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ABSTRACT

This paper addresses the propagation of elastic waves in media with an
underlying discrete structure. The theory of doublet mechanics is employed, 1n view
of its multi-scale nature, and capability to perform an analytical transition from
the discrete to the continuum level. The three-dimensional doublet-mechanical field
equations of elastodynamics are derived under some simplifying assumption, and the
analysis is then focused on the cases of linear and planar arrangements, the latter
with the further restriction of to continuum-level planar isotropy. Dispersion
relations are established, that demonstrate the dispersivity and retardation of both
P- and S-waves at all scales other than those for which the continuum approximation
is wvalid. The compatibility of the doublet-mechanical analysis with solid-state
physics and continuum mechanical approaches is demonstrated, and applications to

crystals, granular media, and seismological problems are presented.



INTRODUCTION

Despite its extraordinary successes, continuum  mechanics  suffers the
limitation of not being necessarily applicable to solids at all length scales of
scientific or technological interests. As long as all dominant material features and
inhomogeneities are dimensionally much smaller than the body or structure of
interest, stress and deformation analyses may be successfully performed, at least in
reversible cases, under the assumption of material homogeneity. Detailed analyses of
the mechanical fields at and in the vicinity of material inhomogeneities, such as
needed in fracture mechanics and micromechanics, are generally performed by imbedding
said inhomogeneities in bodies and structures with macroscopically homogeneous
properties. Recourse to homogeneized continuum representations of solid matter is
commonly made also in cases where the material inhomogeneities introduce non-
ignorable qualitative features in the mechanical fields. Cases of this type arise in
many fields of engineering ans science.

One example for all is found in the field of mechanics of granular and
particulate media, and is known as ’Flamant’s paradox’: An elastic half plane,
subjected to compression by a vertical boundary point force, experiences compressive
stresses everywhere, according to continuum elasticity. However, accordingly loaded
granular regions exhibit tensile openings. This renders the homogenized continuum
description questionable, for such cases, and necessitates the introduction of ad-hoc
considerations and modeling assumptions. Other phenomena that are typical to granular
media include: Dilatancy (Reynolds, 1885), liquefaction (Nemat-Nasser and Tobita,
1982), shear band formation (Tatsuoka et al., 1990), the conical transfers of surface
loads into granular massives (Meek and Wolf, 1992), and the transition of granular
flow from fluid-like to solid-like behavior (Campbell, 1993). For comprehensive

review of issues that involve the complex nature of granular media, the reader is
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referred to (Hutter and Rajagopal, 1994),

Modeling paradoxes such as Flamant’s essentially express the necessity for
developments beyond Cauchy-type continuum mechanics, that afford mechanical analyses
to be performed at several different dimensional scales, as advocated for instance by
(BaZant, 1993), while preserving consistency and unity in the modeling approach. An
additional feature that would be highly desirable is the capability of modeling both
the continuum and the discrete aspects within the same theory, while mantaining
rigorous consistency with established fields, such as continuum mechanics and solid-
state physics. Such capability must not necessarily include multiscale effect, as
non-scale features, such as coordination numbers, relative positions and orientations
of granules in the packing, contact bonds are indeed significant, (Gray, 1968; Harr,
1977, Feda, 1982).

Considerable successes have been obtained in the formulation of generalized
continuum theories, intended to allow the modeling of microscale phenomena, and in
the various approaches in the discipline of homogenization. Generalized continuum
mechanics, microstructural mechanics of granular media and homogenization methods are
well-established and extensively researched fields, and no attempt is here made to
review them exhaustively, other than to cite some basic references. For generalized
continua, these include, (Cosserat, 1909, Eringen and Suhubi, 1964; Mindlin, 1964,
1968; Green and Rivlin, 1964a, 1964b; Palmov, 1964; Eringen, 1966; Novacki, 1970;
Stojanovi¢, 1972; Picci and Saccomandi, 1990; Teodorescu and Soos, 1973; Mrthyumjaya
and Pratar, 1993).

In what may be dubbed a non-axiomatic approach, the micromechanics of granular
solids has proceeded from direct consideration of the real solid microstructure,
without involving a priori any hypotheses and special tools, such as the vector-

directors (Mogami, 1965; Horne, 1965, 1969; Matsuoka, 1974; Davis and Deresiewicz,
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1977; Nemat-Nasser, 1982; Oda et al, 1982; Mehrabadi et al., 1982, 1983; Satake,
1978, 1982, 1993; Bathurst and Rothenburg, 1988; Chang and Misra, 1990; etc.). On
this basis, continuous descriptions of discrete microstructures have been obtained.
This has afforded advances in problems in granular mechanics, such as liquefaction
(Nemat-Nasser and Tobita, 1982), dilatancy (Nemat-Nasser, 1982; Mehrabadi and Nemat-
Nasser, 1983), constitutive relations (Satake, 1993), and so forth. The reader
interested in granular mechanics is referred to the transactions of international
symposiums and conferences of IUTAM (eds. Vermeer and Luger, 1982), ASME (ed.
Mehrabadi, 1992), ASMGM (ed. Thornton, 1993), etc.

Guided by the objective of providing advances in multi-scale mechanical
analyses, an entirely different approach was presented in (Granik and Ferran,
1993a), that is based on a discrete representation of matter, ie. views solids as
collection of discrete points at possible finite distances. A full kinematic system
was developed, that strains of the extensional, torsional and shear type at the level
of pairs of particles, or ’doublets’. Being based on doublet-level quantities, the
entire theory was then dubbed ’'Doublet Mechanics’.

In (Granik and Ferrari, 1993a), the doublet-level microstresse  were
introduced, and a variational formulation of equilibium was employed, that yields
micro-level equations of equilibrium, as well as the transition between the
conventional stresses and the microstructural geometry, fields and properties.

Doublet-level linear elastic constitutive equations were introduced, and an
analytic solution was given to Flamant’s paradox: Microstresses were proven to be
tensile in certain regions, while the macroscopic level stresses coincided with
Flamants’. (Note: a quantitative correction to the solution reported in (Granik and
Ferrari, 1993a,b) will appear in (Nadeau et al., 1995)). Further work in doublet

mechanics included the establishment of microstructurally-based failure theories
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(Ferrari and Granik, 1994, 1995), and the extension to viscoelastic consitutions
(Maddalena and Ferrari, 1995).

In this work, the first problems are solved with doublet mechanics that
incorporate multi-scale effects. In particular, the plane propagation of elastic
waves in granular media is researched, with reference a spatial arrangement of the
particles that results in macroscopic-level isotropy in the plane of propagation and
particle displacement. The topic is motivated by experiments ’) that establish the
dependence of wave frequencies and velocities depend on the parameters of granular
microstructure, including porosity (Urick, 1948; Hampton, 1967), the coordination
numbers and the contact bonds (Trent, 1989), the particle sizes and the interparticle
distances (lida, 1938; Matsukawa and Hunter, 1956). Theoretical approaches to the
modeling of dispersion of plane seismological elastic waves have been proposed, that
incorporate some characteristic of the earth’s microstructure. Among these are the
multilayered structure  (Haskell, 1953), anisotropy (Crampin and Taylor, 1971),
gravity (Ewing et al., 1957), the curvature and stratification (Sezawa, 1927) radial
inhomogeneity  (Saito, 1967), vertical discontinuities (Malischewsky, 1987), etc.
Other than anisotropy, these properties induce surface wave dispersion. However, the
quantitative results - when provided - are in strong disagreement with observations.

In this paper the theory of doublet mechanics is shown to predict strong
dispersion, especially, at shorter wavelength. However, the paper nor the presented
theory are dedicated to the detailed study of seismological phenomena: The emphasis
is on the development of a full multiscale theory, applicable in principle to very
different materials and microstructural dimensions. Consistently with this objective,
the doublet mechanical is below shown to be fully compatible with crystal dynamics
and continuum elastodynamics, yet intrinsically richer than the latter, in that it

affords the modeling of dispersion and retardation phenomena. Both of these are
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scale-related, and disappear in the continuum or the infinite wavelength limit, as
required.

The paper contains an extended summary of the governing equations and
notations of doublet mechanics, which is to be employed for references for the
forthcoming parts of this series. These include the study of the refraction phenomena
of plane waves at the interface between a granular medium and a free surface (Zhang
and Ferrari, 1995), where it is found that the critical angle of mode conversion is a
scale-dependent quantity. Plane elastostatic solutions are to be presented in (Nadeau
et al, 1995), which are the doublet-mechanical analogs of the celebrated continuum-
level solutions of Kelvin, Eshelby, and the method of Airy’s stress potentials.
Thermodynamics and invariance arguments are employed in (Mon and Ferrari, 1995) to

derive restrictions on the doublet-level constitutive forms.
GOVERNING EQUATIONS OF DOUBLET MICROMECHANICS

In this article the propagation of waves through granular media is studied,
employing the general theory of Doublet Mechanics (DM). The salient features of DM
are summarized next. For more details on DM, the reader is referred to (Granik and
Ferrari, 1993a, 1993b; Ferrari and Granik, 1994, 1995; Maddalena & Ferrari, 1994).

To help with the visualization, a material model underlying doublet
micromechanics may be introduced, that consists of a regular array H of N equal
elastic spheres of diameter d the centers of which, or nodes, form a space Bravais
lattice L. It is assumed that the number of particles N is large, and the diameter d
is small but finite (Granik and Ferrari, 1993a).

The Bravais lattice L is fully defined by the stationary bundle Tn of n basic

vectors C& (@ = 1, 2,..., n) where n = m/2 is the valence of the lattice, m is the
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coordination number of the array H, n a = |§§| is the internodal distance (the lattice
constant) in an a-direction - a quantity that is generally different for different
values of o. The unit lattice vectors are tg = C;"ﬂ o All the nodes of the Bravais

lattice are arranged along straight lines, parallel to the n unit bundle directions

-0
‘ca.

Along any positive direction tg

adjacent to n other particles Ba € H(a =1, 2,.., n). Any such pair (A’Ba) € H is

in the granule array H, any particle A € H is

called a doublet. The vector Eg may is be termed a doublet axis, in that it joins the
centers @ € A and ba € Ba' The lattice constant n o 2 d hence represents the length of
the doublet (A.B a) of an a-direction.

The particle A € (A’Ba) is in contact with B(x if the doublet length Ny = d. Such
an «a-doublet is considered is called a contact doublet, the a-direction being the
contact direction. There may be s (0 < s < n) contact directions in which all
particles are in contact, and the underlying granule array may be called a regular
s-contact n-valence array Hsn' If the contact number s = n, than the array Hsn
becomes a regular completely contact array Hnn = Hn’ or a regular n-valence packing,
where all the adjacent particles are in contact with each other.

There are four regular packings (Deresiewicz, 1958): H3 (simple cubic), H 4
(cubical-tetrahedral), H 5 (tetragonal-sphenoidal), and H 6 (face-centered, or
pyramidal). If the particle array Hsn is not a packing, then in addition to the
mentioned above, there may be other regular structures similar to the crystal ones:
simple tetragonal, orthorombic face-centered, simple orthorombic, etc. (Cottrell,
1964). In these cases, the particles interact in the n - s non-contact directions
owing to intermediate substances (compliant inclusions) or spatial electrostatic

forces binding atoms and molecules in crystals.

It should be noted that the doublet micromechanics, as presented in (Granik and
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Ferrari, 1993a) is valid for all the regular arrays Hsn whether s = n or s # n, if
the forces of particle interactions are of a short-distance character. Contact forces
such as friction, represent a particular case of such interactions.

While the validity of DM is apparent a priori for materials that exhibit 2
macroscopically evident granular lattice structure, it must be remarked that recent
results - especially those concerning failure theories (Ferrari & Granik, 1994, 1995)
- have established a posteriori its effectiveness for macroscopically continuous
media. This suggests that DM be interpreted as a general model, the validity of which
is to be verified for specific material classes, much in analogy with what is current
practice with continuum mechanics (CM). An interpretive aide in this context is the
standpoint that the nodes of DM actually be averages or representations of the
complexity of actual particle or molecular interactions - a concept that is strongly
related to the interpretation given by Clausius of the ’molecular theory of
elasticity’ (see Todhunter, 1886, article No. 1400).

The building block of CM is a mathematical fiction, the differential volume
element. By contrast, the building block of DM is the deformable doublet (hence the
name of the theory). Within DM, the particles in all doublets undergo translations
and rotations that are independent to a certain degree. This gives rise to doublet
microstrains of the axial, torsional, and shear type. Energy conjugates to these are
the microstresses of the axial, torsional, and shear type.

The connection between the microstresses and the macrostresses, 1.e. the
conventional and the couple stresses of CM, follows as a natural boundary condition
of the virtual work formulation. This permits the continuum-level representation of
any phenomenon that is expressed at the doublet level. The converse is certainly
false: By no method can doublet-level information by obtained in full from a

macroscopic-level  analysis. This follows from the fact that the basic field



quantities of DM are the microstrains and the microstresses, while their macroscopic
counterparts are just phenomenological descriptors.

The governing equations of the doublet micromechanics are given next All
vectors and tensors are considered in a rectangular Cartesian frame of reference {x ]
» Xy 5 X3 } with unit vectors g j 22 s ;3 . By convention, Latin indices are in here
assumed to take the values I, 2, 3 , while Greek subscripts do not have vectonal
nature, and are valued in the range [1,n]. The summation convention is enforced on
Latin indices only.

The governing equations of doublet micromechanics are:

1. Kinematic equations, relating the doublet microstrains of elongation
(compression) Ea , torsion ﬁa , and shear §a to the vector fields of the translations

u and rotations ¢

-1
M K
— Lo .0
EO‘—KEI thzTa(K)a“’ (1)
-1
M K
_ a .o K
Ho = K E " Yo T(x(x) a7; )
-1
Y= (- T 1) AZJ T K
(041 i ol O ¥ = ] x! (I(K)

M nt
1 a
o _ o . . .
Here o = Yo € Eijp is the permutation symbol, Eij is the Kronecker delia

(Sokolnikoff, 1951); other quantities are defined as follows:



u=u e, 0=0; ¢, @)

€0 = £ To = € T 4 = Fai & €ai = Eq o) - ©)
'1(1 = Hy ;g = Hy tgu ;l = Ko “1 (Hgi = Mg T’(om) ’ ©)
;a = Yo zi ’ %

Too) = T;kl ’Cgkqw tg'kl( , (8)

RO S LA S o

1 1

K K

The integer M indicates the selected approximation level, with M=1 representing the
non-scaling variant of the theory. It is noted that a sign in (3) has been reversed,
with respect to (Granik and Ferrari, 1993a).

2. Dynamic equations, connecting the microstresses of elongation (compression)

p, torsion m and shear 7 to the volume force F, the translation u, and the bulk

a 3
density of granular medium p:

(A) 'Force’ equations:

n M ; nK-]
k+! o K o
o Z, 12 (-1) " Ta(x) ) (pw. + tm.) + Fi =p i, (10)

(B) 'Couple’ equations:
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x-1

a 5:3 1 g Ty fag * g , e T}ki' at 7 i~ 5 o S oy fag) = 0 0D
Here the free index i = I, 2, 3. Other definitions are:
;a"pa ";_pa gu; = Py ;i Pyi = Py Tgu')’ (12)
;'a = Mo ;((;. =My tgu € = Moy ;z Ung; = Mg, tgni) ” (13)
ty, =ty € - (14)
F=F e, (5)
i = &ufor (16)

where ¢ is time. Again, signs in (10-11) have been reversed, with respect to (Granik

and Ferrari, 1993a).

3. Constitutive equations, relating the microstresses to the microstrains and

the increment of the temperature 6:

n

p(X:BE]AaBEﬁ+Jae’ (17)
n

mo =5 T Eap as)
n

t 19)

ai:ﬁé}’dﬁijyﬁj.
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in which AU«B , Ja , EaB , ]aBij are the scalar and tensor micromoduli of
thermoelasticity, 8 = T - T, , T, and T are the temperature of granular medium before

and after deformation, respectively.

i

4. The heai flow equation, connecting the microstrains and the temperature
increment:

2

3°0 n ae 89
i wennmnn + T J ..a --+H=0, 20
Uaxi axj Oagl a a¢ cEat @0

where ;‘ij = ;“ji are the components of the symmetric tensor of thermal conductivity,
Ce is the specific heat at constant microstrains € H is the density of internal
heat sources (if any) in the granular medium.

n ae
Equation (I7) and the term T0 y J. -4 in Eq. (20) relate the temperature

< o
field G(xl., 1) to the fields of elzxgati;n nﬁi;ostrains Ea(xi’ t) and microstresses
pa(xi, . Thus, the above governing equations represent a coupled systems of
thermomechanical equation for granular media. The mechanical fields may be determined
separately from the temperature field in the special cases of (1) isothermal and (i1)

adiabatic processes when the heat equation (20) is replaced respectively by the

equations (Granik and Ferrari, 1993a)

i 6=0, (21)
T n ,
ii = .- 22
G 6 ceaéljaea' (22)

In these cases, the constitutive equations (/7) reduce to the forms
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(1) Py = B g ] AOLB EB . (23)
n P
() py =g 2, Apep 24)
where
TO
"&B =Aup &g + E; o g - (25)

DYNAMIC SCALING EQUATIONS

Conventional studies of elastic wave propagation in particulate solids have
neglected particle size and scaling effects. In well-developed branches of solid
mechanics, such as soil dynamics (Prakash, 1981), seismology (Bith, 1968) and
geophysics (Pilant, 1979), despite the macroscopic evidence of the particulate nature
of the media under study, this approach has been justified by treating only dynamic
phenomena with wavelenghts that are much larger than the particles’ dimensions.

The same reluctance to address scaling effects is also pervasive in the
literature on granular media, from the earliest theories (Takahashi and Sato, 1949,
1950; Gassmann, 1951) to contemporary models (Stout, 1989; Wijesinghe, 1989; Agarwal,
1992; Ostoja-Starzewski, 1992; Slade and Walton, 1993).

In view of its multi-scale nature, and its capability to bridge the discrete and
the continuum viewpoints, Doublet Mechanics offers a natural framework for the
discussion of scaling effects in the dynamics of particulate and granular media. The

most general embodiment of the theory was presented in the previous section. A
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simplified version of the theory is now derived, with the purpose of studying mono-
and bi-dimensional propagation phenomena. The assumptions on which the simplified
theory is based are:

1. The dynamic process is isothermal, and Egs. (21), (23) hold.

2. The volume forces vanish:

Fi =0. (26)

3. The particle interactions are longitudinal (central), so that the shear and
torsion microstresses vanish everywhere in the body:

m, =1y = 0. 27)

Identity (27) is equivalent to taking the micromoduli of elasticity in Egs. (18)
and (/9) equal to zero: E o =] aBij = () . As shown in the work (Granik and Ferrar,
1993a), the granular medium with such properties is nonpolar: it bears only
conventional (macro)stresses Gij and does not sustain couple (macro)stresses MU
which are identically equal to zero in the volume V.

4. The central interactions are lJocal, i.e., the elongation microstress Py in an
arbitrary doublet (A,Ba) depends only on its elongation microstrain €q and 1s
independent of microstrains EB (B # o) in the other doublets (A,BB) originated from
the same particle A. Such an interaction arises, for instance, if two particles of
any doublet are supposed to be rigid and bonded by a small elastic spring. This
assumption of local interaction formally means that in the isothermal physical
equation (23), the micromoduli of elasticity AaB = A o SaB which, in turn, reduces the
physical equations (17) to

Py = A o fa 28

. The local interactions are homogeneous, i.e., all the micromoduli of

elasticity Aa = A0 = constant for any o = 1, 2, .., n. In view of Egs. (5) and (/2),

this assumption leads Eq. (28) to the form
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.=A_E_., 29)

where A is microconstant of elasticity. Within this set of assumptions, it is noted
that only this microconstant suffices to fully define the physical properties of the
granular medium in question.

Assumption (27) turns the dynamic ’couple’ equations (//) into identities and
reduces the set of governing relations to the dynamic ’force’ equations (J0),
kinematic relations (), and physical dependencies (29). Substituting relations (27),
29, (5), and (J) into Eq. (J0) and taking into account condition (26), the scaling

dynamic equations are obtained in terms of the translations ui(xj,t):

-1 p_]
n M T]K n
) FRSN o .0 lo KL _ o
A a1 2 i Ta T Ty 2, RO Al & 30

where the indices i, j = I, 2, 3. To simplify these equations Egq. (30) is first

rewritten as:
-2
n M M nK+_Ll
i 0o .0 Ko KL
Aoagltai Tajxéluélu) K!u! TG(K‘W)B L @9

Let us now take the sum k + = 8. Since ] S x < M and 1 < p < M, we have 2 < &
< 2M. For example, if M = I then 8§ = 2; if M = 2 then & = 2, 3, 4; and so on.

Denoting R = 2M, we fulfill identical transformations of the internal double sum in

Eq. GI):
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5-2

M M K+-2 R 8-1 1
L KHL K o o5 _
x § I z 1( D x!p! Tot(mﬂu) Y Bl Z‘ 2 x z 1 1) k! (8-%)! Ta) &% =
R o - < 6-1 (. K
0-2 o] 4
522" Ta® ® Yk T WG (32
The last sum in (32) may be computed in terms of Newton’s binomial formula
o 51
o : K 0¥
b) = cemmmoe -
(@+0) K 'E' o x!(&-x)! b (33)
which at a = - I, b = 1 gives
o 8!
) 4
K é 0 1) K!(5-x)! (34)
Identity (34) may be rewritten as follows:
) 5! ) -DH¥ 6-1 (¥
¥ =8 cemenie-e = O cmemeie-- + S =0, 35
K § 0 1) K!'(8-x)! K =0 x!(&-x)! Kk = 1 x!'(8-x)! * (33)

where S = 2 if 8 is even, and S = 0 if & is odd. Relation (35) yields

5-1  (p* s

Kk =1 xl@K)! 8!

(36)

On substituting identity (36) into (32) and then into (31), we finally obtain

the following three basic equations of scaling microdynamics:

n R ﬂs-z 5
. [¢] (8] __g,__
Pl =24, T ToiTaiso g 5 a® Y
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These equations include the scaling parameters 7 o in an explicit form. In the first
(or nonscale) approximation, i.e. for M = 1, the scaling parameters 1 o vanish, and

£

equations (37) reduce to:

u

N n .
p--yt=A I , Toi o Yok Yol TSt (38)
a1 = 1

where the definitions (§) and (9) were employed.

For clarity, the multi-scale Eq. (37) is written in extenso as:

-xt =24 © 10 (Lo 0 Ly
pat2 0y < ai aj(zgakalaxka[
2 4
na o _0 _O o g uj
SR S P S SRR TR SRep +
ak “al ‘op “og
41 axk ax I axp axq
4 6
n 3 u.
e T AR S S T 2RO S ) s (39)

L ok ol Tap ag o as
6! ox; ax, axp axq ax, ax,

or, in an explicit tensor notation,

azui R : M a“ul.

P --nl = C... , ceeeeodoo. : 40)

a2 k=274, TUkpk ox, ox,,

1 K

where
K-2
nom

— (_X_- Q 0 0 0

ijky.k =2 A0 o 2 1 Tkt T Ty ok, Tk @1
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are tensors of rank k + 2 that comrespond to generalized moduli of elasticity.
Formula (4]) shows that these moduli comprise micro-level constitutive information
(Ao), as well as microstructural parameters (na , tgi ). In the first approximation,
the scaling dynamic equations (40) and (47) are form-identical with the non-scaling

equations of the conventional theory of anisotropic elasticity (Pilant, 1979)

Lu, &,

L 1
P -ont = Coyy omedee : 42)
612 ijkl

Within the Doublet Mechanical context, however, the stiffness tensor is:

I
=4, X 1°2.1%. 1% <° (43)

¢ o =] ai oy ak ol

ijkl

Eqs. (42), (43) are equivalent to Eq. (38). There is a major difference between
the conventional understanding of (42) and its Doublet-Mechanical counterpart, where
(43) holds: The tensor Cijkl in (43) is invariant with respect to any permutation of
its subscripts, including Cijkl = Cikjl and thus possesses only 15 independent
C c

C C

constants: Cpy37 + Cpo3p 0 Cra33 0 Cr211 > €212 €222 Cuzar - “1313 > “1333
C2322 ) C2323 , C2333 »Crypn o Cr595 C3333. By contrast, the number of independent
constants in conventional theory of anisotropic elasticity is 21/.

The difference of 6 constants for this case brings us back to the dawn of
theory of elasticity when Stokes first raised the question: "Is elastic aelotropy
(anisotropy) to be characterized by 2/ constants or by IS5, and is elastic isotropy to
be characterized by two constants or one?" (Love, 1944, page 13). Stokes and G. Green

held 27 independent constants of anisotropy (the multi-constant theory) while Cauchy,

Navier, Poisson and Saint Venant supposed this number to be 15 (the rari-constant
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theory). Based on equation (43), Stokes’ question may answered as follows:

In order for an arbitrary anisotropic elastic granular medium to be completely
characterized by I5 independent constants it is sufficient that the microforces of
interaction between constitutive particles (granules, molecules, etc.) be cenrral,
local, and homogeneous in the sense specified above. It can easily be shown that the
first two conditions are also necessary. The third condition is not necessary and was
adopted here because it has eventually lead to the simplest form of scaling equations
(39)-(41). In the case of isotropy, the elastic features are characterized by one
macroconstant of elasticity (see below Eq. (92)). Using the above governing
equations, it can also be shown that the tensor Cijkl has 2] independent components
if the interparticle microforces are only central. The basic equations of scaling
microdynamics become then much more complicated than (39)-(47). The proofs of the
above statements is omitted for brevity. The reader interested in the historical
discussion of the multiconstancy versus rariconstancy is referred to (Todhunter,
1886, articles 921-934).

Equation (41) may be interpreted in two, quite different manners: In the first,

0

the microstructural parameters A o Mg ° Toi

, are assumed known, and formula (4/)

k and then apply the

enables one to compute the microstructural tensors Cijk
1-:. K

dynamic equations in the explicit tensor notation (40). However, the computing the

tensors C is not a necessary step, and may be avoided by inserting the known

ijk 1"‘k1<
microstructural parameters directly into the dynamic equations (39).
Alternatively, if the microstructure of the granular body is unknown, the

elastic moduli Ci 4. g must be considered as some macroscopic parameters of
1... K
granular body to be determined by special macroscopic experiments. Nevertheless,

based on the underlying theory, the experimental variables are only A o No Tgi.
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Thus, using the doublet microstructural approach, we have first obtained the
dynamic scaling equations (39)-(41). These equations not only enable us to study
dynamic scaling problems for granular and particulate materials but also allow us to
do this, if necessary, from two quite different viewpoints: microscopic (Eq. (39

and macroscopic (Egs. (40), (41)).
ELASTIC WAVES IN A LINEAR MONATOMIC LATTICE

Consider a linear monatomic lattice with the valence n = ] and internodal

distance T o =M= constant (Fig. 1). The only lattice direction corresponds to a = I

is taken to be parallel to the Cartesian axis X, =X $0 that the lattice axis Ig = €

0

ai i it follows

. 0
. Since ta =1

19, =1 and t°i=0if azlori=l. (44)

Relations (41) and (44) cause the tensor C.. to be
1JI<1...I<K
nK‘-Z
Cijkj...kK = 2 AO g fi=j= kI = .. = kK = ] and Cijkl...kK = ( otherwise. (45)
In view of (45), the dynamic equation (40) becomes
u R=2M %% 2 A REZM n* o*u
--5 =2 A B T D D , 4
p3,2 0K=2?4,... k! ax¥ 1'12 k=2,4,.. k! g¥ (46)

in which u = u,; is a node translation along the axis x.
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It is of interest now to demonstrate that the differential ~equation  (46)
actually contains the difference equation employed in solid state physics for wave
propagation in a monoatomic lattice. To this end, the limit of the right-end side of

(46) is taken for M - oo, yielding

K K
o}é T—‘g ?-L-‘ =W, +u_ ,-2u )2 (47)
27 4 K~ Y p+l p-1 P ’

K= oo X gy

where up = u = ulxt), up’ ] = u(x-n,n, u +] = u(x+n,!) denote the translations of an

p
arbitrary pth node and its nearest neighbors to the left and the right, respectively

(see Fig. 1). To prove (47) let the displacements up-1 and u be expanded into

p+1

Taylor’s series about x:

_ _ - x Mg 2%

up_] = u(x-n,f) = U + « —2—_:. 1(-1) ;(; é;‘-( s (48)
o My 8tu
u = u(x+n,t) = u + - ees 49
e = UOHTLY EIK!SXK 49)
The sum of series (48) and (49) is

oy au
+ =2 + 2 = e . 0
Upep *pp S22 i o) GO

Since u = up , relation (50) directly entails identity (47), as was to be shown.
Substituting (50) into the differential equation (46) at M -~ e, the difference

equation of motion of an arbitrary pth node, or atom is obtained:
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&u

m -y = C(

+ -2 51
- upp -2 ) 1)

up+1

where m = pn3 may be interpreted as the mass of an atom in the monatomic lattice, and
C = A on is the force constant. Eq. (5I) may be found in textbooks on solid state
physics (Kittel, 1953, Eq. (4.6)) and in the dynamics of atoms in crystals (Cochran,
1973, Eq. 3.1)).

It was thus shown that for a linear monatomic lattice, the general scaling
differential equations (39)-(4/) may be reduced to the particular form of scaling
difference equation (57). Clearly, the transition from (51) to (39-41) is impossible.

Consider now a longitudinal wave

up = U, expli(wt - kpn)] 352)

traveling along the axis x to the right. Here, i = V(-1), while Uy, » @, k are the
wave amplitude, (angular) frequency, and wavenumber, respectively; the quantity pn is
a discrete analog of the continuous variable x. On substituting the function u_ from
(52) into the dynamic equation (51) we find up to be a solution of (51) provided that

- m@? = C [exp(ikn) + exp(-ikn) - 2] . (53)

Since exp(ikn) = cos(kn) + i sin(kn) , Eq. (53) becomes

o = 2 Cm12 sinteny2) = 2 Ao sinGm2) 54)

it
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In view of the identity ¥ = 2 m/A, A being the wavelength, formula (54) yields

the expression for the phase velocity Vp

vV =%=v [
p = ; = Vo lsinmMNmn) (55)
where V= V(4 o/P) is the phase velocity for waves with infinite wavelength. The case
of infinitely long waves may be alternatively obtained by restricting the general

dynamic equation (46) to the first, non-scaling approximation (M = I, R = 2):

62u 62u
p - = A - (56)
a1 O ox?

and considering the continuous analog to the longitudinal wave (52)
u=u, expli(wr - kx)] . $7)

Inserting then (57) into (56), we obtain the frequency ® = k »/(Ao/p) and the phase

velocity Vp = 0wk = \/(Ao/p) =V

o - The quantity V0 is known to be the velocity of

sound in a classical - non-scaling - continuum (Cochran, 1973).

Formula (54) shows that the frequency w rises to a maximum of % (Ao/p)j/? at k =
n/n and falls to zero at k& = 2 m/nj. In fact, the function w(k) in (54) is periodic
with periodicity & = 2 m/n. Therefore with no loss of generality the wavenumber k& may
be restricted to the range ¥ m/m: if 0 < k < m/m, the wave travels to the right, and
if - n/fm € k < 0, the wave travels to the left. Since |k| < 7wmand A = 2 wh, it

follows that

Az2m, (58)
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i.e., in the monatomic structure, the only wave modes that may propagate are those
with wavelengths A no smaller than twice the internodal distance (or twice the
doublet length) 2 n. Restriction (58) holds for all particulate materials.

According to (54), the phase velocity Vp depends on the wavelength A. This means
that longitudinal waves in the monatomic lattice are dispersive: the longer the wave,
the faster it propagates. The velocity V. f reaches a maximum V max = V0 = V(A 0/p) at a

pmax

maximum wavelength )”m o anda minimum V =2V /n= 0.63662V ata minimum

min
wavelength )'min = 2 1. This scaling effect nfay be called the wave retardation at
short wavelengths.

It is noted that the retardation effect may only be described if the proper
scaling framework is employed: Longitudinal waves in a monoatomic lattice, modeled
by the conventional - non-scaling - wave equation (56) are found to be non

dispersive. A similar conclusion will be shown to hold for plane elastic waves in the

next section.
PLANE ELASTIC WAVES IN GRANULAR MEDIA
Theory

Consider a plane wave

Uu.

;= ujo expli(wt - kx)] , (61

traveling in an unbounded granular medium along the axis x = X;. The symbols i, w, k

are the same as in Eq. (57). It follows from expression (59) that
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& u

P 5;21 =- 4, explicor - ko] , (60)
K K
du. du, K/2
s Lo K u explitor - k0], 61)
axy  ax® jo &P .
K K
o u, 8 U,
..-..l-_: ---150’ (62)
axy  axh
2 3

where x = 2, 4, 6, etc. Substituting (60)-(62) into Eq. (40) and using(4l), the

following set of homogeneous algebraic equations obtains:

2 _
i +u,ovipﬂno, (63)
in which
R =2M K/2 kK n K-2 0 _o o \XK
Fu=Fyp=2 2, D a2 ofw o) - (64)

We assume that the X3 = z-component of the translation u = uj ;j vanishes in all
the medium in question, so that u; = 0. With this, the medium is considered to be in
a plane-strain state; therefore the indices j, [ = I, 2 everywhere in this section.
The same simplification would obviously result from considering a trubi-dimensional
medium, with translational symmetry of the hexagonal type. Under either assumption,

the above set (63) reduces to a system of two homogeneous equations, which admits a

25



nonzero solution if and only if its determinant is equal to zero (Sokolnikoff I. and

E., 1941):

= 0 (65)
VF, . o

where V0 = \/(Ao/p). The parameters F il are functions of the lattice directions tgj

and doublet lengths 1 and thus depend on the microstructure of granular medium.

o
Therefore the solution of Eq. (65) also depends on the microstructure. We are going
to get a numerical solution of Eq. (65) which demands to focus attention on a
particular microstructure. So we  will further consider the cubical-tetrahedral
packing H 4 which in the plane (xI, xz) = (x, y) resembles a honeycomb pattern (Fig.
2).

The packing H4‘ has in general the valence n = 4, ie., four spatial directions
that are determined by the following four unit vectors (see Fig. 2):

i, - — — —

=e€;, T, =¢ cos¢)+;2 sing , ‘rgz-ej cos¢+z’2 sind , 12263, (66)

- — -

with the structural angle ¢ = 600. Since the translation u; = 0 and we only consider
the wave displacements u; and Uy in the plane (xJ, 12), the fourth microstructure
direction ;2 = ;3 , which is parallel to the X3 = z-axis and perpendicular to the

plane (xl, xz), becomes insignificant and is further neglected. According to (66),

26



the direction cosine matrix is

[ (4] (o]
Y1t T
[1°.1=1]12 1° = | 1232
vz 124312
31732
Eq. (64) takes the form
R=2M  xp 2
F., = F, = 2 (-.]) .,-2 g:ﬂ?- a.,; .,
J lj kK=2"4,.. n° X! Jl

where for a = 1, 2, 3: Ny = M = constant, and

n

a,=a; = 3 0

(o] o K
J ] a=1] o T (10.1) :

According to (67) and (69), the parameters aﬂ are determined by the formulas

=1+ 125 4

a1 22 2°%1

Substituting these expressions of ajl into (68), we obtain

R = 2M v K-2 )
2 3 4 (-I)K/ SI_(‘J?(;__ [l + 2 (K'+1)]

= 2M K-2
SN el GNP

4, .. x!

27

=325 4 a4 . =0.

]

|

(67)

(68)

(69)

(70)

71)

(72)



The parameters F 2 = 1’742 ] = 0 and thus Eq. (65) splits up into two separate dispersion

equations:

2

m+v§F11=0, (73)
2 _

0)+V(2)F22~0. (74)

Eq. (73) involves the parameter F 11 and according to (63) and (59) concerns the
displacement U that is parallel to the xl-axis; Eq. (74) includes the parameter F22
and according to (63) and (59) concerns the displacement u, that is perpendicular to
the xl-axis. Since we consider the plane wave (59) traveling along the axis x I Eq.
(73) relates to longitudinal elastic displacements, or P-waves, and Eq. (74) refers
to transverse elastic displacements, or S-waves. The fact that the P-waves and S-
waves are described by separate equations means that these waves are not
interconnected and propagate quite independently of each other: The characteristics
of P-waves (amplitudes, frequencies, velocities) are independent of the same
characteristics of S-waves - exactly as in the classical continuum isotropic elastic
case (Kolsky, 1963).

The phase velocities V__ and Vps of the P- and S-waves, respectively, are found

pp
via (71-74) to be:

R = 2M 14K/2 KK'z k-2 I/2
1 K+1
Vp =5 =2V L2y, D a+2Mh ) 1. o
R = 2M 1+%/2 ﬂK-Z k-2 112
_w _ V3 .. rn"
Vps = P 2 Yo [x= 2},:4,...('1) x! (z) 1 (70)
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where the identity k = 2n/A has been taken into account, A being the wavelength.

The group velocities Vg are related to the phase velocities Vp as (Brillouin,

1960):

- . (77)

By substituting the phase velocities Vpp and Vps from (75-76) into (77) we obtain the

group velocities V

2p and Vg s of the P- and S-waves, respectively:

R = 2M K-2 K-2
o - _]‘ K/z K+] 7t n
Ver = Vop ~ 8 VPI; K = 22;‘ 4. D+ 27 T () «-2, @8

3 R = 2M K/2 nK-Z K-2

Vos = Vs - 5V Ly DT e () -2 (79)

The formulae (75-79) express the wave velocities to an arbitrary Mth
approximation for M from J to e. In the first approximation, when M = I, the above

formulae yield the following expressions for the wave velocities:

) _ (1) _ = 3.
Vpp - Vgp - Vop T2 Yo - (80)
v oy oy 23y (81)

ps 8s 05~ 2y2 O’

which are independent of the nondimensional scaling parameter T/A. Alternatively,
these expressions may be arrived at via two different assumptions:

(A) the constituent granules of the solid are material points (whose sizes are
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infinitesimal: 1 = 0) and all the waves may have arbitrary but finite lengths A , or

(B) the constituent particles of the solid may have an arbitrary but finite size
N # 0 and all the waves have an infinite length A _. o .

The assumption (A) is adopted in classical theory of elasticity, while the
restriction (B) is employed in the special discrete-continuum theories of wave
propagation in granular media (Takahashi and Sato, 1949, 1950; Gassmann, 1951; etc)
and crystals (Cochran, 1973). It is clear that neither of these approaches permits
the analysis of scaling effects.

The question of convergence of the series appearing in the wave velocity
expressions (75-79) is considered next. Consider Eq. (75) first, in the limit as M _
. Squaring both sides of the relation, an infinite alternating series is obtained on
the right-hand side of (75). According to Leibnitz’s theorem (Sokolnikoff 1. and E,
1941), such series is convergent if its terms are such that

<a (82)

K+2

lim a_=0. (83)

K - ©0

In (82), it has been taken into account that the term a s follows a, because a

subscript k only runs through even values 2, 4, ... Relation (75) shows that

=+ 2% N I (84)
aK = ( ';(i' ( * ) s
K K
a = +25 0Dy (85)
K+2 x+2)! - A



Substituting a, and a from (84) and (85) into (82), we transform it to the

K+2
inequality

2 K+1
7‘2 ( }]. ) < !:r'gk;j (K <+ 1)(K + 2) . (86)
1+2

According to (58), max (m/A) = 1/2 , and therefore the left-hand side of (86) has a
maximum [1° (1 )?] = 2%/4 = 2.467401. On the other hand, under x = 2, the right-hand

K+1
side of (86) has a minimum [ 1+27 (x + D)(x + 2)] = 3272727 > 2.467401. Thus

7+ 21(+3
inequality (86) and, consequently, condition (82) are satisfied.

We now turn to (85) and use Stirling’s formula (Sokolnikoff I. and E., 1941)

K
Kl V2o (5) (87)

Substituting x! from (87) into (83) and taking account of the obvious inequalities /

+ 2% 2K+2 , ¥@2mx) > 1 , n/A < 1, we obtain

] X ¥ K-Z K K
I + 2Kt ) e n il 4 2ne 2me
a = te)e T <%y (<T€y < (<Tey | (88)
K V(21K) X n (;‘) 1[2 ( K ) ( K
K
Since / im ( gléf ) =0, the term a, , by virtue of (88), obeys the condition

K . oo
(83). Thus the infinite series in (75) is convergent.
The convergence of the other three series in relations (76,78,79), with M —_ oo |

is proven analogously. Because of convergence, the sums of these infinite alternating
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series may be determined by truncating them and computing the remainder, which 1is
always less than the first truncated term dp s (Sokolnikoff 1. and E., 1941).
Let us, for instance, calculate the remainder A for the infinite series in (73)

by using formula (85) and replacing x by R:

+3 TfR R

Relation (89) shows that the term ap,s attains a maximum when T/A reaches a maximum

-20

which, by virtue of (58), is equal to 1/2: then max ap,y = 2497 10 at R = 30 and

M = 15. In this case, the remainder A also attains a maximum that is no larger than

2497 1020 and hence max vA < 1.580 10719 < 10

. Thus, if we truncate the infinite
series in (76) at the I5th term (M = I5, R = 30), we approximate the phase velocity
v op to within one part in a billion.

The evaluations of other series involved in Egs. (76,78,79), for the wave
velocities Vps , Vgp , Vgs , when M —_ e , have been obtained analogously. These
evaluations show that all the above velocities may be calculated with a relative
error of about 10'9 by taking into account only /5 terms (M = 15) in each of the
series.

The results of the calculations are presented in Figure 1, which compares the
phase and group velocities of P- and S-waves in scaling elastic granular media (which
have finite sizes of particles d = 1) with the comesponding velocities Vop and Vos
in conventional non-scaling elastic media (where M = 0) that are determined by
classical theory of elasticity (see also Egs. (80-81)).

Figure 1 shows a most interesting feature of the plane P- and S-waves in scaling

granular media: The waves have dispersion because all their velocities depend on the
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wavelength A and granule size 7. In particular, the velocities diminish with the
nondimensional parameter | = A/n (see Figure 3). Thus, we again observe here the
phenomenon of wave retardation at relatively short wavelengths which has been
considered above in monatomic crystals.

It is further noted that, in the bands of relatively long waves when the
parameter | = Afm is large enough, ie, [ 2 15..20, the velocities V__ , V__ are

pp &pr
only slightly less than Vo , as well as the velocites V s Vv  are somewhat less

than V0 5 The difference belzwccn these is no more than 2% p :

On the other hand, the shorter the waves, the more significant the wave
retardation. In the wave band of short lengths that are close to their minimum - 2
double particle diameter (when [ = 2) - the velocities reach the least values that
are considerably less than Vop and Vos . In this band, classical theory of elasticity
significantly overestimates the wave velocities: phase velocities up to 33% for P-

waves and 10% for S-waves, and group velocities up to 89% for P-waves and 29% for S-

waves.
DISCUSSION AND CONCLUSIONS

In the previous section, the doublet elastodynamics of the basal plane of the
cubical-tetrahedral packing H g4 was considered, with the purpose of establishing the
fact that elastic plane waves in an isotropic granular medium are dispersive. It was
also thereby demonstrated that the capability of modeling dispersion is lost upon
introducing the long-wavelength or the continuum approximatons. In analogy with
isotropic continuum elastodynamics, it was also shown that the longitudinal and shear
waves are decoupled. To place this analogy in the proper perspective, however, it is

remarked that the basal plane of H 4 is isotropic only at the non-scale approximation
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(M=1). As a side remark, it is noted that eq. (42-43) do not allow for the
propagation of nontrivial plane wave polarized in the normal direction (ie., SH-

waves).

Returing to the question of scale-dependence of isotropy, the generalized

macromoduli of elasticity C ik .k are computed in accordance with Eq. (41), where
Iqa- K

of na = T = constant, X = 2, 4, 6,... For ease of representation, the associated

nondimensional macromoduli éijk are introduced, that are defined as

]".kK

pa -2 n 0 .0 _O 0
C.. =C., /A xIME) = 2. 1% 1%, 1 90).
ik .k ik .k @AM aé, o “aj ok, o.kK( )
In order to establish the conclusion, the case i = j = k1 = ... = kx = ], 1is

considered for different values of x and in different frames differing by the angle

Y, i.e. under

1‘1) ;D | cosy - siny "
IO TIPS l cos(60-y)  sin(60-y) ” (91)
S, l - cos(60+Y)  sin(60+Y) u

The variation of the moduli with y is plotted in Figure 3. It is noted that the
non-scale macromodulus C 1110’ corresponding to k = 2, is indeed independent of Y,

i.eisotropic in the plane. On the contrary, the macromoduli éijk k for x = 4,

I.-o K
6, 8,... are anisotropic. It can be seen from Figure 3 that all é"k p — 0 as x
ik ..k
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- = for any angle y except for y = 0°, 60°, 120° where éijk ¢ — 1, which are
ke

1
the angles that identify the directions of the doublets (see Fig. 2). It may then be

concluded that in the first approximation, x = 2, Eqgs. (40) model the continuum-like
behavior of solids, whereas in the other approximations, k¥ = 4, 6,.., Egs. (40) also
reflect discrete-like features of the solid, in a manner that increases with x.

In this sense, Doublet Mechanics may be concluded to be capable of modeling
solids in view of their dual and to some extent contradictory/ discrete-continuous
nature. The power of such dual-representation capability is evident in the discussion
of isotropy: The basal plane of the cubic-tetrahedral arrangement is isotropic only
in the continuum, non-scale approximation. Thus, isotropy is a scale-related notion -
a fact that is of course physically evident, as no material may be argued to be
isotropic at all dimensional scales, down to its most elementary component level.
What is promising for the Doublet Mechanics approach is the fact that this theory is
capable of modeling such observation, and recourse to different theories for

different dimensional scales is avoided altogether.

1%
According to (80-81), the velocity ratio is C1 = ‘-/-I-) = v3. By comparison with

os
the well-known relation (Fung, 1977)

C ;= vI2U - v)(1 - 2v)], (92)
this leads to Poisson’s constant v = 1/4. This value is conventionally assumed in

seismology for the earth’s crust (Leet, 1938; Macelwane, 1949; Bith, 1968). A
theoretical validation of this assumption is furnished by Doublet Mechanics: Any

isotropic tensor in accordance with relation (43) must have the form
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Cijkl = A (Sijﬁkl + sikaﬂ + Silsjk)‘ (93)

This differs from the conventional continuum elasticity tensor in that it is
also endowed with the symmetry Cijlk = Cikjl’ which is not necessary in continuum
mechanics. In turn, the additional symmetry imposes equality of Lame’s constants,
i€, A = {, which reduces the number of independent moduli to only one. Of course,
this conclusion holds only for materials with microstructure and properties  that
satisfy the assumptions that were employed for the derivation of (43). By employing
the well-known relationship

vV = -»-—7-\—“- . (94)
2+
it is then concluded that v = I/4 , which was to be proved.

The developed micromechanical elastodynamics theory is applicable not only to
the unbounded isotropic granular solids but to any similar particulate media, i.e.,
any media with microstructure characterized  topologically by matrix  (67),
geometrically by finite particle sizes (or finite central particle distances) T and
physically by longitudinal particle interactions only (29).

The term microstructure is relative, in our context, in the sense that the wave
dispersion and wave retardation depend on the wavelength A and characteristic
distance T not separately, but in a nondimensional combination | = AMm. Thus the
internal size m si significant only in comparison with the wavelength A. This may be
arbitrary large and, consequently, the size 1 may also be arbitrary large provided
the ratio / has finite values / 2 2.

On these bases, the absolute dimension of the typical internal structure is not
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a determining factor concerning the applicability. To illustrate the point, three

classes of nmaterials are here briefly considered, that possess very different

internal dimensional scales: 1) Crystals, with the interatomic spacing 1 - 10‘8 cm;

2) Granular materials, with the characteristic granule sizes N .~ 10'1...102 cm (sand,

gravel, rubble, boulders); 3) The earth’s crust - with ’particle’ sizes 1 -~ 106

10 km).

cm (=

1) Crystals. Phenomena of wave dispersion and retardation in linear monatomic
crystals are well-known in solid state physics, where they are modeled by Eq. (51).
Abundant experimental verifications of Eq. (53) is given e.g. in (Kittel, 1953;
Cochran, 1973). In this paper, Eq. (51) obtained as a special case of Eqs. (40),
(41). Thus, the experimental validaton of Eqn. (51) offers elements for the indirect
confirmation of the underlying Eqs. (40), (41) as well.

For bi- and tri- dimensional arrangements, the difference Eq. (57) is
substituted respectively by two or three cognate equations, that describe small
oscillations of the atom in two or three mutually perpendicular directions x, y, z.
With a plane harmonic wave similar to (52), the dispersion relations is then found to
be of the type (ol.j(kn) (G, j =1, 2 or 1, 2, 3), which generalizes the above one-
dimensional solution (54). The frequencies mij are sinusoidal or quasi-sinusoidal
functions of in in form (Cochran, 1973, Fig. 4.2), resulting in dispersion relations
that follow closely the elastodynamics of linear crystals. In particular, the waves
slow down as the wavelengths shorten.

These theoretical results obtained in solid state physics have been verified
experimentally for many spatial crystal structures including face-centered cubic
(FCC) ones such as aluminum, copper, and other metals. The FCC structure is

equivalent to a regular pyramidal packing H6 (Deresiewicz, 1958, pages 237-238) which
has crystallographic planes that are identical with the basal plane of the cubical-
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tetrahedral packing H 4 considered in this section. Thus, the theoretical and
experimental data on dynamics of spatial crystals also indirectly reconfirm the
phenomena of wave dispersion and retardation, as modeled by the present approach.

Granular materials. The impact of particle sizes on wave propagation in elastic
granular media has been directly studied in a few experimental works. The earliest of
these (lida, 1938) established that the phase velocities of P- and S-waves in dry
sand depend on the particle diameter d and slightly rise as d increases. These data
first indicated that wave dispersion was associated with size parameters, but was at
variance with the phenomenon of wave retardation. The fact that the phase velocities
of plane P-waves are sensitive to the granule sizes was also observed in other direct
experiments with dry sand (Matsukawa and Hunter, 1956).

Several later studies brought indirect experimental data concerning the
influence of particle sizes on wave velocities in granular massives. Among these,
(Trent, 1989) dealt with two arrays of 270 like spheres which had diameter d = 2 mm
and occupied equal volumes. The first array had 480 interparticle bonds, the second
one 397, ie, 21% less. By performing numerical experiments based on the so-called
distinct element method (Cundall and Strack, 1979), it was established that the phase
velocity of P-wave in the second array is 37% less then in the first array (JO50 m/s
versus 1440 m/s). There is only one difference in the two arrays which is responsible
for the change in velocities - the difference in numbers N of the bonds. Meanwhile in
any regular n-valence packing H 3 to H6 (should they have equal volumes) the number N
and diameter d are inversely correlated. So a decrease of bond numbers is, in
general, equivalent to an increase of particle size. Therefore the retardation of
wave observed in the second granular array tested may be attributed either directly
to a reduced number of particle bonds or indirectly to an increase of particle

diameters d and, consequently, to a decrease of the ratio / = A/d, A being the
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wavelength. This means that the waves slow down as the scaling parameter / declines,
a result that is in agreement with the quality of Figure 1.

The earth’s crust. As discussed in (Granik and Ferrari, 1994c) the doublet-
mechanical approach is applicable with the context of plane-wave seismology. In
particular, comparisons were there made between classical experimental data (Leet,
1938, page 261; Miyabe, 1935, Pilant, 1979, page 254, Fig. 7-1), and scale-accounting
doublet mechanical predictions that incorporate the effects of the particulate
structure of the crust on the velocity of propagation of longitudinal waves. The
results showed agreement in the prediction of the ratios of the velocities of waves
with different wavelength to within 5% of the experimental values for three sets of

experiments.
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