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Abstract 

Single cell RNA-Sequencing is a powerful technique to analyze the 

transcriptomic landscape of cells.  Here we present two distinct in vitro systems (3D in 

vitro vascular networks in fibrin hydrogels; ex vivo organoid model of colorectal liver 

metastasis) and apply single cell RNA-Sequencing in order to better understand the 

extent of cellular heterogeneity in these 2 systems.  For the 3D in vitro vascular network 

work, we are motivated by the fact that endothelial cells line all major blood vessels and 

serve as integral regulators of many functions including vessel diameter, cellular 

trafficking, and transport of soluble mediators.  Despite similar functions, the phenotype 

of endothelial cells is highly organ-specific, yet our understanding of the mechanisms 

leading to organ-level differentiation is incomplete.  We generated 3D vascular networks 

by combining a common naïve endothelial cell with six different stromal cells derived 

from the lung, skin, heart, bone marrow, pancreas, and pancreatic cancer.  Single cell 

RNA-Seq analysis of the vascular networks reveals five distinct endothelial cell 

populations, for which the relative proportion depends on the stromal cell population.  

Morphologic features of the organotypic vessel networks inversely correlate with a 

cluster of endothelial cells associated with protein synthesis.  The organotypic stromal 

cells were each characterized by a unique subpopulation of cells dedicated to 

extracellular matrix organization and assembly.  Finally, compared to cells in 2D 

monolayer, the endothelial cell transcriptome from the 3D in vitro skin and lung vascular 

networks shows a closer match to the in vivo endothelial cells from the respective 

organs.  We conclude that stromal cells contribute to endothelial cell and vascular 

network organ tropism, and create an endothelial cell phenotype that more closely 
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resembles that present in vivo.  For the colorectal liver metastasis work, we are 

motivated by the fact that colorectal cancer is a leading cause of cancer-related death in 

the United States.  A significant proportion of colorectal cancer cases present liver 

metastases at some point during the course of disease, with limited treatment options 

for these liver metastases.  In order to better understand the liver metastases and their 

response to treatment, it is necessary to develop a robust model of these liver 

metastases.  We generated a patient-matched ex vivo organoid model of colorectal 

cancer liver metastases and compared this organoid model to parental tumor samples 

using single cell RNA-Seq.  Parental tumor samples have a rich diversity of cell types, 

whereas the organoid sample contains only epithelial cells.  Additionally, we identify 3 

sub-populations of epithelial cells with distinct transcriptomic profiles that are present in 

different amounts between the parental and organoid samples.  We conclude that there 

is transcriptomic drift from the in vivo parental sample to the ex vivo organoid sample, 

which manifest in phenotypic drift between these samples.  In both in vitro systems 

outlined above, single cell RNA-Seq is a powerful technique to understand both 

emergent cellular heterogeneity within the in vitro samples and transcriptomic 

differences between in vitro and in vivo tissues. 
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Chapter 1 – Studying Cellular Heterogeneity in In Vitro Systems 

 

Single cell RNA-sequencing (scRNA-Seq) is a powerful technique which allows 

for the observation of gene transcript expression at the single cell level.  This 

technology represents a marked improvement over bulk measurements of gene 

expression (i.e. bulk RNA-Seq, qPCR, etc.) in that a large amount of transcriptomic 

information can be obtained for individual cells.  This allows an investigator to identify 

both large and subtle transcriptomic differences within (or between) samples, thereby 

allowing for the identification of rare sub-populations of cells and a broader picture of 

the heterogeneity within cell samples. 

The central dogma of molecular biology, well known to most biologists and 

biomedical engineers, is DNA is transcribed to RNA which is then translated into 

protein.  This process, while simply described here, does not capture the full picture of 

what is occurring within a cell.  In fact, many molecules and processes actively work to 

enhance, repress, or otherwise modulate this larger DNA�RNA�protein process.  For 

instance, proteins (i.e. transcription factors) can bind to regions of DNA to enhance the 

ability of RNA polymerase to transcribe specific regions of the DNA, causing 

downstream increases in mRNA transcripts for specific genes 1,2.  Additionally, small 

interfering RNA molecules (siRNA) can interfere with mRNA (RNA interference, or 

RNAi) to alter the availability of mRNA for translation into protein 3,4.  Finally, some 

specific proteins (i.e. kinases, phosphatases, etc.) can post-translationally modify other 

proteins to affect their function 5.  While not an exhaustive list of the different types of 

regulation that exist in transcription and translation, it is clear that a complex web of 
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interactions governs fundamental biological processes.  Therefore, in order to 

understand how specific cells are functioning at a granular level, it is necessary to 

obtain a large amount of information for these cells.  Depending on the duration of the 

sequencing (or the “sequencing depth”), large amounts of single cell-level information 

can be generated and utilized to paint a larger picture of a sample.  While there are 

several methods to understand some degree of cellular heterogeneity on the protein 

level (i.e. flow cytometry, immunofluorescent microscopy, etc.), it has been considerably 

more difficult to measure the heterogeneity of cell populations at the gene/RNA level.  

These gene level measurements are critical to our understanding of a collection of cells, 

especially in the tissue contexts with known mutations in gene networks (i.e. cancer).  

Since the early years of scRNA-Seq 6, a wealth of information has been learned for a 

variety of tissues and pathologies, leading to new insights into how specific genes may 

be functioning with a specific cell, how larger gene networks may be functioning within a 

cell, and how different cells may be functioning and interacting with their environment. 

In vitro systems are useful tools to allow for the study of complex biological 

phenomena.  From relatively simple 2D in vitro cell monolayer cultures, to more 

complex 3D in vitro systems incorporating multiple cell types, ECMs, tissue 

organizational patterns, forces, etc., to in vivo animal models, there exists a large 

spectrum of model complexity, model cost, model reproducibility, and model biological 

relevance.  The determination of how complex a model must be to study some 

biological phenomena is a critical question to answer while designing experiments to 

test specific hypotheses.  While “simpler” 2D in vitro models have the benefit of more 

often being higher throughput, affording greater spatiotemporal control to the 
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investigator, and generally being less expensive (in both time and money), they may 

often fail to capture enough biological relevance to appropriately model a specific 

cellular or tissue phenomenon.  Therefore, there exists a strong need to study and 

understand how in vivo tissues and their respective in vitro models differ in order to 

improve the models to better understand and predict in vivo phenomena. 

The crux of this dissertation is a transcriptomic analysis of emergent cellular 

heterogeneity in two different in vitro model systems, and an attempt to understand the 

extent to which an in vitro model system can recapitulate the in vivo transcriptomes of 

each tissue.  The first system that will be looked at is a 3D in vitro fibrin hydrogel model 

of vascular network formation using endothelial cells (ECs) and stromal cells.  

Specifically, we will describe how organ-specific stromal cells alter the EC 

transcriptome, and how these transcriptomic changes may be manifested in phenotypic 

changes in the tissue, along with a look at how these 3D in vitro vascular networks 

compare with organ-specific in vivo endothelial cells.  The second system that will be 

looked at is an ex vivo organoid model of colorectal cancer liver metastasis, albeit for a 

dataset still in progress.  Specifically, we will characterize the types of cells that are 

retained through the organoid culture process and describe several ways in which those 

cells differ from those found in the parental metastatic lesions (also known as 

“transcriptomic drift”).  Overall, we find that the in vitro models leveraged in this 

dissertation differ from their in vivo counterparts to different extents in terms of their 

transcriptomes, emphasizing the need to understand an in vitro model in the context of 

its respective in vivo tissue, and to develop more biologically relevant in vitro models. 
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Chapter 2 – 3D In Vitro Models of Human Organotypic Capillary Networks 

 

Introduction 

Endothelial cells (ECs) line the vasculature and directly impact the structure and 

function of all vessels, including capillaries.  Interestingly, the structure and function of 

capillary beds is markedly organ-specific, and generally contributes to the overall 

function of the organ 8.  For example, the capillary endothelium in the central nervous 

system is characterized by a reduced ability of molecules to transit from the blood to the 

tissue, and vice versa (i.e., the “blood-brain barrier”) 9.  In contrast, the capillary 

endothelium in the liver exhibits large fenestrations which allow molecules to easily pass 

between the tissue and the blood 10. In addition, increasing evidence shows that the 

vasculature also plays a role in patterning tissues 11–13, suggesting bi-directional 

crosstalk between the endothelium and the surrounding parenchyma. Much work has 

been done to characterize organ-specific ECs, but the mechanism for how these organ-

specific differences emerge is unclear 14–17. 

The local tissue microenvironment (TiME), including organotypic stromal cells 

(OSC), can potentially contribute to organ-specific capillary network structure and 

function. Stromal cells are a heterogeneous population of cells that form an integral part 

of the TiME.  Stromal cells perform diverse functions in normal physiology and 

pathology, including extracellular matrix (ECM) production and remodeling, and 

secretion of growth factors and cytokines, both of which can potentially impact EC 

phenotype 18,19.  Some stromal cells, such as pericytes, directly associate with blood 
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vessels, and can regulate capillary permeability and sprouting angiogenesis 20–24.  

Additionally, stromal-derived matricellular factors regulate EC sprouting angiogenesis 

and vascular lumen formation in vitro 25,26.  Taken together, it is clear that stromal cells 

are critical regulators of capillary network structure and function. 

In order to better understand organ-specific features of the capillary endothelium, 

multicellular models of organotypic vasculature have been developed.  2D in vitro 

monolayers of organotypic EC are generally simple and inexpensive to create, but 

typically lack the multicellular complexity (i.e., are grown and studied in the absence of 

stromal cells) and geometry of the TiME.  In vivo animal models are perhaps more 

physiologically relevant, but are often cost- and time-intensive, do not necessarily reflect 

the human endothelium, and have limited spatiotemporal resolution.  We and others 

have reported on the development of 3D human vascular networks (both perfused and 

unperfused) as improved models to understand dynamic events such as angiogenesis 

27,28 and cellular (immune and cancer) trafficking 29–31.  While some effort has been 

made to validate organ-specific characteristics of the vasculature in these 3D in vitro 

models 29,32–34, there is a significant gap in our knowledge of both the similarities and 

differences that emerge between in vivo and in vitro EC and capillary networks. 

We hypothesized that OSC impact capillary EC phenotype, and that 3D capillary 

networks generate EC that are more representative (relative to 2D monolayer) of in vivo 

EC.  To address our hypothesis, we examined both the EC and OSC transcriptome, 

using single cell sequencing, in 3D in vitro capillary networks created with OSC 

representing skin, lung, pancreas, pancreatic cancer, heart, and bone marrow.  Our 

results demonstrate that: 1) five distinct EC phenotypes can be defined based on their 
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transcriptome; 2) the relative proportion of each EC phenotype in the 3D networks 

depends on the OSC; and 3) the proportion of the EC phenotype characterized by 

active protein synthesis is negatively correlated with key morphological features of 

actively growing capillary networks including total length and number of junctions.  

Furthermore, each OSC demonstrated a unique population of cells as well as two 

populations that were shared amongst the six different OSC.  Finally, compared to 2D 

monolayers of ECs, the 3D capillary networks created with skin and lung stromal cells 

more closely resemble the in vivo transcriptome from publicly available datasets 35,36. 

 

 

Methods 

2D monolayer cell culture 

Endothelial cell colony-forming endothelial cells (ECFC-ECs) were isolated from 

umbilical cord blood, as previously described 37,38, and were chosen as they can be 

considered “organ-agnostic” (derived from cord blood) and less differentiated 

(progenitor) than tissue-resident endothelial cells.  The ECFC-ECs were grown on 

gelatin-coated tissue culture plastic in EGM-2 (Lonza #CC-3162).  The same donor of 

ECFC-ECs was used for all experiments.  All organotypic stromal cells (OSCs) were 

purchased commercially and grown according to vendor recommendations on tissue 

culture plastic.  Human bone marrow stromal cells (Marrow OSC; Lonza #2M-302) were 

cultured in Myelocult H5100 media (STEMCELL Technologies #05150) supplemented 

with 1 µM hydrocortisone in a-MEM (STEMCELL Technologies #74142 and 
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ThermoFisher #12571063, respectively), 2 mM L-glutamine (ThermoFisher #25030081), 

and 50 unit/mL Penicillin-Streptomycin (ThermoFisher #15070063).  Human cardiac 

fibroblasts (Heart OSC; Cell Applications #306AK-05a) were grown in HCF Growth 

Medium (Cell Applications #316K-500).  Normal human dermal fibroblasts (Skin OSC; 

Lonza #CC-2511) were cultured in FGM-2 (Lonza #CC-3132).  Normal human lung 

fibroblasts (Lung OSC; Lonza #CC-2511) were cultured in FGM-2 (Lonza #CC-3132).  

Pancreatic cancer associated fibroblasts (cPancreas OSC; Vitro Biopharma #CAF08) 

were cultured in Pancreatic Stellate CAF Maintenance Media (Vitro Biopharma 

#PC00B5).  Human pancreatic stellate cells (nPancreas OSC; ScienCell Research 

Laboratories #3830) were cultured in Stellate Cell Complete Medium (ScienCell 

Research Laboratories #5301). 

All cells were sub-cultured per vendor recommendations in a 37 oC, 5% CO2 

incubator.  Once cells reached confluence, they were briefly washed with sterile DPBS 

without divalent cations (DPBS(-)) (ThermoFisher #14190094) and then treated with 

0.05% Trypsin-EDTA (ThermoFisher #25300062).  Once lifted, the cell suspension was 

neutralized using cell-specific media.  Cells were then centrifuged at 300xg for 5 min 

and were either (1) propagated for additional sub-culture, (2) utilized in downstream 

experiments, or (3) frozen down in a 10% DMSO solution for long-term liquid nitrogen 

storage.  All cells were between passage 3 and passage 10 prior to use in experiments. 
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Flow cytometry 

Once cell monolayers reached confluence, cells were lifted using Trypsin as 

described above.  Cells were blocked in a 0.1% BSA buffer and labeled using 

conjugated antibodies (Supp. Table 1).  Cells were analyzed using a ThermoFisher 

Attune (model #A24858), with an average of 20,000 events recorded per sample.  

Gating for all relevant markers of interest was determined using fluorescence-minus-

one (FMO) controls for each individual marker of interest.  Raw FCS files were 

processed using FlowJoTM.  Cells were first gated for live, single cells prior to evaluating 

the expression of markers of interest.  Flow cytometry analysis was repeated 3 times to 

verify consistency in marker expression. 

 

Vendor Cat # Fluorophore Target 
Vol. per 

100 µL Test 
(µL) 

BD Biosciences 560411 FITC 
CD144/ 

VE-Cadherin 
20 

BioLegend 303116 APC 
CD31/ 

PECAM1 
5 

BioLegend 328122 BV 421 
CD90/ 
THY1 

5 

BioLegend 323606 PE 
PDGFRβ/ 
CD140b 

5 

ThermoFisher L10119 Fixable Near IR Live/Dead 1 

 
Table 1 

Antibodies used in the flow cytometry characterization of ECFC-EC and OSC monolayers prior to 3D 
fibrin hydrogel culture from Figure 1. 
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3D in vitro vascular networks 

Fibrinogen (Sigma #F8630) was solubilized in DPBS(-) at a concentration of 10 

mg/mL, and syringe-filtered prior to use.  Thrombin (Sigma #T4648) was solubilized in 

DPBS(-) at a concentration of 50 units/mL, syringe filtered, and stored at -20 oC until 

thawed for use in experiments.  Once ECFC-EC and OSC monolayers reached 

confluence, the cells were exposed to Trypsin and collected as previously described.  

To create the 3D vascular networks, we used a well-established previously published 

protocol18,39.  In brief, the OSC and ECFC-EC were counted and mixed in sterile 

fibrinogen at a 2:1 ratio, respectively, such that there were 2 million OSCs per mL and 1 

million ECFC-ECs per mL.  150 µL of the cell-fibrinogen solution was mixed with 6 µL of 

thrombin and the resultant volume introduced into individual wells of a 48 well plate.  As 

a negative control, some fibrin hydrogels contained only 1 million ECFC-ECs per mL (no 

OSCs present in these hydrogels).  The hydrogels were allowed to polymerize for 30 

minutes in a 37 oC incubator prior to adding media.  Fibrin hydrogels were cultured in 

EGM-2, with media changes every other day. 

 

Immunofluorescence 

After 7 days of culture, fibrin hydrogels were fixed in a 10% formalin buffer.  

Hydrogels were then permeabilized in PBS+0.5% Tween-20 before undergoing blocking 

in 2% BSA in PBS+0.1% Tween-20.  Primary CD31 (PECAM1) antibody was diluted in 

blocking buffer and applied overnight to the hydrogels at 4 oC (Table 2).  Secondary 

antibody was diluted in blocking buffer and applied for 45 min. at room temperature 
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(Table 2).  Hydrogels were then washed in PBS+0.1% Tween-20 and imaged.  All fibrin 

hydrogels were imaged using an Olympus IX83 widefield fluorescence microscope. 

 

Vendor Cat # Species Target Fluorophore Dilution 

ThermoFisher 13031982 Mouse 
CD31/ 

PECAM1 
N/A 1:100 

ThermoFisher A21427 Rabbit Anti-Mouse Alexa Fluor 555 1:400 
 

Table 2 
Antibodies used in the immunofluorescent characterization of vascular networks from 3D in vitro fibrin 

hydrogels from Figure 2. 

 

 

Quantitative evaluation of vascular networks 

Resultant images of the CD31-labeled vascular networks were edited in ImageJ 

to further reduce background signal.  Resultant JPG files were then quantified using 

AngiotoolTM, as previously described 39,40.  All images were quantified using the same 

settings, and the resultant data were further analyzed in the R computing environment 

(See Statistical Analysis below).  Two parameters were highlighted, namely total vessel 

length and total number of junctions (or branching points). 

 

  



11 
 
 

Isolation of cells from fibrin hydrogels 

After 7 days of culture, fibrin hydrogels were digested using nattokinase (Japan 

Bio Science Laboratory #NSK) diluted to 50 units/mL in EGM-2.  After 1 hour of 

exposure at 37 oC, resultant degraded hydrogels were pooled for each condition (>5 

hydrogels per condition), washed several times in DPBS(-), and exposed to an 

additional 10 min of 0.05% Trypsin-EDTA to ensure adequate release of cells from any 

remnant ECM fragments.  Resultant solutions underwent additional washes, 70 µm 

filtration, and then finally a 40 µm filtration prior to scRNA-Seq analysis. 

 

Transcriptome alignment and initial processing 

All single cell library preps and sequencing was performed by the UC Davis DNA 

Technologies Core and UC Davis Bioinformatics Core Facilities.  Cells were analyzed 

by 10X Genomics 3’ sequencing v3.  Raw fastq files were processed using CellRanger 

count (10X Genomics) for genome alignment via the Linux command line.  Resultant 

filtered output files were brought into the R computing environment and analyzed further 

via the Seurat pipeline and by using a series of scRNA-Seq analysis packages (Table 

3).  All data files underwent quality control filtering to exclude cells with fewer than 200 

unique genes, greater than 7,500 unique genes, and/or more than 10% of total gene 

expression derived from mitochondrial-specific genes (Figure 5A-E).  In addition, genes 

that were not detected in at least 3 cells were excluded from downstream analysis.  This 

quality control process yielded several thousand cells per 3D in vitro vascular network 

condition (Figure 5A).  ECs and OSCs were identified by characteristic gene 

expression, and then separated and re-normalized for downstream analysis.  The 
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following values were used for the “resolution” parameter to determine the number of 

clusters: 1 for the overall 3D in vitro vascular network-derived cell data (Figure 6C), 0.3 

for the endothelial cells alone from the dataset (Figure 9A), and 1 for the stromal cells 

alone from the dataset (Figure 14A).  Clustering was verified by observation and 

evaluation of the silhouette scores for each dataset (Figure 6A-B for overall 3D in vitro 

vascular network-derived cell data; Figure 10E-F for the endothelial cells alone; Figure 

16E-F for the stromal cells alone).  Additionally, cells were analyzed for their ribosomal 

gene-related gene expression by analyzing the total amount of RPS and RPL gene 

expression per cell, and percentage of RPS/RPL gene expression was reported (Figure 

12B-C for endothelial cells; Figure 16G-H for stromal cells). 

 

Gene ontology analysis 

Differentially expressed genes (DEGs) were identified for all EC clusters and 

OSC clusters (after re-normalizing and re-clustering the data independently).  For a 

specific cluster, the list of DEGs along with the list of all genes expressed was fed into 

the topGO package in R.  In order to identify the relevant over-enriched biological 

process gene ontology (GO) terms associated with the DEGs for each cluster, Fisher’s 

exact test using the “elim” algorithm was performed.  Resultant p-values were then 

log10-transformed and GO terms were rank ordered by the log10-transformed p-value. 
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Name Environment Version 

Ubuntu Linux 20.04.4 

CellRanger Linux 5.0.0 

GRCh38 Linux 3.0.0 

base R 4.0.3 

Matrix R 1.4-1 

org.HS.eg.db R 3.12.0 

topGO R 2.42.0 

SparseM R 1.81 

GO.db R 3.12.1 

circlize R 0.4.14 

AnnotationDbi R 1.52.0 

graph R 1.68.0 

stringr R 1.4.0 

SeuratWrappers R 0.3.0 

monocle3 R 1.0.0 

SingleCellExperiment R 1.12.0 

SummarizedExperiment R 1.20.0 

GenomicRanges R 1.42.0 

GenomeInfoDb R 1.26.7 

IRanges R 2.24.1 

S4Vectors R 0.28.1 

MatrixGenerics R 1.2.1 

matrixStats R 0.61.0 

NMF R 0.24.0 

cluster R 2.1.3 

rngtools R 1.5.2 

pkgmaker R 0.32.2 

registry R 0.5-1 

CellChat R 1.1.3 

Biobase R 2.50.0 

BiocGenerics R 0.36.1 

igraph R 1.3.0 

cowplot R 1.1.1 

ggplot2 R 3.3.5 

patchwork R 1.1.1 

dplyr R 1.0.8 

SeuratObject R 4.0.4 

Seurat R 4.1.0 

tidyverse R 1.3.1 
 

Table 3 
System version information for Linux and relevant packages from R computing environment. 
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In vivo comparisons of in vitro vascular network data 

For in vivo dataset comparisons 41, publicly available in vivo whole lung 

dissociate data and in vivo skin tissue data were utilized for comparison 35,36.  In vivo 

skin ECs were identified out of the skin in vivo dataset by EC characteristic gene 

expression.  Briefly, in vivo skin EC data underwent an anchor-based integration with 

the corresponding skin-specific EC 3D in vitro vascular network data and ECFC-EC 2D 

in vitro monolayer data via FindIntegrationAnchors and IntegrateData in Seurat.  The 

resultant integrated object was scaled and clustered.  DEGs were identified for each EC 

type (in vivo, 3D in vitro, 2D in vitro monolayer), and then a score was assigned to each 

EC type based on the list of in vivo DEGs using AddModuleScore in Seurat.  The 

resultant score was then normalized by the mean 3D in vivo score and the mean 2D 

ECFC-EC in vitro monolayer score, so as to better identify any relative shift of the 3D in 

vitro vascular network-derived ECs.  The same process was repeated for comparisons 

of the in vivo lung dataset to lung-specific EC 3D in vitro vascular network data and 

ECFC-EC 2D in vitro monolayer data. 

 

Statistical Analysis 

Statistical analysis of vascular network data was carried out in the R computing 

environment.  One-way ANOVA was used to compare the total vessel lengths and total 

number of junctions between the different 3D in vitro vascular networks.  Reported p-

values were deemed significant if p < 0.05.  Evaluation of the linear regression EC 

cluster percentage and mean total vessel length was also performed in R.  Pearson’s 



15 
 
 

correlation coefficients were determined as part of the analysis and reported p-values 

were deemed significant if p < 0.05.  

 

 

Results 

Endothelial cells assemble into vascular network structures within 7 days when co-

cultured with organotypic stromal cells in fibrin hydrogels 

Prior to co-culture in a fibrin hydrogel, various OSC monolayers and EC 

monolayers were examined by flow cytometry to ensure characteristic marker 

expression (Figure 1A-B).  ECFC-ECs were observed to be CD31+CD90-CD144+ 

while all OSCs were observed to be CD31- (with monolayer-specific differences in 

CD90 expression), consistent with previous observations 42,43. 

ECFC-ECs assemble into vascular networks after 7 days of co-culture with each 

of the six different OSCs in 3D fibrin hydrogels as verified by IF microscopy for 

CD31/PECAM1 (Figure 2A-B).  The vascular networks demonstrated morphological 

differences in terms of total vessel length and total number of junctions (Figure 2C-D).  

For example, the total vessel length per unit area for the skin network was 

approximately twice that of bone marrow or pancreatic cancer.  ECs do not form stable 

vascular networks in the absence of OSCs in fibrin hydrogels (data not shown). 
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Figure 1 
ECFC-EC monolayers are CD31+CD90-CD144+ by flow cytometry, while OSC monolayers have 

heterogeneous expression of CD90, but crucially do not express CD31.  A) CD31 vs. CD90 expression 

for ECFC-EC and OSC monolayers.  Average of 20,000 events recorded per cell type.  Gating 

determined by FMO controls on ECFC-EC monolayers.  B) CD31 vs. CD144 expression for CD31+CD90- 

ECFC-EC monolayers.  Average of 20,000 events recorded.  Gating determined by FMO controls on EC 

monolayers. 
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Figure 2 
ECFC-ECs form into CD31+ vascular networks after 7 days of co-culture with a variety of OSCs in 3D in 

vitro fibrin hydrogels.  A) Schematic detailing formation of 3D in vitro vascular networks in fibrin hydrogels.  
B) Representative images of CD31+ (PECAM1+) vascular networks formed using same parental ECFC-
EC monolayer and OSCs as indicated in each image.  Scale bar represents 200 µm.  C) Quantification of 

CD31+ (PECAM1+) vascular networks by Angiotool.  Total vessel length and total number of junctions 
normalized by total image area.  *p < 0.05 by One-Way ANOVA. 
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ECs and OSCs can be identified by characteristic gene expression 

3D in vitro fibrin hydrogels underwent enzymatic digestion by nattokinase 

followed by Trypsin (outlined in the Methods).  Nattokinase is a potent fibrinolytic 

enzyme, which can degrade fibrin hydrogels quickly (Figure 3) and has previously been 

shown to be gentle enough on cells so as to not compromise cell viability and surface 

protein expression 29,44. 

 

Figure 3 
3D in vitro fibrin hydrogels can be degraded by leveraging fibrinolytic activity of nattokinase.  A) 

Schematic detailing enzymatic digestion of 3D in vitro fibrin hydrogels.  B) Absorbance values at 400 nm 
for 150 µL 3D in vitro blank fibrin hydrogels (no cells; fibrin-only) exposed to a variety of concentrations of 

nattokinase diluted in EGM-2 over the course of 2 hours.  Sample size of 3 for each measurement.  C) 
Estimated percent fibrin hydrogel degradation for 150 µL 3D in vitro blank fibrin hydrogels based on 

absorbance values at 400 nm. 
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After enzymatic digestion, the resultant samples were filtered to obtain cells for 

scRNA-Seq (Figure 4A).  Resultant UMAP plots demonstrate significant transcriptomic 

heterogeneity both within and between 3D in vitro vascular network conditions (Figure 

4B).  The combined 3D in vitro fibrin hydrogel-derived scRNA-Seq dataset underwent 

quality control (detailed in the Methods; Figure 5) and unsupervised k-means clustering 

as part of the Seurat pipeline.  Parameter sweeps were performed to ensure an 

appropriate number of clusters was achieved for downstream analysis (Figure 6A-B).  

Twenty-five distinct clusters were identified (Figure 6C).  As previously mentioned, prior 

to co-culture in the fibrin hydrogels, ECFC-ECs were CD31+CD90-CD144+ and OSCs 

were CD31-CD90+ by flow cytometry.  Therefore, we proceeded to examine known EC-

specific and stromal-specific genes to distinguish the ECs and OSCs in the dataset 

25,26,45,46.  Clusters 2, 16, 18, and 24 were notable as they express EC-specific genes 

including CDH5, CLDN5, EGFL7, MCAM, and PECAM1 (Figure 7A), albeit with some 

heterogeneity in marker expression between the clusters.  Clusters 2, 16, 18, and 24 

also demonstrated heterogeneous expression of other known EC-specific genes 

(Figure 8A) 45.  These four clusters were also negative for a series of stromal-specific 

genes including COL1A1, COL1A2, PDGFRA, PDGFRB, and TAGLN (Figure 7B, 

Figure 8B).  The remaining cell clusters (all clusters but 2, 16, 18, and 24) did not 

express EC-specific genes, while at the same time expressed (with some 

heterogeneity) stromal-specific genes (Figure 7A-B, Figure 8A-B).  We therefore 

lumped clusters 2, 16, 18, and 24 into a set representing ECs, while all other clusters 

were considered OSCs (Figure 7C).  This analysis resulted in a range of ECs (75-688) 
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and OSCs (1065-5220) from each of the six vascular networks (Figure 7D and 7E, 

respectively). 

 

 

 

Figure 4 
Cells isolated from 3D in vitro vascular networks in fibrin hydrogels can be subjected to scRNA-Seq 

analysis and are arranged into distinct clusters in UMAP space.  A) Schematic detailing processing of 3D 
in vitro fibrin hydrogels for scRNA-Seq.  B) Resultant UMAP plots of cells isolated from 3D in vitro 

vascular networks in fibrin hydrogels comprised of the 6 unique vascular network types.  Additional UMAP 
plots are broken down by vascular network type. 
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Figure 5 
Quality control of complete 3D in vitro vascular network scRNA-Seq dataset.  A) Bar chart indicating 
number of cells available for analysis from 3D in vitro fibrin hydrogels for each vascular network type 

before and after QC filtering as part of the scRNA-Seq analysis.  B) Violin plot of total number of 
transcripts for each sample before QC filtering.  C) Violin plot of total number of unique genes (UMIs) for 
each sample before QC filtering.  D) Violin plot of total number of transcripts for each sample after QC 

filtering.  E) Violin plot of total number of unique genes (UMIs) for each sample after QC filtering. 

 



22 
 
 

 

Figure 6 
Clustering analysis of 3D in vitro vascular network scRNA-Seq dataset.  A) Scatterplot of resultant 
number of cell clusters to Seurat resolution parameter (values between 0.1-1.5).  B) Scatterplot of 

average silhouette score for select values of the Seurat resolution parameter (values between 0.1-1.5).  
C) Resultant clustering of the 3D in vitro vascular network scRNA-Seq dataset using Seurat resolution 

parameter = 1.0.  A total of 25 distinct clusters are identified. 
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Figure 7 
ECs and OSCs can be identified from 3D in vitro vascular network dataset by expression of characteristic 

EC and OSC genes.  A) Violin plots of characteristic EC genes CDH5, CLDN5, ICAM2, MCAM, and 
PECAM1.  B) Violin plots of characteristic OSC genes COL1A1, COL1A2, PDGFRA, PDGFRB, and 
TAGLN.  C) Overall UMAP plot for complete 3D in vitro vascular network dataset broken down by 
EC/OSC classification (EC=red, OSC=blue).  D) Bar chart of resultant number of ECs per vascular 

network type from the complete 3D in vitro vascular network dataset.  E) Bar chart of resultant number of 
OSCs per vascular network type from the complete 3D in vitro fibrin hydrogel dataset. 
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Figure 8 
Additional characteristic EC and OSC gene expression of clusters from 3D in vitro vascular network 

dataset.  A) Violin plots of additional characteristic EC genes CD34, EGFL7, KDR, NOS3, SOX18, TIE1, 
and VWF for each cluster identified in complete 3D in vitro vascular network dataset.  B) Violin plots of 
additional characteristic OSC genes ACTA2, CD248, CSPG4, DCN, FBN1, NES, and THY1 for each 

cluster identified in complete 3D in vitro vascular network dataset. 
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Distinct EC sub-populations are present in the organotypic vascular networks 

The total population of ECs was next re-normalized and re-clustered in order to 

elucidate specific transcriptomic differences between potential sub-populations of ECs.  

ECs cluster into 5 distinct groups (labeled “EC-1” through “EC-5”), each with distinct 

transcriptomic profiles (Figure 9A-B, Figure 10).  Interestingly, each EC cluster is 

present in each of the six 3D in vitro organotypic vascular networks, although the 

relative fraction of each EC cluster depends on the OSC (Figure 9C-D). 

 

 

 

Figure 9 
ECs isolated from 3D in vitro vascular networks separate into distinct clusters.  A) UMAP plot of 

renormalized 3D in vitro EC dataset separates into 5 distinct clusters (EC-1, EC-2, EC-3, EC-4, and EC-
5).  B) UMAP plot of renormalized 3D in vitro EC dataset grouped by vascular network type.  C) Grouped 
bar chart shows relative percentages of each EC cluster per vascular network type.  D) Bar chart of total 

number of ECs per EC cluster. 
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Figure 10 
Dimensionality reduction of analysis of clustering results of ECs isolated from 3D in vitro vascular network 
dataset.  A) Plot of first two principal components separated by vascular network type.  B) Plot of first two 
principal components separated by EC cluster identity.  C) Plot of first two tSNE components separated 

by vascular network type.  D) Plot of first two tSNE components separated by EC cluster identity.  E) 
Scatterplot of resultant number of cell clusters to Seurat resolution parameter (values between 0.1-1.5).  
F) Scatterplot of average silhouette score for select values of the Seurat resolution parameter (values 

between 0.1-1.5). 
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After obtaining a list of differentially expressed genes (DEGs) for each cluster of 

ECs, we performed gene ontology (GO) analysis to identify distinct biological processes 

characteristic of each EC cluster (Figure 11A-B, Table 4).  EC-1 is characterized by 

DEGs that include redox-related genes (e.g., MT2A, MT1E, TXN), and is associated 

with enhanced metabolism based on GO terms including “mitochondrial respiratory 

chain complex I assembly” and “mitochondrial electron transport, NADH to ubiquinone.”  

EC-2 is characterized by DEGs that include ribosomal-related genes (e.g., RPS27) 

associated with protein regulation and synthesis based on GO terms including 

“translational initiation” and “ribosomal large subunit assembly”.  EC-3 is characterized 

by DEGs that include cell-ECM regulatory genes (e.g., THBS1, CTGF), and is 

associated with migration and adhesion based on GO terms including “positive 

regulation of cell migration” and “cell adhesion.”  EC-4 is characterized by DEGs that 

include histone-related genes (e.g., HIST1H1B, HIST1H13B, HIST1H2AG) and cell 

cycle-related genes (e.g., UBE2C, HMGB2, CKS2), and is associated with cell 

proliferation based on GO terms including “cell division” and “microtubule cytoskeleton 

organization.”  Finally, EC-5 is characterized by DEGs that include several genes 

related to endothelial basement membrane (e.g., COL4A2, HSPG2, COL4A1, 

COL18A1), and is associated with angiogenesis based on GO terms including 

“angiogenesis” and “positive regulation of angiogenesis.”  When pseudotime values are 

mapped onto the UMAP plots (Monocle 3 47) different EC clusters follow a pattern from 

a less differentiated EC involved in migration, adhesion, and angiogenesis to a more 

fully differentiated and synthetic phenotype (EC3�EC5�EC4�EC1�EC2) (Figure 

12).   
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Figure 11 
Renormalized EC clusters have unique transcriptomic profiles and unique GO terms associated with their 
respective DEGs.  A) Heatmap of top 10 DEGs for each EC cluster.  B) Top 6 most significant GO terms 

based on DEGs for each EC cluster. 

 

 

Figure 12 
Renormalized EC clusters exhibit different pseudotime values for each cluster and have different 

expression of ribosomal-related genes.  A) Pseudotime values of 3D in vitro EC dataset as determined by 
Monocle3, mapped onto the UMAP dimensionality reduction of the renormalized ECs (green = late/high 

pseudotime, red = early/low pseudotime).  B) Violin plot of percentage of ribosomal genes (percentage of 
gene expression by RPS and RPL genes per cell) grouped by vascular network type.  C) Violin plot of 

percentage of ribosomal genes (percentage of gene expression by RPS and RPL genes per cell) grouped 
by EC cluster identity. 
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In order to better understand the potential impact of EC clusters on the 

morphology of the individual vascular networks, we correlated the relative percentage of 

each EC cluster to the mean total vessel length for each 3D in vitro vascular network.  

We observed that the relative percentage of EC-2 in each vascular network is 

negatively correlated with the mean total vessel length of each vascular network 

(Figure 13; R = -0.857, *p = 0.029). 

 

 

 

Figure 13 
EC phenotype correlates with EC transcriptome.  A) Correlation of the total vessel length measured for 

each 3D in vitro vascular network (Figure 2) compared with the relative percentage of EC-2 in each 3D in 
vitro vascular network (Figure 9).  Error bars represent 1 standard deviation above and below the mean 

total vessel length.  Pearson correlation coefficient R = -0.857 with associated p = 0.029. 
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# EC-1 EC-2 EC-3 EC-4 EC-5 
1 MT2A RGCC NEAT1 HIST1H1B MALAT1 

2 MT1E IL32 MT-CO2 HIST1H4C NEAT1 

3 TXN LXN HSPA5 UBE2C VWF 

4 SERPINE1 CDC42EP5 APLP2 HIST1H2AG COL4A1 

5 SH3BGRL3 SOX18 MT-CYB HIST1H1C HSPG2 

6 RPL22L1 PGF THBS1 HIST1H1D COL4A2 

7 BOLA3 TMSB4X HSP90B1 CKS2 TCIM 

8 HMGA1 TPT1 MT-ATP6 HMGB2 COL18A1 

9 S100A6 RPS27 MALAT1 HIST1H3B DEPP1 

10 ANXA2 BTG1 CTGF HIST1H1E XIST 

11 POLR2E PNRC1 CYR61 HIST2H2AC PECAM1 

12 PRDX1 GNG11 AHNAK CDK1 ARGLU1 

13 GSTP1 RPL10 EDN1 CCNB1 CLDN5 

14 PFN1 C12orf57 MT-CO3 TOP2A WSB1 

15 FKBP11 CALM1 HHIP TPX2 TCF4 

16 ADIRF NOP53 MT-CO1 KPNA2 RHOB 

17 LDHA RPL28 ITGB1 NUSAP1 UACA 

18 PSMD2 RPS28 PTX3 TUBB4B PXDN 

19 PPIA RPL13 CRIM1 RRM2 MACF1 

20 OAZ1 COMMD6 CLEC14A TUBA1C PNISR 

21 MLLT11 RPL34 MT-ND4 CKS1B SPTBN1 

22 UROD RPL26 ENG AURKB CLEC14A 

23 ENO1 RPS4X EFEMP1 UBE2S LAMB1 

24 FKBP3 RPS8 CKAP4 DLGAP5 THBS1 

25 SRGN RPS15A MT-ND3 CDC20 NRP2 

26 MYL12B RPL39 SLC3A2 UBE2T CDH5 

27 S100A11 RPS26 SLC7A11 TUBA1B UTRN 

28 EFHD2 SELENOW PRSS23 HIST1H4E MYH9 

29 VPS29 RPL15 CLDN11 SMC4 MMRN1 

30 SDCBP OST4 FLNB H2AFZ GABPB1-AS1 

31 DKK1 RPS14 NR2F2 H2AFX RSRP1 

32 VEPH1 ZFAS1 MACF1 TYMS HLA-B 

33 TAF10 CCDC85B AKAP12 PTTG1 KIAA1551 

34 UCHL3 RPS3A MMRN1 BIRC5 LUC7L3 

35 NDUFA3 RPL37 APP G0S2 RNF213 

36 MYL6 RPL30 MCAM PCLAF PLK2 

37 NDUFB6 GUK1 HMOX1 HMGN2 DLL4 

38 IL1RL1 RPL32 ITGA5 STMN1 SOX4 

39 NDUFAF2 RPL22 CD59 HMGB1 APP 

40 CTNNAL1 RPS19 MT-ND2 RANBP1 RGCC 

 
Table 4 

Top 40 DEGs for each EC cluster, ordered by fold change over all other clusters (as determined by 
Seurat).  Top 10 DEGs for each cluster are shown in Figure 11. 
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Common and unique OSC sub-populations are present in 3D organotypic vasculature  

The population of OSCs was next re-normalized and re-clustered in order to 

elucidate specific transcriptomic differences between potential sub-populations of OSCs 

present in the 3D in vitro models of organotypic vasculature.  OSCs cluster into 8 

distinct groups (labeled “OSC-1” through “OSC-8”), each with distinct transcriptomic 

profiles (Figure 14A-B, Figure 16, Table 5).  Interestingly, each coculture is 

represented by a combination of these 8 clusters with each having a unique, dominant 

OSC cluster. All, however, share 2 clusters – OSC 1 and OSC-7 – albeit with the 

relative fraction of the common OSC clusters being different for each vascular network 

(Figure 14C-D).  OSC-2 primarily consists of Lung OSCs; OSC-3 primarily consists of 

Skin OSCs; OSC-4 primarily consists of nPancreas OSCs; OSC-5 primarily consists of 

cPancreas OSCs; OSC-6 primarily consists of Marrow OSCs; and OSC-8 primarily 

consists of Heart OSCs.  Thus, each of the OSC populations is transcriptionally distinct 

from the others, indicating they retain the “memory” of their origin tissue. 

 

Figure 14 
OSCs isolated from 3D in vitro vascular networks separate into distinct clusters.  A) UMAP plot of 

renormalized 3D in vitro OSC dataset separates into 8 distinct clusters (OSC-1, OSC-2, OSC-3, OSC-4, 
OSC-5, OSC-6, OSC-7, and OSC-8).  B) UMAP plot of renormalized 3D in vitro OSC dataset grouped by 

vascular network type.  C) Grouped bar chart shows relative percentages of each OSC cluster per 
vascular network type.  D) Bar chart of total number of OSCs per OSC cluster. 
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All of these unique OSC clusters differentially express matricellular genes (e.g., 

DCN, LOX, PLAT) and extracellular matrix proteins (e.g., COL4A2, COL1A1, COL6A3), 

and have GO terms related to extracellular matrix organization, wound healing, cytokine 

secretion, and angiogenesis (Figure 15), reflective of their fibroblast-like identity.  OSC-

1 is a large population of OSCs present in all cocultures and is relatively poorly defined 

transcriptionally.  OSC-7 is a small population of OSCs present in all vascular networks 

and has GO terms related to cell division, suggesting that a relatively small number of 

OSCs in each coculture are actively proliferating. 
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Figure 15 
Renormalized OSC clusters have unique transcriptomic profiles and unique GO terms associated with 

their respective DEGs.  A) Heatmap of top 7 DEGs for each OSC cluster.  B) Top 6 most significant GO 
terms based on DEGs for each OSC cluster.  
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Figure 16 
Dimensionality reduction of analysis of clustering results of OSCs isolated from 3D in vitro vascular 

network dataset.  A) Plot of first two principal components separated by vascular network type.  B) Plot of 
first two principal components separated by OSC cluster identity.  C) Plot of first two tSNE components 
separated by vascular network type.  D) Plot of first two tSNE components separated by OSC cluster 

identity.  E) Scatterplot of resultant number of cell clusters to Seurat resolution parameter (values 
between 0.1-1.5).  F) Scatterplot of average silhouette score for select values of the Seurat resolution 

parameter (values between 0.1-1.5).  
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# OSC-1 OSC-2 OSC-3 OSC-4 OSC-5 OSC-6 OSC-7 OSC-8 
1 CCND1 CLU SUSD2 TIMP1 AREG IGFBP2 CENPF COL3A1 

2 ANP32B MT1X APOE IGFBP3 CXCL1 PTX3 CKS2 COL1A1 

3 DYNC1LI2 ADIRF COL4A1 TGFBI CXCL8 CFD PTTG1 COL1A2 

4 MAP4 DCN S100A4 MT3 SERPINE1 FN1 UBE2S IGFBP7 

5 HNRNPA1 GLUL NDUFA4L2 LOX ANGPTL4 PLAT HMGB2 C7 

6 MAP1B CD9 CRYAB COL1A1 PAPPA COL6A3 TOP2A MGP 

7 S100A11 ADH1B COL4A2 CTGF GDF15 DUSP23 CCNB1 COL5A2 

8 SH3BGRL3 MT1E BGN GLRX HSPA5 RPS26 ASPM FBN1 

9 NPM1 SFRP1 CCL2 CTHRC1 RALA COL8A1 UBE2C PAPPA 

10 PTPN11 CAMK2N1 TAGLN LMCD1 GREM1 STC2 HIST1H4C COL6A3 

11 ZEB1 ID1 ID3 F3 SOD2 CCDC68 TPX2 CXCL2 

12 UACA ADAMTS1 COL6A3 FBXO32 INHBA GAS6 H2AFZ COL6A1 

13 SET DUSP1 COL6A1 COL3A1 HMGA2 LEPR CKAP2 NDUFA4L2 

14 MAP4K4 PHLDA1 NR4A1 CCDC80 SLC16A3 SRGN STMN1 COL5A1 

15 KIF1C C1S XIST SPARC PDLIM4 TXNIP CDKN3 CXCL1 

16 PALLD MALAT1 LY6K PLOD2 P4HA2 PLA2G16 TUBB4B SPARC 

17 TCEAL4 C1R CYR61 SERPINE1 MME CHST2 MKI67 COL6A2 

18 CFL1 CCDC85B COL6A2 IER3 CDKN1A ITGBL1 SMC4 LOXL2 

19 FKBP1A PLIN2 C11orf96 COL1A2 CXCL2 PIP NUSAP1 COL11A1 

20 C12orf75 CEBPD HLA-DRB1 COL5A1 HILPDA DSEL CENPE CXCL3 

21 MYL9 TBX3 TNC NNMT PLOD2 STMN2 CKS1B CTGF 

22 PFN1 MT1G ACTA2 GREM1 SPON2 WNT5B ARL6IP1 HTRA1 

23 PPIA NFKBIA LOXL2 CTSC VCAN CCPG1 HMMR PCOLCE 

24 HSP90AA1 SELENOP JUNB THBS1 G0S2 CPM BIRC5 COL4A1 

25 MYL12A IGFBP6 EMP1 POSTN UCHL1 THBS1 TUBA1C C11orf96 

26 OAZ1 SPON2 COL8A1 HSD17B1 NDRG1 NPR3 KPNA2 CRLF1 

27 MYL12B MT1M EPS8 CCL20 UGCG TFPI KIF20B SRGN 

28 TFPI2 TXNIP PDGFRB HLA-B PLAUR LEPROT TUBA1B EFEMP1 

29 YBX1 SRPX FOS INHBA ERO1A NUPR1 CCNB2 MT-CO1 

30 PTMS GPX3 MT1M TPM1 MEG3 RTN4 CDK1 GSTT2B 

31 NCL CTSK SCUBE3 TFPI2 CCL20 DKK1 CDC20 ID3 

32 TMSB4X LGALS3 SERPINF1 HSD11B1 METRNL GALNT15 ANLN COL5A3 

33 ATP5F1E PDE5A NID1 FKBP11 DCBLD2 TRIB3 DLGAP5 SERPINH1 

34 CYCS TBX2-AS1 NOTCH3 SAT1 TNFAIP6 DNAJC15 AURKA POSTN 

35 TPM4 NR2F1 TINAGL1 RGCC CALR EPSTI1 HMGB1 ACTA2 

36 EIF5B CKB NR2F2 HIF1A FAM162A NETO2 MAD2L1 MT-CYB 

37 RPL22L1 F2R MALAT1 LDHA VEGFA HTRA1 BUB3 HGF 

38 HNRNPA3 CXCL3 LAMC1 RECK CXCL6 GADD45A SGO2 COL7A1 

39 TPM2 NEAT1 ID1 KDELR3 HIF1A SLC3A2 JPT1 CXCL8 

40 TPM3 PTN HTRA1 KDELR2 KRT18 LMO7 CENPF THBS2 

 
Table 5 

Top 40 DEGs for each OSC cluster, ordered by fold change over all other clusters (as determined by 
Seurat). 
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3D in vitro ECs adopt organ-specific features of in vivo ECs 

We next compared the transcriptome of our 2D ECFC-EC monolayer and 3D in 

vitro vascular networks to publicly available in vivo datasets consisting of cells isolated 

from skin 36 and whole lung 35.  For the skin in vivo data, we performed k-means 

clustering, which yielded 18 total clusters.  We identified the ECs (clusters 3, 13, and 

16) by differential expression of EC characteristic genes CDH5, CLDN5, and EGFL7 

(Figure 17A-B; Figure 18, Figure 19).  Other cell types present in the skin in vivo 

dataset included PDGFRA+ stromal cells (clusters 0, 2, 4, 9, 10), PTPRC+ leukocytes 

(clusters 1, 7, 12, 14), KRT+ keratinocytes (clusters 5, 8, 11), TAGLN+ stromal cells 

(clusters 6, 17), and MITF+ melanocytes (cluster 15).  We therefore included clusters 3, 

13, and 16 for the downstream analysis of ECs.  Based on the similarity score, 3D in 

vitro Skin vascular network ECs are closer to the in vivo skin ECs, and also 

demonstrate a much lower inter-cellular variation (less cell to cell heterogeneity in the 

transcriptome) compared to the 2D in vitro monolayer ECs (p < 0.05) (Figure 17C-D).  

We also performed a similar analysis with ECs identified from an in vivo whole lung 

dataset and obtained a similar result (Figure 20-22). 
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Figure 17 
3D in vitro skin vascular network-derived ECs more mimic ECs from previously collected in vivo datasets 
compared to 2D in vitro ECFC-EC monolayer.  A) UMAP plot of skin in vivo data from Solé-Boldo, et al.  
Clusters determined in Seurat.  B) Violin plots showing expression of EC-characteristic genes CDH5, 

CLDN5, and EGFL7 for clusters identified in the in vivo skin dataset.  C) Bar chart of total number of ECs 
evaluated from each dataset (red = 2D in vitro ECFC-EC monolayer; yellow = 3D in vitro EC from Skin 

vascular network; green = in vivo skin ECs).  D) Normalized similarity score metric based on top 20 DEGs 
from in vivo dataset. 
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Figure 18 
Additional violin plots of EC-characteristic genes from cluster identified in skin in vivo dataset (data from 

Solé-Boldo, et al.).  A) Violin plots of EC-characteristic genes CD34, CDH5, CLDN5, EGFL7, ICAM2, 
KDR, MCAM, NOS3, SOX18, TEK, TIE1, and VWF. 
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Figure 19 
Heatmap of top 6 DEGs (per cluster) for in vivo whole skin dataset from Solé-Boldo, et al. 
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Figure 20 
3D in vitro lung vascular network-derived ECs more mimic 2D in vitro monolayer ECFC-ECs compared to 

ECs isolated from previously collected in vivo lung ECs (Schupp, et al.).  A) UMAP dimensionality 
reduction plot of whole lung dissociate in vivo data from Schupp, et al.  Clusters determined using Seurat.  
B) Violin plots of EC-characteristic genes for clusters identified in the in vivo lung dataset.  C) Bar chart of 
total number of ECs evaluated from each dataset (orange = 2D in vitro ECFC-EC monolayer; cyan = 3D 
in vitro EC from Skin vascular network; indigo = in vivo skin ECs).  D) Normalized similarity score metric 

based on top 20 most differentially expressed genes from in vivo dataset. 
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Figure 21 
Additional violin plots of EC-characteristic genes from clusters identified in whole lung in vivo dataset 

(Schupp, et al.).  A) Violin plots of EC-characteristic genes CD34, CDH5, CLDN5, EGFL7, ICAM2, KDR, 
NOS3, PECAM1, SOX18, TEK, TIE1, and VWF. 
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Figure 22 
Heatmap of top 6 DEGs (per cluster) for in vivo whole lung dataset from Schupp, et al. 
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Discussion 

This study provides new insight into the interplay between stromal cells and 

endothelial cells at the transcriptomic level in 3D in vitro models of organotypic 

vasculature.  By culturing the same population of organ-agnostic ECs with organ-

specific stromal cells, we demonstrate that ECs modulate their transcriptome in 

response to the specific stromal cell population.  The altered EC transcriptome is 

manifested, in part, by observable phenotypic differences of the vascular network.  

Furthermore, the ECs present in a 3D organotypic vascular network are not 

transcriptionally homogenous; rather the ECs cluster into five different phenotypes 

whose relative proportion depends on the OSC.  Finally, the presence of the OSC 

encourages the 3D in vitro vascular network-derived EC transcriptome to resemble 

more closely that of the matching organ-specific in vivo ECs compared with the same 

ECs cultured as a 2D in vitro monolayer. 

Following our initial unsupervised analysis of the transcriptome of all cells, we 

identified four clusters as endothelial cells (clusters 2, 16, 18, 24).  However, of note 

was the significant heterogeneity in the expression of twelve known endothelial cell 

genes (Figure 7A, Figure 8A) amongst these four clusters.  The EC clusters were all 

positive for some (but not all) characteristic endothelial cell genes; but were also 

identified as EC by the absence of gene expression (or minimal expression) of a panel 

of twelve stromal cell-specific genes.  Of particular note was our observation that CD31 

(PECAM1) expression in cluster 2 was essentially undetectable despite being present 

by flow cytometry in 2D culture prior to 3D vascular network formation.  This could be 
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attributed to the sequencing depth of our analysis (i.e., PECAM1 may be expressed in 

the cluster, just at a lower level than other EC clusters, but higher than stromal cells), or 

may reflect differences in gene (single cell sequencing) and protein (flow cytometry) 

expression. Alternatively, quiescent EC, with stable intercellular junctions may only 

require a low level of CD31 expression to maintain those junctions, whereas more 

actively dividing and migrating cells would require a higher level of turnover. 

After re-normalizing and re-clustering only the ECs from the 3D in vitro vascular 

network dataset, we observed five distinct clusters (Figure 9).  Four of these clusters 

(EC-2 through EC-5) demonstrated distinct transcriptomic profiles as shown by the 

relative overexpression of a small number (8-10) of genes (Figure 11).  In contrast, EC-

1, the largest EC cluster in each of the six cocultures (representing approximately 50% 

of the cells), is not well-defined; as such, cluster EC-1 may represent a population of EC 

performing generic EC functions that are common to all vasculature.  Cluster EC-2 is 

negatively correlated with vascular network length and, based on GO and pseudotime 

analysis, is consistent with a more stable and differentiated population of ECs involved 

in active protein synthesis.   

Since we only analyzed a single timepoint (7 days), it is possible that the 

organotypic vascular networks develop at different rates, and different proportions of the 

EC clusters would be observed at different timepoints.  Cluster EC-5 is the smallest 

cluster, generally representing <10% of the ECs in any of the organotypic vascular 

networks.  It is well-defined, and is characterized by genes associated with 

angiogenesis, in particular extracellular matrix proteins (e.g., COL4A2, COL18A1, and 
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COL4A1).  The presence of clusters EC-4 and EC-5 suggests that 7 days may not be 

adequate to achieve a truly quiescent vascular network, or that the presence of growth 

factors in our media allows these phenotypes to persist. 

Perhaps not surprisingly (given that each vascular network was formed with a 

specific OSC), each 3D organotypic vascular network was associated with a population 

of OSCs characterized by a unique set of DEGs (e.g., OSC-3 and skin OSCs).  

However, surprisingly this unique cluster in each coculture was associated with GO 

terms consistent with extracellular matrix production and organization (with notable 

exception of OSC-5, the only cancer associated fibroblast) -- processes generally 

considered to be shared across stromal cells.  As such, these subpopulations of stromal 

cells may contribute to the morphological differences of the organotypic vascular 

networks (Figure 2), and differences in the EC transcriptome (Figure 9).  Furthermore, 

this observation suggests that each stromal cell may invoke unique gene networks to 

create and support organ-specific extracellular matrix.  The stromal cell clusters 

common to all of the organotypic vascular networks (OSC-1 and OSC-7) are associated 

with GO terms related to protein synthesis (OSC-1) and cell proliferation (OSC-7).  

OSC-1 is the largest stromal cell population in each network (~25-60% of stromal cell 

population), but as was the case with the largest EC cluster, is not well-defined by a 

unique set of genes.  Thus, OSC-1 may represent a stromal cell population carrying out 

more generic stromal cell functions that are not unique to a specific tissue. 

This study raises important questions regarding how closely 3D in vitro vascular 

networks resemble in vivo conditions.  While a wide range of OSCs support vascular 
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network growth in this model system, the mere presence of an OSC does not fully 

convert, at the transcriptional level, an otherwise naïve EC into an organ-specific EC.  

While we were only able to compare the transcriptome of our organotypic 3D vascular 

networks to two in vivo EC datasets (skin and lung), our results suggest that the EC in 

the 3D organotypic vascular network is more similar to the in vivo EC compared to 2D 

ECFC-EC monolayers cultured alone, but that the degree of similarity may depend on 

the organ and OSC.  The emergence of publicly accessible human organ-specific 

transcriptomic datasets is a welcome development over the past several years 35,36,48–53; 

however, these datasets remain incomplete and do not yet paint a full picture of the EC 

transcriptome.  There are numerous murine datasets 54,55 which aim to fill in these gaps, 

but known differences in murine and human EC biology limit their application. 

Several limitations of the 3D organotypic vascular network model system likely 

contribute to transcriptomic differences with in vivo ECs.  First, the model is supported 

entirely through diffusion of nutrients through the tissue (no convective flow).  It is well 

known that intraluminal physiologic shear impacts EC phenotype 56,57, and interstitial 

shear can also impact both endothelial and stromal cell phenotype 27,58.  Second, 

additional common (e.g., immune) and organ-specific (e.g., keratinocyte, 

cardiomyocyte) cell types are abundant in the interstitium, and are not included in our 

simple 3D system.  These cells are capable of impacting the mechanical 

microenvironment and/or secreting soluble mediators that could impact vascular 

network formation and stability 59–61. 
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In summary, we created organotypic 3D vascular networks by combining a 

common naive EC with six different OSCs.  All six OSCs supported vascular network 

formation, suggesting that this simple model system may be a useful and more 

physiologically relevant model system to investigate processes such as organ-specific 

angiogenesis.  After 7 days, the transcriptome of the ECs in the vascular networks could 

be characterized by five different populations, and the relative proportion of each was 

dependent on the OSC.  Furthermore, morphologic features of the vascular networks, 

such as total vessel length, correlated strongly with an EC cluster associated with 

protein synthesis.  Each of the OSCs were associated with a unique cluster of cells 

whose transcriptome was associated with extracellular matrix production and 

organization, suggesting that these processes, common to all organs, may have organ-

specific gene pathways.  Finally, while the transcriptome of the ECs in the 3D 

organotypic vascular networks more closely resembled the transcriptome of in vivo ECs 

compared to EC in 2D monolayer, there remains a significant gap, which is likely related 

to factors (cells, mediators, mechanical environment) in the interstitium not present in 

our model system known to impact EC function. 
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Chapter 3 – Ex Vivo Model of Colorectal Cancer Liver Metastasis 

 

Introduction 

Colorectal cancer (CRC) is a leading cause of cancer-related death in the United 

States, with almost 150,000 new cases and 53,000 deaths estimated for 2021 alone 62.  

The liver is a primary site for CRC metastasis, with about 15% of CRC patients 

presenting colorectal liver metastases (CRLM) at the time of CRC diagnosis, and about 

50% of patients developing CRLM during the course of disease 63–65.  CRLM 

compromise liver function (main cause of CRC-related death), with a 5-year survival of 

<14% 66,67.  A small percentage of patients are eligible for liver resection, and 75% of 

these patients experience a recurrence in disease 68,69.  Chemotherapeutic regimens 

(i.e. FOLFOX, FOLFIRI) have been shown to have limited benefit for patients with 

inoperable, advanced CRLM or as a neoadjuvant therapy in those patients eligible for 

resection 70–72.  Therefore, there exists a strong need to further study the pathogenesis 

of CRLM in order to develop more effective treatments for CRLM.  

Patient-derived organoids (PDOs) represent a significant advancement as a 

model system to study tumors.  PDOs allow for the retention of native extracellular 

matrix and a more complex 3D orientation of diverse cell types, as opposed to simple 

2D monolayer cell culture systems, which do not adequately recapitulate the tumor 

microenvironment (TuME).  At the same time, PDOs do not require the same 

investment of time or cost associated with patient-derived xenografts or other in vivo 

animal models, making them particularly useful when studying tumor growth, 
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development, and therapeutic response.  PDOs have been established for a variety of 

cancers (i.e. breast cancer 73,74, pancreatic cancer 75,76, brain cancer 77, etc.), including 

CRC 78–80.  CRC PDOs have previously been shown to recapitulate the genetic and 

proteomic landscape of their parental tumors, and can be cryopreserved for later 

analysis 78,79,81,82.  While there has been significant progress in the establishment and 

use of CRC PDO models, to date, there have been few PDO models of CRLM 83. 

Recent studies of CRLM show a significant amount of cellular heterogeneity and 

a distinctive TME from primary CRC TME 66,83.  Single cell RNA-Seq analysis has 

shown that primary CRC and CRLM have been shown to differentially express genes 

found in the IGFBP-IGF signaling pathway (such as IGFBP1, SPARCL1, CDH2, ITIH2, 

F5, and APOA2) and the complement-coagulation cascade (such as C4BPA, F5, FGA, 

SERPINC1, F2, and SERPINA5) 66.  Additionally, studies have shown that mutations 

are enriched in HGF and MET signaling pathways for CRLM (as opposed to patient-

matched primary CRC), which could have implications for proliferation, angiogenesis, 

and cell migration in CRLM 84.  Primary CRC and CRLM have also been shown to 

exhibit significant differences in the cellular makeup of their respective TME before and 

after chemotherapy, such as the presence of different tumor-associated macrophage, 

cancer-associated fibroblast, and B-cell populations 83.  These data suggest that the 

TME of primary CRC and CRLM are distinct, and as a consequence may lead to 

different responses to therapy. 

Taken together, there exists a strong need to establish and characterize a model 

system of CRLM to study the pathogenesis and treatment-responsiveness of CRLM.  
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Here, we present in progress data from patient-matched parental CRLM and CRLM 

PDOs to evaluate the extent to which CRLM PDOs are able to recapitulate the TME and 

cellular heterogeneity of the parental CRLM.  Using single cell RNA-Seq, we were able 

to characterize the transcriptomic landscape of patient-matched parental CRLM tumors 

and an ex vivo organoid model of CRLM.  As a preliminary finding, we observe a unique 

population of epithelial cells that is only present in the ex vivo organoid model, 

suggesting that there is some transcriptomic drift that could occur as a result of the ex 

vivo organoid culture process. 

 

 

Methods 

Patient information 

For this work, 2 separate patients were used (herein referred to as Patient 7 and 

Patient 8).  Patient information is summarized in Table 6, along with the presence of 

mutations in either KRAS or BRAF, along with whether the cancer was microsatellite 

stable or not.  Importantly, each of these two patients receive neoadjuvant treatment 

with FOLFOX, with Patient 7 receiving an additional neoadjuvant round of treatment 

with FOLFIRI. 

Patient # Sex Age KRAS BRAF MSI 

7 M 53 WT WT MSS 

8 M 60 WT MUT MSS 
Table 6 

Patient information for this study.  WT = wild-type, MUT = mutated, MSS = microsatellite stable. 
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Isolation of organoids from tumor resections 

Upon receipt of the patient tissue samples, samples underwent both enzymatic 

digestion and mechanical disruption.  Briefly, the parental tumors were split into 2 equal 

sized pieces.  1 piece would be enzymatically digested and mechanically disrupted, 

before being frozen down in LN2 as the bonafide “Parental” sample.  The second piece 

would be enzymatically digested and mechanically disrupted, before beginning low-

adhesion culture to form organoid sample (as outlined below; labeled as “Organoid”).  

Both pieces would generally follow the same enzymatic digestion and mechanical 

disruption protocol.  Enzymatic digestion and mechanical disruption were each achieved 

using a Tumor Dissociation Kit and gentleMACS system in accordance with 

manufacturer's protocols (Miltenyi #130-095-929). 

 

Ex vivo culture of CRLM organoids 

Ex vivo organoids were maintained in low-adhesion 6-well plates throughout the 

duration of culture.  The media formulation used to maintain and grow these organoids 

is based on several previously published protocols 80,85,86.  Organoids were maintained 

in DMEM/F12 + GlutaMAX (ThermoFisher #10565018) supplemented with 2% StemPro 

(ThermoFisher #A1000601), 10% BSA (ThermoFisher #A1000801), 10 ng/mL ROCK 

inhibitor (STEMCELL Technologies #Y-27632) , 100 ng/mL R-Spondin-1 (PeproTech 

#120-38), 10 ng/mL Noggin (PeproTech #120-10C), 10 ng/mL WNT3A (R&D Systems 

#5036-WN-010), 10 ng/mL EGF (PeproTech #AF-100-15), 5 ng/mL IGF-1 

(ThermoFisher #PHG0078), 10 ng/mL FGF10 (PeproTech #100-26), 10 ng/mL hFGF 



52 
 
 

Fibroblastic Growth Factor (Lonza #CC-4068), and 10 ng/mL Endothelin 3 (Lonza #CC-

4510).  Organoids were fed every 2-3 days until confluent.  Organoids were then 

removed and centrifuged, before undergoing (1) freezing down for LN2 storage, (2) 

further propagation in suspension culture, or (3) processing for scRNA-Seq analysis.  

P7 organoids underwent one freeze-thaw cycle prior to analysis by scRNA-Seq. 

 

Preparation of samples for scRNA-Seq 

In preparation for scRNA-Seq, previously frozen vials of organoids and parental 

tumors were thawed.  After thawing, each sample underwent enzymatic digestion with 

TrypLE (ThermoFisher #A1217702) supplemented with DNAse I (ThermoFisher 

#18047019).  After enzymatic digestion, cells underwent a dead cell filtration in order to 

remove any dead cells or debris in the sample using a commercially available magnetic 

bead sorting-based Dead Cell Removal Kit (Miltenyi #130-090-101).  Finally, resultant 

cell solutions were passed through a 40 um FlowMi filter and the cell suspensions were 

counted for total viable cells.  This resultant solution was then passed on for cDNA 

library preparation. 

 

Transcriptome alignment and initial processing 

All single cell library preps and sequencing was performed by the UC Davis DNA 

Technologies Core and UC Davis Bioinformatics Core Facilities.  A total of 3 samples 

were provided: Patient 7 organoid (“P7 Organoid”), Patient 7 parental (“P7 Parental”), 

and Patient 8 parental (“P8 Parental”).  Cells were analyzed by 10X Genomics 3’ 



53 
 
 

sequencing v3.  Raw fastq files were processed using CellRanger count (10X 

Genomics) for genome alignment via the Linux command line.  Resultant filtered output 

files were brought into the R computing environment and analyzed further via the Seurat 

pipeline and by using a series of scRNA-Seq analysis packages (Table 3).  All data files 

underwent quality control filtering to exclude cells with fewer than 200 unique genes, 

greater than 7,500 unique genes, and/or more than 10% of total gene expression 

derived from mitochondrial-specific genes (Figure 24A-E).  In addition, genes that were 

not detected in at least 3 cells were excluded from downstream analysis.  This quality 

control process yielded several thousand cells for the parental tumor samples and 

several hundred cells for the organoid samples (Figure 24A).  The following values 

were used for the “resolution” parameter to determine the number of clusters for the 

overall CRLM dataset: 0.5 for the overall parental tumor and organoid cell data (Figure 

23C).  Clustering was verified by observation and evaluation of the silhouette scores for 

the dataset (Figure 24F-G). 

 

Gene ontology analysis 

Differentially expressed genes (DEGs) were identified for all epithelial cell 

clusters.  For a specific cluster, the top 40 DEGs along with the list of all genes 

expressed was fed into the topGO package in R.  In order to identify the relevant over-

enriched biological process gene ontology (GO) terms associated with the DEGs for 

each cluster, Fisher’s exact test using the “elim” algorithm was performed.  Resultant p-

values were then log10-transformed and GO terms were rank ordered by the log10-

transformed p-value. 
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Results 

 

CRLM exhibits rich transcriptomic landscape and reveals subtypes of leukocytes and 

epithelial cells 

After enzymatic digestion, the resultant samples were filtered to obtain live, 

single cells for scRNA-Seq (Figure 23A).  Resultant UMAP plots demonstrate 

significant transcriptomic heterogeneity between the organoid and parental tumor 

samples, and within each individual sample (Figure 23B).  The combined CRLM 

scRNA-Seq dataset underwent quality control (detailed in the Methods; Figure 24) and 

unsupervised k-means clustering as part of the Seurat pipeline.  Parameter sweeps 

were performed to ensure an appropriate number of clusters was achieved for 

downstream analysis (Figure 24F-G).  18 distinct clusters were identified, with each 

cluster having a distinct transcriptomic profile (Figure 23B-C, Figure 25).  The parental 

tumor samples (P7 Parental and P8 Parental) were made up of cells from all 18 

clusters, whereas the organoid tumor sample (P7 Organoid) only consisted of cells from 

clusters 2, 7, and 13 (Figure 23D). 
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Figure 23 
CRLM patient samples exhibit significant heterogeneity both within and between samples.  A) UMAP 

dimensionality reduction plot grouped by sample type.  B) UMAP dimensionality reduction plot grouped 

by cluster.  C) Bar chart of total number of cells per cluster.  D) Bar chart indicating the makeup of each 

CRLM sample (P7 Organoid, P7 Parental, P8 Parental) by the relative frequency of the overall CRLM 

clustering. 
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Figure 24 
Quality control of complete CRLM scRNA-Seq dataset.  A) Bar chart indicating number of cells available 

for analysis for each sample type before and after QC filtering as part of the scRNA-Seq analysis.  B) 
Violin plot of total number of transcripts for each sample before QC filtering.  C) Violin plot of total number 
of unique genes (UMIs) for each sample before QC filtering.  D) Violin plot of total number of transcripts 
for each sample after QC filtering.  E) Violin plot of total number of unique genes (UMIs) for each sample 

after QC filtering.  F) Scatterplot of resultant number of cell clusters to Seurat resolution parameter 
(values between 0.1-1.5).  G) Scatterplot of average silhouette score for select values of the Seurat 

resolution parameter (values between 0.1-1.5). 
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Figure 25 
Heatmap of top 6 DEGs (per cluster) for CRLM dataset. 
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From P7 Parental and P8 Parental, it is possible to probe the immune landscape 

of CRLM (Figure 26).  A sizeable proportion of cells in the CRLM scRNA-Seq dataset 

are PTPRC+ leukocytes (clusters 0, 1, 3 ,4, 5, 6, 10, 11, 12, and 14).  More specifically, 

the dataset contains CD3G+ T lymphocytes (clusters 0, 3, 6, and 12), CD3G+CD8A+ 

cytotoxic T lymphocytes (clusters 0, 3, and 12), CD14+ monocytes (clusters 1, 4, and 

10), CD79A+ B lymphocytes (cluster 11), and FCGR3B+ neutrophils (cluster 16).  

Additionally, it is possible to probe non-leukocyte populations from the P7 Parental and 

P8 Parental samples in this CRLM dataset (Figure 27).  CDH5+PECAM1+ endothelial 

cells (cluster 9), COL1A1+TAGLN+ stromal cells (cluster 8), and ALB+ hepatocytes 

(clusters 15 and 17) are all present in the dataset.  Interestingly, EPCAM+CD24+ 

epithelial cells separate into smaller clusters (clusters 2, 7, and 13), suggesting that 

these different clusters represent subtypes of epithelial cells and might perform different 

functions in the CRLM TuME. 
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Figure 26 
The immune landscape of CRLM samples is complex and consists of diverse cell types from both the 

innate and adaptive immune systems.  Violin plots are shown for the pan-leukocyte marker PTPRC and 

leukocyte subtype-specific markers CD3G (T lymphocytes), CD8A (cytotoxic T lymphocytes), CD14 

(monocytes), CD79A (B lymphocytes), and FCGR3B (neutrophils). 
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Figure 27 
The non-immune landscape of CRLM samples shows cell type-specific clustering based on characteristic 

gene expression.  Violin plots are shown for endothelial cell characteristic genes CDH5 and PECAM1 
(cluster 9), epithelial cell characteristic genes EPCAM, CD24, and KRT8 (clusters 2, 7, 13, and 17), 
hepatocyte characteristic gene ALB (cluster 15), and stromal cell characteristic genes COL1A1 and 

TAGLN (cluster 8). 
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Ex vivo organoid model exhibits transcriptional drift from parental tumor 

As stated previously, P7 Organoid consists of cells only from clusters 2, 7, and 

13 (Figure 23, Figure 27).  These clusters were previously shown to consist of 

EPCAM+CD24+KRT8+ epithelial cells.  To investigate the differences in the epithelial 

cells between the parental samples and the organoid sample, clusters 2, 7, and 13 were 

isolated from the dataset for closer inspection.  Interestingly, the parental epithelial 

samples only consist of clusters 2 and 7 (~70% and ~30% for clusters 2 and 7, 

respectively).  The organoid sample, however, has several marked differences to the 

parental sample.  P7 Organoid consists of 76% cluster 2, 2% cluster 7, and 22% cluster 

13 (Figure 28). 

In order to better understand each of the epithelial cell clusters, GO pathway 

analysis was performed on the top 40 DEGs for each cluster (Table 6).  Cluster 2 is 

characterized by DEGs that include cell-cell and cell-ECM interactions (e.g. LGALS4), 

and is associated with migration and adhesion based on GO terms including “negative 

regulation of anoikis”, “positive regulation of cell migration”, and “calcium-independent 

cell-cell adhesion via plasma membrane cell-adhesion molecules” (Table 7).  Cluster 7 

is characterized by DEGs that include mucosal layer maintenance (e.g. TFF3, MUC13), 

and is associated with cell maintenance and several signaling pathways based on GO 

terms including “maintenance of gastrointestinal epithelium” and “C-type lectin receptor 

signaling” (Table 8).  Cluster 13 is characterized by DEGs that include DNA damage 

detection/repair and intermediate filament anchors (e.g. SFN, DSP), and is associated 

with cytoskeletal organization and cell death pathways based on GO terms including 
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“cornification”, “desmosome organization”, and “hepatocyte apoptotic process” (Table 

9).   

 

# Cluster 2 Cluster 7 Cluster 13 
1 CD24 TRIM31 MT4 

2 PHGR1 CYP3A5 PSORS1C2 

3 KRT8 MUC13 KRT31 

4 KRT19 KRT20 S100A3 

5 KRT18 CEACAM5 CXCL14 

6 EPCAM GPRC5A C6orf15 

7 S100P CLDN7 KRT80 

8 LY6G6F-LY6G6D ELF3 HPGD 

9 GPX2 CEACAM6 SFN 

10 LGALS4 C19orf33 LY6G6F-LY6G6D 

11 TFF3 SMIM22 DPEP1 

12 TSPAN8 RND3 KRT19 

13 CEACAM5 CLDN3 APCDD1 

14 FABP1 EDN1 KRT17 

15 FXYD3 LMO7 TPD52L1 

16 SMIM22 MUC12 CCND1 

17 FERMT1 LSR TSPAN1 

18 IFI27 GDF15 KRT18 

19 PERP AGR2 KRT8 

20 CLDN3 CLDN4 CD24 

21 S100A6 TFF1 DSP 

22 CEACAM6 IFI27 SCD 

23 ADIRF EPCAM SLC26A3 

24 ASCL2 TSPAN8 CKB 

25 SPINK1 SPINK1 S100P 

26 C19orf33 PHGR1 SLPI 

27 AGR2 KRT19 TMEM47 

28 MT1G FXYD3 EPCAM 

29 CKB CKB AL445524.1 

30 ELF3 KRT8 TSPAN8 

31 CLDN4 CD24 FXYD3 

32 CCND1 TFF3 PERP 

33 TFF1 KRT18 CST3 

34 TXN SPINT2 CAB39L 

35 ZFAS1 RRBP1 PCCA 

36 DSTN SOX4 ADIRF 

37 PPDPF FABP1 S100A14 

38 SPINT2 PMEPA1 CAMK2N1 

39 PRDX5 LGALS3 JUP 

40 EIF2S2 S100A6 HEBP2 

 
Table 7 

Top 40 DEGs for each epithelial cell cluster from the CRLM dataset, ordered by fold change over all other 
clusters in the combined CRLM dataset (as determined by Seurat).  Top 6 DEGs for each cluster are 

shown in Figure 25. 
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Figure 28 
Closer look at the epithelial cell composition of P7 Parental, P8 Parental, and P7 Organoid (simplified 

view of Figure 23D).  GO plots correspond with GO terms from Tables 7-9. 
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-log(p-value) GO # Term 

6.80 0070268 Cornification 

3.89 1905050 Positive regulation of metallopeptidase activity 

3.51 0097284 Hepatocyte apoptotic process 

3.19 2000811 Negative regulation of anoikis 

3.07 0030335 Positive regulation of cell migration 

2.93 0016338 Calcium-independent cell-cell adhesion via plasma membrane cell-adhesion molecules 

 
Table 8 

Top 6 GO terms for cluster 2 of the CRLM dataset based on top 40 DEGs. 

 

 

-log(p-value) GO # Term 

3.68 0016266 O-glycan processing 

3.49 0071285 Cellular response to lithium ion 

3.17 0030277 Maintenance of gastrointestinal epithelium 

3.13 0016540 Protein autoprocessing 

3.05 0060575 Intestinal epithelial cell differentiation 

2.89 0002223 Stimulatory C-type lectin receptor signaling pathway 

 
Table 9 

Top 6 GO terms for cluster 7 of the CRLM dataset based on top 40 DEGs. 

 

 

-log(p-value) GO # Term 

10.06 0070268 Cornification 

3.80 0010951 Negative regulation of endopeptidase activity 

3.70 0002934 Desmosome organization 

3.52 0097284 Hepatocyte apoptotic process 

3.24 0043627 Response to estrogen 

2.88 0045109 Intermediate filament organization 

 
Table 10 

Top 6 GO terms for cluster 13 of the CRLM dataset based on top 40 DEGs. 
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Epithelial cells in CRLM dataset exhibit heterogeneity of drug transporter and type I/II 

intermediate filament gene expression, but this heterogeneity is attenuated in cancer 

stem cell gene expression 

In order to better understand practical limitations to using the ex vivo organoid as 

an in vitro model system to study CRLM, we looked more closely at three distinct 

classes of genes known to impact CRC and CRLM.  Specifically, we analyzed the 

expression of relevant drug transporter genes 87–89, type I and type II intermediate 

filament genes 90–92, and cancer stem cell-related genes 93,94.  Analysis of the epithelial 

cells in the CRLM dataset (clusters 2, 7, and 13) revealed that several known drug and 

solute transporters (ABCA1, ABCA2, ABCB1, ABCC3, ABCG1, and POU2F1) appear to 

be consistently expressed in cluster 7, but not in clusters 2 and 13 (Figure 29).  

Additionally, further analysis of the epithelial cells revealed that several keratin-related 

genes (KRT8, KRT17, KRT18, KRT19, and KRT31), representing a subset of type I and 

type II intermediate filaments, are upregulated in cluster 13 over cluster 2 and 7 (Figure 

30).  However, there are other keratins (KRT20) which appear to be absent from cluster 

13, while having significant expression in clusters 2 and 7.  Lastly, we investigated the 

expression of known cancer stem cell-related genes in the epithelial cells of the CRLM 

dataset.  Analysis of the epithelial cells revealed that several cancer stem cell-related 

genes (BMI1, CD200, CLU, LGR5, PROM1) are not expressed in any cluster, while 

other genes (ANXA1, CD44, EPHB2) have heterogeneous expression between the 

epithelial cell clusters (Figure 31). 
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Figure 29 
Expression of genes associated with known drug and solute transporters in CRLM: ABCA1, ABCA2, 

ABCB1, ABCC3, ABCG1, and POU2F1. 
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Figure 30 
Expression of keratins (both type I and type II intermediate filaments) is heterogeneous between the 

epithelial clusters.  Genes shown are KRT8, KRT17, KRT18, KRT19, KRT20, and KRT31. 
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Figure 31 
Expression of cancer stem cell-related genes is generally not found in epithelial cells from CRLM dataset.  

Genes shown are ANXA1, BMI1, CD44, CD200, CLU, EPHB2, LGR5, and PROM1. 
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Discussion 

This study provides new insight into the transcriptomic heterogeneity in parental 

CRLM tumors and the transcriptomic drift that may emerge as a consequence of the ex 

vivo organoid culture of these tumors.  The parental CRLM tumor is richly diverse, 

consisting of a wide range of cell types including a wide range of leukocytes, endothelial 

cells, stromal cells, epithelial cells, and hepatocytes.  While we only analyzed a single 

patient’s ex vivo organoid sample, the resultant ex vivo organoid model of CRLM 

exhibited less cellular diversity and are enriched for epithelial cells.  These organoid 

epithelial cells also demonstrate transcriptomic drift from the parental tumor epithelial 

cells.  This transcriptomic drift is manifested, in part, by alterations in the relative 

frequency of clusters of epithelial cells, which may have consequences on the 

expression of drug transporter-related genes and intermediate filament-related genes.  

This transcriptomic drift may also affect the expression of cancer stem cell-related 

genes, although this drift appears to be more muted. 

The parental tumor samples (P7 Parental and P8 Parental) exhibit significant 

cellular heterogeneity and primarily consist of leukocytes (Figure 23C).  From the 

analysis presented here, there are multiple subpopulations of T lymphocytes (clusters 0, 

3, 6, and 12) and monocytes (clusters 1, 4, and 10).  These cell populations are each 

implicated in the progression and therapeutic response of CRLM, and have recently 

become the subject of intense investigation by multiple groups 84,95–97.  In this work, we 

limit ourselves to investigating the differences between the parental tumor and the ex 

vivo organoid model, and as such the immune landscape of the parental CRLM, while 
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interesting, falls outside the scope of our study.  This data does suggest, however, that 

there is ample opportunity for future work to study the immune landscape of CRLM. 

The epithelial cells in this dataset separated into 3 distinct clusters (Figure 27).  

Interestingly, the relative percentage of each epithelial cell cluster is not equivalent 

across the different samples (P7 Parental, P8 Parental, P7 Organoid).  An organoid-

specific population of epithelial cells (cluster 13) makes up > 20% of the total cells from 

P7 Organoid.  These cells appear to have elevated expression of some type I and type 

II intermediate filament genes (Figure 30; keratins KRT8, KRT17, KRT18, KRT19, 

KRT20, and KRT31).  Various cytokeratins (CK7, CK8, CK18, CK20) have previously 

been shown to be clinically relevant in identifying CRLM and subtyping primary CRC, 

and might serve as potential prognostic indicators of disease outcome 91,92,98.  The fact 

that cluster 13 is organoid-specific and has an elevated level of keratin gene expression 

may suggest that there are clinically relevant differences between the parental tumor 

and organoid model.  Additionally, the P7 Organoid sample has a markedly reduced 

amount of cluster 7 epithelial cells compared to the P7 Parental and P8 Parental 

samples (2% for P7 Organoid, ~30% for P7 Parental and P8 Parental).  These cells 

appear to be the only epithelial cells with some expression of drug transporter genes 

(Figure 29; ABCA1, ABCA2, ABCB1, ABCC3, ABCG1, POU2F1).  That these cells 

appear to be underrepresented in the P7 Organoid sample may suggest that the ability 

of ex vivo organoids to respond to therapeutic challenge may be altered as a 

consequence of the culture process, although this requires additional patient samples to 

reach a definitive conclusion.  Additionally, more work is needed to evaluate the drug 

responsiveness of the ex vivo organoid and to compare that response to in vivo data in 
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order to see if the observed drug transporter gene changes affect phenotypic responses 

of these two systems.  Finally, cancer stem cell-related genes (Figure 31; ANXA1, 

BMI1, CD44, CD200, CLU, EPHB2, LGR5, PROM1) do not appear to be consistently 

expressed in any epithelial cell sub-population.  While this may be due to the limited 

sample size, it is an interesting result as some ex vivo organoid models of primary CRC 

have previously been shown to upregulate expression of cancer stem cell-related genes 

99,100.  The resultant changes in the relative percentage of epithelial cell sub-populations 

between the parental and organoid samples, taken with the differences in gene 

expression between these sub-populations, suggest that transcriptomic drift is occurring 

as a consequence of the ex vivo organoid culture.  Importantly, this drift may not be 

visible to the same extent for specific families of genes (i.e. drug transporter genes and 

cancer stem cell-related genes).  More patient parental and organoid samples are 

required in order to see whether these observations represent a broader trend in the 

transcriptomic drift, or a patient-specific phenomenon. 

Several limitations of the organoid model system likely contribute to 

transcriptomic differences observed between the parental in vivo tumor and the 

organoid ex vivo model.  First, the parental tumor samples have a wider cellular 

diversity, likely reflecting a more complete recapitulation of the TuME compared to the 

organoid sample.  The organoid sample only contains epithelial cells, which is likely a 

consequence of the extended in vitro culture process prior to scRNA-Seq analysis.  As 

outlined in the Methods, the parental tumor samples were enzymatically digested and 

mechanically disrupted, which yields many single cells that are frozen until scRNA-Seq 

analysis.  However, the organoid sample then underwent additional weeks of 
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suspension culture in order to generate a substantial number of organoids for 

downstream analysis.  The duration of the ex vivo culture, along with the media 

formulation used, likely enriches for epithelial cells.  Further optimization of the culture 

conditions is likely required in order to retain other cell types.  Additionally, the data 

presented here consists of 2 parental samples and 1 organoid sample.  More work is 

needed to expand this dataset to verify that the observed transcriptomic differences are 

not merely unique to this single organoid sample, but may instead be a more widely 

observed phenomenon. 

In summary, we characterized a patient-matched ex vivo organoid model of 

CRLM using scRNA-Seq.  Parental CRLM samples exhibited rich cellular heterogeneity, 

while the organoid sample consisted of exclusively epithelial cells.  3 sub-populations of 

epithelial cells were identified in this dataset, and each of these sub-populations had 

distinct DEG and GO pathway profiles.  Additionally, several classes of genes appeared 

to be upregulated in these epithelial cell sub-populations (drug transporters in cluster 7, 

keratins in cluster 13).  Finally, while the transcriptomes between the 3 epithelial cell 

clusters shared some similarities, there were distinct differences in the relative 

percentage and DEGs for these epithelial cell sub-populations, highlighting 

transcriptomic drift that occurs over the course of ex vivo organoid culture. 
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Chapter 4 – Concluding Remarks 

Single cell RNA-Seq is an incredibly powerful technique to understand and 

measure heterogeneity within cellular populations.  scRNA-Seq allows for the 

identification of potentially rare sub-populations of cells within a tissue and (with the 

explosion in the number of publicly available in vivo scRNA-Seq datasets) is emerging 

as a more and more effective tool to understand differences between cellular samples.   

Presented here in this dissertation is an examination of the transcriptomes of two 

different in vitro model systems and a comparison of the transcriptomes of these in vitro 

systems to relevant in vivo transcriptomes.  In the case of the 3D in vitro vascular 

networks, we have demonstrated that commercially available organotypic stromal cells 

induce both phenotypic and transcriptomic changes in endothelial cells during the 

course of 7 days of co-culture in fibrin hydrogels (using the same parental endothelial 

cell for all samples).  These phenotypic changes can be seen by the difference in the 

robustness of vascular network formation, with some stromal cells being quite adept at 

supporting and maintaining vascular networks, while others are considerably less 

capable.  Likewise, organotypic stromal cells induce transcriptomic changes in the 

endothelial cells, with different amounts of 5 sub-populations of endothelial cells being 

present in each vascular network.  Of particular note, we showed that a sub-population 

of transcriptionally distinct endothelial cells (expressing genes related to protein 

translation and ribosomal assembly) is strongly negatively correlated to quantitative 

metrics of the vascular network phenotype.  While more work is needed to understand 

and validate the consequences of these transcriptomic changes on the phenotypes of 

the vascular networks, we believe that this work raises important questions about the 
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ability to model organ-specific functions of vasculature and the plasticity of the 

endothelium.  In the case of the CRLM (caveat that the dataset is still in progress), we 

have demonstrated that an ex vivo organoid model appears to enrich for epithelial cells.  

Additionally, we observe that the organoids undergo some transcriptomic drift from the 

parental samples.  This transcriptomic drift can be observed in the changes of the 

relative frequency of 3 sub-populations of epithelial cells in our samples.  Genes related 

to drug and solute transporters, along with genes related to type I and type II 

intermediate filaments (keratins), appear to be differentially expressed between the sub-

populations of epithelial cells.  However, this drift does not appear to affect all clinically 

relevant panels of genes (at least not with this limited dataset).  For instance, the 

epithelial cell sub-populations appear to have very minor differences in terms of their 

expression of cancer stem cell-related genes.  More work is needed to acquire 

additional samples for analysis.  This will allow for a better understanding of the 

magnitude of this transcriptomic drift as a consequence of the ex vivo organoid culture. 

The overall goal of this dissertation was to utilize a burgeoning technology to 

better understand the types of cellular heterogeneity that may emerge in in vitro model 

systems, and to what extent that heterogeneity matches what is seen in vivo 

(“transcriptomic drift”).  For 2 disparate model systems (organ-specific capillary 

networks and ex vivo colorectal cancer liver metastasis organoids), we observe 

noticeable differences between the in vitro and in vivo systems.  Further work is 

required to better understand these differences, in order to more effectively utilize these 

systems. 
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Chapter 5 – Code for Analysis of 3D In Vitro Vascular Networks 

 

Introduction 

Below is a subset of the various code that was utilized for the 3D in vitro vascular 

network work described in Chapter 2.  Version properties of the software are indicated 

in Table 3.  Note that the early steps in the R computing environment code roughly 

follow the suggested pipeline for Seurat as previously described 41,101. 

 

Linux Computing Environment 

The code below allows for the use of CellRanger (10X Genomics) to align the 

raw fastq files obtained from an Illumina NovaSeq and then count the number of hits for 

each unique gene/molecular identifier using the human GRCh38-3.0.0 reference 

transcriptome 102. 

 

cd ~/yard/scrna_analysis/apps/cellranger-5.0.0 

export PATH=/home/user/scrna_analysis/apps/cellranger-5.0.0:$PATH 

which cellranger 

cd ~/yard/user/name 

mkdir output 

cd ~/yard/user/name/output 
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cellranger count --id=UNIQUENAME --fastqs=/home/user/name/RAWDATA --

sample=SAMPLE --transcriptome=/home/user/scrna_analysis/refdata-

cellranger-GRCh38-3.0.0 

 

 

R Computing Environment 

The code below describes the initial processing steps for the aligned output data 

along with the initial quality control filtering of the scRNA-Seq data. 

 

library(Seurat) 

library(ggplot2) 

library(cowplot) 

library(dplyr) 

library(patchwork) 

bmsc.vn.data <- Read10X(data.dir = “ #directory to Marrow 3D in vitro 

vascular network data in filtered_feature_bc_matrix folder ”) 

nhlf.vn.data <- Read10X(data.dir = “ #directory to Lung 3D in vitro vascular 

network data in filtered_feature_bc_matrix folder ”) 

nhdf.vn.data <- Read10X(data.dir = “ #directory to Skin 3D in vitro vascular 

network data in filtered_feature_bc_matrix folder ”) 
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caf.vn.data <- Read10X(data.dir = “ #directory to cPancreas 3D in vitro 

vascular network data in filtered_feature_bc_matrix folder ”) 

hcf.vn.data <- Read10X(data.dir = “ #directory to Heart 3D in vitro vascular 

network data in filtered_feature_bc_matrix folder ”) 

hpastec.vn.data <- Read10X(data.dir = “ #directory to nPancreas in vitro 

vascular network data in filtered_feature_bc_matrix folder ”) 

bmsc.vn <- CreateSeuratObject(counts=bmsc.vn.data, project=“BMSC vascular 

network”, min.cells=3, min.features=200) 

nhlf.vn <- CreateSeuratObject(counts=nhlf.vn.data, project=“NHLF vascular 

network”, min.cells=3, min.features=200) 

nhdf.vn <- CreateSeuratObject(counts=nhdf.vn.data, project=“NHDF vascular 

network”, min.cells=3, min.features=200) 

caf.vn <- CreateSeuratObject(counts=caf.vn.data, project=“CAF08 vascular 

network”, min.cells=3, min.features=200) 

hcf.vn <- CreateSeuratObject(counts=hcf.vn.data, project=“HCF vascular 

network”, min.cells=3, min.features=200) 

hpastec.vn <- CreateSeuratObject(counts=hpastec.vn.data, project=“HPaSteC 

vascular network”, min.cells=3, min.features=200) 

vncomb1 <- merge(bmsc.vn, y=c(nhlf.vn, nhdf.vn, caf.vn, hcf.vn, hpastec.vn), 

add.cell.ids=c(“BMSC vascular network”, “NHLF vascular network”, “NHDF 

vascular network”, “CAF08 vascular network”, “HCF vascular network”, 

“HPaSteC vascular network”), project=“Combined Vascular Network Data”) 



78 
 
 

 

vncomb1$orig.ident <- Idents(vncomb1) 

l.abbr <- vector(mode="character", length=length(vncomb1$orig.ident)) 

for (i in 1:length(vncomb1$orig.ident)) { 

if (vncomb1$orig.ident[i]=="BMSC vascular network") { 

l.abbr[i] <- "Marrow" } 

else if (vncomb1$orig.ident[i]=="CAF08 vascular network") { 

l.abbr[i] <- "cPancreas" } 

else if (vncomb1$orig.ident[i]=="HCF vascular network") { 

l.abbr[i] <- "Heart" } 

else if (vncomb1$orig.ident[i]=="HPaSteC vascular network") { 

l.abbr[i] <- "nPancreas" } 

else if (vncomb1$orig.ident[i]=="NHDF vascular network") { 

l.abbr[i] <- "Skin" } 

else if (vncomb1$orig.ident[i]=="NHLF vascular network") { 

l.abbr[i] <- "Lung" } 

} 

lev.fancy <- c("Marrow", "Heart", "Skin", "Lung", "cPancreas", "nPancreas") 
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lev <- c("BMSC vascular network", "HCF vascular network", "NHDF vascular 

network", "NHLF vascular network", "CAF08 vascular network", "HPaSteC 

vascular network") 

vncomb1$fancy.orig.ident <- l.abbr 

vncomb1$fancy.orig.ident <- factor(vncomb1$fancy.orig.ident, 

levels=lev.fancy) 

vncomb1$orig.ident <- factor(vncomb1$orig.ident, levels=lev) 

vncomb1[["percent.mt"]] <- PercentageFeatureSet(vncomb1, pattern="^MT-") 

vncomb1[[“percent.ribo”]] <- PercentageFeatureSet(vncomb1, 

pattern=”^RP[SL][[:digit:]]|^RPLP[[:digit:]]^RPSA”) 

vncomb2 <- subset(vncomb1, subset=percent.mt<10 & nFeature_RNA<7500 & 

nFeature_RNA>200) # filtering such that any cell with >10% of total 

genes as mitochondrial genes (non-informative genes), or >7500 unique 

genes (potentially multiple cells grouped together), or <200 unique 

genes (potentially poor/dying/dead cells or debris) are excluded from 

downstream analysis. 
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The next portion of code describes the normalization, dimensionality reduction, 

and clustering of the combined 3D in vitro vascular network object.  Additionally, this 

code describes obtaining the silhouette scores for the sweep of the Seurat resolution 

parameter in order to evaluate the clustering fit. 

 

vncomb2 <- NormalizeData(vncomb2) 

vncomb2 <- FindVariableFeatures(vncomb2, selection.method="vst", 

nfeatures=2000) # standard Seurat settings 

vncomb2 <- ScaleData(vncomb2, features=rownames(vncomb2)) # standard Seurat 

settings 

vncomb2 <- RunPCA(vncomb2, features=VariableFeatures(vncomb2)) # standard 

Seurat settings 

vncomb2 <- FindNeighbors(vncomb2, dims=1:15) # standard Seurat settings; 

looking at first 15 PCs 

vncomb2 <- FindClusters(vncomb2, resolution=1) # standard Seurat settings; 

increasing resolution increases number of clusters 

vncomb2 <- RunUMAP(vncomb2, dims=1:15) # standard Seurat settings; looking at 

first 15 PCs 

vncomb2 <- RunTSNE(vncomb2, dims=1:15) # standard Seurat settings; looking at 

first 15 PCs 
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Idents(vncomb2) <- vncomb2$seurat_clusters 

library(cluster) 

dist.mat <- dist(Embeddings(vncomb2[['pca']])[,1:15]) 

res <- c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 

1.5) 

vncomb2 <- FindClusters(vncomb2, resolution=res) 

vncomb2.sum <- data.frame(matrix(NA_real_, nrow=length(res), ncol=4)) 

colnames(vncomb2.sum) <- 

c("resolution","total.num.clusters","avg.sil.score","sd.sil.score") 

for (i in 1:15) { 

vncomb2 <- FindClusters(vncomb2, resolution=res[i]) 

clust <- vncomb2@meta.data$seurat_clusters 

sil <- silhouette(as.numeric(clust), dist=dist.mat) 

name.sil <- paste0("silhouette_score_",res[i]) 

vncomb2[[name.sil]] <- sil[,3] 

vncomb2.sum[i,1] <- res[i] 

vncomb2.sum[i,2] <- 

as.numeric(last(rownames(table(vncomb2@meta.data$seurat_clusters)))) + 

1 

vncomb2.sum[i,3] <- mean(sil[,3]) 
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vncomb2.sum[i,4] <- sd(sil[,3]) 

print(i) 

} 

 

The next portion of code describes the re-normalization, dimensionality 

reduction, and re-clustering of the ECs identified from the combined 3D in vitro vascular 

network object.  This code also describes obtaining the silhouette scores for the sweep 

of the Seurat resolution parameter in order to evaluate the clustering fit.  Additionally, 

this code describes the identification of the top DEGs for each EC cluster.  This code 

also describes determining the significant GO terms based on DEGs for each cluster.  

This portion of code is almost identical for both the re-normalized EC and OSC data. 

 

vncomb2.ec.renorm <- subset(vncomb2, idents=c(“2”,”16”,”18”,”24”)) 

#determined by gene expression pattern of characteristic EC and OSC 

genes. 

vncomb2.ec.renorm <- NormalizeData(vncomb2.ec.renorm) 

vncomb2.ec.renorm <- FindVariableFeatures(vncomb2.ec.renorm, 

selection.method="vst", nfeatures=2000) # standard Seurat settings 

vncomb2.ec.renorm <- ScaleData(vncomb2.ec.renorm, 

features=rownames(vncomb2.ec.renorm)) # standard Seurat settings 
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vncomb2.ec.renorm <- RunPCA(vncomb2.ec.renorm, 

features=VariableFeatures(vncomb2.ec.renorm)) # standard Seurat 

settings 

vncomb2.ec.renorm <- FindNeighbors(vncomb2.ec.renorm, dims=1:15) # standard 

Seurat settings; looking at first 15 PCs 

vncomb2.ec.renorm <- FindClusters(vncomb2.ec.renorm, resolution=0.3) # 

standard Seurat settings; increasing resolution increases number of 

clusters 

vncomb2.ec.renorm <- RunUMAP(vncomb2.ec.renorm, dims=1:15) # standard Seurat 

settings; looking at first 15 PCs 

vncomb2.ec.renorm <- RunTSNE(vncomb2.ec.renorm, dims=1:15) # standard Seurat 

settings; looking at first 15 PCs 

 

Idents(vncomb2.ec.renorm) <- vncomb2.ec.renorm$seurat_clusters 

dist.mat <- dist(Embeddings(vncomb2.ec.renorm[['pca']])[,1:15]) 

res <- c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 

1.5) 

vncomb2.ec.renorm <- FindClusters(vncomb2.ec.renorm, resolution=res) 

ec.sum <- data.frame(matrix(NA_real_, nrow=length(res), ncol=4)) 

colnames(ec.sum) <- 

c("resolution","total.num.clusters","avg.sil.score","sd.sil.score") 
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for (i in 1:15) { 

vncomb2.ec.renorm <- FindClusters(vncomb2.ec.renorm, resolution=res[i]) 

clust <- vncomb2.ec.renorm@meta.data$seurat_clusters 

sil <- silhouette(as.numeric(clust), dist=dist.mat) 

name.sil <- paste0("silhouette_score_",res[i]) 

vncomb2.ec.renorm[[name.sil]] <- sil[,3] 

ec.sum[i,1] <- res[i] 

ec.sum[i,2] <- 

as.numeric(last(rownames(table(vncomb2.ec.renorm@meta.data$seurat_clust

ers)))) + 1 

ec.sum[i,3] <- mean(sil[,3]) 

ec.sum[i,4] <- sd(sil[,3]) 

print(i) 

} 

Idents(vncomb2.ec.renorm) <- vncomb2.ec.renorm$seurat_clusters 

library(stringr) 

l.abbr <- vector(mode="character", 

length=length(vncomb2.ec.renorm$orig.ident)) 

for (i in 1:length(vncomb2.ec.renorm$seurat_clusters)) { 

if (vncomb2.ec.renorm$seurat_clusters[i]=="0") { 
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l.abbr[i] <- "EC-1" } 

else if (vncomb2.ec.renorm$seurat_clusters[i]=="1") { 

l.abbr[i] <- "EC-2" } 

else if (vncomb2.ec.renorm$seurat_clusters[i]=="2") { 

l.abbr[i] <- "EC-3" } 

else if (vncomb2.ec.renorm$seurat_clusters[i]=="3") { 

l.abbr[i] <- "EC-4" } 

else if (vncomb2.ec.renorm$seurat_clusters[i]=="4") { 

l.abbr[i] <- "EC-5" } 

} 

lev.ec <- c("EC-1", "EC-2", "EC-3", "EC-4", "EC-5") 

vncomb2.ec.renorm$ec.class <- l.abbr 

vncomb2.ec.renorm$ec.class <- factor(vncomb2.ec.renorm$ec.class, 

levels=lev.ec) 

 

Idents(vncomb2.ec.renorm) <- vncomb2.ec.renorm$ec.class 

ec.mark <- FindAllMarkers(vncomb2.ec.renorm, only.pos=TRUE, min.pct=0.25, 

logfc.threshold=0.25) 

top10.ec <- ec.mark %>% group_by(cluster) %>% top_n(n=10, wt=avg_log2FC) 
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library(topGO) 

library("org.Hs.eg.db") 

Idents(vncomb2.ec.renorm) <- vncomb2.ec.renorm$ec.class 

all.genes <- rownames(GetAssayData(vncomb2.ec.renorm,slot="counts")) # 

provide list of all genes in vncomb2.ec.renorm Seurat object 

ec1.mark <- ec.mark[ec.mark$cluster=="EC-1" & ec.mark$p_val_adj<0.05,]$gene 

geneList.ec1 <- ifelse(all.genes %in% ec1.mark, 1, 0) # generate logical 

vector to see which genes are differentially expressed for cluster EC-1 

names(geneList.ec1) <- all.genes 

ec1.godata <- new("topGOdata", ontology="BP", allGenes=geneList.ec1, 

geneSelectionFun=function(x)(x==1), annot=annFUN.org, 

mapping="org.Hs.eg.db", ID="symbol", nodeSize=5) # creating the 

topGOdata object 

rf.ec1 <- runTest(ec1.godata, algorith="elim", statistic="fisher") # 

implementing the elimination algorithm to acquire a Fisher p-value (F-

test based value) 

ec1.res1 <- data.frame(GenTable(ec1.godata,Fisher=rf.ec1, 

topNodes=25,numChar=60)) 

ec1.res2 <- ec1.res1[,c('GO.ID','Term','Fisher')] 

ec1.res3 <- ec1.res2[1:25,] 
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ec1.res3$neglogPval <- -log10(as.numeric(ec1.res3$Fisher)) # take the -log10 

of the Fisher p-value reported (will use this in future graphs) 

ec1.res3[is.na(ec1.res3)] <- 30 # in the event there is no data, set the 

value to 30 (will exclude if is the case) 

ec1.res3$abbrTerm <- rbind(str_trunc(ec1.res3$Term, 38, "right"))[1,] 

ec2.mark <- ec.mark[ec.mark$cluster=="EC-2" & ec.mark$p_val_adj<0.05,]$gene 

geneList.ec2 <- ifelse(all.genes %in% ec2.mark, 1, 0) # generate logical 

vector to see which genes are differentially expressed for cluster EC-2 

names(geneList.ec2) <- all.genes 

ec2.godata <- new("topGOdata", ontology="BP", allGenes=geneList.ec2, 

geneSelectionFun=function(x)(x==1), annot=annFUN.org, 

mapping="org.Hs.eg.db", ID="symbol", nodeSize=2) # creating the 

topGOdata object 

rf.ec2 <- runTest(ec2.godata, algorith="elim", statistic="fisher") # 

implementing the elimination algorithm to acquire a Fisher p-value (F-

test based value) 

ec2.res1 <- data.frame(GenTable(ec2.godata,Fisher=rf.ec2, 

topNodes=25,numChar=60)) 

ec2.res2 <- ec2.res1[,c('GO.ID','Term','Fisher')] 

ec2.res3 <- ec2.res2[1:25,] 
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ec2.res3$neglogPval <- -log10(as.numeric(ec2.res3$Fisher)) # take the -log10 

of the Fisher p-value reported (will use this in future graphs) 

ec2.res3[is.na(ec2.res3)] <- 30 # in the event there is no data, set the 

value to 30 (will exclude if is the case) 

ec2.res3$abbrTerm <- rbind(str_trunc(ec2.res3$Term, 38, "right"))[1,] 

ec3.mark <- ec.mark[ec.mark$cluster=="EC-3" & ec.mark$p_val_adj<0.05,]$gene 

geneList.ec3 <- ifelse(all.genes %in% ec3.mark, 1, 0) # generate logical 

vector to see which genes are differentially expressed for cluster EC-1 

names(geneList.ec3) <- all.genes 

ec3.godata <- new("topGOdata", ontology="BP", allGenes=geneList.ec3, 

geneSelectionFun=function(x)(x==1), annot=annFUN.org, 

mapping="org.Hs.eg.db", ID="symbol", nodeSize=5) # creating the 

topGOdata object 

rf.ec3 <- runTest(ec3.godata, algorith="elim", statistic="fisher") # 

implementing the elimination algorithm to acquire a Fisher p-value (F-

test based value) 

ec3.res1 <- data.frame(GenTable(ec3.godata,Fisher=rf.ec3, 

topNodes=25,numChar=60)) 

ec3.res2 <- ec3.res1[,c('GO.ID','Term','Fisher')] 

ec3.res3 <- ec3.res2[1:25,] 



89 
 
 

ec3.res3$neglogPval <- -log10(as.numeric(ec3.res3$Fisher)) # take the -log10 

of the Fisher p-value reported (will use this in future graphs) 

ec3.res3[is.na(ec3.res3)] <- 30 # in the event there is no data, set the 

value to 30 (will exclude if is the case) 

ec3.res3$abbrTerm <- rbind(str_trunc(ec3.res3$Term, 38, "right"))[1,] 

ec4.mark <- ec.mark[ec.mark$cluster=="EC-4" & ec.mark$p_val_adj<0.05,]$gene 

geneList.ec4 <- ifelse(all.genes %in% ec4.mark, 1, 0) # generate logical 

vector to see which genes are differentially expressed for cluster EC-2 

names(geneList.ec4) <- all.genes 

ec4.godata <- new("topGOdata", ontology="BP", allGenes=geneList.ec4, 

geneSelectionFun=function(x)(x==1), annot=annFUN.org, 

mapping="org.Hs.eg.db", ID="symbol", nodeSize=5) # creating the 

topGOdata object 

rf.ec4 <- runTest(ec4.godata, algorith="elim", statistic="fisher") # 

implementing the elimination algorithm to acquire a Fisher p-value (F-

test based value) 

ec4.res1 <- data.frame(GenTable(ec4.godata,Fisher=rf.ec4, 

topNodes=25,numChar=60)) 

ec4.res2 <- ec4.res1[,c('GO.ID','Term','Fisher')] 

ec4.res3 <- ec4.res2[1:25,] 
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ec4.res3$neglogPval <- -log10(as.numeric(ec4.res3$Fisher)) # take the -log10 

of the Fisher p-value reported (will use this in future graphs) 

ec4.res3[is.na(ec4.res3)] <- 30 # in the event there is no data, set the 

value to 30 (will exclude if is the case) 

ec4.res3$abbrTerm <- rbind(str_trunc(ec4.res3$Term, 38, "right"))[1,] 

ec5.mark <- ec.mark[ec.mark$cluster=="EC-5" & ec.mark$p_val_adj<0.05,]$gene 

geneList.ec5 <- ifelse(all.genes %in% ec5.mark, 1, 0) # generate logical 

vector to see which genes are differentially expressed for cluster EC-2 

names(geneList.ec5) <- all.genes 

ec5.godata <- new("topGOdata", ontology="BP", allGenes=geneList.ec5, 

geneSelectionFun=function(x)(x==1), annot=annFUN.org, 

mapping="org.Hs.eg.db", ID="symbol", nodeSize=5) # creating the 

topGOdata object 

rf.ec5 <- runTest(ec5.godata, algorith="elim", statistic="fisher") # 

implementing the elimination algorithm to acquire a Fisher p-value (F-

test based value) 

ec5.res1 <- data.frame(GenTable(ec5.godata,Fisher=rf.ec5, 

topNodes=25,numChar=60)) 

ec5.res2 <- ec5.res1[,c('GO.ID','Term','Fisher')] 

ec5.res3 <- ec5.res2[1:25,] 

ec5.res3$Place <- rownames(ec5.res3) 
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ec5.res3$neglogPval <- -log10(as.numeric(ec5.res3$Fisher)) # take the -log10 

of the Fisher p-value reported (will use this in future graphs) 

ec5.res3[is.na(ec5.res3)] <- 30 # in the event there is no data, set the 

value to 30 (will exclude if is the case) 

ec5.res3$abbrTerm <- rbind(str_trunc(ec5.res3$Term, 38, "right"))[1,] 

 

This next portion of code describes the pseudotime value determination and 

mapping using Monocle. 

 

library(monocle3) 

library(SeuratWrappers) 

ec.cds <- as.cell_data_set(vncomb2.ec.renorm) 

ec.cds <- cluster_cells(ec.cds, resolution=1e-3) 

reducedDim(ec.cds, type="PCA") <- 

vncomb2.ec.renorm@reductions$pca@cell.embeddings 

ec.cds@int_colData@listData$reducedDims$UMAP <- 

vncomb2.ec.renorm$umap@cell.embeddings 

ec.cds@clusters$UMAP$clusters <- vncomb2.ec.renorm@meta.data$seurat_clusters 

names(ec.cds@clusters$UMAP$clusters) <- rownames(vncomb2.ec.renorm@meta.data) 

ec.cds <- learn_graph(ec.cds) 
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ec.cds <- order_cells(ec.cds) 

vncomb2.ec.renorm$pseudotime <- pseudotime(ec.cds) 

 

The next portion of code describes the integration of the skin in vivo single cell 

RNA-Seq data from Solé-Boldo, et al 36.  Additionally, this code describes the scoring of 

the 2D in vitro ECFC-EC monolayer, Skin 3D in vitro vascular network-derived ECs, and 

in vivo skin ECs.  This code is almost identical to the code used for the comparison to 

whole lung data presented in Chapter 2. 

 

library(Matrix) 

library(readr) 

library(Seurat) 

setwd("/home/user/soleboldo-skin/pull_from_geo") 

counts <- readMM("GSE130973_matrix_filtered.mtx.gz") 

genes <- read_tsv("GSE130973_genes_filtered.tsv.gz", col_names=FALSE) 

gene_ids <- genes$X2 

cell_ids <- read_tsv("GSE130973_barcodes_filtered.tsv.gz", 

col_names=FALSE)$X1 

rownames(counts) <- gene_ids 

colnames(counts) <- cell_ids 
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skin.obj <- CreateSeuratObject(counts) 

skin.obj[["percent.mt"]] <- PercentageFeatureSet(skin.obj, pattern="^MT-") 

 

skin.obj.f <- subset(skin.obj, subset=percent.mt<10 & nFeature_RNA<7500 & 

nFeature_RNA>200) 

skin.obj.f <- NormalizeData(skin.obj.f) 

skin.obj.f <- FindVariableFeatures(skin.obj.f, selection.method="vst", 

nfeatures=2000) 

skin.obj.f <- ScaleData(skin.obj.f, features=rownames(skin.obj.f)) 

skin.obj.f <- RunPCA(skin.obj.f, features=VariableFeatures(skin.obj.f)) 

skin.obj.f <- FindNeighbors(skin.obj.f, dims=1:15) 

skin.obj.f <- FindClusters(skin.obj.f, resolution=0.5) 

skin.obj.f <- RunUMAP(skin.obj.f, dims=1:15) 

skin.obj.f <- RunTSNE(skin.obj.f, dims=1:15) 

Idents(skin.obj.f) <- skin.obj.f$seurat_clusters 

skin.mark <- FindAllMarkers(skin.obj.f, only.pos=F, min.pct=0.25, 

logfc.threshold=0.25) 

top10.skin <- skin.mark %>% group_by(cluster) %>% top_n(n=10, wt=avg_log2FC) 

ec.mono[["percent.mt"]] <- PercentageFeatureSet(ec.mono, pattern="^MT-") 
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ec.mono.qc <- subset(ec.mono, subset=percent.mt<10 & nFeature_RNA<7500 & 

nFeature_RNA>200) 

ec.mono.qc$vv <- "ECFC Monolayer" 

ec.mono.qc$fancy.vv <- "2D In Vitro Mono" 

nhdf.obj <- subset(vncomb2.ec.renorm, idents="NHDF VN") 

nhdf.obj$vv <- "In Vitro VN" 

nhdf.obj$fancy.vv <- "3D In Vitro VN" 

skin.obj.f$vv <- "In Vivo" 

skin.obj.f$fancy.vv <- "In Vivo" 

options(future.globals.maxSize = 1000 * 1024^2) 

l.anchor1 <- FindIntegrationAnchors(object.list=list(ec.mono.qc.small, 

nhdf.obj, skin.obj.f.sub1), dims=1:20) 

skin.comb.int1 <- IntegrateData(anchorset = l.anchor1, dims=1:20, 

k.weight=50) 

Idents(skin.comb.int1) <- skin.comb.int1$vv 

DefaultAssay(skin.comb.int1) <- "RNA" 

skin1.markers <- FindAllMarkers(skin.comb.int1, only.pos=TRUE, min.pct=0.25, 

logfc.threshold=0.25) 

top20.skin1 <- skin1.markers %>% group_by(cluster) %>% top_n(n=20, 

wt=avg_log2FC) 
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skin.vivo <- top20.skin1$gene[top20.skin1$cluster=="In Vivo" & 

top20.skin1$p_val_adj<0.05] 

DefaultAssay(skin.comb.int1) <- "RNA" 

skin.comb.int1 <- AddModuleScore(skin.comb.int1, features=list(skin.vivo), 

name="vivo_enriched") 

x.mono <- 

mean(skin.comb.int1@meta.data[skin.comb.int1@meta.data$fancy.vv=="2D In 

Vitro Mono",]$vivo_enriched1) 

x.vivo <- 

mean(skin.comb.int1@meta.data[skin.comb.int1@meta.data$fancy.vv=="In 

Vivo",]$vivo_enriched1) 

skin.comb.int1$scale.vivo.module.score <- (skin.comb.int1$vivo_enriched1 - 

x.mono) / (x.vivo - x.mono) *100 
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Chapter 6 – Code for Analysis of Ex Vivo CRLM Organoids 

 

Introduction 

Below is a subset of the various code that was utilized for the ex vivo organoid 

model of CRLM work described in Chapter 3.  Version properties of the software are 

indicated in Table 3.  Note that the early steps in the R computing environment code 

roughly follow the suggested pipeline for Seurat as previously described 41,101. 

 

 

Linux Computing Environment 

The code below allows for the use of CellRanger (10X Genomics) to align the 

raw fastq files obtained from an Illumina NovaSeq and then count the number of hits for 

each unique gene/molecular identifier using the human GRCh38-3.0.0 reference 

transcriptome 102. 

 

cd ~/yard/scrna_analysis/apps/cellranger-5.0.0 

export PATH=/home/user/scrna_analysis/apps/cellranger-5.0.0:$PATH 

which cellranger 

cd ~/yard/user/name 

mkdir output 

cd ~/yard/user/name/output 
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cellranger count --id=UNIQUENAME --fastqs=/home/user/name/RAWDATA --

sample=SAMPLE --transcriptome=/home/user/scrna_analysis/refdata-

cellranger-GRCh38-3.0.0 

 

 

 

R Computing Environment 

The code below describes the initial processing steps for the aligned output data 

along with the initial quality control filtering of the scRNA-Seq data. 

 

library(Seurat) 

library(ggplot2) 

library(cowplot) 

library(dplyr) 

library(patchwork) 

library(tidyverse) 

crlm7.sc.data <- Read10X(file.path(cellranger7.sc.dir)) 

crlm7.org.data <- Read10X(file.path(cellranger7.org.dir)) 

crlm8.sc.data <- Read10X(file.path(cellranger8.sc.dir)) 
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crlm7.sc <- CreateSeuratObject(counts=crlm7.sc.data, project="CRLM7-

ParentalTumor") 

crlm7.org <- CreateSeuratObject(counts=crlm7.org.data, project="CRLM7-

Organoid") 

crlm8.sc <- CreateSeuratObject(counts=crlm8.sc.data, project="CRLM8-

ParentalTumor") 

crlm78 <- merge(crlm7.sc, y=c(crlm7.org, crlm8.sc), add.cell.ids=c("CRLM7-

ParentalTumor", "CRLM7-Organoid", "CRLM8-ParentalTumor")) 

 

crlm78[["percent.mt"]] <- PercentageFeatureSet(crlm78, pattern="^MT-") 

crlm78.qc <- subset(crlm78, subset = nFeature_RNA>200 & nFeature_RNA<7500 & 

percent.mt<10) # filtering such that any cell with >10% of total genes 

as mitochondrial genes (non-informative genes), or >7500 unique genes 

(potentially multiple cells grouped together), or <200 unique genes 

(potentially poor/dying/dead cells or debris) are excluded from 

downstream analysis. 

 

  



99 
 
 

The next portion of code describes the normalization, dimensionality reduction, 

and clustering of the combined CRLM object.  This code also describes obtaining the 

silhouette scores for the sweep of the Seurat resolution parameter in order to evaluate 

the clustering fit.  Additionally, this code describes the identification of DEGs for each 

cluster of the overall CRLM dataset. 

 

crlm78.qc <- NormalizeData(crlm78.qc) 

crlm78.qc <- FindVariableFeatures(crlm78.qc, selection.method="vst", 

nfeatures=2000) 

crlm78.qc <- ScaleData(crlm78.qc, features=rownames(crlm78.qc)) 

crlm78.qc <- RunPCA(crlm78.qc, features=VariableFeatures(crlm78.qc)) 

crlm78.qc <- FindNeighbors(crlm78.qc, dims=1:15) 

crlm78.qc <- FindClusters(crlm78.qc, resolution=0.5) 

crlm78.qc <- RunUMAP(crlm78.qc, dims=1:10) 

crlm78.qc <- RunTSNE(crlm78.qc, dims=1:10) 

 

l.abbr <- vector(mode="character", length=length(crlm78.qc$orig.ident)) 

for (i in 1:length(crlm78.qc$orig.ident)) { 

if (crlm78.qc$orig.ident[i]=="CRLM7-Organoid") { 

l.abbr[i] <- "P7 Organoid" } 
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else if (crlm78.qc$orig.ident[i]=="CRLM7-ParentalTumor") { 

l.abbr[i] <- "P7 Parental" } 

else if (crlm78.qc$orig.ident[i]=="CRLM8-ParentalTumor") { 

l.abbr[i] <- "P8 Parental" } 

} 

 

lev.fancy <- c("P7 Organoid", "P7 Parental", "P8 Parental") 

crlm78.qc$fancy.orig.ident <- l.abbr 

crlm78.qc$fancy.orig.ident <- factor(crlm78.qc$fancy.orig.ident, 

levels=lev.fancy) 

 

library(cluster) 

Idents(crlm78.qc) <- crlm78.qc$seurat_clusters 

crlm.sil <- crlm78.qc 

dist.mat <- dist(Embeddings(crlm.sil[['pca']])[,1:15]) 

res <- c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 

1.5) 

crlm.sil <- FindClusters(crlm.sil, resolution=res) 

sil.sum <- data.frame(matrix(NA_real_, nrow=length(res), ncol=4)) 
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colnames(sil.sum) <- 

c("resolution","total.num.clusters","avg.sil.score","sd.sil.score") 

 

for (i in 1:15) { 

crlm.sil <- FindClusters(crlm.sil, resolution=res[i]) 

clust <- crlm.sil@meta.data$seurat_clusters 

sil <- silhouette(as.numeric(clust), dist=dist.mat) 

name.sil <- paste0("silhouette_score_",res[i]) 

crlm.sil[[name.sil]] <- sil[,3] 

sil.sum[i,1] <- res[i] 

sil.sum[i,2] <- 

as.numeric(last(rownames(table(crlm.sil@meta.data$seurat_clusters)))) + 

1 

sil.sum[i,3] <- mean(sil[,3]) 

sil.sum[i,4] <- sd(sil[,3]) 

print(i) 

} 

 

Idents(crlm78.qc) <- crlm78.qc$RNA_snn_res.0.5 
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crlm.mark <- FindAllMarkers(crlm78.qc, only.pos=TRUE, min.pct=0.25, 

logfc.threshold=0.25) 

top6 <- crlm.mark %>% group_by(cluster) %>% top_n(n=6, wt=avg_log2FC) 

top8 <- crlm.mark %>% group_by(cluster) %>% top_n(n=8, wt=avg_log2FC) 

top20 <- crlm.mark %>% group_by(cluster) %>% top_n(n=20, wt=avg_log2FC) 

top40 <- crlm.mark %>% group_by(cluster) %>% top_n(n=40, wt=avg_log2FC) 

 

The next portion of code describes the identification of epithelial cells from the 

larger CRLM dataset and the identification of GO terms from each cluster based on the 

top 40 DEGs for each epithelial cell cluster. 

 

Idents(crlm78.qc) <- crlm78.qc$RNA_snn_res.0.5 

crlm.sub <- subset(crlm78.qc, idents=c("2","7","13")) 

clus2.mark40 <- crlm.mark[crlm.mark$cluster=="2" & 

crlm.mark$p_val_adj<0.05,]$gene[1:40] 

clus7.mark40 <- crlm.mark[crlm.mark$cluster=="7" & 

crlm.mark$p_val_adj<0.05,]$gene[1:40] 

clus13.mark40 <- crlm.mark[crlm.mark$cluster=="13" & 

crlm.mark$p_val_adj<0.05,]$gene[1:40] 
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library(topGO) 

library(strngr) 

library("org.Hs.eg.db") 

 

# Looking first at cluster 2 

all.genes <- rownames(GetAssayData(crlm78.qc,slot="counts")) 

geneList.clus240 <- ifelse(all.genes %in% clus2.mark40, 1, 0) 

names(geneList.clus240) <- all.genes 

clus240.godata <- new("topGOdata", ontology="BP", allGenes=geneList.clus240, 

geneSelectionFun=function(x)(x==1), annot=annFUN.org, 

mapping="org.Hs.eg.db", ID="symbol", nodeSize=5) # creating the 

topGOdata object 

rf.clus240 <- runTest(clus240.godata, algorith="elim", statistic="fisher") 

clus240.res1 <- data.frame(GenTable(clus240.godata,Fisher=rf.clus240, 

topNodes=25,numChar=60)) 

clus240.res2 <- clus240.res1[,c('GO.ID','Term','Fisher')] 

clus240.res3 <- clus240.res2[1:25,] 

clus240.res3$Place <- rownames(clus240.res3) 

clus240.res3$neglogPval <- -log10(as.numeric(clus240.res3$Fisher)) 

clus240.res3[is.na(clus240.res3)] <- 30 
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clus240.res3$abbrTerm <- rbind(str_trunc(clus240.res3$Term, 38, "right"))[1,] 

# Next look at cluster 7 

all.genes <- rownames(GetAssayData(crlm78.qc,slot="counts")) 

geneList.clus740 <- ifelse(all.genes %in% clus7.mark40, 1, 0) 

names(geneList.clus740) <- all.genes 

clus740.godata <- new("topGOdata", ontology="BP", allGenes=geneList.clus740, 

geneSelectionFun=function(x)(x==1), annot=annFUN.org, 

mapping="org.Hs.eg.db", ID="symbol", nodeSize=5) # creating the 

topGOdata object 

rf.clus740 <- runTest(clus740.godata, algorith="elim", statistic="fisher") 

clus740.res1 <- data.frame(GenTable(clus740.godata,Fisher=rf.clus740, 

topNodes=25,numChar=60)) 

clus740.res2 <- clus740.res1[,c('GO.ID','Term','Fisher')] 

clus740.res3 <- clus740.res2[1:25,] 

clus740.res3$Place <- rownames(clus740.res3) 

clus740.res3$neglogPval <- -log10(as.numeric(clus740.res3$Fisher)) 

clus740.res3[is.na(clus740.res3)] <- 30 

clus740.res3$abbrTerm <- rbind(str_trunc(clus740.res3$Term, 38, "right"))[1,] 

 

# Next look at cluster 13 
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all.genes <- rownames(GetAssayData(crlm78.qc,slot="counts")) 

geneList.clus1340 <- ifelse(all.genes %in% clus13.mark40, 1, 0) 

names(geneList.clus1340) <- all.genes 

clus1340.godata <- new("topGOdata", ontology="BP", 

allGenes=geneList.clus1340, geneSelectionFun=function(x)(x==1), 

annot=annFUN.org, mapping="org.Hs.eg.db", ID="symbol", nodeSize=5) # 

creating the topGOdata object 

rf.clus1340 <- runTest(clus1340.godata, algorith="elim", statistic="fisher") 

clus1340.res1 <- data.frame(GenTable(clus1340.godata,Fisher=rf.clus1340, 

topNodes=25,numChar=60)) 

clus1340.res2 <- clus1340.res1[,c('GO.ID','Term','Fisher')] 

clus1340.res3 <- clus1340.res2[1:25,] 

clus1340.res3$Place <- rownames(clus1340.res3) 

clus1340.res3$neglogPval <- -log10(as.numeric(clus1340.res3$Fisher)) 

clus1340.res3[is.na(clus1340.res3)] <- 30 

clus1340.res3$abbrTerm <- rbind(str_trunc(clus1340.res3$Term, 38, 

"right"))[1,] 
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