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Reward Function Complexity and Goals in Exploration-Exploitation Tasks
Brian Montambault (brian.montambault@tufts.edu)

Department of Computer Science, Tufts University

Christopher Lucas
School of Informatics, University of Edinburgh

Abstract

People are often faced with choices where there is a conflict
between seeking reward and gathering information. In many
of these cases there exists a functional relationship between
the features associated with actions and their corresponding
rewards. Accounts of how people make decisions in these
circumstances have not considered how peoples’ strategies
depend on the complexity of this function, as well as the
person’s goal. In a sequential decision making task we found
that people chose between a number of different exploration
strategies, but that strategy selection did not necessarily align
with goal or account for function complexity.
Keywords: Decision Making; Exploration-Exploitation;
Contextual Multi-Armed Bandits

Introduction
In many of the decisions that people make in life there is a
conflict between choices that are likely to have good results
and choices where the result is more uncertain, but could
possibly lead to a better outcome than the known option. For
example, one might choose to eat at a familiar restaurant that
is known to be good, or a new restaurant where the quality
could be either better or worse. This trade-off is known as
the explore-exploit dilemma. A structurally similar problem,
with a slightly different goal is identifying the best candidate
from a set of possible choices within a fixed time frame. For
example, someone planning a party might wish to sample
several possible caterers in order to find who will provide the
best meal. Unlike the dilemma of choosing a restaurant for
dinner, it is only important that the best option is found; the
quality of any single meal is unimportant.

A common task for studying how people navigate
explore-exploit dilemmas is the multi-armed bandit (MAB)
task (Steyvers & Wagenmakers, 2009; Lee, Zhang, Munro,
& Steyvers, 2011), where a decision-maker chooses between
discrete actions, each with an unknown reward distribution,
in order to maximize total reward over the course of several
trials. While these tasks provide a simple environment for
studying decision-making, real world tasks often contain
additional contextual information about how rewarding an
option might be. For example, we might have the option
between two new restaurants, where the first has a menu
with similar items to a past favorite, and the second has a
menu that is full of new options. If we want to maximize
the chance we will be satisfied, it would be prudent to pick
the first. If we want to learn something new, we should

choose the second. More formally, we can describe each
option, ai with the set of features si, with ai yielding the
reward ri = f (ai,si), where f is a reward function mapping
actions and features (or contexts) to rewards. We can call
this a contextual multi-armed bandit (CMAB) (Li, Chu,
Langford, & Schapire, 2010). In this setting, successful
learners must make inferences about what this function might
be – especially if there are many actions to choose from.

How people learn mappings between inputs and outputs,
or function learning, has been widely studied (DeLosh,
Busemeyer, & McDaniel, 1997). Recently, Gaussian process
regression (GPR) has been presented as a model of function
learning (Lucas, Griffiths, Williams, & Kalish, 2015). In
addition to being a flexible non-parametric model capable of
representing a wide range of functions, GPR is distinct from
other accounts in that it directly allows for the representation
of uncertainty in outputs. For CMAB tasks, this lays
bare the trade-off between exploration and exploitation:
An exploration-oriented agent can target options where
uncertainty is greatest, an exploitation-oriented agent can
target options with the highest expected reward, and it
is possible to strike a balance between the two extremes.
Bayesian optimization (Snoek, Larochelle, & Adams, 2012)
is a flexible framework for transforming predictions from
GPR models into actions. Several algorithms have been
proposed for handling these tasks (Snoek et al., 2012) and
have shown to both perform well (Srinivas, Krause, Kakade,
& Seeger, 2010) and describe human behavior (Schulz,
Konstantinidis, & Speekenbrink, 2018) in CMAB tasks.
However, these accounts do not consider how one’s strategy
might be contingent on their ability to learn the reward
function. This ignores a prominent result from the function
learning literature: that some families of functions (e.g.
linear) are easier to learn than others (e.g. periodic) (Kalish,
Lewandowsky, & Kruschke, 2004).

While most work on MABs and CMABs study tasks
where the goal is to maximize cumulative reward, there
are circumstances where a decision-maker might instead be
interested in finding the best action (Audibert & Bubeck,
2010). In the case of CMABs, this can be understood in terms
of optimization, where the goal is to find some configuration
of features (contexts) that maximize an objective function
(reward). Bayesian optimization has shown to be of great
practical use in these cases, in particular when the objective
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function is expensive to evaluate as in the optimization
of machine learning algorithm hyperparameters (Snoek et
al., 2012). Bayesian optimization typically selects actions
that have both a high expected reward and are highly
uncertain, as in upper confidence bound (Auer, Cesa-Bianchi,
& Fischer, 2002) and expected improvement (Mockus, 1974)
algorithms. While these are reasonable strategies when
the goal is to earn large rewards on each trial while still
exploring new actions, they are ill-suited for optimization,
where rewards on each trial are not important. Algorithms
based instead on reducing uncertainty about the maximum of
the reward function have been recently introduced (Hennig
& Schuler, 2012; Wang & Jegelka, 2017) and appear better
suited to this goal. Other recent work has examined the
idea that people adapt their strategies to the tasks they face,
accounting for both the expected performance of a strategy
and the cost (e.g., in time) of executing it (Lieder, Helen,
& Griffiths, 2017). If one hypothesis is that people adapt
their strategies to the task at hand, and distinguish between
optimization problems and ongoing trade-offs between
exploration and exploitation, another is that people use a
“one size fits all” strategy that supports multiple goal types
reasonably well, as suggested by some past results, e.g.,
(Borji & Itti, 2013; Wu, Schulz, Speekenbrink, Nelson, &
Meder, 2018).

For both reward maximization and optimization problems,
good strategies must seek out information or reduce
uncertainty. They can do this in an explicit or directed
way, or achieve it implicitly by adopting a stochastic policy.
In directed exploration one seeks actions that are most
informative about the underlying reward distributions. One
popular class of algorithms choose actions with high upper
confidence bounds (UCB) (Auer et al., 2002), which typically
include a free parameter β that controls the width of the
confidence bound, directly controlling the preference for
exploration over exploitation. In the case of UCB, exploration
is directed by uncertainty about individual actions, where
those with high uncertainty about their reward are more
appealing than those with low uncertainty. In contrast,
entropy-based strategies (Hennig & Schuler, 2012; Wang
& Jegelka, 2017) are directed by uncertainty about global
properties of the function – in particular uncertainty about
the function maximum. In stochastic exploration, one
seeks to explore the space of actions by applying some
level of randomness to one’s actions. While these methods
are implicitly sensitive to reward uncertainty, they do not
explicitly minimize it. Thompson sampling (Thompson,
1933) applies randomness to actions by first sampling
a reward structure given previous observations, and then
choosing the best action given the sampled rewards. Another
method of random exploration is to choose actions with
probabilities based on the softmax function

p(at = k) =
exp[mt(k)/τ]

∑k′∈A exp[mt(k′)/τ]

where mt(k) is the expected reward of arm k on trial t, and τ

controls the level of randomness of actions, with all actions
being equally likely as τ → ∞ and one deterministically
choosing the action with the highest expected reward as
τ → 0. While evidence for both directed and random
exploration has been found in human behavior (Gershman,
2018), it has yet to be determined whether the criteria for
directed exploration is dependent on the goal of the task or
is exclusively based on uncertainty about individual actions,
and under what conditions random exploration might be
preferred over directed exploration.

Many of the real world explore-exploit dilemmas faced
by people require learning a mapping between contexts
and rewards, making CMABs an attractive environment for
studying this phenomenon. While Bayesian optimization and
other GPR-based approaches have been widely demonstrated
to be a good model of human behavior in these tasks, there
has been little research investigating how these frameworks
capture different behaviors across distinct environments.
While there has been work demonstrating that people are
capable of learning functions and applying that representation
to their decisions (Schulz et al., 2018), it is unclear how
people’s strategies might change when faced with functions
of varying complexities, though some have varied function
complexity by comparing smooth and rough non-parametric
functions (Wu et al., 2018), and compared linear to quadratic
reward functions (Stojic, 2016). While Bayesian optimization
has been shown to describe human behavior well both when
the goal is to maximize cumulative reward and when the
goal is to find the best arm, it is unclear whether people
choose a strategy to match their goal or use a more general
strategy regardless of goal. Our contribution is to demonstrate
how these factors influence people’s strategies. We introduce
a model based on Bayesian optimization that is capable
of representing a rich set of behaviors revealed in prior
work, and how different reward function complexities and
goals might result in different parameterizations describing
behavior.

Methods

Experiment. We designed a CMAB task in which
participants were allowed to click one of several “actions”
represented by a set of vertical bars situated along the x-axis
of a plot. Upon clicking a bar, the reward of the associated
action was revealed to the participant by displaying the height
of the bar. Actions (bars) were related to rewards by their
position on the x-axis: the ith bar from left to right, ai,
was associated to the reward ri by the function ri = f (ai, i).
We tested behavior on CMABs with three different reward
functions of varying complexity:

flinear(ai, i) = i

fquadratic(ai, i) =−(i−55)2

fsinc(ai, i) =
sin(i/2−30.000001)

i/2−30.000001
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Reward functions were scaled to fall within minimum and
maximums drawn from uniform distributions, U(0,100) and
U(400,500) respectively. Participants were shown 10 reward
sample functions before they began the task. The quadratic
and sinc samples were generated by uniformly sampling
the location of the maximum, the function minimum, and
function maximum (U(1,80), U(0,100), and U(400,500)
respectively). Linear functions were generated by samples
of the intercept and slope drawn from uniform distributions
U(0,250) and U(0,6.25).

Participants were given one of two possible goals: In
the maximum-finding condition, participants were asked
to find the bar associated with the maximum possible
reward. Participants final score in this condition was equal
to the maximum reward uncovered across all trials. In
the score-maximization condition, participants were asked to
maximize their cumulative scores across all trials.

Procedure and participants. Participants (n=69, mean
age=33.0 years) were recruited using Amazon’s Mechanical
Turk service. They were randomly assigned one of 6 (3
reward functions × 2 goals) conditions. They were first
shown 10 different sets of 80 bars with their heights already
revealed. Depending on a participant’s function condition,
the heights of the bars in each set was determined by either
linear, quadratic, or sinc functions. Participants were then
shown a new set of 80 bars, each 500 pixels tall and gray
in color, and instructed to either find the bar with the largest
height (find-max) or to maximize the cumulative heights of
bars clicked across all trials (max-score) for a new set of
bars. Participants were invited to click on any of the 80
bars over 25 trials. When a gray bar was clicked its color
changed to black and its height was adjusted to match its
corresponding reward (between 0 and 500 pixels). After
each trial the reward associated with the chosen bar was
used to update the participants goal-specic reward, displayed
on the screen alongside the bars. On each trial, any bars
that were clicked on previous trials remain black and the
height in pixels of their associated rewards. To incentivize
performance participants were given a bonus up to $0.75
proportional to the total number of points they earned.

Model

Our goal was to uncover strategies used in an CMAB task
with different reward function complexities and goals. We
take inspiration from Bayesian optimization, taking action
probabilities to be a function of a GPR predictions of the
reward function. Like previous accounts, we characterize
exploration as a mixture of directed and random behavior.
However, While previous accounts have assumed that
directed exploration only uses uncertainty about each action,
we extend this framework to include uncertainty about the
function maximum.

In GPR a kernel function is used to encode prior beliefs
about a function. We use the radial basis function (RBF)

kernel:

k(x,x′) = σ
2
var exp(− (x− x′)2

2l2 )

where l determines the smoothness of the function, or how
quickly the similarity of two points falls off as they become
more distant, and σ2

var determines the average distance of
the function from its mean. This kernel function is well
suited to flexibly modelling function learning, as it is capable
of learning any smooth function. For each reward function
condition a set of 10 functions from the same family that were
shown to participants prior to the CMAB task were used to fit
the hyperparameters of the kernel function by maximizing the
log marginal likelihood of the sample functions (Rasmussen
& Williams, 2005). Fitting kernel hyperparameters in this
way for each function allows us to model participants’
expectations about the smoothness of the reward function,
given the observed set of sample functions.

To estimate each participant’s trial-by-trial predictions we
compute the posterior mean and variance of the reward
function at each action:

mt(a) = kt(a)>(Kt +σ
2
noiseI)−1rt

vt(a) = k(a,a)−kt(a)>(Kt +σ
2
noiseI)−1kt(a)

where k(a,a′) is the covariance of two actions given
the hyperparameters learned from a participant’s training
functions, kt(a) is a vector of covariances for the action a
and all previous observed actions, and Kt is the covariance
matrix of all previously observed actions. σ2

noise is the
noise observed in the data. The reward functions in our
task are deterministic, so we set this to a very small but
non-zero number 10−4 to avoid numerical instability. We
encode exploration directed by uncertainty about the function
maximum by approximating the mutual information between
the reward r revealed by action a and the highest possible
reward r∗, I({a,r};r∗), the approximation used in max-value
entropy search (Wang & Jegelka, 2017). We define the utility
of each action on trial t to be

u(a,β,λ) = mt(a)+βvt(a)+λI({a,r};r∗)

and the probability of each action was defined using the
softmax function

p(a|β,λ,τ) = exp[u(a,β,λ)/τ]

∑a′∈A exp[u(a′,β,λ)/τ]

We use an infinite groups model (Navarro, Griffiths,
Steyvers, & Lee, 2006) to uncover common strategies across
participants. Using the probability of actions, if the ith

participant belongs to group z,

p(ai
T |gi = z) =

T−1

∏
t

p(ai
t+1|ai

t ,r
i
t ,βz,λz,τz)

where ai
T is the set of all actions performed by the ith

participant. Groups were assigned priors according to a
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stick-breaking procedure (Ishwaran & James, 2001). Under
this prior we imagine a stick of length 1 that we break in two,
keeping the length of the first stick to be the prior probability
of our first group. We can then break the remaining piece
in two again, with one of its pieces representing the prior
probability of our second group. This process can be
extended to represent a countably infinite number of groups,
with the sum of their prior probabilities guaranteed to sum
to 1. The stick-breaking prior has one parameter, α, that
determines the dispersion among groups, with a higher α

resulting in likelihoods being spread across a greater number
of groups. We place a Gamma(a,b) prior over α, setting
a = b = 10−10 to represent our ignorance of the true number
of groups in the data. We set Gamma priors with a = b = 0.1
over β, λ, and τ to represent equal preferences for each type
of exploration.

Results
We used the python package PyMC3 (Salvatier, Wiecki, &
Fonnesbeck, 2016) to perform inference. MCMC sampling
was performed using the NUTS sampler, with 4 chains of
1000 samples each.

To inspect the range of strategies used by participants
we assigned each participant to their most likely group,
maximizing p(g|ai

T ) for the i-th participant. Nine groups
were assigned at least one participant. We summarize the
behavior of each of these groups by their parameter means
in Table 1. The largest four groups were assigned 48 out
of 69 participants. The largest group has a much larger
average τ than other groups, indicating that participants in
this group heavily utilized random exploration. The second
largest group had a larger average β and λ and smaller average
τ, indicating that participants in this group utilize directed
in addition to random exploration, using both uncertainty
about each action and uncertainty about the reward function
maximum. The third largest group also had a relatively large
average β and λ, but a smaller average τ than the previous
group. This indicates that participants in this group also used
both forms of directed exploration, but relied much less on
random exploration. The fourth largest group had relatively
low average values for all three parameters, indicating that
participants in this group did comparatively little exploring,
instead choosing actions based on their expected reward.
We refer to these groups as stochastic, mixed, directed, and
greedy respectively.

To better understand how behaviors differed between
groups, we measure the distance between participants’
actions and both their previous action and their reward
function maximum across trials (Figure 1). First, we plot
the distribution of the distances between a participant’s action
and their previous action. Participants across all four of
the top groups made a large proportion of their actions in
close proximity to their previous action. This proportion was
largest for the random group, followed by mixed, directed,
and greedy. As we might expect, participants in the random

group demonstrated more aggressive exploration with respect
to their previous action, while those in the mixed and directed
groups were more reserved. In contrast, participants in the
greedy group rarely deviated far from their previous action.
Next, we plot the median distance from the reward function
maximum by trial for each group. For the random and
mixed groups, the median distance from the reward function
maximum stays level across trials, indicating that participants
in these groups favor exploration over converging on the
best action. For the directed and greedy groups, the median
distance decreases towards zero with the number of trials.
While the distance continues to decrease and eventually
flattens out for those in the greedy group, the distance for
those in the directed group increases after a number of
trials, indicating that participants were willing to continue
exploring even after the region containing the reward function
maximum was located.

If participants were selecting there strategy based on
their goal, we would expect the actions of participants in
the max-score condition to be best predicted by a strategy
that minimizes balances exploration and exploitation, and
those of participants in the find-max condition to be best
predicted by a strategy that minimizes uncertainty about
the reward function maximum. While none of the groups
show a preference for the source of uncertainty used
to direct exploration (either about rewards of individual
actions or the function maximum), these groups do differ
in their preference for random and directed exploration.
To investigate how reward function complexity and goal
determine how people choose between these strategies we
compare how well each strategy predicts the actions of
participants grouped by experimental condition (Table 2).
Participants selecting a strategy in the max-score goal
condition are expected to choose a strategy that favors
actions with high rewards, while those in the find-max
condition are expected to choose a strategy that puts more
of an emphasis on exploration. Our results contradict this
assumption, with those in the max-score condition best
described by the directed strategy and actions of those in
the find-max condition best described by the greedy strategy.
With function learning being increasingly difficult as function
complexity increases, participants in less complex reward
function conditions are expected to use this learning to
engage in more directed exploration, while those in the
more complex reward function conditions are expected to
rely more heavily on random exploration. Our results show
some evidence for this, as actions of participants in the linear
condition were best explained by the directed strategy, while
those in the quadratic condition were best explained by the
mixed strategy. However, our results also show that the
actions of those in the sinc condition were also best described
by the directed strategy rather than the mixed or random
strategy as we might expect.
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β λ τ N Participants

Stochastic 0.29 ± 0.17 6.01 ± 8.87 5.23 ± 3.57 15
Mixed 1.58 ± 1.15 8.56 ± 8.32 1.77 ± 2.43 14
Directed 1.4 ± 1.29 11.19 ± 9.21 0.24 ± 0.22 11
Greedy 0.77 ± 0.44 0.61 ± 0.84 0.14 ± 0.19 8

0.53 ± 0.27 4.06 ± 5.35 1.3 ± 1.14 7
1.21 ± 0.55 6.38 ± 9.77 1.32 ± 0.61 6
0.87 ± 0.33 8.77 ± 9.51 0.22 ± 0.24 4
3.12 ± 2.33 0.99 ± 0.48 1.82 ± 1.14 2
1.12 ± 0.39 6.98 ± 6.09 0.89 ± 0.63 2

Table 1: Mean parameters for each group

Figure 1: Distance of each action from the previous actions (top) and the reward function maximum (bottom) for the top four
groups compared to a random baseline (dashed lines) reflecting uniform random action selection averaged over all conditions.
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Discussion
In this study we compared behavior in an explore-exploit
task across different reward function complexities and goals.
While previous studies have characterized behavior in these
tasks as some combination of exploitation and directed and
random exploration, it was uncertain how these components
might vary with different environments. Additionally, while
previous studies only considered uncertainty about individual
actions in directed exploration, it had yet to be established
how measures of global uncertainty, such as uncertainty about
the function maximum, might also be used by people to guide
exploration.

Participants in this study each completed a CMAB task
where the underlying reward function was either linear,
quadratic, or sinusoidal, and their goal was to either maximize
their score across all trials (max-score) or to find the best
action (find-max). We found that behavior could be described
by a relatively small set of strategies, characterized by
varying exploration parameters. We found some evidence
that strategy was impacted by reward function complexity,
as participants in the linear condition were better described
by a directed exploration strategy while those in the quadratic
condition were better described by a mixed strategy utilizing
both stochastic and directed exploration. However, those in
the sinc condition were also best explained by a directed
strategy, suggesting that these participants relied less on
stochastic exploration than those in the quadratic condition
despite their relatively complex reward function. Finally, we
found that global uncertainty was indeed a measure used in
directed exploration alongside uncertainty about individual
actions, though we did not find evidence that preference for
one form of uncertainty over the other was determined by
goal. However, this could have been due to participants
underestimating the complexity of the sinc reward function
by only exploring around local maxima. Accounts of
how reward function complexity influences strategy selection
should also consider perceived complexity.

While we were able to describe a wide range of exploration
behaviors, it is likely that alternative strategies exist.
For example, some have suggested that people approach
explore-exploit tasks in two qualitatively different phases,
starting with a “pure exploration” phase, designed to reveal
what options are most rewarding, and switching to a “pure
exploitation” phase focusing on the most rewarding options
(Steyvers & Wagenmakers, 2009). Another possibility is
that some people do not utilize information about the reward
function at all, instead exploring locally as often observed
in ecological search strategies (Hills, 2006). A complete
account of the types of strategies that people utilize under
different circumstances should include a wider array of
possible sources for guiding exploration.
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