybridization, and these disruptions may produce incompatibilities that cause loss of 

fitness in hybrids (i.e., hybrid breakdown; e.g., Burton, 1990; Burton et al., 2006; Ellison 

& Burton, 2008b; Meiklejohn et al., 2013), potentially contributing to outbreeding 

depression, early-stage reproductive isolation and speciation (Gershoni et al., 2009; 

Burton & Barreto, 2012; Hill, 2016, 2019; Sloan et al., 2017). In eukaryotic organisms, 

incompatibilities underlying these important evolutionary processes may 

disproportionately involve interactions between genes encoded in the mitochondrial 

genome and genes encoded in the nuclear genome (Burton & Barreto, 2012). Two major 

factors contribute to this potential bias for involvement of mitonuclear incompatibilities. 

First, rates of evolution are higher for mitochondrial DNA than for nuclear DNA (Lynch, 

1997; Wallace, 2010), which increases divergence between the mitochondrial genomes of

independent taxa at early stages of isolation; these differences in mitochondrial DNA give

rise to intrinsic selection on nuclear-encoded genes to maintain compatible interactions 

(Burton & Barreto, 2012; Osada & Akashi, 2012; Barreto et al., 2018), resulting in taxon-

specific mitonuclear coevolution. Second, mitochondrial functions are intimately reliant 

on mitonuclear interactions, and since mitochondria play critical roles in eukaryotic cells,

including producing of the majority of cellular energy (i.e., ATP), mitochondrial 

dysfunction as a result of these incompatibilities is often associated with negative fitness 

consequences (Rand et al., 2004; Lane, 2005; Wallace, 2010; Hill, 2015; Hill et al., 

2019). 
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 Despite the potential impact of mitonuclear incompatibilities on hybrid 

breakdown, the physiological and genetic mechanisms underlying these effects are poorly

resolved. Although the mitochondrial genome is small (typically ~16 kb encoding only 

37 genes in most metazoans; e.g., Levin et al., 2014), approximately 1,500 nuclear-

encoded genes function within mitochondria (Bar-Yaacov et al., 2012; Hill, 2014, 2017), 

and at least 180 of these genes closely interact with mitochondrial-encoded proteins or 

RNAs (Burton & Barreto, 2012; Burton et al., 2013; Hill, 2017). The best characterized 

examples of mitonuclear incompatibilities occur between protein subunits of the electron 

transport system (ETS; e.g., Ellison & Burton, 2006; Blier et al., 2001; Pichaud et al., 

2019), or between a mitochondrial tRNA and its corresponding nuclear-encoded 

aminoacyl-tRNA synthetase (Meiklejohn et al., 2013). However, genetic 

incompatibilities in general can also result in changes in gene expression (Haerty & 

Singh, 2006; Landry et al., 2007) either directly through incompatible regulatory 

interactions or indirectly through physiological impacts of incompatibilities that alter the 

regulation of gene expression (Wittkopp et al., 2004; Graze et al., 2009; McManus et al., 

2010; Barreto et al., 2015). Both of these possibilities are relevant to mitonuclear 

interactions, as nuclear-encoded polymerase complexes are responsible for mitochondrial

DNA replication and RNA transcription (e.g., Ellison & Burton, 2008a), and variation in 

mitochondrial functions create regulatory signals that influence nuclear transcription as a 

part of ‘crosstalk’ between the genomes (Poyton & McEwen, 1996; Cannino et al., 2007; 

Horan et al., 2013). Therefore, assessing transcriptome-wide changes in gene expression 

associated with mitonuclear incompatibilities and hybrid breakdown is a promising 
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avenue to resolve not only pathways underlying the effects of incompatibilities, but also 

specific genes potentially involved in these interactions.

The intertidal copepod Tigriopus californicus is an ideal species to study the 

effects of mitonuclear incompatibilities. T. californicus are found in splashpools along the

west coast of North America from Baja California, Mexico to Alaska, USA. Populations 

are restricted to specific rocky outcrops along the coast (Burton, 1997), which results in 

substantial mitochondrial and nuclear sequence divergence among populations (Burton &

Lee, 1994; Burton 1997; Edmands, 2001; Peterson et al., 2013; Pereira et al., 2016; 

Barreto et al., 2018). Despite these high levels of divergence, inter-population crosses 

generate viable hybrid offspring in the laboratory (e.g., Burton, 1986), and signatures of 

inter-genomic coevolution have been detected for nuclear-encoded mitochondrial (N-mt) 

genes across several geographically isolated populations (Barreto et al., 2018). 

Specifically, effects of mitonuclear incompatibilities on oxidative phosphorylation 

(Ellison & Burton, 2006, 2008b; Healy & Burton, 2020; Han & Barreto, 2021), 

mitochondrial transcription (Ellison & Burton, 2008a), and the evolution of 

mitochondrial ribosomal proteins (Barreto & Burton, 2012) have been observed in T. 

californicus hybrids. Recent studies have demonstrated strong effects of mitonuclear 

incompatibilities by comparing nuclear-allele frequencies between reciprocal F2 hybrids 

with fast or slow developmental rate (a proxy for fitness in T. californicus; Burton, 1990),

and have identified chromosomes that likely contain loci responsible for these effects 

(Healy & Burton, 2020; Han & Barreto, 2021). However, the genes underlying these 

effects, and the relative influences of effects on different cellular pathways remain 

unknown. 
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In the current study, we examine physiological and genetic mechanisms 

underlying mitonuclear incompatibilities by using RNA sequencing (RNA-seq) to 

compare transcriptome-wide variation in gene expression between fast- and slow-

developing F2 T. californicus hybrids. Our goals were: (1) to assess the extent of variation

in gene expression associated with differences in developmental rate, (2) to identify genes

that were differentially expressed as a result of variation in mitochondrial genotype, (3) to

determine biochemical pathways enriched for these differences in gene expression, and 

(4) to examine patterns of differential expression for both N-mt genes and mitochondrial-

encoded genes.

Materials and Methods

Copepod collection, culturing and crossing

T. californicus adults were collected from supralittoral tidepools at San Diego, 

California (SD; 32° 45′ N, 117° 15′ W) and Santa Cruz, California (SC; 36° 56′ N, 122° 

2′ W) in the summer of 2019. Large plastic pipettes were used to transfer copepods and 

tidepool water to 1 L plastic bottles. Bottles were transported to Scripps Institution of 

Oceanography, University of California San Diego within 24 h of collection, and 

population-specific laboratory cultures were initiated by dividing the collections into 400 

mL glass beakers (250 mL per beaker). Cultures were maintained using filtered seawater 

(35 psu), and were held in incubators at 20 °C under a 12 h:12 h light:dark photoperiod. 

Powdered spirulina and live Tetraselmis chuii algal cultures were added to the cultures as

food once per week, but copepods also consumed natural algal growth within their 

beakers. Laboratory cultures were maintained under these constant conditions for at least 
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12 months (~1 month per generation; e.g., Pereira et al., 2021) prior to the initiation of 

experimental crosses.

Four experimental hybrid lines were established for each reciprocal cross between

the two populations: SD♀ x SC♂ (SDxSC; lines A-D) and SC♀ x SD♂ (SCxSD; lines E-

H). Note that SDxSC and SCxSD lines differ in their mitochondrial genotype, which is 

generally maternally inherited in T. californicus (e.g., Burton et al., 2006, but see Lee & 

Willett, 2022), whereas population-specific contributions to nuclear genotypes are 

expected to be equal under a neutral assumption (e.g., Lima & Willett, 2018). Virgin 

females of each population were obtained by splitting mate-guarding pairs using a fine 

needle (Burton et al., 1981; Burton, 1985). Lines were started by adding 50 virgin 

females to 2.5 x 15 cm petri dishes containing ~200 mL filtered seawater and 50 males of

the alternative population. Individuals were allowed to pair and mate haphazardly, and 

lines were maintained and fed as described above for the laboratory cultures. When 

gravid females were observed, they were transferred to new dishes (one dish per line), 

and 28 to 39 gravid P0 females were obtained per line (Supplemental Table S1). F1 

offspring hatched naturally into the new dish, and once F1 copepodids (juveniles) were 

visible without magnification, the P0 females were removed resulting in an F1-only dish 

for each line. T. californicus females produce multiple egg sacs from a single mating, and

typically ~22-32 offspring hatch from each egg sac (e.g., Edmands & Harrison, 2003), 

meaning each F1-only dish contained a minimum of many hundreds of offspring. F1 

individuals matured and mated haphazardly within their dishes, and the dishes were 

maintained until one week after gravid F1 females were initially observed. At this time, F2

developmental trials were started, which avoided inadvertently selecting only the fastest 

8

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159



developing F1 females as parents in the F2 trials and prevented any F2 offspring that 

hatched in the F1-only dish from reaching adulthood.

Developmental rate

Developmental rate measurements for F2 offspring from each hybrid line were 

conducted similarly to those described in Healy & Burton (2020). In brief, mature (red) 

egg sacs were dissected from 30 haphazardly selected F1 females for each line using a 

fine needle. Egg sacs were transferred individually into wells of 6-well plates containing 

~8 mL filtered seawater. Powdered spirulina was added to the wells, and then the plates 

were placed in the incubators that were used for the F1 crosses (at 20 °C; 12 h:12 h 

light:dark). F2 egg sacs hatched overnight, and offspring development was monitored 

daily with additional spirulina added every other day. Development in Tigriopus sp. 

involves a distinct metamorphosis between the last naupliar (N6) stage and the first 

copepodid (C1) stage (Raisuddin et al., 20172007), which can be used to score 

developmental rate as time to metamorphosis. As copepodids appeared in the 

experimental wells, days post hatch (dph) to metamorphosis was scored for each 

individual, and copepodids were grouped by dph to metamorphosis in line-specific 2 x 10

cm petri dishes containing ~50 mL filtered seawater. The total numbers of scored F2 

copepodids for each line are listed in Supplemental Table S1.

RNA isolation and RNA-seq

Stage 1 Tigriopus sp. copepodids are very small (~0.35 mm length [Raisuddin et 

al., 2007]), and obtaining sufficient RNA for standard RNA-seq library preparations from

pools of large numbers of individuals at this stage is impractical. Thus, we allowed our 

scored F2 hybrids to progress approximately two additional copepodid stages through 
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development to the C3 stage (~0.6 mm length) prior to RNA isolation. This progression 

was tracked by visual monitoring and by time, as under our experimental conditions stage

3 is reached ~4-5 days after initial metamorphosis to a stage 1 copepodid (Healy et al., in 

prep.). The 100 fastest and 100 slowest developing stage 3 copepodids from each line 

were snap frozen in liquid nitrogen and stored at -80 °C, and clear separation between 

fast and slow developers was achieved for every line (Supplemental Table S2). Note that 

monitoring developmental progression for copepodids that are not held individually is 

imprecise (Tsuboko-Ishii & Burton, 2018), but monitoring at the culture level was 

necessary given the number of copepodids scored in our study. As a result, it is possible 

that small numbers of frozen copepodids were at the C2 or C4 stages rather than the 

targeted C3 stage. 

RNA was isolated from the pools of fast developers and the pool of slow 

developers from each line using TRI Reagent® (Sigma-Aldrich, St. Louis, MO, USA) 

following the manufacturer’s instructions with modifications as described in Healy et al. 

(2019). Genomic DNA contamination was removed with an Invitrogen™  TURBO DNA-

free™  kit (Thermo Fisher Scientific, Waltham, MA, USA) according to the 

manufacturer’s instructions, and final RNA concentrations were determined with an 

Invitrogen™  Qubit™  2.0 Fluorometer and RNA HS assay kit (Thermo Fisher Scientific).

RNA samples were submitted to the University of California San Diego Institute for 

Genomic Medicine Genomics Center for preparation of mRNA stranded libraries for 100 

base pair paired-end RNA-seq. The libraries were sequenced on an Illumina NovaSeq 

6000 (Illumina Inc., San Diego, CA, USA), and between 18,165,204 and 31,441,512 

paired-end reads were obtained for each sample (Supplemental Table S3).
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Data analysis and statistics

All analyses were conducted in R v4.2.0 (R Core Team, 2022) with α = 0.05. 

Variation in log-transformed developmental rate as a result of variation in mitochondrial 

genotype was assessed with a linear mixed-effects model using the lmerTest package 

v3.1.3 (Kuznetsova et al., 2017) with mitochondrial genotype as a fixed factor and line as

a random factor.

RNA-seq reads were trimmed to remove any potential adapter sequences with 

Cutadapt v3.4 (Martin, 2011), and were then mapped to a hybrid genome for SD and SC 

T. californicus prepared using the T. californicus reference genome (SD reference 

genome GenBank: GCA_007210705.1, Barreto et al., 2018), a SC-specific genome from 

population re-sequencing (Healy & Burton, 2020), and published sequences for the SD 

and SC mitochondrial genomes (GenBank: DQ913891.2 and DQ917374.1, respectively; 

Burton et al., 2007). Note the SD and SC genomes were masked such that any ‘N’ 

position in one genome was also ‘N’ in the other genome to avoid any potential mapping 

biases due to incomplete re-sequencing (Healy & Burton, 2020); this masking procedure 

between pairs of T. californicus populations generally affects less than 2% of coding 

sequences (Barreto et al., 2018). Genomic feature annotations (i.e., gene models) for the 

hybrid reference were prepared from previously published annotations for the reference 

and mitochondrial genomes (Barreto et al., 2018). Sequencing reads were aligned to the 

hybrid genome using STAR v2.7.8a (Dobin et al., 2013) allowing reads to map to a up to 

two locations in the hybrid genome (“--outFilterMultimapNmax 2” option) so that reads 

mapping to conserved regions between SD and SC would be included in expression 

estimates. Overall mapping rates were between 90.67% and 92.94% per sample 
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(Supplemental Table S3) with the majority of reads mapping uniquely (82.30 ± 1.28%, μ 

± σ), which is consistent with relatively high levels of sequence divergence across the 

transcriptome between SD and SC T. californicus (Barreto et al., 2011; Barreto et al., 

2015). Reads were counted with featureCounts (Liao et al., 2014) from the Subread 

package v2.0.3 using fractional counting (“-M” and “--fraction” options; i.e., reads that 

mapped to two genes in the hybrid genome were counted as 0.5), and reads for 

homologous SD and SC genes in the hybrid genome were summed to allow comparisons 

of total expression for each gene among our RNA samples from pooled F2 hybrids. 

Variation in transcriptome-wide gene expression patterns was assessed with a 

principal component analysis (PCA) using the prcomp function from the R package stats 

v3.6.2, and 95% confidence ellipses for groups of samples (by developmental rate or 

mitochondrial genotype) were determined with the FactoMineR package v2.4 (Lê et al., 

2008). Gene-wise differential expression was assessed by fitting negative bionomial 

models to the count data with the edgeR package v3.38.0 (Robinson et al., 2010) such 

that main effects of developmental rate and mitochondrial genotype, and interactive 

effects of these main factors could be tested as described in Lin et al. (2016). In brief, 

counts were normalized for library size using the relative log expression method (Anders 

& Huber, 2010; “RLE” option in edgeR), low expression genes were filtered with the 

filterByExp function, dispersions were estimated with the estimateGLMRobustDisp 

function (Zhou et al., 2014), and factor effects were tested by likelihood ratio tests using 

the glmFit and glmLRT functions. After filtering, the library sizes in edgeR ranged from 

14,261,581 to 25,846,327 counts (Supplemental Table S3), and differential expression 

was assessed for 13,994 genes with two analytical approaches. First, we analysed the 
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complete dataset for all eight of our hybrid lines. However, because we pooled the 100 

fastest or slowest developers in each line for RNA-seq, the ranges of developmental rate 

for fast or slow developers had the potential to vary among lines. Thus, we compared fast

and slow developmental rates among lines using linear mixed-effects models (as 

described above for effects of mitochondrial genotype), and performed a second 

differential expression analysis using a subset of the lines that had similar developmental 

rates across the copepodid pools sampled for RNA-seq (see Results below).

Previously published gene ontology (GO) functional annotations of the gene 

models in the T. californicus genome were obtained from Barreto et al. (2018; 35,947 

annotations for 9,362 genes). We expanded these annotations by running the 

transcriptome through the Trinotate v3.2.2 pipeline (e.g., Bryant et al., 2017), and by 

manually annotating any remaining unannotated mitochondrial-encoded genes using 

information from other arthropods (Aedes aegypti and Drosophila melanogaster) 

available in the UniProt database (www.uniprot.org). After combining annotations from 

all sources and removing duplicate annotations, our GO database contained 152,010 

annotations for 12,206 genes in the T. californicus genome. Functional enrichment 

analyses were conducted for the differentially expressed (DE) genes with the goseq 

package v1.48.0 (Young et al., 2010) in R. GO terms with less than 10 annotations in the 

T. californicus genome were removed from the database (leaving 2,644 GO terms with 

119,094 annotations for 12,160 genes) to provide robust tests for functional enrichments, 

and analyses were run for genes up-regulated in fast developers, genes up-regulated in 

slow developers, genes differentially expressed between mitochondrial genotypes, and 
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genes with a significant interaction between mitochondrial genotype and developmental 

rate. 

False-discovery rate (FDR) corrections were made for all statistical results from 

the differential expression and functional enrichment analyses using the Benjamini-

Hochberg method (Benjamini & Hochberg, 1995).

Results

Developmental rate

Across our hybrid lines metamorphosis was observed from 6 to 22 dph, and 

median time to metamorphosis ranged from 8 to 10 dph among lines (Supplemental 

Table S1). There was no significant effect of mitochondrial genotype on developmental 

rate overall (p = 0.20; Figure 1), and mitochondrial genotype also did not affect the 

developmental rates of the 100 fastest or 100 slowest developing copepodids (p ≤ 0.20), 

which were each comprised of 10.9% to 21.4% of the total number of F2 copepodids per 

line (Supplemental Table S1). However, despite the lack of effects of mitochondrial 

genotype, the observed ranges and distributions of developmental rate in “fast” or “slow” 

developers displayed variation among lines (Supplemental Table S2). In particular, for 

six lines the majority of fast developers metamorphosed by 7 dph (83, 100, 100, 60, 61 

and 100% for lines C-H, respectively), whereas for two lines only 4% or 3% of fast 

developers metamorphosed by 7 dph (lines A and B, respectively). Comparing these two 

groups of lines, developmental rates in lines A and B were significantly different from 

developmental rates in lines C-H both overall (p = 0.013) and in fast developers (p = 1.4 

x 10-3), but not in slow developers (p = 0.060; Supplemental Figure S1). Consequently, as
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discussed above (see Materials and methods), we assessed differential gene expression 

using all eight lines (hereafter the 8-line DE analysis), and using only lines C-H 

(hereafter the 6-line DE analysis).

Transcriptome-wide expression patterns

Gene expression patterns associated with developmental rate were a dominant 

source of variation across the transcriptome when examined by PCA. The first and 

second principal components (PC1 and PC2) explained 30.0% and 14.7% of the variation

in expression among the RNA-seq samples, respectively, and the fast and slow 

developers tended to separate along these two axes, particularly along PC1 (slight overlap

in 95% confidence ellipses with no overlap at a confidence level of ~93%; Figure 2a). 

Interestingly, SDxSC lines A and B were the only two lines displaying a positive 

trajectory from slow to fast developers on PC1 (Supplemental Table S4), which supports 

the 6-line DE analysis based on variation in developmental rate among the hybrid lines in

our study. Consistent with this pattern, separation between the fast and slow developers 

along PC1 and PC2 became particularly evident if confidence ellipses were re-calculated 

for only the 6-line DE analysis RNA-seq samples (Supplemental Figure S2). 

Unlike gene expression associated with developmental rate, little variation 

associated with mitochondrial genotype was observed along PC1 and PC2 (Figure 2b). 

Instead, samples from the SDxSC and SCxSD reciprocal lines were separated along PC3 

and PC4, which explained 12.7% and 8.4% of the total variation in gene expression, 

respectively (Supplemental Figure S3). This indicates relatively modest effects of 

mitochondrial genotype on transriptome-wide gene expression patterns, particularly in 

comparison to patterns associated with developmental rate.
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Differential expression associated with developmental rate

Significant differences in gene expression between fast- and slow-developing T. 

californicus were detected for 1,668 genes in the 8-line DE analysis and 2,850 genes in 

the 6-line DE analysis (Figure 3; Supplemental Table S5). In both cases, these relatively 

high proportions of differential expression across the transcriptome (11.9% or 20.3%) 

were consistent with the patterns identified by PCA. In general, the 8-line and 6-line DE 

analyses were highly congruent as 1,593 of the 1,668 DE genes in the 8-line analysis 

(95.5%) were also detected as DE genes in the 6-line analysis, and there were no strong 

biases for up- or down-regulation of gene expression in fast or slow developers in either 

case (900:768 and 1,383:1,467 up-:down-regulated genes in fast developers in the 8-line 

and 6-line analyses, respectively). However, the distribution of p-values versus fold 

changes in expression was relatively symmetrical around a fold change of zero in the 6-

line analysis, whereas this was not the case in the 8-line analysis (Figure 3a,b). In total, 

84 N-mt genes were detected as differentially expressed between fast- and slow-

developing copepodids (32 common to both the 8-line and 6-line DE analyses, and 1 and 

51 unique to each analysis, respectively), whereas no protein-coding genes encoded in the

mitochondrial genome demonstrated differential expression associated with 

developmental rate (FDR-adjusted p ≥ 0.36).

Functional enrichment analyses found 47 GO terms enriched in the genes up-

regulated in fast developers (20 common, and 12 and 15 unique from the 8-line and 6-line

DE analyses, respectively), and 92 GO terms enriched in the genes up-regulated in slow 

developers (38 common, and 1 and 53 unique from the 8-line and 6-line DE analyses, 

respectively; Supplemental Table S6). There was variation in the specific GO terms that 
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were enriched among DE genes from the 8-line or 6-line analyses, but the overall patterns

regarding cellular functions indicated by the enrichments were similar regardless of 

which set of DE genes was considered. These results are summarized below using the 

enrichments for GO biological processes and cellular components (see Supplemental 

Table S6 for GO molecular function results).

Enrichments in up-regulated genes were detected for 23 and 46 GO biological 

process terms in fast- and slow-developing hybrids, respectively (Figure 4). The clearest 

pattern among these results was the complete lack of overlap in significantly enriched 

terms between the fast and slow developers. For genes up-regulated in fast-developing 

copepodids, enrichments were detected related to chitin metabolism (e.g., GO:0040003 

and GO:0006030), oxidation-reduction processes (GO:0055114), hydrogen peroxide 

metabolism (e.g., GO:0042744) and immune responses (e.g., GO:0045087). In contrast, 

enrichments related to DNA replication (e.g., GO:0006260 and GO:0006270), RNA 

processing (e.g., GO:0006364 and GO:0006402), cell division (e.g., GO:0051301 and 

GO:0007049) and DNA repair (e.g., GO:0006281 and GO:0036297) were detected for 

genes up-regulated in slow-developing copepodids. These major patterns were consistent 

across the DE genes from the 8-line and 6-line analyses, but additional enriched 

biological processes for carbohydrate and amino acid metabolism (e.g., GO:0006096 and 

GO:0006560) were only associated with up-regulation in fast developers using results 

from the 6-line DE analysis (see details in Figure 4).

Compared to biological processes, fewer GO cellular component terms were 

significantly enriched among DE genes associated with developmental rate. However, the

7 cellular components enriched in genes up-regulated in fast developers, and the 20 
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cellular components enriched in genes up-regulated in slow developers (Figure 5) 

suggested similar overall results to those identified based on biological process 

enrichments. Genes up-regulated in fast developers demonstrated enrichments involving 

extracellular regions (e.g., GO:0005576 and GO:0005615), whereas genes up-regulated 

in slow developers were enriched for cellular components related to the nucleus (e.g., 

GO:0005634 and GO:0005730), a ribosome assembly complex (GO:0032040) and the 

DNA polymerase complex (GO:0042575). Additionally, among genes significantly up-

regulated in fast developers in the 6-line DE analysis, there was an enrichment for the 

mitochondrial respiratory chain complex I cellular component (GO:0005747). As a result,

we specifically examined the DE N-mt genes encoding subunits of the electron transport 

system (ETS). Twelve nuclear-encoded subunits of the ETS were differentially expressed

between fast- and slow-developing hybrid copepodids (FDR-adjusted p ≤ 0.048 and fold

change in expression 1.21-1.37 for all), and nine of these were subunits of ETS complex I

(Table 1).

Differential expression associated with mitochondrial genotype

As in most metazoans, mitochondrial DNA is generally maternally inherited in T. 

californicus; however, Lee and Willett (2022) recently detected substantial paternal 

leakage of mitochondrial DNA in hybrids between some pairs of populations. In contrast,

there was virtually no evidence of paternal leakage in our hybrid lines, with 99.8 ± 0.6% 

(μ ± σ) of the read counts matching the maternal genotype across all samples, suggesting 

mitochondrial genotypes were maternally inherited in our F2 hybrids between the SD and 

SC populations. In the 8-line DE analysis, 135 genes were significantly differentially 

expressed between hybrids with a SD mitochondrial genotype (SDxSC) and hybrids with 
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a SC mitochondrial genotype (SCxSD; Figure 6a,b; Supplemental Table S7), and 21 

genes demonstrated a significant interaction between mitochondrial genotype and 

developmental rate (Figure 6c; Supplemental Table S8). Differences in gene expression 

as a result of variation in mitochondrial genotype were not evaluated in the 6-line DE 

analysis, because there was a low sample size for SDxSC lines (2 lines) and an 

unbalanced design with respect to mitochondrial genotype (2 SDxSC lines [C and D] and 

4 SCxSD lines [E-H]). 

There were no significant functional enrichments among the DE genes between 

the SD and SC mitochondrial genotype hybrids, but there was a clear bias in the direction

of variation in expression as 107 genes were expressed at higher levels in SDxSC hybrids

than in SCxSD hybrids, whereas only 28 genes displayed the opposite pattern (Figure 

6a,b). One N-mt gene, 3-hydroxyisobutyrate dehydrogenase (hibadh), had higher 

expression levels in hybrids carrying the SD mitochondrial genotype than in hybrids 

carrying the SC mitochondrial genotype, and this was the only N-mt gene demonstrating 

a significant effect of mitochondrial genotype on gene expression. In contrast, 8 protein-

coding genes (mt-nd1, mt-nd3, mt-nd4, mt-nd6, mt-cyb, mt-co1, mt-co3 and mt-atp8) and 

2 rRNA genes (mt-rnr1 and mt-rnr2) encoded in the mitochondrial genome were 

differentially expressed between SDxSC and SCxSD hybrids (Table 2). Directions of 

expression differences among these mitochondrial-encoded genes did not reflect the 

overall bias of up-regulation of genes in SDxSC hybrids, as 6 DE genes were expressed 

at higher levels in hybrids with the SC mitochondrial genotype than in hybrids with the 

SD mitochondrial genotype and 4 DE genes displayed the opposite pattern. The 

mitochondrial-encoded protein-coding genes all produce subunits of the ETS complexes, 
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but differences in up- or down-regulation for these genes between the two mitochondrial 

genotypes also did not group consistently based on ETS complex membership (see Table 

2). 

In general, genes with expression profiles that were significantly affected by an 

interaction between mitochondrial genotype and developmental rate demonstrated a 

consistent pattern when comparing SDxSC and SCxSD hybrids. For all 21 genes with 

significant interaction effects (Figure 6c), the fold change in expression associated with a 

difference in developmental rate was higher in hybrids with the SC mitochondrial 

genotype (7.6 ± 3.5X, mean ± SEM) than in hybrids with the SD mitochondrial genotype 

(2.7 ± 1.1X), but whether a gene was up- or down-regulated between fast and slow 

developers was the same regardless of mitochondrial genotype. Genes displaying 

interactive effects of mitochondrial genotype and developmental rate were significantly 

enriched for three GO terms: lipid transporter activity (GO:0005319; FDR-adjusted p = 

2.8 x 10-5), extracellular region (GO:0005576; FDR-adjusted p = 0.014) and lipid 

transport (GO:0006869; FDR-adjusted p = 0.032); however, these enrichments should be 

interpreted with some caution given the low number of genes affected by these 

interactions. No N-mt genes or mitochondrial-encoded genes had differences in 

expression consistent with effects of mitochondrial genotype by developmental rate 

interactions.

Discussion

The expression of genetic incompatibilities in hybrid organisms can result in 

changes in gene expression through either direct effects of incompatible regulatory 
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interactions or indirect responses to functional consequences of incompatibilities (e.g., 

Landry et al., 2007; Barreto et al., 2015). The current study reveals high levels of 

differential gene expression associated with variation in a fitness-related trait 

(developmental rate) among inter-population F2 T. californicus hybrids, and recent work 

in this species has demonstrated that differences in mitonuclear compatibility has aplay a 

major strong effectrole underlying on variation in developmental ratefast- versus slow-

developing phenotypes among in these F2 hybrids (Healy & Burton, 2020; Han & 

Barreto, 2021). Additionally, the slowest developing T. californicus hybrids display 

extreme developmental rates that are outside the ranges of developmental rates observed 

for offspring from within-population crosses (Healy & Burton, 2020; Han & Barreto, 

2021), and consequently the differences in gene expression presented here provide 

potential insight into not only the wide range of mechanisms underlying mitonuclear 

interactions, but also the physiological consequences of these interactions that result in 

hybrid breakdown.

Variation in developmental rate among hybrid T. californicus

The developmental rates of inter-population F2 T. californicus hybrids typically 

display hybrid breakdown (Burton, 1990; Ellison & Burton, 2008b; Healy & Burton, 

2020; Han & Barreto, 2021), and as in previous studies (Ellison & Burton, 2008b; Healy 

& Burton, 2020), we found that the reciprocal SDxSC and SCxSD hybrids have, on 

average, similar developmental rates. Despite this, we detected variation in 

developmental rate among the 8 hybrid lines in the current study (line A and B versus 

lines C to H). Since only 30 families contributed to each line, the variation in 

developmental rate among lines may be the result of inheritance of different epigenetic 
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modifications or genetic effects such as random sampling of recombination events or 

intra-population allelic variants (e.g., Pereira et al., 2016). Alternatively, environmental 

effects such as differences in algal growth or offspring density may have contributed to 

the observed variation among lines. Environmental effects on developmental rate and 

mitonuclear interactions are common in hybrid organisms in general (Hoekstra et al., 

2013, 2018; Baris et al., 2016; Mossman et al., 2016a, 2017; Drummond et al., 2019; 

Rand & Mossman, 2020; Rand et al., 2022); however, variation in algal growth among 

lines was minimized manually in the current study, and effects of density dependence on 

developmental rate are typically minor under our experimental conditions (Healy et al., in

prep.). Regardless of the cause of variation among lines, strong effects of mitonuclear 

incompatibilities within lines of hybrid T. californicus are expected to result in high 

degrees of mitonuclear compatibility in fast-developing (high-fitness) hybrids (Healy & 

Burton, 2020; Han & Barreto, 2021).

Gene expression differences between high- and low-fitness hybrids

Although ~Approximately 1,500 nuclear gene products are potentially imported 

into mitochondria, and 599 N-mt genes have been annotated in the T. californicus 

genome (Barreto et al., 2018). Although not all effects of mitonuclear incompatibilities 

will necessarily result in changes in gene expression,, and 84 of these N-mt genes were 

differentially expressed between fast- and slow-developing F2 T. californicus hybrids. 

The majority of these (51 genes) were detected only in the 6-line DE analysis, but this is 

not surprising, because strong signatures of coevolution are only observed in fast-

developing hybrids (Healy & Burton, 2020), and developmental rates for the fast 

developers in the 6-line analysis (lines C-H) were clearly faster than those from the other 
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two lines (lines A and B; Supplemental Figure S1 and Table S2). Among N-mt genes, 

there are four groups that most likely involve interactions between mitochondrial- and 

nuclear-encoded genes: mitochondrial DNA and RNA polymerases, mitochondrial 

aminoacyl-tRNA synthetases, mitochondrial ribosomal proteins and ETS complex 

subunits (Burton & Barreto, 2012; Hill, 2015, 2017; Hill et al., 2019). Of the DE N-mt 

genes in the current study, the clearest association with these groups was the 12 DE genes

encoding subunits of the ETS complexes. All of these subunits were expressed at higher 

levels in fast developers than in slow developers (Table 2), which is consistent with 

previous studies positively associating ATP synthesis capacity with high fitness in T. 

californicus hybrids (Ellison & Burton, 2006, 2008b; Healy & Burton, 2020; Han & 

Barreto, 2021). In addition, six other N-mt genes either directly involved in the 

tricarboxylic acid (TCA) cycle (idh3b and aco2) or involved in pathways delivering 

substrates to the TCA cycle (acss1, pc, mut and T05H10.6) were also all up-regulated in 

fast developers compared to slow developers.

Changes in the proportions of even a small number of interacting mitochondrial 

proteins can have substantial functional consequences (e.g., Herrmann et al., 2003; Chae 

et al., 2013), and consequently our results highlight not only specific ETS subunits 

potentially involved in incompatibilities, but also the key role that dysfunction at 

complex I may play in hybrid breakdown. Nine of the 12 DE ETS genes encoded 

subunits of complex I, and the GO cellular component mitochondrial respiratory chain 

complex I (GO:0005747) was enriched among genes that were up-regulated in fast 

developers in the 6-line DE analysis. Compared to the other ETS complexes, complex I 

has the highest number of nuclear-encoded and mitochondrial-encoded subunits (38 and 
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7 subunits in mammals, respectively; Zhu et al., 2016), and thus is a particularly likely 

target for the formation of mitonuclear incompatibilities (e.g., Pichaud et al., 2019; 

Moran et al., 2021). Furthermore, although negative effects of mitonuclear 

incompatibilities have been demonstrated for complexes I, III and IV in T. californicus 

hybrids (Edmands & Burton, 1999; Willett & Burton, 2001, 2003; Rawson & Burton, 

2002; Harrison & Burton, 2006; Ellison & Burton, 2006, 2008b), signatures of divergent 

selection (i.e., elevated dN/dS) among populations of T. californicus are modestly, but 

significantly, higher for complex I than the other ETS complexes (Barreto et al., 2018).

Potential effects of mitonuclear interactions on mitochondrial transcription 

(Ellison & Burton, 2008a) and translation (i.e., mitochondrial ribosomal proteins; Barreto

& Burton, 2012) have also been detected in T. californicus, but relatively few N-mt genes

that were differentially expressed between high- and low-fitness hybrids were involved in

these functions in the current study. Two mitochondrial ribosomal proteins were 

differentially expressed between the fast- and slow-developing copepodids with mrpl19 

up-regulated in slow developers and mrps18c up-regulated in fast developers, but note 

neither of these genes were annotated as N-mt genes in Barreto et al. (2018). One 

mitochondrial aminoacyl-tRNA synthetase (kars) and the mitochondrial poly(A) 

polymerase, mtpap, were expressed at higher levels in slow developers than in fast 

developers, as were N-mt genes involved in mitochondrial DNA replication (twnk and 

polg) and translation regulation (ptcd1 and guf1). Additionally, five N-mt genes involved 

in protein and RNA import into the mitochondria were also all up-regulated in slow 

developers (hsp60, tim14, roe1, timm23 and pnpt1). Although changes in mRNA levels 

for individual genes are not necessarily directly related to functional differences at the 
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protein-level (e.g., Hack, 2004), consistent patterns of expression across genes from 

similar pathways or genes with similar functions are more likely to be indicative of 

functional effects in the cell. Beyond the differences in gene expression between fast and 

slow developers discussed above, allele-specific expression patterns may also contribute 

to the effects of mitonuclear interactions in F2 hybrids. The pooled sequencing approach 

utilized in the current study produces the potential to confound genetic variation with 

allele-specific expression, which precludes informative allele-specific analyses. However,

at least in F1 hybrids between the SD and SC T. californicus populations, 

Tangwancharoen et al. (2020) observed limited evidence for allele-specific expression 

patterns, suggesting biased expression of population-specific alleles at heterozygous loci 

is unlikely to play a major role underlying the effects of mitonuclear interactions in these 

crosses.

Mitonuclear incompatibilities and mitochondrial dysfunctions in hybrids have 

been linked to increased production of reactive oxygen species (ROS) from the ETS (Du 

et al., 2017; Pichaud et al., 2019), and hybrid lines of T. californicus have elevated levels 

of oxidative damage compared to within-population lines (Barreto & Burton, 2013). The 

ETS produces ROS as a byproduct of oxidative metabolism, particularly at complex I and

III (Brand, 2010; Andreyev et al., 2015), and although ROS can have important functions

in cellular signaling, including ‘crosstalk’ between the mitochondria and nucleus (Yun & 

Finkel, 2014; Shadel & Horvath, 2015), excessive ROS production leads to oxidative 

stress that is harmful for macromolecules such as DNA (e.g., Temple et al., 2005). In the 

current study, GO terms associated with antioxidant defense processes such as hydrogen 

peroxide catabolic process and peroxidase reaction were enriched among genes up-
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regulated in fast developers, whereas GO terms associated with DNA damage and repair 

including, for example, DNA repair, cellular response to DNA damage stimulus and 

interstrand cross-link repair were enriched among genes up-regulated in slow developers. 

These differences suggest there may be variation in oxidative stress mitigation and 

damage between the fast and slow developers, potentially indicating additional 

consequences of mitonuclear incompatibilities associated with the ETS. Consistent with 

this possibility, hallmark antioxidant enzymes (e.g., Yoo et al., 2020) such as superoxide 

dismutase (sod1) and glutathione S-transferase (mgst1) were up-regulated in fast-

developing copepodids in the current study, and high-fitness T. californicus hybrids tend 

to have lower oxidative damage and higher mitonuclear compatibility than low-fitness 

hybrids (Barreto & Burton, 2013; Healy & Burton, 2020). 

Other functional enrichments among the DE genes in the current study were less 

clearly connected to potential effects of mitonuclear incompatibilities. For example, 

enriched up-regulation of cuticle proteins in fast developers could be plausibly connected 

to the chitin-based exoskeleton in T. californicus and the five moults required to reach 

adulthood from the C1 stage, but connections between chitin metabolic processes and 

mitonuclear interactions are not readily apparent, despite transgressive expression levels 

of these proteins generally in T. californicus hybrids (Barreto et al., 2015). Cytosolic 

ribosomal proteins also display transgressive expression patterns in T. californicus 

(Barreto et al., 2015), but no cytosolic ribosomal proteins were differentially expressed 

between fast and slow developers in the current study. This is at least somewhat 

surprisingly given the substantial impacts of rates of protein synthesis and variation in 

ribosomal protein expression on rapid growth during development in Pacific oyster 
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(Crassostrea gigas; Hedgecock et al., 2007; Meyer & Manahan, 2010; Pan et al., 2018), 

and the key role of ribosome abundance in high growth rates in Saccharomyces sp. 

(Warner, 1999; Regenberg et al., 2006; Airoldi et al., 2009). 

Taken together, the genes differentially expressed between fast- and slow-

developing F2 T. californicus hybrids suggest a consistent hypothesis for the mechanisms 

underlying strong effects of mitonuclear incompatibilities in this species. Oxidative 

phosphorylation functions efficiently at high rates in high-fitness hybrids, whereas 

incompatible mitonuclear genotypes in low-fitness hybrids cause ETS dysfunction that is 

associated with increased signals of oxidative damage and potentially signals of 

compensatory increases in mitochondrial translation and protein import. Although clearly

this is largely speculative based on the results of the current study alone, physiological 

studies in T. californicus generally support various aspects of this hypothesis (e.g., 

Ellison & Burton, 2006, 2008b; Barreto & Burton, 2013; Healy & Burton, 2020), 

suggesting that further functional work to test these ideas, particularly in the context of 

variation in developmental rate, is warranted.

Effects of mitochondrial genotype on the transcriptome

Relatively few genes were differentially expressed between hybrids carrying a SD

or SC mitochondrial genotype, which is unlike the substantial variation in nuclear gene 

expression associated with mitochondrial substitutions in Drosophila sp. (Mossman et al.,

2016b, 2017, 2019) or differences in mitochondrial genotype in horseshoe bats 

(Rhinolophus affinis; Ding et al., 2021). However, modest effects of mitochondrial 

genotype on the transcriptome are observed in Atlantic killifish (Fundulus heteroclitus) 

from natural populations with genetic admixture between two subspecies (Flight et al., 
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2011; Healy et al., 2017), and only small numbers of genes are differentially expressed 

between T. californicus from the SD and SC populations (Barreto et al., 2015). 

Interestingly, mitochondrial-encoded genes also display similar expression levels 

between the SD and SC populations (differences only for mt-co1 and mt-cyb which were 

more highly expressed in SC than in SD; Barreto et al., 2015), whereas in the current 

study the clearest group of DE genes between SDxSC and SCxSD hybrids were 10 

mitochondrial-encoded genes. Given this difference, it is possible that nuclear genetic 

background alters mitochondrial transcription in T. californicus, as in other species (e.g., 

Mossman et al., 2016b), which may include direct effects of incompatible mitonuclear 

regulatory interactions similar to those detected by Ellison & Burton (2008a). 

Mechanisms underlying mitonuclear interactions

Several studies have investigated genetic mechanisms underlying mitonuclear 

interactions by assessing variation in nuclear allele frequencies in reciprocal T. 

californicus hybrids (Pritchard et al., 2011; Foley et al., 2013; Lima & Willett, 2018; 

Lima et al., 2019; Healy & Burton, 2020; Han & Barreto, 2020; Pereira et al., 2021). In 

general, allele frequency deviations away from neutral expectations (i.e., 0.5) reveal 

consequences of both nuclear-nuclear and mitonuclear interactions with a bias towards 

the latter, especially in recent studies that focus on variation between reciprocal high-

fitness hybrids (Healy & Burton, 2020; Han & Barreto, 2021; Pereira et al., 2021). In 

particular, fitness differences among hybrids between SD and SC, scored by 

developmental rate, highlight strong effects of mitonuclear interactions involving loci on 

chromosomes 1 to 5 (Healy & Burton, 2020). There are 249 annotated N-mt genes are 

located on chromosomes 1 to 5 in T. californicus (47, 71, 42, 46 and 43 in order for 

28

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618



chromosomes 1 to 5), and 42 were differentially expressed between fast and slow 

developers in the results presented here (14, 5, 4, 9 and 10 in order for chromosomes 1 to 

5). Differences in allele frequencies among the pools of copepods in the current study 

were not assessed to avoid both the potential confound between genetic variation and 

allele-specific gene expression, and the inaccuracy of allele frequency estimation from 

pooled sequencing at the relatively low sequencing depths required to estimate gene 

expression. However, given the major association between mitonuclear compatibility on 

chromosomes 1 to 5 with variation in F2-hybrid developmental rate detected by Healy 

and Burton (2020), it is likely that differentially expressed N-mt genes on these 

chromosomes may reflect direct or indirect consequences of mitonuclear 

incompatibilities. Additionally, tThe main findings of the current study indicate suggest 

that mitonuclear incompatibilities in the ETS complexes likely play key roles underlying 

variation in developmental rate among F2 hybrids between SD and SC, and 22 N-mt ETS 

subunits are encoded on chromosomes 1 to 5 of which 7 were differentially expressed 

between the fast and slow developers. Although they are unlikely to be the only nuclear 

genes involved in mitonuclear interactions, the 6 of these genes that are not subunits of 

complex II, which has no mitochondrial-encoded subunits (e.g., Saraste, 1999), are 

currently the strongestexcellent candidate genes to underlie mitonuclear incompatibilities 

in T. californicus (complex I: ndufa6, ndufv2, ndufa8, ndufa5 and ndufb3, and complex 

III: uqcrq; Table 1). The relatively large number of genes encoding subunits of complex I

among these results further highlight the potential key impacts of incompatibilities in this

ETS complex. Therefore, it is possible that interacting subunits of complex I, including 
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the specific subunits identified here, may be potential candidates underlying mitonuclear 

interactions in eukaryotic organisms more generally as well.
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Tables and Figures

Table 1. Differences in gene expression between fast- and slow-developing copepodids 
for the 12 differentially expressed nuclear genes encoding subunits of electron transport 
system complexes.

Gene ETS
complex Chromosome

Counts per million 
(μ ± SEM) FDR-

adjusted p
value†Slow

developers
Fast

developers
ndufs8 I 10 66.2 ± 1.3 81.0 ± 2.9 2.0 x 10-2

sdhd II 5 47.8 ± 1.4 59.4 ± 2.7 2.1 x 10-2

ndufv2 I 2 77.2 ± 2.0 95.8 ± 4.7 2.4 x 10-2

ndufa10 I 6 169.3 ± 5.0 213.9 ± 10.0 2.6 x 10-2

atpsyno V 10 200.1 ± 6.1 257.8 ± 15.0 2.6 x 10-2

ndufa5 I 5 41.8 ± 1.1 50.4 ± 1.8 2.7 x 10-2

uqcrq III 3 91.0 ± 2.4 115.7 ± 7.1 3.0 x 10-2

ndufs7 I 10 127.1 ± 2.9 159.2 ± 8.7 3.3 x 10-2

ndufb3 I 5 53.1 ± 2.1 64.8 ± 2.7 3.4 x 10-2

ndufa8 I 3 79.9 ± 2.3 109.3 ± 13.6 3.8 x 10-2

ndufa6 I 1 55.3 ± 1.3 69.2 ± 4.6 4.2 x 10-2

ndufb11 I 10 72.1 ± 2.4 87.5 ± 4.0 4.8 x 10-2

† from the 6-line DE analysis
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Table 2. Expression levels of mitochondrial-encoded protein- and rRNA-coding genes in 
SDxSC and SCxSD F2 hybrid T. californicus.

Gene†

Reads per kilobase per million reads (μ ± SEM) Mitotype
FDR-

adjusted
p value

SDxSC slow
developers

SDxSC fast
developers

SCxSD slow
developers

SCxSD fast
developers

mt-nd1 4567 ± 308 5001 ± 109 2680 ± 124 2690 ± 256 2.5 x 10-10

mt-nd2 5483 ± 378 5604 ± 204 5725 ± 210 5699 ± 362 0.93
mt-nd3 2068 ± 157 2180 ± 93 2958 ± 150 2980 ± 444 3.7 x 10-2

mt-nd4 2235 ± 161 2336 ± 18 4356 ± 325 3698 ± 276 2.5 x 10-9

mt-nd4l 3763 ± 338 4045 ± 116 4818 ± 203 4565 ± 411 0.29
mt-nd5 2621 ± 169 2773 ± 44 3451 ± 169 3127 ± 288 0.22
mt-nd6 3913 ± 298 4248 ± 131 5769 ± 308 5122 ± 457 3.0 x 10-2

mt-cyb 3798 ± 236 3777 ± 112 6519 ± 280 6888 ± 406 1.3 x 10-11

mt-co1 8320 ± 445 8792 ± 249 6071 ± 199 6669 ± 542 8.5 x 10-3

mt-co2 6670 ± 468 6787 ± 286 7493 ± 422 7587 ± 505 0.64
mt-co3 4098 ± 355 4507 ± 238 8113 ± 331 7370 ± 437 4.1 x 10-10

mt-atp6 10245 ± 773 10884 ± 503 11840 ± 865 11874 ± 1410 0.70
mt-atp8 65 ± 9 92 ± 14 247 ± 33 152 ± 28 1.1 x 10-8

mt-rnr1 219 ± 21 240 ± 18 105 ± 11 219 ± 58 4.6 x 10-4

mt-rnr2 206370 ±
13569

223208 ±
5510

109165 ±
4133

130732 ±
17155 2.3 x 10-11

† nd – complex I subunit, cyb – complex III subunit, co – complex IV subunit, atp – 
complex V subunit, and rnr – rRNA
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Figure 1. Developmental rate box plots for eight reciprocal F2 hybrid lines from crosses 
between San Diego (SD) and Santa Cruz (SC), USA of Tigriopus. californicus (lines A-
D: SDxSC, pink, squares; lines E-H: SCxSD, blue, triangles). Developmental rate is 
shown both as a rate (left axis) and as the days post hatch (dph) to stage 1 copepodid 
metamorphosis (right axis).

Figure 2. Results from a principal component analysis of transcriptome-wide gene 
expression for principal components one (PC1) and two (PC2) scores (SDxSC: squares; 
SCxSD: triangles; fast-developing copepodids: filled symbols; slow-developing 
copepodids: open symbols). 95% confidence ellipses are shown for developmental rate 
groups (a – fast developers: green; slow developers: orange) and mitochondrial genotypes
(b – SD mitochondrial genotype: pink; SC mitochondrial genotype: blue).
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Figure 3. Differences in gene expression between fast- and slow-developing F2 hybrid T. 
californicus. Volcano plots (a – 8-line DE analysis; b – 6-line DE analysis) display the 
negative logarithm of the p-value versus the fold change in expression for each gene 
(green – up-regulated in fast-developing copepodids; orange – up-regulated in slow-
developing copepodids; grey – not differentially expressed). Heat maps (c – 8-line DE 
analysis; d – 6-line DE analysis) display relative variation in expression (higher: yellow; 
lower: turquoise) among samples (columns) for each differentially expressed gene (rows).
Developmental rates and mitochondrial genotypes for each sample are indicated by the 
horizontal bars below each heat map (developmental rate – fast: green, slow: orange; 
mitochondrial genotype – SD: pink, SC: blue).
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Figure 4. Significantly enriched gene ontology biological process terms among genes up-
regulated in fast-developing (green) and slow-developing (orange) copepodids. Bar 
length indicates the negative logarithm of the FDR-adjusted p-value for the enrichment 
(asterisk – significant for the 8-line DE analysis genes; dagger – significant for the 6-line 
DE analysis genes; no symbol – significant in genes from both DE analyses; for terms 
detected in both analyses p-values shown are from the 8-line DE analysis).
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Figure 5. Significantly enriched gene ontology cellular component terms among genes 
up-regulated in fast-developing (green) and slow-developing (orange) copepodids. Bar 
length indicates the negative logarithm of the FDR-adjusted p-value for the enrichment 
(asterisk – significant for the 8-line DE analysis genes; dagger – significant for the 6-line 
DE analysis genes; no symbol – significant in genes from both DE analyses; for terms 
detected in both analyses p-values shown are from the 8-line DE analysis).
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Figure 6. Mitochondrial genotype and interaction effects on gene expression in F2 hybrid 
T. californicus. The volcano plot (a) displays the negative logarithm of the p-value versus
the fold change in expression for each gene differentially expressed between hybrids with
SD or SC mitochondrial genotypes (pink – up-regulated in SD mitochondrial genotype; 
blue – up-regulated SD mitochondrial genotype; grey – not differentially expressed). Heat
maps display relative variation in expression (higher: yellow; lower: turquoise) among 
samples (columns) for each gene (rows) with expression patterns affected by 
mitochondrial genotype (b) or by a mitochondrial genotype x developmental rate 
interaction (c). Mitochondrial genotypes and developmental rates for each sample are 
indicated by the horizontal bars below each heat map (mitochondrial genotype – SD: 
pink, SC: blue; developmental rate – fast: green, slow: orange).
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