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RESEARCH Open Access

Power and rate allocation for video
conferencing in cellular networks
Chao Yang and Scott Jordan*

Abstract

We consider resource allocation for semi-elastic applications such as video conferencing. We propose to model user
utility as a sigmoid function of the average bit rate over multiple time slots. The goal is to maximize the total expected
user utility over time through allocation of downlink power and subcarriers in each time slot. We propose resource
allocation that considers both the average rate achieved so far and the future expected rate, and show how the future
expected rate can be estimated by modeling the probability that a user will be allocated a subcarrier in a future time
slot. The algorithm can be implemented in a distributed fashion by an exchange of price and demand amongst users,
the network, and an intermediate power allocation module. To reduce the complexity, we also propose a greedy
algorithm to maximize incremental utility in the current time slot. The performance is illustrated using numerical
results.

Keywords: Communication system traffic control, Cellular networks, Video conferencing

1 Introduction
Video applications constitute a rapidly increasing propor-
tion of the total traffic on cellular networks. It is now
estimated that video comprises one third of downstream
North American mobile Internet access peak period traf-
fic [1]. Most of this video traffic is streaming encoded
using either Adobe Flash or MPEG. Some of this video
traffic is video conferencing, e.g., Apple’s FaceTime for
iPhones and Skype’s video conferencing application for
smartphones. For such applications, variable bit rate video
encoding algorithms are typically used, e.g., MPEG. For
real-time use, such as required to support video con-
ferencing, best-effort service can result in unacceptable
performance. Fourth generation (4G) cellular networks
will integrate voice, video, and data applications using
packet switching. As a consequence, resource allocation
should take into account application characteristics when
best-effort packet switching would not result in acceptable
performance. There are two issues.

First, as in other study on network resource allocation,
there is a potential gain from employing the concept of
utility. The most common objective video quality metric

*Correspondence: sjordan@uci.edu
Department of Computer Science, University of California, Irvine, USA

is peak signal-to-noise ratio (PSNR). Many studies of sub-
jective video quality, however, have observed that users
evaluation of video quality levels off at high PSNRs. This
has provided motivation for modeling utility as a sigmoid
function of throughput [2,3], i.e., convex at rates less than
a threshold and concave at rates above that threshold. A
sigmoid function also reflects the layered coding structure
of MPEG video, which exhibits increasing returns with
rate below a threshold and decreasing returns with rate
above that threshold.

Second, video encoding algorithms often use a group
of pictures as a central concept, and intentionally vary
the bit rate over different frames within this group. Net-
work resource allocation should thus be cognizant of this
structure. Some researchers have proposed that resource
allocation should satisfy some type of delay deadline, e.g.,
delay constraint [4-7]. However, none of these articles use
sigmoid utility functions.

We are thus motivated to look for a resource allocation
method that uses sigmoid utility functions (rather than
hard performance constraints or utility proportional to
PSNR) and that takes into account the group of pictures
structure (rather than using long term rate constraints).
We posit here that for video conferencing applications,
user utility should be a sigmoid function, not of the

© 2013 Yang and Jordan; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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instantaneous transmission rate, but of the average rate
over one or more groups of pictures.

In this article, we consider allocation of downlink power
and subcarriers in orthogonal frequency division mul-
tiplexing (OFDM) 4G cellular systems for semi-elastic
applications. The user’s satisfaction is modeled by a sig-
moid function of the average rate over a time window. The
goal is to create algorithms that allocate power and sub-
carriers in each time slot in a manner that optimizes total
average user utility over time. The difficulty with max-
imizing utility over many time slots is that the system
should consider both the current channel and the likely
achievable average rates by the end of the time window.
For instance, if a user’s channel is poor at the beginning
of a time window, should the system allocate resources
for this user or should it wait to see if the user’s channel
improves later in the time window? If a user’s accumu-
lated rate in a time window is low, when should the system
respond by increasing the user’s resource allocation and
when should the system give up on the user’s performance
in this time window and allocate resources to other users?

The article proceeds as follows. In Section 2, we pose
the resource allocation problem. In Section 3, we review
related work. In Section 4, we consider a non-causal sys-
tem in which at the beginning of each time window the
network knows the channel gains of each user in each time
slot of the window. While knowing all the future infor-
mation is unrealistic, this will serve as an upper bound
to causal systems. We illustrate how a dual problem for-
mulation can be used to allocate power and subcarriers
in each time slot of the time window. The complexity can
be reduced by distributing the resource allocation process
amongst users, the network, and intermediate power allo-
cation modules. The network allocates power and subcar-
riers, and charges the power allocation module a shadow
price for power in each time slot. The power allocation
module translates this price per unit power into a price per
unit rate, and resells the system resources to users. Users
choose desired rates based on the cost and the result-
ing utility. We pose an iterative algorithm that determines
near-optimal shadow prices in each time window.

In the remainder of the article, we consider causal sys-
tems which must make resource allocation decisions in
each time slot without knowledge of the channel gains
of users in future time slots. The challenge is to decide
how the resource allocation in the current time slot should
be based on the average rate achieved so far in the time
window and on the likely achievable rate during the
remainder of the time window. In Section 5, we propose
a resource allocation policy that considers both the aver-
age rate achieved so far and the future expected rate. We
show how this future expected rate can be estimated by
modeling the probability that a user will be allocated a
subcarrier in a future time slot. We show that although

maximization of the expected utility due to future rate is
prohibitively complex, maximization of the utility of the
expected average rate over the time window can be near-
optimally solved in a distributed fashion using a similar
exchange of price and demand. In Section 6, we design a
resource allocation policy that considers the average rate
achieved so far and ignores future rate, by only attempt-
ing to maximize the total incremental utility of the current
slot. We show how this allocation can be iteratively deter-
mined in a distributed fashion amongst user, network, and
power allocation modules by exchanging shadow prices
and desired rates and powers.

Finally, in Section 7 we illustrate the performance of
these algorithms using numerical results. We find that
the non-causal algorithm is near-optimal, with some sub-
optimality when resources are severely constrained and
a significant number of users are unable to achieve rates
in the concave portion of the utility curve. The greedy
causal algorithm is similar to that of the non-causal algo-
rithm when resources are severely constrained, but lags
as resources become more plentiful. The reason is that
although the greedy algorithm can react to a poor channel
by allocating fewer resources, it does not consider future
rates and thus may not decrease allocations enough. The
algorithm with prediction of future expected rates closes
a portion of this gap by allocating resources in a bal-
anced way based on both current channel and likely future
channels.

2 System model and problem formulation
2.1 System model
We consider a single cell downlink OFDM system serving
K users, with N subcarriers. The bandwidth of each sub-
carrier is B which is assumed to be less than the coherence
bandwidth of the channel so that the channel response can
be considered flat. The rate of user k on subcarrier n in
time slot t is:

rk,n,t(pk,n,t) = B log2

(
1 + pk,n,t

|Hk,n,t|2
δ2 + I

)

where pk,n,t is the power allocated, |Hk,n,t| is the chan-
nel gain, I is the interference power and δ2 is the noise
power. The channel gain is assumed to be a stationary
Markov process and the fading on different subcarriers is
assumed to be independent to each other. The base sta-
tion is assumed to know the channel gain of each user on
each subcarrier in the current time slot and the condi-
tional density f

( |Hk,n,τ |2
∣∣ |Hk,n,t|2

)
for future slots τ . The

total rate of user k in time slot t is the sum of the rate over
all subcarriers:

Rk,t =
N∑

n=1
rk,n,t
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2.2 Utility model
We propose to model a user’s utility as a sigmoid function
over the average rate over a time window. Both the choice
of a sigmoid function and of an average rate over a time
window deserve discussion.

There are two classes of quality assessment methods
commonly proposed in the literature. Objective quality
assessment typically uses PSNR as an evaluation criterion.
Many articles have thus proposed that network resources
should be allocated to maximize the average PSNR, see
e.g., [8,9], sometimes subject to long term average rate
constraints, see e.g., [10,11]. This approach essentially
equates user utility with PSNR. However, a major disad-
vantage of PSNR is that it cannot reflect users’ subjective
satisfaction of performance. Many studies have shown
that at high PSNRs, perception of incremental quality falls
off with increasing PSNR. On this basis, many studies have
turned to subjective quality assessment, usually directly
measuring a user’s satisfaction with video quality, and rep-
resenting performance by the mean opinion score (MOS)
[12].

Some articles have thus proposed that utility of mul-
timedia applications be modeled as a sigmoid function
of the throughput [2,3]. A sigmoid utility function also
reflects the layered coding structure of MPEG video. The
initial convex portion reflects the rate required to transmit
the base video layer. The concave portion reflects the use
of incremental rate to transmit enhancement layers; every
additional enhancement layer increases user satisfaction,
but with decreasing returns. Sigmoid utility functions
are widely used to evaluate the performance and make
resource allocation of video and other semi-elastic appli-
cations [13-16]. The relationships among PSNR, MOS
and various utility functions constitute the domain of
many research projects; we refer to the reader interest-
ing in these mappings to [3] which explores this mapping
through multimedia experiments over Android-based
smartphones.

In addition, video encoding algorithms often use a group
of pictures as a central concept, and intentionally vary the
bit rate over different frames within this group. Network
resource allocation should thus be cognizant of this struc-
ture. Despite the common use of PSNR to rate video qual-
ity, allocating network resources subject to a long term
rate constraint does not reflect the group of pictures struc-
ture of the video decoder, and thus may not maximize
video quality. As a consequence, some researchers have
proposed replacing long term average rate constraints
with some type of delay deadline, see e.g., [4] which
minimizes wireless resource usage subject to statistical
delay and loss constraints, [5] which maximizes concave
utility subject to delay constraints, [6] which minimizes
the expected end-to-end distortion subject to delay con-
straints, and [7] which minimizes the error propagation of

a group of pictures subject to delay constraints. However,
none of these articles use sigmoid utility functions.

We desire a model which represents user utility as a sig-
moid function of rate and which recognizes the group of
pictures construct. Thus, we propose to model user utility
as a sigmoid function of the average rate over a time win-
dow, as pictured in Figure 1. The time window consists of
T time slots which correspond to the transmission time
for one or more groups of pictures. For video, the time
window is likely to be chosen to be one of more group
of pictures. At time t, denote the contribution toward the
average rate during the current time window by Sk,t =
1
T

∑t
τ=1 Rk,τ . The utility of user k is assumed to be a func-

tion Uk(Sk,T ) which maps the average rate achieved in a
time window, Sk,T , to the level of the satisfaction perceived
by the application. There exists an inflection point Sf

k,T
such that Uk is convex for Sk,T < Sf

k,T and concave for
Sk,T > Sf

k,T . We denote the rate at the maximum average
utility by S′

k,T , namely S′
k,T = arg maxSk,T Uk/Sk,T .

2.3 Problem formulation
We pose a maximization problem for each time win-
dow as follows. Denote the power allocation by pt =
{pk,n,t , ∀k, n}. Each subcarrier can be allocated to at most
one user; thus denote the feasible set of power and subcar-
rier allocations by At = {pt s.t. ∀n, pk,n,t > 0 for at most
one user k}. The goal is to maximize the total expected
user utility within the time window under a constraint that
the total transmitted power in the current time slot not
exceed the power supply P:

U∗
tot = max

pt∈At

K∑
k=1

E[ Uk(Sk,T )] (1)

s.t.
K∑

k=1

N∑
n=1

pk,n,t ≤ P;

pk,n,t ≥ 0 ∀k, n;

Uk

Sk,TSk,T
f Sk,T’

Figure 1 Sigmoid utility function.
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where past allocations and rates, {pτ , 1 ≤ τ < t} and
{rk,n,τ , 1 ≤ τ < t}, and past and current channels,
{Hk,n,τ , 1 ≤ τ ≤ t, ∀k, n}, are known.

As discussed in the Introduction, the novel part of this
maximization problem is the use of a sigmoid utility func-
tion and its dependence upon the average rate achieved
over a time window. The major challenge of this problem
is that power allocation in the current time slot affects
not only the current rate but also the utility that may be
earned at the end of the time window. The system should
consider both the current channel and the likely achiev-
able average rates by the end of the time window. For
instance, suppose that it is early in the time window and a
user currently faces a worse than average channel. Policies
for inelastic applications would respond to a poor channel
by increasing power, while policies for elastic applications
would respond by allocating less power and waiting for a
better channel. However, for video conferencing, utility is
a function of the average rate over a time window, not of
instantaneous rate, and it is a sigmoid function. Should
the network allocate less than average power, figuring that
later in the time window it can make up the difference?
Does this depend on the auto-correlation of the channel?
If late in the time window this user has experienced an
average rate that places it in the convex portion of the
utility function, should the network respond by increasing
the transmission power? Alternatively, should the network
give up on this user obtaining decent performance in this
time window, and use the power to increase the utility of
other users?

3 Related study
For both elastic and inelastic applications, both non-utility
based and utility based resource allocation methods have
been proposed and thoroughly studied.

For inelastic applications, non-utility based resource
allocation methods (such as margin adaption) generally
attempt to minimize usage of wireless resources (typically
power or channels) [17]. Utility based resource allocation
methods generally model the utility of inelastic applica-
tions as a step function of rate, which reflects the require-
ment to achieve a constant bit rate if this user is active. The
objective is then to maximize total user utility and bin-
packing methods are often proposed to allocate resources
[18].

For elastic applications, the most common non-utility
based approaches attempt to maximize capacity or to
minimize usage of wireless resources given a set of active
users, see e.g., [19-21]. Utility based resource allocation
methods generally model the utility of elastic applica-
tions as a concave function of rate, which reflects the
lack of any minimum rate requirement. Maximization of
total user utility is often proposed using standard convex
optimization methods [22-26].

For semi-elastic applications, there is less literature. A
few articles model user utility as a sigmoid function of
instantaneous rate or bandwidth. Lee et al. [13] consider
both scheduling and user selection for CDMA systems,
and propose using pricing to select which users are active
and to allocate power. Hande et al. [14] similarly con-
sider sigmoid utility functions under a single resource
constraint, and give conditions under which the Nash
equilibrium using marginal cost pricing is optimal. Kuo
et al. [15] model utility as a sigmoid function of band-
width, and design heuristic algorithms to choose a near
optimal bandwidth allocation. However, we are unaware
of any research literature on power allocation when utility
is a function of the average bit rate over a period of time.

The optimization problem (1) could be framed as a
stochastic dynamic programming problem. The base sta-
tion may have knowledge of past allocations and rates,
{pτ , 1 ≤ τ < t} and {rk,n,τ , 1 ≤ τ < t}, and past and
current channels, {Hk,n,τ , 1 ≤ τ ≤ t, ∀k, n}. However,
since the channel is assumed to be Markov, it will suffice
to consider the set of current channel gains over all users
and subcarriers, denoted by Ht = {Hk,n,t , ∀k, n}, and the
set of contributions as of time t − 1 toward the average
rate of all users in the current time window, denoted by
St−1 = {Sk,t−1, ∀k}.

Denote a resource allocation policy that makes deci-
sions on the basis of the current channels and the accumu-
lated rates by Q(Ht , St−1). A causal version of the problem
(1) would require the determination of a resource alloca-
tion policy Q that maximizes total expected user utility.
Denote the expected incremental utility from the current
slot t to the end of the window achieved under policy
Q by V Q(Ht ,St−1)

t . The optimal resource allocation policy
would allocate the power in time slot t, pt , to maximize the
incremental utility earned in the current time slot plus the
expected incremental utility earned in future time slots.
This can be stated recursively as:

V Q(Ht ,St−1)
t = max

pt∈At

{ K∑
k=1

�Uk,t+E
(

V Q(Ht+1,St−1)
t+1 |Ht , St−1

)}
,

∀1 ≤ t < T

V Q(HT ,ST−1)

T = max
pT ∈AT

K∑
k=1

�Uk,T (2)

To complete the framing as a stochastic dynamic pro-
gramming problem, we need the channel gains, power
levels, and achieved rates to be discrete variables. Suppose
we quantize the channel gain on each subcarrier into ZH
levels and the achieved rates for each users into ZR levels.
Then the state (Ht , St−1) has ZNK

H ZK
R levels. The complex-

ity of stochastic dynamic programming is well known to
suffer a curse of dimensionality in the number of levels
of the state [27]. It follows that such an approach is com-
putationally prohibitive for any reasonably sized systems.
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We are thus motivated to search for less computationally
complex approaches to resource allocation.

4 Non-causal version
We first consider a non-causal system in which at the
beginning of each time window the network knows the
channel gains of each user in each time slot of the window.
Such knowledge removes (for the time being) the chal-
lenge of consideration of how current resource allocation
affects future utility. While knowing all the future infor-
mation is unrealistic, this will serve as an upper bound to
causal systems.

Because all of the channel gains are known at the begin-
ning of each time window in this version, the resource
allocation decisions for power and subcarriers can be
made jointly for all users and all time slots within the
window. The multiple time slot decisions are thus trans-
formed into a single decision at the beginning of each time
window. This will allow full consideration of the varia-
tion of channel for each user from time slot to slot and of
the average bit rate during the time window achieved as a
result of allocations made in each slot.

However, the direct solution of problem (1) requires
solving KNT fixed point equations. We are thus motivated
to solve a dual problem [28]. The idea, used previously
for strictly concave utility functions [29], is to separate
the determination of each user’s rate (here Sk,T ) and the
allocation of power (here p) using a set of intermediate
variables d = {dk} as bounds on the achieved rates. A
similar decomposition can be applied to sigmoid utility
functions, transforming problem (1) into:

U∗
tot = max

p∈A,d

K∑
k=1

Uk (dk) s.t.Sk,T ≥ dk (3)

K∑
k=1

N∑
n=1

pk,n,t ≤ P, pk,n,t ≥ 0, ∀k, n, t

The Lagrange of (3) is given by:

J(λ, μ) = max
p∈A,d

J(d, p, λ, μ)

= max
d

K∑
k=1

(Uk (dk) − λkdk)

+ max
p∈A

[ K∑
k=1

λkSk,T +
T∑

t=1
μt

(
P−

K∑
k=1

N∑
n=1

pk,n,t

)]

where λ = {λk} are the Lagrangian multipliers associ-
ated with the rate constraints and μ = {μt , 1 ≤ t ≤ T}
are the Lagrangian multipliers associated with the power
constraints. The dual function is then given by:

J(λ, μ) = max
p∈A,d

J(d, p, λ, μ)

and the dual problem is to optimally choose the
Lagrangian multipliers:

J∗ = min
λ,μ

J(λ, μ) s.t. λ � 0, μ � 0 (4)

For strictly concave utility functions, the dual problem
always gives the same solution as the primal problem.
However, for non-concave utility functions, the dual prob-
lem may result in a sub-optimal solution. The amount of
the sub-optimality is measured by the duality gap J∗−U∗

tot .
If all downlink power is allocated in all timeslots, i.e.,∑K

k=1
∑N

n=1 pk,n,t = P, ∀t, and the target rate is achieved
for all users, i.e., Rk = dk , ∀k, then the duality gap is
zero. Otherwise, the duality gap is positive. It can be
shown that the gap is bounded [30]. We further investi-
gate the amount of sub-optimality in simulation results in
Section 7.

Using the same method in [30], the dual problem (4) can
be represented as:

J∗ = min
λ,μ

[
f1(λ) +

T∑
t=1

N∑
n=1

f2,n(λ, μ) +
T∑

t=1
μtP

]
(5)

Where

f1(λ) = max
d

K∑
k=1

(Uk(dk) − λkdk) (6)

f2,n,t(λ, μ) = max
p∈A

( K∑
k=1

1
T

λkrk,n,t − μt

K∑
k=1

pk,n,t

)
(7)

According to the first-order condition ∂f2,n,t/∂pk,n,t = 0,
the solution of (7) is

pk,n,t =
(

Bλk
Tμt ln 2

− δ2 + I
|Hk,n,t|2

)+
(8)

Substituting (8) into (7) and simplifying we obtain

f2,n,t(λ, μ) = max
k

�k,n,t , (9)

where

�k,n,t = λk
T

B
[

log2

(
Bλk

Tμt ln 2
|Hk,n,t|2
δ2 + I

)]+

−μt

(
Bλk

Tμt ln 2
− δ2 + I

|Hk,n,t|2
)+

Denote the relationship between �k,n,t and |Hk,n,t|2 as
�k,n,t(|Hk,n,t|2). If the user can obtain the subcarrier, �k,n,t
should be greater than 0. Using (8), it follows that �k,n,t =
0 if and only if |Hk,n,t|2 < Tμt ln 2(δ2 + I)/(Bλk). Thus we
define the inverse of �k,n,t at |Hk,n,t|2 = 0 as �−1

k,n,t(0) =
Tμt ln 2(δ2 + I)/(Bλk). When �k,n,t > 0, �k,n,t is a
monotonically increasing function of |Hk,n,t|2, and thus if
|Hk,n,t|2 < �−1

k,n,t(0), the user cannot obtain subcarrier n.
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5 Resource allocation with expectation of future
rate

Having established the form of the optimal non-causal
resource allocation, we now turn to formulation of causal
resource allocation methods. Causality, combined with
Markov channels, implies that resource allocation should
be based on the set of current channels and accumulated
rates (Ht , St−1). In addition, the system may have knowl-
edge of the joint distribution of channels in current and
future time slots, e.g., the auto-correlation of channels.
The principal challenge is thus allocate resources in the
current time slot given the average rate achieved so far in
the time window and the likely achievable rate during the
remainder of the time window.

In this section, we design a resource allocation policy
that considers both the average rate achieved so far and
the expected future rate. To estimate allocation in the
future time slots in the current time window, we assume
that the base station knows the channel gain |Hk,n,t| for
all users and subcarriers in the current time slot t and the
conditional density f

( |Hk,n,τ |2
∣∣ |Hk,n,t|2

)
for future slots τ

in the current time window.
We start with the causal problem formulation in (2).

Since direct solution via stochastic dynamic programming
is computationally prohibitive, we propose interchanging
the utility and the expectation, i.e., maximizing the utility
of the expected average rate over the time window instead
of maximizing the expected utility. Denote the expected
user k rate in time slot τ under scheduling policy Q by
EQ(Ht ,St−1)(Rk,τ |Ht). Then the expected user k rate from
time slot t through the end of the time window is given
by Rk,F = Rk,t + ∑T

τ=t+1 EQ(Ht ,St−1)(Rk,τ |Ht). Denote the
incremental utility of the expected average rate over the
time window under scheduling policy Q by W Q(Ht ,St−1)

t .
This interchange transforms (2) into:

W Q(Ht ,St−1)
t = max

pt∈At

K∑
k=1

Uk(Sk,t−1 + Rk,F/T) (10)

s.t.
K∑

k=1

N∑
n=1

pk,n,t ≤ P; pk,n,t ≥ 0 ∀k, n

E
( K∑

k=1

N∑
n=1

pk,n,τ |Ht

)
≤ P, ∀τ ∈[ t + 1, T] ,

where the latter constraint places limits on the expected
power allocated in future time slots.

The expected future user k rate is the sum of the
expected future user k rate on each subcarrier:

E(Rk,τ |Ht) =
N∑

n=1
E(rk,n,τ |Ht) (11)

Denote the probability that under policy Q subcarrier n
will be assigned to user k at time slot τ by P

(
pk,n,τ > 0

)
. If

this probability is known, then the expected future user k
rate on subcarrier n could be found by:
E(rk,n,τ |Ht)

=
∫ +∞

�−1
k,n,t(0)

rk,n,τ f
(|Hk,n,τ |2

∣∣|Hk,n,t|2
)

P
(
pk,n,τ > 0

)
d|Hk,n,τ |2

(12)

since the channel fading is assumed to be a Markov pro-
cess and the fading on different subcarriers are assumed
to be independent to each other. The required probability
estimate is given by the following property:

Property 1. Let policy Q be dictated by λk and μτ .

P
(
pk,n,τ > 0

) =
K∏

k̂=1,k̂ 
=k

P
{
|Hk,n,τ |2 > g

(
|Hk̂,n,τ |2

)}

where

g
(
|Hk̂,n,τ |2

)
= (δ2 + I)

Tμτ ln 2
Bλk

(
Bλk̂

Tμτ ln 2
|Hk̂,n,τ |2
δ2 + I

)(
λk̂
λk

)1/2

Proof 1. See Appendix 1.

This probability can also be used to estimate the
expected power allocated in future time slots:

E
( K∑

k=1

N∑
n=1

pk,n,τ |Ht

)

=
K∑

k=1

N∑
n=1

E(pk,n,τ |Ht)

=
K∑

k=1

N∑
n=1

∫ +∞

�−1
k,n,t(0)

pk,n,τ (|Hk,n,τ |2)P
(
pk,n,τ > 0

)
×f

(|Hk,n,τ |2
∣∣ |Hk,n,t|2

)
d|Hk,n,τ |2 (13)

A similar decomposition approach to that used in the
previous section for a non-causal system can be used here.
Introduce dk as a lower bound on the average rate Rk,F/T .
Then Equation (6), which determines the target rate for
each user in the non-causal system, will become:

f3(λ) = max
d

K∑
k=1

(
Uk(Sk,t−1 + dk) − λkdk

)
(14)

in the causal system.
The decomposition indicates a method of distribut-

ing the optimization. The determination of rate in (14)
indicates a role for each user, while the determination
of Lagrangian multipliers μ indicates a role for the net-
work. These two roles must be done in coordination. The
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decomposition suggests to us that there should be an
intermediate power allocation module which determines
the Lagrangian multipliers λ in (14) and determines the
powers p in (8). The communication between the users,
power allocation module, and network is illustrated in
Figure 2. The allocations can be determined iteratively
as follows, where the iteration number is denoted by a
superscript i:

User algorithm: Given λi
k ,

di+1
k = arg maxdk [ Uk(Sk,t−1 + dk) − λi

kdk].
Network algorithm: Given tentative power and
subcarrier allocations pt ∈ At ,
∀τ ∈[ t, T] , μi+1

τ =[ μi
τ + si

Bzi
B]+, where si

B is a
positive scalar stepsize, and
zi

B = sgn
(∑K

k=1
∑N

n=1 pi
k,n,t − P

)
when τ = t and

zi
B = sgn

(
E

(∑K
k=1

∑N
n=1 pi

k,n,τ |Ht
)

− P
)

when
τ > t.
Power allocation algorithm: Given target rates di

and Lagrangian multipliers μi
τ ∀τ ∈[ t, T], allocate pt

using (8) and (9). Calculate E(Rk,τ |Ht) ∀τ ∈[ t + 1, T]
using (11). Update λi+1 =[ λi + si

Pzi
P]+, where si

P is a
positive scalar stepsize, and zi

P is any feasible
direction that satisfies
sgn

(
λi+1

k − λi
k

)
= sgn

(
di

k − Rk,F/T
)
.

For the power allocation algorithm, we propose a sub-
gradient method with bounds to update λ:

λi+1
k = max

[
min

(
λi

k + si
P(di

k − Si
k,T ), λk

)
, λ

]
(15)

with a suitable choice of step size. The lower bound λ can
be set to a small suitable constant. The upper bound λk is
given by

λk = dUk(Sk,t−1+Rk,F/T)/d(Rk,F/T)|(Rk,F/T = �R
′
k)

where �R′
k = arg maxRk,F [ Uk(Sk,t−1 + Rk,F/T) −

Uk(Sk,t−1)] /(Rk,F/T). The iteration for λ is terminated
when:

λi+1
k − λi

k < ε1 ∀k or Si+1
k,T = Si

k,T ∀k, (16)

where ε1 is a small constant.

User Power
Allocation

Network

dk

µt

pk,n,t

k

Figure 2 Communication between users, power allocation
module, and network.

For the update of μ in the network algorithm, we pro-
pose a bisection algorithm:

If zi
B > 0, then μi+1

t = (μi
t + μi

t)/2, μi+1
t = μi

t , μ
i+1
t = μi

t

else μi+1
t = (μi

t + μi
t)/2, μi+1

t = μi
t , μ

i+1
t = μi

t (17)

where the initial lower bound μ0
t can be set to a small

suitable constant and the initial upper bound μ0
t can be

derived from (8) as μ0
t = maxk,n (Bλk|Hk,n,t|2)/[ T(δ2 +

I) ln 2]. The iteration for μt is terminated when:

μi+1
t − μi

t < ε2, (18)

where ε2 is a small constant.
Resource allocation that considers both the average rate

achieved so far and the future expected rate can thus be
logically distributed by an exchange of price and demand
amongst users, the network, and an intermediate power
allocation module. The network algorithm and the power
allocation algorithm are both run at the base station, and
the user algorithm is run in the user’s wireless device.
Messages must thus be exchanged between the base sta-
tion and the user’s device communicating the rate prices
λi and the target rates di.

This solves the challenge that power allocation in the
current time slot affects not only the current rate but also
the utility that may be earned at the end of the time win-
dow. We call the resulting algorithm, outlined as follows,
dual iteration search with prediction (DIS Prediction).
The complexity of subgradient updates is polynomial in
the dimension of the dual problem, and thus the complex-
ity of the DIS algorithm is polynomial in the number of
users K.

Dual iteration search with prediction
Every slot, initialize μ0

t = μ0
t , ∀t and λk = λ ∀k

Repeat
Repeat

For current slot t, allocate subcarrier and power by
(9) and (8)
For future slot τ , calculate
EHF

(∑K
k=1

∑N
n=1 pk,n,τ |Ht

)
by (13)

Update μ using (17)
Until (18)
If λi+1

k = λk
If Rk,F = 0 then di+1

k = 0 Else di+1
k = �R′

k
Else calculate
di+1

k = arg maxdk [ Uk(Sk,t−1 + dk) − λi
kdk]

Update λ using (15)
Until (16)

However, our approach required an approximation by
interchanging utility and expectation, which may cause
some sub-optimality. This will be examined via numerical
examples in Section 7.
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6 Resource allocation without expectation of
future rate

In this section, we design a simpler resource allocation
policy that considers the average rate achieved so far but
ignores the expected future rate.

The contribution toward the average rate in the current
time window achieved by user k as of slot t − 1 is given
by Sk,t−1. This can be take into consideration by focus-
ing on the incremental utility of user k in slot t, denoted
by �Uk,t = Uk(Sk,t−1 + Rk,t/T) − Uk(Sk,t−1), that would
result from an allocation of power corresponding to a rate
Rk,t .

A greedy version of the problem (1) would be to max-
imize the total user incremental utility in each time
slot t:

max
pt∈At

K∑
k=1

�Uk,t ∀1 ≤ t < T (19)

s.t.
K∑

k=1

N∑
n=1

pk,n,t ≤ P;

pk,n,t ≥ 0 ∀k, n

A similar approach to that used in the previous section
can be used. The dual problem for (19) leads to a set of
equations that describe the set of actions for users, the
power allocation module, and the network in each time
slot. From the point of view of users, the task remains
the same; the utility minus cost, Uk(Sk,t−1 + dk) − λkdk .
The network algorithm is simpler than that used in DIS
Prediction; it now only need determine the Lagrangian
multiplier μt for power in the current time slot, whereas
in DIS Prediction the network algorithm had to determine
not only μt but also {μτ , t < τ ≤ T}. The task of the
power allocation module is also simpler; it must deter-
mine the Lagrangian multipliers λ for rate as before but it
now only considers the difference between the actual and
desired rate in the current time slot rather than estimating
future rate.

The communication between the users, power alloca-
tion module, and network is as illustrated in Figure 2, and
the allocations can be determined iteratively as follows,
where the iteration number is denoted by a superscript i:

User algorithm: Given λi
k ,

di+1
k = arg maxdk [ Uk(Sk,t−1 + dk) − λi

kdk].
Network algorithm: Given tentative power and
subcarrier allocations pt ∈ At , μi+1

t =[ μi
t + si

Bzi
B]+,

where si
B is a positive scalar stepsize, and

zi
B = sgn

(∑K
k=1

∑N
n=1 pi

k,n,t − P
)

.
Power allocation algorithm: Given target rates di

and Lagrangian multipliers μi
t , allocate pt using (8)

and (9) and update λi+1 =[ λi + si
Pzi

P]+, where si
P is a

positive scalar stepsize, and zi
P is any feasible

direction that satisfies
sgn

(
λi+1

k − λi
k

)
= sgn

(
di

k − Ri
k,t/T

)
.

We again propose to use subgradient methods for the
iteration of μt and bisection methods for the iteration
of λk . As above, we place bounds on each shadow
cost, except that the upper bound λk is now given
by λk = dUk(Sk,t−1 + Rk,t/T)/d(Rk,t/T)|(Rk,t/T =
�R′

k) where �R′
k = arg maxRk,t [ Uk(Sk,t−1 + Rk,t/T) −

Uk(Sk,t−1)] /(Rk,t/T).
Greedy allocation to maximize incremental utility in

the current time slot can thus be implemented in a
distributed fashion by an exchange of price and demand
amongst users, the network, and an intermediate power
allocation module. We call the resulting algorithm,
outlined as follows, Dual iteration search greedy (DIS
Greedy). Its performance will be compared to that of DIS
Prediction in the following section.

Greedy dual iteration search
Every slot, initialize μ0

t = μ0
t , ∀t and λk = λ ∀k

Repeat
Repeat

For current slot t, allocate subcarrier and power
by (9) and (8)

Update μt using (17)
Until (18)
If λi

k = λk
If Rk,t = 0 then di+1

k = 0 Else di+1
k = �R′

k
Else calculate
di+1

k = arg maxdk [ Uk(Sk,t−1 + dk) − λi
kdk]

Update λ using (15)
Until (16)

7 Simulation results
In this section, we compare the performance of DIS Pre-
diction and DIS Greedy to an upper bound determined
by solution of the non-causal problem. For purposes of
the simulation, we set the following parameters: B =
200 KHz, N = 100, I = 0.5, δ2 = 0.5, T = 10, and P varies
from 0.01 to 0.1. We simulate K = 10 users, with identical
sigmoid utility functions given by:

Uk(Sk,T ) =
{

a(Sk,T/40)2, if Sk,T < 200 kbps
(Sk,T/40 + b)1/3, else

,

where a = (5/6)1/3/25 and b = −25/6. The utility func-
tion has a rate at the maximum average utility at average
rate S′

k,T = 250 kbps.
The Markov channel is given by:

|Hk,n,t+1|2 = ρ|Hk,n,t|2 +
√

1 − ρ2v,
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where the correlation coefficient in consecutive time slots
ρ = 0.5 and v ∼ Exp(1) is independent of |Hk,n,t|2 so that
|Hk,n,t|2 has a Rayleigh distribution [31].

In this scenario, we set the convergence bounds for λ

and μ to be very small so as to obtain accurate results.
Correspondingly, convergence of μ required 20–50 itera-
tions and convergence of λ required 200–1000 iterations.
Iterations of μi are the domain of the network and power
allocation algorithms, both of which are run at the base
station, and thus these iterations may take minimal time.
However, iterations of λi require communication between
the base station and the user’s device. This number of iter-
ations is unlikely to be feasible due to the signalling time
required, and thus a larger convergence bound ε2 would
be used in a real system. If channels change slowly enough,
then acceptable convergence will occur over multiple time
slots, and thus the proposed communication will be fea-
sible. However, if channels change too quickly, e.g., due
to high mobility, then we suggest that the time window T
be lengthened to correspond to several group-of-pictures,
and that the rate prices λ must be modified more slowly.

The total utility of all users per time window under DIS
Prediction and under DIS Greedy is illustrated in Figure 3,
as a function of the total downlink power P. We also com-
pare these algorithms to the utility that could be achieved
in a non-causal scenario; the curve labeled DIS NC is gen-
erated by using a similar dual iteration search algorithm
applied to the non-causal problem. As should be expected
from any reasonable resource allocation strategy, the total
utility is an increasing concave function of the total power
P for all three algorithms.

We first consider the performance of the non-causal
algorithm. Recall that at the beginning of each time win-
dow, this algorithm has knowledge of the channel gains
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Figure 3 Simulated utility of DIS NC, DIS prediction, and DIS
prediction algorithms.

of each user in each time slot of the window. However,
DIS NC is not optimal, since it solves the dual problem
(3) instead of the primal problem (1). Sub-optimality will
occur when there is a duality gap. Because direct solu-
tion of (1) is computationally intractable, to quantify the
amount of sub-optimality, we calculate an upper bound
(denoted in Figure 3 as Upperbound) by substituting the
solution of DIS NC into (4). We see that at low powers
there is a significant performance gap between DIS NC
and the upper bound. This gap is caused by users who
under DIS NC are allocated average rates lower than S′

k,T ,
the rate at the maximum average utility. In general, it is
inefficient for users to have average rates below S′

k,T , since
the required resources could often be assigned in a man-
ner that raises many of these users above the inefficient
convex portion of the utility curve. As the base station
power increases, the performance gap between DIS NC
and the upper bound decreases, reflecting that all users
now obtain rates above S′

k,T resulting in a duality gap of
zero.

We turn next to the causal algorithm that includes
future rate prediction, denoted DIS Prediction. Recall that
this algorithm takes into account not only the current user
channels on each subcarrier and each user’s average rate
achieved so far in the time window, but also the expected
future rate based on the conditional distribution of the
channel in future time slots. As expected, the performance
of DIS Prediction falls short of that of DIS NC.

Finally we turn to the causal greedy algorithm denoted
DIS Greedy. Recall that this algorithm only takes into
account the current user channels on each subcarrier and
each user’s average rate achieved so far in the time win-
dow. As expected, the performance of DIS Greedy is lower
than other two algorithms.

When the base station power is low, all three algorithms
achieve similar performance. In this situation because
power is limited and even DIS NC algorithm cannot
achieve the optimal solution. Thus when P = 0.02, the
performance of DIS NC even lower than other two algo-
rithms. This indicates that a greedy approach that maxi-
mizes only the incremental utility in the current time slot
is sufficient. Consideration of future achievable rate, even
if known at the beginning of the time window, does not
help. At higher base station powers, however, the per-
formance gap becomes significant. Knowledge of future
channels is now helpful. With increase of station powers,
DIS NC provides optimal performance and DIS Predic-
tion starts to outpace DIS Greedy by using its prediction
of future rates.

To understand how such knowledge helps, we focus on
the cumulative rate of a single user normalized by T when
P = 0.06, as illustrated in Figure 4 for each of 10 time
slots. In slots 2, 5, 6, 8, and 10, this user’s channel is rela-
tively poor on most subcarriers. As a consequence, both
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Figure 4 Cumulative rate of a user with a poor channel in slots 2,
5, 6, 8, and 10.

DIS NC and DIS Greedy assign no system resources to this
user in any of these slots. DIS NC knows at the beginning
what the user’s channel will be for all 10 time slots, and
it assigns substantial resources to this user during slots
1, 3, 7, and 9. In contrast, DIS Greedy must make deci-
sions one slot at a time. It allocates fewer resources than
DIS NC during slot 1, not aware of the number of time
slots to come in which this user will have a poor channel.
It attempts to catch up in slot 3, and further allocates a
small amount of resources in slot 4. DIS Greedy acts simi-
larly to DIS NC during slots 5 through 8. However, in slot
9, despite this user’s good channel it obtains no additional
resources from DIS Greedy due to a combination of the
rate achieved so far and the competition with other users.
DIS Prediction starts by allocating similar resources in
slots 1–2 as DIS Greedy. However, during slot 3 it allocates
fewer resources than DIS Greedy, based on a prediction
that the user’s channel will get better in future slots. Dur-
ing slots 4 through 6, it allocates no resources due to poor
channels, and in slot 7 it allocates similar resources to
DIS NC. The biggest difference occurs in slot 9, when
DIS Prediction allocates a high level of resources due to
a combination of the low rate achieved so far and a good
channel.

Even though prediction of future expected rates results
in increased performance, it still does not achieve the
performance resulting from exact knowledge of future
channels. The major drawback of DIS Prediction and DIS
Greedy is if they allocate too few resources to a user in the
first several slots, they may allocate too much resources
to the user in the last several slots in an attempt to
ensure that the user obtains a rate higher than S′

k,T , as
we observed in Figure 4. To further illustrate this effect,
we decrease the system power to P = 0.05. In Figure 5,
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Figure 5 Cumulative rate of a user with a poor channel in slots
5,6,7, and 9.

we illustrate the cumulative rate of a user who has poor
channels in slots 5 through 9. The optimal noncausal strat-
egy is to allocate substantial resources in slots 1, 3, and
4, due to the poor channels that will be suffered in future
slots. However, not knowing this, both DIS Greedy and
DIS Prediction allocate too few resources in slot 4, and
then overcompensate during slot 10.

All of these results pertained to a system with users with
identical utility functions. However, it can be envisioned
that in some systems not all users will be equally valuable,
and utility functions can be used to express such differ-
ences. To illustrate this, we briefly examine a system with
K = 2 users with non-identical utility functions. User 1’s
utility is as given above. User 2’s utility function given by
C times that given above, with C varying from 0.1 to 2. We
focus on the situation in which both user 1 and user 2 are
not allocated enough resources to obtain a rate above S′

k,T .
The total available power is fixed at P = 1 and the value of
μ is set to ensure that the power constraint is satisfied.

We first examine the probability that each user obtains
a randomly chosen subcarrier in a given slot, given by

E
[
P

(
pk,n > 0

)]
=

∫ +∞

�−1
k,n(0)

K∏
k̂=1,k̂ 
=k

P
{
|Hk,n|2 > g

(
|Hk̂,n|2

)}
d|Hk,n|2

(20)

These expected values are plotted in Figure 6. As user 2’s
utility function increases, its expected subcarrier alloca-
tion increases and user 1’s expected subcarrier allocation
decreases. The sum of the expected subcarrier alloca-
tion is less than 1, because when both users have channel
gains |Hk,n,t|2 < �−1

k,n,t(0) no power is allocated to either.
The expected rate achieved by each users is shown in
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Figure 6 Expected subcarrier allocation versus the ratio of
utilities C.

Figure 7. The trend is similar. It follows that different util-
ity functions can be used to accomplish differentiated rate
allocation.

8 Conclusion
Resource allocation for video conferencing can benefit
from modeling user satisfaction as a sigmoid function of
the average bit rate over a time window of a group of pic-
tures. Some articles proposed resource allocation based
on the PSNR over groups of pictures subject to average
rate constraints, and others proposed resource allocation
based on sigmoid utility of the instantaneous rate. None
have considered sigmoid utility over groups of pictures.

We considered power and subcarrier allocation in
OFDM cellular systems for semi-elastic applications
whose utility is a sigmoid function of the average bit rate
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Figure 7 Expected rates versus the ratio of two utilities C.

over multiple time slots. We proposed a resource alloca-
tion policy that considers both the average rate achieved
so far and the future expected rate. We show how future
expected rate can be estimated by modeling the probabil-
ity that a user will be allocated a subcarrier in a future time
slot. Users are unaware of this prediction, but it requires
additional work by the network and by the power alloca-
tion module. The network must estimate future prices for
power. The power allocation module must use these price
estimates to estimate future rate.

Then a greedy allocation algorithm is proposed. The
network prices power in each time slot so that the demand
for power equals the base station supply. A power alloca-
tion module assigns power and subcarriers in a manner
that maximizes total user utility, and transforms the price
for power into a price per unit rate for each user so
that users modify their desired rate to match available
resources.

The performance of each algorithm is illustrated using
numerical results. When the base station power is low,
both algorithms have similar performance, although nei-
ther makes optimal decisions for users who cannot
achieve good average rates. When the base station power
is moderate or high, the algorithm that uses the prediction
of future rates outperforms the greedy algorithm by taking
into account both expected future channels and expected
final average rate.

We have focused in this article on the downlink. Any
complete design will also require power and rate alloca-
tion on the uplink. The major difference in the uplink
system model is that there are power constraints on each
user rather than a sum power constraint. Thus, if a simi-
lar approach to that proposed here were adopted for the
uplink, then the shadow price for base station downlink
power would be replaced by a set of shadow prices for
each active device’s uplink power. The determination of
optimal power prices would therefore become more com-
plex, perhaps requiring a subgradient algorithm instead of
a bisection algorithm. Future research would be required
to evaluate the resulting complexity.

Appendix 1
Proof of Property 1:

According to (7), user k obtains subcarrier n if and only
if the following condition is satisfied for all other users
k̂ 
= k:

λkrk,n,τ
T

− μτ pk,n,τ >
λk̂ rk̂,n,τ

T
− μτ pk̂,n,τ

Substituting for pk,n,τ from (8), this occurs if and only if:

λkrk,n,τ
T

− μτ (2rk,n,τ /B − 1)

|Hk,n,τ |2/(δ2 + I)
>

λk̂ rk̂,n,τ
T

− μτ (2rk̂,n,τ /B − 1)

|Hk̂,n,τ |2/(δ2 + I)
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Substituting |Hk,n,τ |2/(δ2 + I) = 2rk,n,τ /Bμτ ln 2/ (Bλk/T)

into the above equation and rearranging terms:

λk
λk̂

>

rk̂,n,τ − B
ln 2

(
1 − 1

2
rk̂,n,τ /B

)

rk,n,τ − B
ln 2

(
1 − 1

2rk,n,τ /B

) (21)

We expand one term using a Taylor expansion:

1
2rk,n,τ /B ≈ 1 + ln 2

(
− rk,n,τ

B

)
+ (ln 2)2

2

(
− rk,n,τ

B

)2
(22)

Substituting (22) into Equation (21), user k obtains sub-
carrier n if and only if λk/λk̂ > r2

k̂,n,τ
/r2

k,n,τ ∀k̂ 
= k, i.e., if

and only if ∀k̂ 
= k,

|Hk,n,τ |2 >
(
δ2 + I

) Tμτ ln 2
Bλk

(
Bλk̂

Tμτ ln 2
|Hk̂,n,τ |2
δ2 + I

)(
λk̂
λk

)1/2

Property 1 directly follows.
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