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As with any outcome of an evolutionary process, the success of in vitro selection experiments depends
critically on the starting population. In vitro selections isolate functional nucleic acids that fold into speci-
fic structures and form unique binding and catalytic sites. The selection outcomes therefore depend on
the molecular and structural diversity of the initial pools. In addition, the experiments are strongly
influenced by the length of the starting pool. Longer randomized regions support the formation of more
complex structures and presumably allow formation of more intricate tertiary interactions, but they also
tend to misfold and aggregate, whereas shorter pools are sufficient to yield simpler motifs. Furthermore,
introducing a sequence bias that promotes secondary structure formation appears to prejudice the
population towards more functional macromolecules. We review the literature on the influence of
the starting pools on the predicted and actual outcomes of laboratory evolution experiments.

� 2016 Elsevier Inc. All rights reserved.
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1. Introduction

In vitro selection and evolution experiments have changed the
way we think about the development of functional macro-
molecules in a number of fields, ranging from the Origin of Life
to diagnostics and therapeutics. The experiments were conceptu-
ally anchored in the work of Spiegelman [1] and the discovery of
catalytic RNAs [2,3], but became far more feasible through the
development of chemical synthesis of DNA, PCR, and RT-PCR in
the late 1980s. On a practical level, in vitro selections of novel
functional DNAs and RNAs were not possible until DNA libraries
could be chemically synthesized on a large scale using phospho-
ramidites and an automated process [4]. Synthesis of long,
large-scale DNA pools with random sequences flanked by primer-
binding regions meant that highly diverse sequence populations
could be interrogated either directly as functional DNAs or
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indirectly through transcription to RNAs or further translation to
peptides and proteins and other coded polymers in molecular
evolution experiments. Once the technology took off, attention
returned to the analysis of impact that the starting pools have on
the outcomes of these genetic experiments.

Evolution requires the phenotype be linked to its genotype, and
in the case of RNA and DNA, functionality (phenotype) and the
encoding strand (genotype) are the same molecule; whereas, in
proteins, non-amplifiable nucleic acids analogs, and other encoded
molecules, they have to be physically linked or co-localized with
their coding sequences [5,6]. Typically, an in vitro selection starts
with a population of DNA sequences containing a random region
flanked by fixed sequences that are required for amplification,
(reverse-)transcription, and in the case of proteins, translation.
RNA and DNA in vitro selections have been performed with random
regions ranging from 20 to 220 nucleotides (nts) with up to �1016

starting diversity [7]. Selection occurs when a population of
sequences is required to perform a function, such as catalysis or
ligand binding, and the active sequences are physically separated
from the inactive sequences. Once these selected sequences are
amplified, a new generation of variants is available for continual
rounds of selection, leading to an evolved RNA or DNA population
that is more efficient and specific for the desired function.

In vitro selections for ligand-binding RNAs, or RNA aptamers,
have been extensively used and include targets such as ATP and
other adenosine derivatives, guanosine derivatives, amino acids,
cofactors and antibiotics [5,8]. Other experiments have identified
RNA aptamers for ions [9], small synthetic molecules [10], peptides
[11], proteins [12], and even liposomes [13]. On the other hand, the
first example of an in vitro selected catalytic RNA came in 1993
with the discovery of a ligase ribozymes [14], and one motif, the
class I ligase, has been extensively studied and evolved into a poly-
merase capable of template-directed extension of RNA [15–17] and
synthesis of another ribozyme [18]. Although there are no known
naturally-occurring DNA enzymes, or deoxyribozymes, in vitro
selection revealed a Pb2+-dependent deoxyribozyme capable of
Starting 
dsDNA library

Enriched 
dsDNA pool

RNA 
Transcription

In vitro
selection

Reverse 
Transcription

Amplification

Inactive
sequences

Sequence

Functional
RNA

Ribozyme or
aptamer

Fig. 1. Overview of an in vitro selection. The starting library represents the initial
population from which a functional RNA is selected and can originate from entirely
synthetic or genomic DNAs. Green represents the RNA polymerase promoter, blue
and red are fixed regions for primer binding during amplification. The selection step
separates the inactive sequences from active ones, which in this example remain
attached to the beads, and are amplified by reverse transcription and PCR.
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cleaving an RNA phosphodiester bond in 1994 [19] and since then
many other deoxyribozymes have been identified, including DNA
and RNA ligases [20,21], DNA kinases [22], adenylases [23], depuri-
nating enzymes [24], a Diels–Alderase [25], and an amidase [26],
among others.

In general, an in vitro selection experiment requires a functional
step (e.g. binding or catalysis), a selection/separation step (affinity
purification, PAGE band shift, droplet sorting, etc.), and an amplifi-
cation step (Fig. 1). To identify new functional nucleic acids, these
experiments critically depend on a well-designed separation
assays. Equally important, but often overlooked, parameter is the
initial population pool, from which the functional RNA or DNA is
isolated and evolved. Understanding what can reasonably be
expected from a starting library and how the design will affect
the outcome of a selection and its ability to isolate new and rare
functional nucleic acids is an important aspect for the field of
molecular evolution. We review the studies that have tackled this
challenge, particularly in nucleic acids selections.
1.1. Effect of random region length on selection success

One parameter that is considered at the beginning of an in vitro
selection is the length of the random region. Whereas shorter
lengths will cover all or a large percentage of sequence space,
longer regions are thought to allow for more complex structures
that may be needed to fold into a functional RNA or DNA. For a
random region of N nucleotides, the theoretical diversity is 4N;
that is, a random 28-mer has a theoretical diversity of
�7 � 1016 � 0.1 lmol and a 50-mer could theoretically reach a
diversity of �1030 = 2million mol � 6 � 105 kg of ssDNA. Clearly,
the diversity of a random pool is limited by the DNA synthesis
and only a pool with a random region shorter than �28 nts sam-
ples the theoretical diversity extensively. On the other hand,
exhaustive sampling near a theoretical limit may not be necessary,
because many sequences can fold into the same nucleic acid
secondary structure (e.g. CGCGAT:ATCGCG and ACTGAC:GTCAGT
both form a 6-bp double-helix, but their sequences are vastly
different). For practical reasons, in vitro selections have been car-
ried out with pools of up to �1016 members.

Intuitively, a large starting diversity may help contribute to
the probability of a successful outcome, but the length of pool
members is an important aspect that may also contribute to
evolving a functional nucleic acid. Successful outcomes have been
observed at both extremes, with the class I ligase originally
evolved from a highly diverse pool of 220 nts [14], whereas the
small isoleucine aptamer was evolved from a pool with a random
region of 22 nts [27]. The question of optimal pool length has
been addressed in several different ways, computationally and
experimentally.

Several groups have approached the question of random region
length computationally. Sabeti et al. derived an equation that esti-
mated the probability of finding a motif in a random sequence,
which considered the size, modularity and redundancy of the
sequence [28]. The probability of finding the hammerhead ribo-
zyme (length = 43 nt) in a 220-nt random region versus a 72-nt
random region was estimated to increase 200 times. This increased
the probability of finding the sequence in a small pool of 1.8 � 108

molecules from 0.05 to 0.999, which was significant if motifs rarer
than the hammerhead motif were sought in an in vitro selection of
1 � 1015 molecules. Knight and Yarus built on this work by
eliminating some of the approximations used to estimate the
abundance of functional motifs in random pools and were able to
consider active sequences and their probability of folding [29,30].
They used previously discovered functional RNAs, an isoleucine
//dx.doi.org/10.1016/j.ymeth.2016.04.021
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Fig. 2. Simple functional RNAs and their representations. Simplification of sec-
ondary structures of isoleucine aptamer and the hammerhead self-cleaving
ribozyme led to (A) identification of sequences that performed the same function,
(B) definition of the minimal structures for the function of the aptamer and
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containing two to seven vertices with lines as stems and vertices as loops, bulges
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aptamer with two modules and the common hammerhead ribo-
zyme with three modules, and incorporated paired regions that
had unspecified sequences but were required for formation of
the active structure. In both examples, the probability of finding
the motifs solely based on length ranged from 1.7 � 10�8 to
7.9 � 10�6 for the hammerhead motif and 3.5 � 10�9 to
9.0 � 10�8 for the isoleucine aptamer in random regions of 50- to
150-nts, respectively. However, poorer (predicted) folding con-
tributed to lower probabilities for each motif at longer lengths,
leading to maximal probabilities of 4.27 � 10�12 to 8.61 � 10�10

for the hammerhead motif and 1.88 � 10�10 to 1.06 � 10�9 for
the isoleucine motif for pools ranging from 50- to 150-nt, indicat-
ing that the payoff for using a longer random region decreased due
to misfolding. Nevertheless, at both lengths, the probabilities were
within the realm of the starting diversity of a typical in vitro
selection. This calculation was particularly relevant, because it
incorporated not only sequence requirements for the example
motifs but also structural (helical) requirements, which are not
conserved in the primary sequence but exhibit strong sequence
co-variation [31]. In an independent analysis, a structure-based
search for hammerhead ribozymes in a random sequence of
2.2 � 108 nucleotides revealed three putative ribozymes, none of
which was predicted to fold into the correct secondary structure
by RNA folding algorithms. For comparison, the same search
through a microbial metagenomic dataset of identical size, clearly
biased towards highly evolved functional sequences, revealed 13
active hammerhead ribozymes [32].

An experimental study of the effect of random region length on
selection outcomes was first performed by ligating arbitrary PCR
fragments to class II and class III RNA ligases [14,33] and creating
four new libraries with 1012 members [28]. The catalytic activities
of the new libraries were compared to the originating libraries and
the median effect was a 5-fold decrease in activity, which was
inconvenient for selecting smaller, simpler motifs, but worth the
cost when accessing rarer, complex structures. Similarly, an
experimental test of selection success for an RNA-mediated CoA-
thioester synthesis using random regions of 30-, 60-, 100-, and
140-nts revealed only sequences from the 30- and 60-nt random
region pools, indicating that the abundance of smaller and faster
replicating sequences will outcompete longer sequences contain-
ing the same active core structure [34,35]. However, these results
are weakened by the strong bias of the PCR reaction towards
shorter amplicons, limiting the impact of the study. This result
led to six parallel in vitro selections for the previously discovered
isoleucine aptamer using random region lengths of 16-, 22-, 26-,
50-, 70- and 90-nts [36]. This aptamer selection was chosen
because previous work indicated that there was a high probability
of recurrence of functional motifs in all pool sizes [37–40].
Unexpectedly, the aptamer was 20- to 40-fold more abundant in
the 50- and 70-nt sized pools, compared to all other lengths [36].
Since these selections were performed in parallel, the bias due to
PCR (or other polymerase-based steps) was not present and the
results likely represent true distribution of functional sequences
in the starting pools.

In a different approach to mapping of sequence space for
functional RNAs, a highly stringent selection for GTP aptamers
yielded a number of motifs that ranged in their length, complexity,
and target affinity and specificity (further discussed in Section 1.4)
[41–43]. One interesting result of the selection was that the
stronger-binding aptamers formed structures so long and complex
that they had to incorporate the primer-binding sequences into
their folds, thus extending the effective length of the pool beyond
the random sequence.

In summary, small and simpler motifs isolated by in vitro
selections generally do not benefit from longer random regions,
which may cause misfolding or masking of the active sequence,
Please cite this article in press as: K. Pobanz, A. Lupták, Methods (2016), http:
and the abundance of these motifs may not increase significantly
in longer random regions. The probability of isolating larger or
more complex functional nucleic acids increases with increasing
length, up to a point, and usually outweighs possible inhibitory
effects.
1.2. Structural diversity and abundance of RNA folds

Random region length of a pool is only one factor that affects
the success of an in vitro selection. Since nucleic acids only contain
four nucleotides, many secondary structure motifs, such as
pseudoknots, tetraloops, and uridine turns, occur often and
represent energetically efficient solutions when only a few key
nucleotides are defined. For example, the GNRA tetraloop motif
binds proteins or forms tertiary contacts within the large RNA
structure of Escherichia coli 16S rRNA which contains 9 GNRA tetra-
loops [44]. As noted above, the majority of the primary sequence
can be easily swapped, while still maintaining the same secondary
structure. This degeneracy leads to many primary sequences that
have the ability to fold into very similar structures that likely
exhibit similar molecular functions and may be designed into an
in vitro selection pool.

A simplistic approach to understanding the difference between
a random primary sequence versus a random structure is to con-
sider the probability of each case. In the case of a 200-nt random
region, there are over 10120 possible sequences and if a starting
pool contained 1015 molecules, the probability of finding any
functional nucleic acid larger than 30 nts nucleotides would
be negligible if a functional molecule originated from only a single
sequence (i.e. if sequence space were about the same size as the
structure space). However, many in vitro selections have success-
fully identified larger ribozymes or aptamers, pointing to the need
for only a few conserved bases and structural support. For example,
the hammerhead ribozyme only needs approximately 14 defined
nucleotides flanked by three helical elements, which leads to a
higher probability of isolation than that of hepatitis delta virus
ribozymes, which require only about eight specific nucleotides
but a more complex secondary structure [32,45]. A simple example
of this effect was outlined with 76-nt cloverleaf self-alkylating
ribozyme, containing 16 conserved bases. The probability of
finding this example, including helices, was estimated to be
1.4 � 10�20 in a 200-nt pool. This probability increased to
//dx.doi.org/10.1016/j.ymeth.2016.04.021
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6 � 10�13 if extra nucleotides in the pool were allowed within the
structure, resulting in approximately 600 molecules in a starting
pool of 1015 that would match the required structure [46]. If the
random region was reduced to 100 nucleotides, only one molecule
matching the structural requirements would be found in a starting
pool of 1015 molecules. The cloverleaf ribozyme was identified by a
series of in vitro selections that started with a substrate (biotin)
affinity selection from a RNA pool of 5 � 1014 members with a
72-nt random region, followed by mutagenesis and selection of
self-biolinylating ribozymes [47]. The first selection was domi-
nated by a single biotin-binding sequence, suggesting that the
aptamer’s frequency in a 72-nt random sequence was about
10�14. This aptamer was mutagenized, a short random sequence
was appended to it, and the resulting pool selected for self-
alkylating activity. The experiment revealed that the secondary
structures of the aptamer and the ribozyme are significantly
different (pseudoknot vs. cloverleaf), but a critical short sequence
in a connecting strand was largely conserved and in the aptamer
this sequence contacts the biotin moiety [48]. The experiment thus
did not directly reveal whether the self-alkylating cloverleaf was
present in the original 72-mer pool, but the drastic change in
secondary structure upon reselection suggested that it would
likely not be in the starting pool and the biotin aptamer was an
obligatory evolutionary intermediate.

Estimating the abundance of functional motifs in random pools
relies heavily on considering the modularity of these motifs.
Modularity (m) is defined as the number of interacting segments
that form the motif [28]. For example, the isoleucine aptamer has
a modularity of two, whereas the branched internal loop of a ham-
merhead ribozyme has a modularity of three (Fig. 2). To determine
the probability of finding a sequence within a longer random
region, the minimal structures of the isoleucine aptamer [27] and
the hammerhead ribozyme [39] were utilized as test cases for a
combinatorial analysis [29]. The minimal sequence would only
contain the essential nucleotides for functional activity and, in this
example, the isoleucine aptamer (m = 2) was represented by a
4- and 8-nt module [4,8] and the hammerhead ribozyme (m = 3)
was represented by [1,7,4] (Fig. 2). However, each sequence motif
could include additional nucleotides (fixed paired bases) that
maintained function, so the upper limit for the isoleucine aptamer
and hammerhead ribozyme were [7,11] and [10,14,13], respec-
tively. When considering the probability of finding a sequence
motif within a long random region (100 nt), it was calculated that
a pool size between 3.3 � 103 and 4.5 � 108 was required to find
the isoleucine aptamer – a surprisingly wide range – but once
correct secondary structure requirements were considered, the
pool size would increase to 4.1 � 109. Conversely, for the hammer-
head ribozyme motif, the sequence-based pool size estimation was
between 2.2 � 102 and 3.1 � 1017, and narrowed to 1.6 � 1010

when correct folding was considered [29,49]. One conclusion of
this work was that the secondary structure of a functional RNA
has to be considered for these approximations to be useful;
another one was that motifs with evenly divided, smaller modules
were more abundant than asymmetric and larger ones. Working
within a 100-nt random sequence, over 1 million unique sequences
were calculated for a structure represented by [5,5,5,5] while only
�8000 unique sequences existed for a structure represented by
[17,1,1,1] [29]. More broadly, the authors proposed that within
an in vitro selection experiment with 1015 molecules it should be
possible to find a motif containing up to 26 nts with m = 1 and a
motif with a maximum of 34 nts and m = 4 in a 40-nt and a
100-nt random region, respectively. An example of modularity
beyond probability calculations was the minimized nucleotide
synthase ribozyme that was determined to have 5 helices and a
required �40 nucleotides for activity [50]. With a modularity of
Please cite this article in press as: K. Pobanz, A. Lupták, Methods (2016), http:
five, the probability of isolating the structure from 228-nt random
pool increased from 1 in 1022 to 1 in 1015.

Another approach to understand the structural abundance of
sequence space utilized graph theory to analyze complete sets of
RNA secondary structures for complexity in random pools of 25-,
40-, 60-, 80-, and 100-nts [51,52]. The studies used the Vienna
RNA folding package [53] on libraries of 104 random RNA
sequences and then converted the 2D topologies to tree graphs
with bulges, loops, and junctions as the vertices and stems as the
lines (Fig. 2D). This approach collapsed a diverse pool of sequences
into easily categorized shapes without consideration for detailed
base-pair information or stem and loop sizes, allowing analysis of
an entire random pool instead of a smaller sample size. More than
90% of folded structures were found to be simple topologies such
as stem-loop motifs. Structural complexity, as defined by vertex
number, increased with length of the pool and a general relation
was put forth revealing that a pool of length L would be most abun-
dant with L/20 stems. For example, a 100-nt pool would have the
highest frequency of 5-stemmed structures and their results
showed that 40% of the 100-nt pool had 6 vertices. While the
Vienna folding package is unable to predict more complicated ter-
tiary structures such as pseudoknots, these results were insensitive
to folding stability parameters or the pool size. An application of
this method to the three-stem class V GTP aptamer suggested that
the aptamer had the highest abundance in a 60-nt random RNA
pool, the same size that had been used to discover the motif
in vitro [41].
1.3. Influence of structures on selection outcomes

Computational efforts to understand the abundance of RNA
folds rely on the assumption that the population of more rare
and complex RNA secondary structures will exhibit higher or
new activities. Experimental validation of this assumption has
been presented using information theory to connect structural
diversity to activity by studying a set of eleven RNA aptamers that
bound GTP. Many aptamers contain a stem-loop that contributes to
//dx.doi.org/10.1016/j.ymeth.2016.04.021
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the stability of the structure [8,54–56]. For the GTP aptamer selec-
tion, a library was designed to contain a stem-tetraloop of specific
sequence flanked by random regions and mixed with an unstruc-
tured (completely random) library in a 1:1 ratio [43]. High affinity
GTP RNA aptamers were evolved with dissociation constants rang-
ing from micro- to nanomolar and several unique aptamer families
were isolated with three of the highest affinity GTP aptamers
originating from the structured pool (Fig. 3). Out of 11 identified
class I GTP aptamers, 7 originated from the structured pool (easily
recognized by its sequence). In this case, it was shown that the
advantage of introducing structural complexity in the form of a
stem-loop to a random pool outweighed the possible disadvantage
of eliminating possible registers within the random region
where the GTP recognition loop could occur. The sequence of the
introduced stem-loop did not seem to affect the outcome of the
selection because the sequence of the loop apparently drifted,
picking up mutations during the selection and re-selection,
whereas the stem in most cases maintained non-biased base-pair
covariation in the stem sequence [41].

The discovery of so many GTP aptamer families afforded an
analysis of their structural and informational complexity with
respect to the selection criterion, GTP affinity (actually off-rate),
and starting pool abundance. An optimized sequence of each apta-
mer family was mutagenized up to 21% per position and reselected
for GTP affinity to further optimize the motifs [41]. The minimal
information to define the resulting sequences was used to compute
their information complexity and the dissociation constants were
determined by binding assays. Dissociation constants for the set
of eleven RNA aptamers ranged from 8 lM to 9 nM and seven of
the eleven RNA aptamers contained a designed stem-tetraloop
from the original in vitro selection [43]. The relationship observed
between activity and complexity showed that every 10-fold
improvement in binding was �1000� less frequent in a random
pool. This result also held true in the case of two unique ligase ribo-
zymes [33] and it was speculated that this relationship would hold
as long as additional complexity contributed to stability of the
overall RNA fold. As expected, the stronger binders were also struc-
turally more complex, requiring more stems. Interestingly, the
information content analysis revealed that the strongest binders
utilized the primer binding regions designed into the starting pools
to build the more complex structures (effectively extending the
pool’s length), and were statistically highly unlikely to be found
in the starting pool population. This result suggested that if the
selection pressure is strong enough, it may be possible to isolate
highly unlikely functions from a given starting diversity but also
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Fig. 4. Correlation of pool design with outcomes. The work described in this review
is summarized for simple ligand (L)-binding motifs selected from (A) a short
random pool or (B) longer pool that may conatain the simple motif at different
positions (i and ii) along the sequence, but the same motif may be inhibited by the
additional sequence present in the long RNA (iii; inhibited binding site is marked by
X), preventing ligand binding. A longer pool can also form a more complex
structure, perhaps incorporating the primer-binding sequence into the structure
(iv; blue segment), with higher affinity for the ligand. Black lines within grey RNAs
denote base-pairing interactions.
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that the motif is not likely to emerge from a second, independent
trial (Fig. 4).

An in vitro selection of a biotin aptamer and self-alkylating ribo-
zyme discussed previously provided an interesting example of a
structural novelty that arises under selection pressure [47]. The
biotin aptamer, selected from a random pool, formed a pseudo-
knot, whereas the ribozyme selected from its sequence was a
cloverleaf. Another interesting example of evolution of the struc-
tures of functional RNAs involved the evolution of a three-way
junction of an aminoacylating ribozyme [57] into a kinase ribo-
zyme, switching the substrate from AMP-phenylalanine to GTP
(cS), thus catalyzing reactions at different atoms (P vs C) and likely
proceeding via different transition states (trigonal bipyramidal vs
tetrahedral) [58]. The aminoacylating ribozyme was mutagenized
to yield �4 � 1014 sequences within about 12 substitutions of
the parent sequence and a kinase selection was performed. Sur-
prisingly, the new ribozymes used different sites for the covalent
modification and seemed to fold into a wide variety of motifs.
Two of the kinase ribozymes were analyzed further, revealing that
they formed a pseudoknot and a four-way junction with a kissing-
loop, representing both a simpler and more complex structures.
The simpler motif did not preserve any base-pairs from the parent
ribozyme secondary structure, whereas the more complex one
retained 9 bps and created 23 new ones. The new ribozymes thus
escaped the original fold and the implication for pool design is that
a single starting fold is likely to be too constraining to promote
formation of a variety of functional RNAs. On the other hand a
partially structured pool may be enriched for active RNAs.

1.4. Evolving more complex structures

In vitro selections tend to find the simplest solutions, which
have been supported repeatedly experimentally, for example for
the hammerhead ribozymes, adenosine aptamers, and RNA-
cleaving DNAzymes [26,39,59–65]. More complex structures may
exhibit better activities, but if they are not magnitudes more effi-
cient than the more abundant and simpler motif, they may not
be discovered in the initial rounds of in vitro selection. In general,
smaller motifs are observed in higher abundance even if more
complex structures are more efficient and, consequently, selections
can be further optimized by deletion, mutation, and recombination
experiments. Other strategies, such as biasing the nucleotide com-
position of the starting pool, have been proposed to increase the
abundance of rare secondary structures and may help to increase
the chance of finding highly active functional nucleic acids.

Many discovered functional nucleic acids have exhibited com-
positional biases and tend to be purine-biased [66]. This idea was
examined as a possibility to increase the initial structural complex-
ity within a random pool computationally. For the case of the
aforementioned isoleucine aptamer and hammerhead ribozyme,
the composition that would lead to the optimal sequence abun-
dance and folding, assuming a random region of 100 nucleotides,
would be 15% A, 25% C, 35% G, and 25% U; and 35% A, 10% C, 25%
G, and 30% U, respectively [49]. The probability of finding the
two functional RNAs within a biased pool over an unbiased random
region increased 3.5- and 2.3-fold, respectively. While the optimal
composition for each example is vastly different, a composition
that maximized the probability of finding both motifs was calcu-
lated to be 20% A, 15% C, 40% G, and 25% U, and required
6.23 � 109 molecules for 99% probability of occurrence of both
motifs, a factor of 10 smaller than an unbiased pool. Although
the sample size was limited, compositional changes in the initial
pool of an in vitro selection may assist in favoring new and rare
functional structures. A computational analysis using graph theory
partially supported this result by showing that 20% A, U and 30% G,
C increased the proportion of higher-vertex structures for a 40-nt
//dx.doi.org/10.1016/j.ymeth.2016.04.021
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pool but structural abundances for a 100-nt pool were not altered
significantly [52].

An experimental approach to measure the effect of composi-
tional bias on in vitro selection outcomes confirmed that libraries
patterned to increase secondary structure yield more functional
RNAs [67]. Ruff et al. designed a pattern of purines and pyrimidines
that increased the likelihoodof forming stem-loop structureswithin
otherwise random sequences. In three head-to-head in vitro
selections with an unpatterned, random library of the same length,
the patterned library won two times, yielding protein-binding
aptamers of higher affinities. The two libraries performed equally
well in the third selection. Interestingly, the structure-promoting
patterned library required low-level doping with random
nucleotides to yield one of the aptamers, suggesting that over-
engineering the starting pools may be detrimental to success of
the selection. Nonetheless, the structure-promoting patterned pool
appears to be one advance that can be readily implemented in
selections for rare (complex or energetically expensive) functions.
1.5. Modular pools

Beyond sequence bias, increased modularity in a random region
has also been suggested to lead to higher abundances of more
complex and rare structures. A modular evolution model has been
introduced as a strategy to increase structural complexity [68]. To
analyze the likelihood of the combination of smaller RNA modules
to form a more complex functional nucleic acid, computational
simulations of two independently evolving pools of short, random
sequences (n = 35) revealed several advantages of modular evolu-
tion. These advantages included a finding that (1) the selection
was equally efficient with 35-nt modules at double the mutation
rates of those allowed for 70-nt sequences, (2) the time to select
smaller motifs was significantly shorter, and (3) smaller pools sizes
were required. Applied to an in vitro selection, small motifs could
be quickly evolved using high mutation rates, exploring most of
sequence space, and the resulting modules could be ligated and
evolved further for more complex functions. Experimentally, mod-
ular evolution has been employed by (1) appending random region
sequences to previously discovered ribozymes [16,18,69], (2)
incorporating an aptamer motif for a substrate (ATP) within a
random region for a kinase ribozyme selection [70], (3) fusing
functional motifs to form allosteric ribozymes [71–73], (4) select-
ing a functional RNA that exhibits both ligation and RNA cleavage
reactions [74], (5) including separate domains that allow ligand
binding and subsequent cleavage [75], and (6) designing oligonu-
cleotide base-pairing domain and selecting for ligand-induced
conformation-switching aptamers [37,76].

Accessing rare secondary structures for new activities may be
important for isolating new functional nucleic acids. Increasing
the abundance of complex secondary structures in an initial
random pool by installing a structured loop or changing the
compositional nature are simple measures that could lead to new
functional isolates. Combination of independently selected small
modules could be another powerful tool for isolating complex
and rare functional nucleic acids containing more than one active
domain.
2. Conclusion

Design of a nucleic acid library is an important consideration for
a successful in vitro selection, especially in search for new and
highly active functional macromolecules. Increasing the starting
diversity of a pool will increase the sampling of sequence space,
but most practical considerations limit the number of library
members to 1015 � 1016; therefore, other strategies must be
Please cite this article in press as: K. Pobanz, A. Lupták, Methods (2016), http:
employed to more readily access rare structures that have higher
activity.

Generally, longer random regions are more prone to misfolding
and aggregation, potentially inhibiting expected functional activi-
ties by masking the key structural motif or not allowing it to form.
This effect is most pronounced for smaller, simpler motifs, whereas
the probability of finding more complex and rare structures in long
random regions increases significantly and balances the possible
cost of misfolding (Fig. 4). What is needed, though, is a more quan-
titative and direct experimental testing of random and designed
pools. Aggregation in particular is a behavior of random pools that
has not been, to our knowledge, studied explicitly and it likely
affects selection outcomes. Furthermore, methods sensitive
enough to detect the activity of single molecules in highly diverse
pools may reveal true distribution of functional molecules in
these pools.

Since nucleic acids only contain four nucleotides, many
secondary structure motifs such as pseudoknots, tetraloops, and
uridine turns occur often. The majority of the primary sequence
can be easily exchanged while still maintaining the same
secondary structure. This degeneracy leads to many primary
sequences that have the ability to fold into similar structures that
may exhibit similar activities as well. Whereas sequence space is
usually sparsely sampled, the structural diversity may be within
the practical limits of an in vitro selection, at least in terms of basic
secondary structure folds. Small, evenly sized modular motifs were
shown to be the most abundant and increasing complexity of
secondary structures correlated with increasing vertices in graph
theory, pointing to longer random regions for unique structures
that might reveal new activities.

In vitro selections tend to find the simplest solutions, which has
been supported repeatedly experimentally. More complex struc-
tures may exhibit better activities but if they are not magnitudes
more efficient than the more abundant and simpler motif, they
may not be discovered in the initial rounds of in vitro selection.
Strategies such as altering nucleotide composition of the random
region, introducing stable structures into the initial random pool,
and evolving small motifs that can be combined into more complex
functional nucleic acids have been shown to increase the abun-
dance of rare secondary structures that may be more efficient as
well.

Ultimately, structural diversity affects the ability of the pool to
evolve a new function more than sequence diversity. Biasing the
starting population in an in vitro selection towards more structured
sequences may be one strategy to increase the success rate of
molecular evolution experiments. We expect that a combination
of structurally biased pools, high-throughput analysis of early
rounds of selections [77], and expansion of the chemical repertoire
of the selected population will lead to the discovery of new and
more active functional macromolecules.
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