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Nonscattering Waveguides Based on Tensor
Impedance Surfaces

Ryan G. Quarfoth, Student Member, IEEE, and Daniel F. Sievenpiper, Fellow, IEEE

Abstract—A tensor impedance surface waveguide is built using
anisotropic unit cells. The waveguide can propagate a confined
waveguide mode along its axis while waves incident to the guide
at an orthogonal direction pass through as if the waveguides were
not present. Both straight and curved implementations are demon-
strated. Surface waves incident at an angle to the waveguide show
reflection and refraction at the impedance interface. A theoreti-
cal model for tensor impedance surface waveguides is generalized
to include dispersive unit cells and bending loss around curves.
Dispersion results for modes propagating in the waveguide show
agreement between the theory, simulation, and experimental mea-
surements. A curved waveguide is also constructed which guides
surface waves around a curve and is transparent to surface waves
incident at an orthogonal angle.

Index Terms—Artificial materials, impedance boundary con-
ditions, impedance sheets, metamaterials, periodic structures,
surface impedance, surface waves.

I. INTRODUCTION

I MPEDANCE surfaces are artificially engineered metasur-
faces that have been used for multiple applications includ-

ing waveguides [1]–[3], antennas [4]–[6], lenses [7], [8], and
coatings [9], [10]. Impedance surfaces have also been pro-
posed for beam shifting and cloaking applications [11]–[14],
and other surfaces with continuously varying properties [15]. At
terahertz and optical frequencies impedance-surface-like struc-
tures can be created by varying the conductivity of graphene
[16], and modeling methods have also been extended to these
frequencies [17]. Three-dimensional (3-D) conformal meta-
surfaces have also been studied [18], along with other types
of metasurfaces such as tensor transmission-line metamateri-
als [19].

Impedance surfaces are advantageous because they can be
modeled using a planar impedance boundary condition, which
specifies the relation between the electric and magnetic fields.
Impedance surfaces can be designed and simulated using the
simple boundary condition instead of complex structures, and
this allows very large structures to be accurately and quickly
modeled. Impedance surfaces, like other metasurfaces and
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metamaterials, can be created by inserting periodic inclusions
into materials [20]. The period of these inclusions must be
small compared to the wavelength. Anisotropic surfaces can
be modeled using the tensor impedance boundary condition
[5]. Multiple unit cell geometries for tensor impedance surfaces
using printed circuit structures have been analyzed [21].

Impedances surfaces support surface waves, which are elec-
tromagnetic wave mode that can propagate bound to the sur-
faces. Surface waves are generated on substrates near antennas
or due to external radiation and they can damage equipment,
degrade antenna patterns, and effect radar scattering. Surface-
wave waveguides could be applied to mitigate these issues by
allowing precise control of surface wave propagation. These
waveguides can also be modulated to create an antenna [4],
used to feed antennas or lenses, used to integrate multiple com-
ponents into a single design, or used as a component in other
more complex systems.

Impedance surface waveguides have been theoretically inves-
tigated [1], [2], and a surface-wave waveguide has been built
and measured [3]. It was also shown in simulation that a surface
wave beam can be guided around a curve by rotating the tensor
impedance axis and grading the index to align phase fronts of
the beam [3]. In this paper, the previous theoretical dispersion
model (from [2]) is confirmed experimentally, and a transparent
waveguide is built that supports confined waveguide modes but
allows surface waves to pass in the orthogonal direction. This
setup can reduce coupling between the waveguide mode and
external sources. The transparent waveguide is also an exam-
ple of a structure which can perform two different functions
depending on the propagation direction.

In this paper, the impedance surface is built as a printed cir-
cuit. These structures are created by patterning metal on the
top layer of a grounded dielectric slab. Waveguides can be
constructed using impedance surfaces by surrounding a high
impedance region with two lower impedance regions. Fig. 1
shows a schematic diagram of an impedance surface waveg-
uide. The waveguide is designed with square and rectangular
unit cells as shown in Fig. 2. These unit cells have been ana-
lyzed along with their principal axes [22]. Further analysis of
printed circuit tensor impedance surfaces has also been per-
formed, and it was found that tensor impedance boundaries
do not always accurately model printed structures, and more
accurate models have been proposed [23]–[25]. However, cur-
rently, these methods can only be applied to individual unit
cells, and not large structures like waveguides. In order to con-
firm the accuracy of the ideal tensor impedance model, we
have compared this ideal model to simulations of printed circuit
structures and measurement.

0018-926X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Model of transparent surface impedance waveguide. A high impedance
region is surrounded by two lower impedance regions. Guided surface wave
modes can propagate along the higher impedance region. In the opposite
direction, the impedance of the guiding and outer regions matches.

Fig. 2. Physical representation of surface-wave waveguide. A grounded
dielectric substrate is patterned with rectangular and square patches. Higher
impedance is achieved using the elongated rectangular patches.

Section II reviews the theoretical foundation for impedance
surfaces and surface waveguides. The unit cells used to cre-
ate the surface waveguide are analyzed in Section III. In
Section IV, the dispersion of this waveguide is shown to closely
match both theory and simulation. Near field measurements are
presented in Section V, and it is confirmed that the waveguide
supports guided modes as predicted, and is also transparent to a
wave traveling in an orthogonal direction. Section VI discusses
a curved transparent waveguide which guides waves along a
bend. Curved waveguides can suffer bending loss due to the
geometry of the discontinuity between high and low impedance
regions. Section VII presents an expanded theoretical method
that models bending loss and investigates the effect of curve
radius and surface impedance on bending loss.

II. TENSOR IMPEDANCE WAVEGUIDE THEORY

The tensor impedance boundary condition relates the electric
and magnetic fields on a surface [5], [26]. In this paper, the ten-
sor impedance surface is created by patterning metal patches on
top of a grounded dielectric substrate and using the fundamen-
tal TM-like mode. Tensor impedance surfaces, unlike scalar
surfaces, have direction-dependent propagation characteristics
[26]. For a specific propagation direction, the tensor impedance
can be modeled as a scalar effective surface impedance or as an
effective surface index [2, eqs. (9) and (11)]. Using these effec-
tive scalar surface properties, a ray optics method was applied
that models the dispersion relation of each guided mode of the
waveguide [2, eq. (19)]. In this analysis, the impedance sur-
face was assumed to be dispersion free. The realized impedance
surfaces have dispersion and the theory must be generalized to
allow frequency-dependent impedance as shown below

−
[
πm+ ϕ (θ, ω)

d

]2
+

n1(θ, ω)
2
ω2

c2
sin2θ = 0 (1)

Fig. 3. Unit cell dimensions for (a) anisotropic unit cell and (b) isotropic unit
cell. For both unit cells the substrate is a grounded dielectric with a metal patch.
The patch is represented by the inner rectangle, and the distance between the
patch and the unit cell edge is g = 0.2mm on all sides. The anisotropic unit
cell is of 2mm × 1mm and the isotropic unit cell is 1× 1mm.

where m is the mode number, ϕ(θ, ω) is the phase shift on
reflection of the rays in the guide, d is the width of the guide,
n1(θ, ω) is the effective surface impedance of the interior
region, ω is the angular frequency of the mode, θ is the direc-
tion of propagation, and c is the speed of light. The phase
shift depends on the index n(θ, ω) and impedance Z(θ, ω)
of the interior and exterior regions of the guide. The surface
impedance is frequency-dependent, but while applying the the-
ory, a harmonic excitation is assumed. Therefore, the dispersion
relation is solved independently at each frequency, and single
impedance tensor is used for each solution.

To apply the theoretical model, the frequency-dependent
impedance, Z(θ, ω) must be known ahead of time, along with
the corresponding index n(θ, ω). In this paper, the rotation and
frequency dependence of the unit cells are determined by sim-
ulation, and these values are applied to the theoretical model.
These simulations are described in Section III. Along with fre-
quency dispersion, realized impedance surface exhibits spatial
dispersion. This phenomenon has been analyzed for patch-type
unit cells with no vias [23], [24]. Spatial dispersion implies an
inconsistency between the predicted anisotropy as defined by a
tensor impedance surface and the actual anisotropy of the unit
cell. This inconsistency causes errors in Z(θ, ω) and n(θ, ω),
but it will be shown in Sections III and IV that ideal theory can
still accurately model the waveguide dispersion.

III. UNIT CELL ANALYSIS

The substrate for the waveguide unit cells was 1.27 mm
Rogers 3010 (for simulations we used the design dielectric con-
stant εr = 11.2). This substrate has the highest dielectric con-
stant of commonly available printed circuit board materials and
the largest standard thickness. Higher dielectric constants and
larger thickness have been shown to allow broader bandwidth
anisotropy [21]. The dimensions of the rectangular unit cell for
the guiding region are shown in Fig. 3(a), and the isotropic unit
cell for the outer region is shown in Fig. 3(b). Both unit cells
have gaps between the metal patch and the edge of the unit cell
that are identical on all four sides. Surface impedance disper-
sion was solved in HFSS, and plots are shown in Fig. 4. For the
isotropic 1mm × 1mm unit cell, the impedance along the two
principal axes is identical because the unit cell is square. The
2mm × 1mm unit cell has different impedance for each axis.
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Fig. 4. Surface impedance versus frequency along principal directions of
anisotropic and isotropic unit cells. The low impedance direction of the 2mm ×
1mm unit cell has the same impedance relation as the 1mm × 1mm unit cell.

The impedance along the 1 mm dimension of the rectangular
cell is nearly identical to the 1mm × 1mm unit cell (as also
demonstrated in [22]). The fact that the square unit cell and the
short direction of the rectangular unit cell have the same sur-
face impedance is what allows the waveguide to be transparent
in orthogonal directions. The larger impedance along the prop-
agating direction of the rectangular unit cell allows waveguide
modes to be confined to the interior region.

Fig. 4 shows the anisotropic behavior for the principal axes
of the 2mm × 1mm unit cell, but it is also necessary to verify
the performance of the unit cell for waves propagating at direc-
tions between the principal axes. For ideal tensor impedance
boundary conditions, the dispersion for the principal axes is suf-
ficient to calculate the dispersion at any other angle. However,
on realized surfaces, spatial dispersion [23], [24] and mode
interference [21] can distort propagation between the principal
axes. The dispersion relation for multiple propagation direc-
tions has been simulated for both isotropic and anisotropic unit
cells. Isofrequency index contours for the isotropic unit cell
are shown in Fig. 5(a). For the isotropic unit cell, the con-
tours are circular because the index has the same value for any
propagation direction.

Isofrequency contours for the 2mm × 1mm unit cell are
shown in Fig. 5(b). Results from simulation are plotted as dots.
Theoretical curves are shown as solid lines, and are calculated
using the results of the principal axis simulations at each fre-
quency. The principal axes are oriented along the x- and y-axes,
where the x-axis (high impedance) corresponds to a wave prop-
agating along the 2 mm dimension of the unit cell and the
y-axis (low impedance) corresponds to the 1 mm dimension.
At low frequencies, the ideal theory and simulation match but
as frequency increases the simulation deviates from the theory.
The cutoff of the TE mode is at 12.3 GHz, and it has been
shown that this is where the ideal tensor impedance theory is
no longer valid [21]. Above the cutoff frequency, the simulation
rapidly deviates from the theory with the worst estimation gen-
erally occurring around a propagation angle of 45◦. At 12, 13,
15 GHz, the index is off by 6%, 12%, and 15%, respectively,
for a wave propagating at 45◦. This error is similar at higher

Fig. 5. Isofrequency contours for (a) isotropic unit cell and (b) anisotropic unit
cell. The radial direction is effective index and the theta direction is the direction
of propagation. Theoretical curves are shown as solid lines and simulations
are the dots. The legend labels different frequencies with units of GHz. The
contours are symmetric across the x- and y-axis so only the first quadrant is
plotted. Ten rotations from 0◦ to 90◦ are simulated.

frequencies but other angles begin to have large error also due
to mode distortion.

Although, the unit cell dispersion curve deviates from the
simple single-mode theory, especially above the TE cutoff at
12.3 GHz, the guide is oriented along the principal axis of the
unit cell. In this orientation, the wave is propagating along the
direction that does not deviate as significantly from the theory.
In Section IV, it is found in both simulation and experiment
that the waveguide operates above 12.3 GHz consistently with
impedance surface theory.

IV. WAVEGUIDE MODE DISPERSION AND FIELDS

The dispersion of a waveguide is tested using measurement,
simulation, and theoretical model. For each case, the width of
the waveguide is set to d = 10mm. In general, wider guides
bend the dispersion relation to lower frequencies, and lower the
cutoff frequency of higher order waveguide modes.

A. Measured Dispersion Setup

A surface-wave waveguide was constructed using the unit
cells analyzed in Section III. The total size of the board was
16× 10 inches and the waveguide was 16 inches long centered
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Fig. 6. Photograph of tensor impedance surface waveguide.

Fig. 7. Measurement setup for waveguide. Magnetic absorbers are place to the
sides of a trapezoidal feed. A vertical probe is located in the upper right side of
the photograph.

on the board with a 10-mm wide guiding region (10 unit cells
wide). A photograph of a section of the waveguide is shown
in Fig. 6. A near field scanner was used to make the disper-
sion measurement. The dispersion was obtained from the phase
velocity of the mode in the waveguide. The measurement setup
is shown in Fig. 7. The feed is a trapezoidal sheet of Rogers
5880. An end-launch SMA adapter is attached to the back of
the feed and leads to one port of an Agilent E5071C Vector
Network Analyzer (VNA). The second port of the VNA is
attached to a probe that is scanned across the surface. The probe
tip is 5 mm long and oriented vertically approximately 2 mm
above the surface. For dispersion measurements, the probe is
scanned along the center of the guide at 200µm increments.
At each position, S21 phase is measured by the VNA, and this
data is used to calculate the phase velocity. The effective sur-
face index is calculated from the phase velocity, and this index
is used to derive the dispersion of the waveguide.

The feed does not couple perfectly into the guided surface
mode and some power is reflected or launched as surface waves
in the outer region. However, waves excited into a guided mode
do not spill outside the guiding region, and the feed is designed
so that minimal fields are excited outside of the waveguide
mode at the center of the operating region. For printed cir-
cuit structures, other surface wave excitations have been used
such as a Yagi-like surface wave launcher [27], [28] and a
flared microstrip line [4], [29]. These could allow better cou-
pling efficiency into the waveguides. However, for this study,
the discrete trapezoidal surface wave launcher allowed the con-
venience of moving the feed to launch a guided wave, or to
launch waves at other positions or angles on the surface. Two
sheets of magnetic absorber (Arc-Tec DD11006) were placed

on either side of the feed to limit the amount of power reflected
back into the guide from the outer region. Both TM and TE
modes are absorbed, and the modes are dissipated both above
and within the substrate. Magnetic absorber is also used to ter-
minate the guided mode and prevent reflections back into the
guide. A well-matched surface wave launcher could also be
used to terminate the mode into a 50-Ω load.

B. Simulated Dispersion Setup

The dispersion of the waveguide was simulated using the
eigenmode solver in Ansys HFSS version 15. The model used
ideal tensor impedance boundary conditions. Because of disper-
sion in the realized surface, the impedances are set differently
for each frequency as stipulated in Fig. 4. The simulation
setup is described in [2, Section V], except this paper uses
the anisotropic impedance boundary condition (instead of the
checkerboard structure), which has been implemented in the
HFSS eigenmode solver in the time since the previous publica-
tion. The waveguide simulation was performed over the range
where the unit cell was simulated: 7–20 GHz (as seen in Fig. 4).
The impedance data were interpolated to obtain the values at
1 GHz increments.

C. Theoretical Dispersion

The theoretical dispersion relationship is described by (1)
and fully derived in [2]. As noted in Section II, the impedance
of the unit cell must be solved before the theoretical dispersion
can be solved, and this impedance is dependent on both fre-
quency and propagation direction. The impedance relation for
the principal axes is shown in Fig. 4. Even though the guided
wave travels along the principal axes of the impedance ten-
sor, the impedance at intermediate angles must be known to
correctly apply the ray optics theory. For intermediate angles,
the impedance values were obtained using two different meth-
ods (each plotted in Fig. 5). The first method used simulated
impedances for the principal directions and derived other angles
by assuming an ideal tensor impedance boundary. The second
method used simulated values from each of the intermediate
angles exactly. Both methods are compared to measurement and
simulation in the following section.

D. Dispersion Results

The results for each dispersion method are shown in Fig. 8.
The measured dispersion closely matches simulation and the-
ory. Only the lowest mode can be measured, and the results stop
at 15 GHz. Above this frequency, data are difficult to obtain. At
higher frequencies, the impedance of the unit cells goes up and
waves are more tightly bound to the surface. The measurement
probe is scanned 2 mm above the surface, and if significant
wave power is located below this height it becomes difficult
to obtain an accurate measurement. Also, at higher frequencies,
higher order guided modes are supported and dual mode oper-
ation occurs. In the fabricated structure, the second-order mode
is predicted by theory at 14.5 GHz. When two (or more) modes
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Fig. 8. Dispersion relation for guided modes in tensor impedance surface
waveguide. Only the lowest mode can be measured and this is shown as a solid
line. The first two modes are shown as dashed lines for the theoretical solutions,
and as dots for simulation. The first theory curve uses ideal tensor impedance
theory to obtain impedance at intermediate angles and the second theory curve
uses simulation to get these values. A black dashed line is the dispersion of light
in a vacuum. Guided modes must lie below the dispersion relation of the outer
region, and this is shown as a black line.

are present, it becomes difficult to determine the phase veloc-
ity of any single mode due to interference between the modes.
In simulation and theory, single-mode operation can be strictly
enforced.

Simulated and theoretical curves are shown up to 20 GHz for
the first two guided modes. The second mode has a cutoff when
it intersects the dispersion curve of the outer region. Two theo-
retical methods were used as described in the previous section.
The maximum difference in frequency between the two theo-
ries is less than 0.4 GHz for either mode (<3%). Therefore,
results show that the simplified theory assuming an ideal ten-
sor impedance boundary is sufficient to predict the approximate
dispersion relation. The second method using the simulated
impedances is slightly more accurate, but requires many more
simulations.

E. Field Profile of Guided Mode

The fields for the guided mode were measured and com-
pared to simulation. The fields for ideal impedance boundary
conditions were shown in [2]. A dispersive structure using the
rectangular unit cells is analyzed here. The model is constructed
identically to the experimental model with 10 unit cells across
guiding region and 50 unit cells on across the isotropic region
on each side. The electric field magnitude is shown for the first
two guided modes in Fig. 9. The guiding region is marked as
a dashed line, and the mode is propagating into the page with
exponential field decay above the surface.

Using the same experimental setup as for dispersion, a
probe was scanned across the guide orthogonal to the direc-
tion of propagation. The probe was placed 2 mm above the
surface and measurements were taken at 200µm increments.

Fig. 9. Normalized electric field magnitude at 12 GHz for (a) first mode and
(b) second mode for a simulation of a surface waveguide.

Fig. 10. Normalized electric field magnitude above waveguide.

The normalized field magnitude is plotted in Fig. 10, along
with an equivalent line from the simulation. Within the guided
region, the simulated and measured responses are nearly iden-
tical and have a sinusoidal profile. Outside the guide, the field
decays exponentially with distance. The minor differences in
field magnitude are likely due to the energy excited outside
the guide. Only the first mode can be measured in this manner
because a pure second mode cannot be experimentally excited.
The impedance contrast between regions affects the confine-
ment of the mode with larger contrasts more closely confining
modes to the guiding region. Wider guides also have more mode
confinement.

V. NEAR FIELD MEASUREMENTS

Two-dimensional (2-D) near field measurements were
obtained using the same waveguide and experimental setup as
in Section IV. The total size of the surface was 10× 16 inches.
The measured area is slightly smaller than the total board size
to allow space for the feed and absorbers around the edge of the
surface. The excitation source, shown in Fig. 7, does not couple
perfectly into guided modes at all frequencies, and some power
is excited directly to the outer region. A vertical probe was
swept 5 mm above the surface along a 2-mm grid. The probe
was scanned higher above the surface for 2-D field measure-
ments because the surface was not completely flat and scanning
lower could cause contact between the probe and surface at
the edges. For each measurement, about 25,000 points are
obtained, and normalized field results at 11 GHz are shown in
Fig. 11.
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Fig. 11. Measured normalized vertical (out of page) electric field at 11 GHz
for (a) guided mode; (b) orthogonal mode; and (c) angled mode. Fields in
(a)–(c) are not plotted to the same scale.

A guided mode is displayed in Fig. 11(a). The mode is bound
near the guide and does not leak to the outer region. The mea-
sured bandwidth for guided modes is from 9.4 to 15.2 GHz.
Below 9.4 GHz, the measured mode is a regular surface wave
(not confined to the guiding region) because the impedance
inside and outside the guide is almost identical. At 11 GHz,

as shown in Fig. 11(a), almost all of the fields are in the waveg-
uide mode and minimal fields are present in the outer region.
Above 14 GHz, the source excites more measurable fields in
the outer region than as a guided mode. This is because higher
frequency modes have high impedance. High impedance modes
are tightly bound to the surface, and this is difficult to measure
because the probe is scanned 5 mm above the surface (in order
to avoid scratching the material). At higher frequencies, modes
excited in the outer region (which still has lower impedance)
are measured much more easily because they are not as tightly
bound. These outer region modes can reflect off the edges of
the board and travel back across the waveguide making it diffi-
cult to isolate the guided mode which exists mostly below the
probe. However, power that does enter as a guided mode does
not leak away from the guide.

Fig. 11(b) shows a 2-D field plot for a surface with a feed
located in the exterior region. The feed was a vertically oriented
monopole that excited semicircular phase fronts on the surface.
The guiding and outer regions have identical surface impedance
for surface waves incident normal to the guide. Therefore, as
seen in Fig. 11(b), waves at normal incidence pass through the
guide as if it was not present, and transparency is confirmed.
In this case, the wave front is only orthogonal directly above
the source. At off-normal angles, some reflections and distor-
tion can be seen off the guide. In Fig. 11(c), the trapezoidal
feed is used to launch a surface wave toward the waveguide
at a small grazing angle. In this case, the higher impedance
guiding region reflects a significant portion of the incident
power.

VI. CURVED WAVEGUIDE

A transparent curved waveguide was designed and measured,
and Fig. 12(a) illustrates a schematic diagram for the surface.
The outer region has small isotropic surface impedance, anal-
ogous to Fig. 1, and the guiding region is curved around a
point located at the corner of the structure. The guiding region
has anisotropic impedance with the radial direction equal to
the outer region. The high impedance direction is along the
angular dimension of the guide. The design supports guided
waves along curve, and waves traveling from a point source at
the center of curvature pass across the guiding region without
reflection or alteration.

A photograph of a section of the fabricated guide design is
shown in Fig. 12(b). The outer region unit cells are identical to
those in the straight design (shown in Fig. 3). The anisotropic
unit cells are distorted slightly due to the curvature. The design
stipulates 2 mm unit cell length along the guiding direction.
The unit cells are constructed such that they all have the same
angular length, and the unit cell length at the radial center of the
guide is set to exactly 2 mm. On the inner edge of the guide, the
side length is 1.98 mm. Similarly, on the outer edge, the side
length is 2.02 mm. Below 20 GHz, simulation shows that the
deviation from the surface impedance of a 2-mm-long unit cell
is less than 1%. All unit cells are exactly 1 mm in the radial
direction. For the outer region, the unit cells form a 1mm ×
1mm grid. These unit cells are removed in the region where the
guiding region intersects. As seen in Fig. 12(b), unit cells near
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Fig. 12. Curved waveguide diagrams. (a) Schematic of the waveguide dimen-
sions and impedance is shown. (b) Photograph of the fabricated waveguide. The
rectangular box in (a) is the location of the photographed region shown in (b).

the edge of the guide are cut so there is no overlap between unit
cells.

The width of the guiding region is 10 mm, as was the case for
the straight waveguide. The radius from the center of curvature
to the center of the waveguide was 20.32 cm. The substrate
material and dimensions are the same as before, and near field
measurements were obtained from the same system used for
the straight waveguides. The guided mode was fed using the
straight waveguide as a source. The trapezoidal feed shown in
Fig. 7 fed the straight waveguide on one end, and the oppo-
site was pressed up to the curved waveguide. Fig. 13(a) shows
a guided mode at 11 GHz. This was the frequency that had the
best match between the trapezoidal feed and straight waveguide
mode. However, for the curved case, the guided mode leaks
into the outer region. Fig. 13(b) shows the same structure at
12 GHz. In this case, there is minimal leakage from the guided
mode. Simulation also agrees that there is no leakage into radi-
ated modes or into surface modes outside the waveguide at this
frequency. The measured bandwidth for guiding without leak-
age is from 11.7 to 15 GHz. Bending losses are analyzed in
Section VII.

The curved waveguide was also measured at an orthogonal
direction. A vertical probe was set at the center of curvature of
the guide which is located at the corner of the surface. Magnetic
absorber is placed along the edges of the surface to ensure that
there are no reflections back into the surface. The source radi-
ates circularly from the center of curvature of the guide such

Fig. 13. Measured normalized electric field for guided mode at (a) 11 GHz and
(b) 12 GHz. Fields in (a) and (b) are not plotted to the same scale.

that the wave is incidentally normal to the guide across the
entire structure. The field plot at 12 GHz is shown in Fig. 14.
The wave passes through without reflection confirming again
the transparency of the guided region. The fields along the
edges are reduced because magnetic absorber is placed along
these sides.

VII. ANALYSIS OF BENDING LOSSES

As mentioned in Section VI and seen in Fig. 13, the curved
waveguide exhibits bending loss that depends on the fre-
quency, waveguide dimensions, and surface properties. This
phenomenon also occurs for bending of dielectric slab and fiber
structures [30]. Leakage occurs at bends because the mode on
the exterior of the curve must travel faster than at the center in
order to stay in phase. Leakage occurs where this speed is larger
than what can be supported by the materials. Ray optics has
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Fig. 14. Measured normalized vertical electric field at 12 GHz for normally
incident mode.

Fig. 15. Setup for ray optics analysis of curved waveguide.

been used to analyze dielectric slab waveguides and fibers to
determine the bending loss of a multimode structure [31]–[34].
This method can be adapted for the surface-wave waveguide in
order to predict the bending loss due to radiation from a curved
waveguide.

For straight waveguides, the ray optics guiding condition dic-
tates that the rays exhibit total internal reflection at the interface
between the guiding region and the outer region. This total
internal reflection is frustrated by bending, and curved waveg-
uides never exhibit total internal reflection [33]. However, the
bending loss can be negligible depending on the setup of the
waveguide. The setup for the curved waveguide analysis is
shown in Fig. 15. A straight waveguide of width 2ρ feeds
a curved waveguide with the same width and surface prop-
erties. The dispersion relation of this straight waveguide is
solved using (1), and the incidence angle of the ray in the
straight waveguide θ is obtained from this equation. The curved
waveguide has a center radius of R. The height of the ray
crossing between the straight and curved sections is r. The

incidence angle at the inner and outer dimensions can be
obtained geometrically as follows [34]:

θi = cos−1

(
r

R− ρ
cos θ

)
(2)

θo = cos−1

(
r

R+ ρ
cos θ

)
. (3)

The incidence angle on the outer surface is always larger than
on the inner surface. Rays only lose power on the outer surface,
and losses on the inner surface are negligible [33]. The angu-
lar dimension of the guide is φ, and Δφ is the angular length
between successive reflections on the outer diameter.

For incidence onto the outer diameter, the transmission
for refracting rays (θo > θc) and tunneling rays (θo < θc) are
shown below:

TR = 4
sin θo
sin θc

√
sin2θo

sin2θc
− 1 (4)

TT = 4
sin θo
sin θc

√
1− sin2θo

sin2θc

× exp

(
4π

3λ
n1 (R+ ρ)

(
θ2c − θ2o

)3/2)
(5)

θc (θ, ω) = cos−1 (n2/n1 (θ, ω)) (6)

where θc is the complement to the critical angle [34].
Note that the critical angle θc is explicitly defined to be angle-

and frequency-dependent due to the angle- and frequency-
dependent index in the guiding region. For refracting rays, TR

is the standard Fresnel relation. For tunneling rays, TT is solved
using a local plane wave analysis [33]. In [2], it was found that
a true surface wave Fresnel equation gave improved results for
the phase on total internal reflection because it was necessary
to calculate the exact reflection phase shift [2, eq. (18)]. For
losses due to bending, we have found that local plane wave
analysis adequately predicts losses for the curved surface-wave
waveguide for large guide radii relative to the wavelength.

Power dissipates due to the transmission out of the waveg-
uide. The attenuation coefficient is the amount of power trans-
mitted T per unit angle between transmissions: γ = T/Δφ.
Power dissipates exponentially as a function of the angular size
of the waveguide. The dissipation is calculated by integrating
over each incidence height r

P (φ) =

∫ R+ρ

R−ρ

P0 exp (−γφ) dr (7)

where P0 is the initial power. In multimode fibers, solved in
[33], the incident angle θ must also be integrated. This is not
necessary for surface-wave waveguides because we assume a
single mode whose incident angle can be calculated from (1).
This method can be used to solve for geometries with varying
curvature as long as the incidence angle is appropriately solved
and integrated.

Fig. 16 shows the results for bending loss in the fabricated
structure (the plot shows the ratio of power remaining in the
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Fig. 16. Ratio of power remaining to total power incident for a 90◦ bend.

Fig. 17. Frequency of half-power loss versus center radius of the waveguide.
The right axis shows the maximum power output from the waveguide.

guide to total power after a 90◦ bend). The measured data are
calculated from the fields above the waveguide. The simulated
curve uses ideal tensor impedance boundaries with impedances
as shown in Fig. 4 (the simulated curves were also applied
and gave similar results). The theory curved is solved numeri-
cally from (7). Results show similar characteristics for all three
methods. In each case, minimal power is transmitted at low
frequencies. At high frequencies, there is nearly full power
transmission for the simulated and theory cases. The measured
version shows some losses between 14 and 15 GHz. These
losses are due to bending loss of the second waveguide mode
(which has a theoretical cutoff of 14.2 GHz and is not included
in the theory) and material loss. Bending loss of the first mode
does not occur in this frequency range. This lossy section is also
in the range where the TM mode is distorted by the presence of
TE modes. The theoretical model closely predicts the frequency
at which the structure no longer has nearly complete guiding at
12.5 GHz. However, the theory shows a steeper drop-off from
nearly complete guiding toward increased bending loss at lower
frequencies.

The theory was used to predict the bending loss for differ-
ent waveguide radii using the same unit cells, and the results
are shown in Fig. 17. The half-power frequency is the fre-
quency where the guide delivers half the power around the
bend. The theory predicts this location at 12.09 GHz for the
fabricated structure as seen in Fig. 16 and labeled explicitly
in Fig. 17. As the center radius R decreases the half-power
frequency increases. This is because higher frequencies have

Fig. 18. Half-power frequency versus index of guiding region for multiple cen-
ter radii. The index of the outer region is 1.1, the guide width is 10 mm, and the
bend angle is 90◦.

larger impedance contrast, and R is electrically larger. On the
right y-axis, the maximum transmitted power is plotted for each
R. For R < 0.75 cm, the waveguide does not propagate 50%
of the power at any frequency. The maximum power output
occurs about 0.5 GHz above the half-power frequency as seen
in Fig. 16.

In the realized structure, the impedance of the unit cell
is dependent on frequency. In order to show the effects of
impedance and radius on propagation independently, the theory
was applied to a waveguide using ideal impedance boundary
conditions. The setup had guide width of 10 mm, and outer
region n = 1.1. The index of the inner region was swept from
1.2 to 2 (isotropic) for multiple radii. The results are shown
in Fig. 18. For any given index value, increasing the radius
decreases the frequency where half the power is transmitted.
Similarly, for a specific radius, increasing the index decreases
the frequency of half-power transmission.

VIII. CONCLUSION

We have demonstrated a simple application of tensor
impedance surfaces in the form of a waveguide that is trans-
parent to surface waves in the orthogonal direction. This can
be extended to enable new applications such as antennas with
reduced scattering or nulls in a given direction, or that produce
different radiation patterns depending on the feed location.
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