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Transplantation of GABAergic interneurons for cell-based 
therapy

J. Spatazza, W.R. Mancia Leon, and A. Alvarez-Buylla1

The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University 
of California, San Francisco, San Francisco, CA, United States

Abstract

Many neurological disorders stem from defects in or the loss of specific neurons. Neuron 

transplantation has tremendous clinical potential for central nervous system therapy as it may 

allow for the targeted replacement of those cells that are lost in diseases. Normally, most neurons 

are added during restricted periods of embryonic and fetal development. The permissive milieu of 

the developing brain promotes neuronal migration, neuronal differentiation, and synaptogenesis. 

Once this active period of neurogenesis ends, the chemical and physical environment of the brain 

changes dramatically. The brain parenchyma becomes highly packed with neuronal and glial 

processes, extracellular matrix, myelin, and synapses. The migration of grafted cells to allow them 

to home into target regions and become functionally integrated is a key challenge to neuronal 

transplantation. Interestingly, transplanted young telencephalic inhibitory interneurons are able to 

migrate, differentiate, and integrate widely throughout the postnatal brain. These grafted 

interneurons can also functionally modify local circuit activity. These features have facilitated the 

use of interneuron transplantation to study fundamental neurodevelopmental processes including 

cell migration, cell specification, and programmed neuronal cell death. Additionally, these cells 

provide a unique opportunity to develop interneuron-based strategies for the treatment of diseases 

linked to interneuron dysfunction and neurological disorders associated to circuit hyperexcitability.
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1 INTRODUCTION

Normal brain function requires balanced levels of excitation and inhibition. In the 

mammalian cerebral cortex, these functions are respectively attributed to excitatory 

glutamatergic pyramidal cells and inhibitory interneurons expressing GABA (γ-

aminobutyric acid) that together represent about 20% of all cortical cells (Lodato and 

Arlotta, 2015). While pyramidal neurons make long-range connections within and outside 

the cortex, interneurons synchronize the activity of local projection neuron ensembles and 

gate excitatory and inhibitory inputs that they receive (Klausberger and Somogyi, 2008; 

Klausberger et al., 2003; Lewis et al., 2012; Vogels and Abbott, 2009). Interneurons are thus 
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considered to be the main cellular components for the control of brain excitability. 

Accordingly, a wide range of neurological and psychiatric disorders stem from cortical 

interneuron dysfunction (Marín, 2012). Notably, these conditions include epilepsy, 

schizophrenia, and autism, and have been referred to as interneuropathies (Kato and Dobyns, 

2005).

Neuronal transplantation has been extensively studied as a potential therapeutic strategy for 

the treatment of various neurological conditions. For such an approach to be successful, the 

candidate cell should be able to disperse following transplantation and functionally integrate 

within the diseased host circuitry in a manner that recapitulates the properties of the 

endogenous cells targeted for replacement. However, most cell types display very little 

dispersal upon transplantation in the postnatal central nervous system (CNS) (Dunnett and 

Björklund, 2012; Gage, 2012; Lindvall et al., 1990), which is a prerequisite for the 

functional integration of the transplants. The discovery of the origin of telencephalic 

interneurons in mice (Anderson et al., 1997; Tamamaki et al., 1997), as well as the capacity 

for their precursors to functionally integrate as inhibitory interneurons upon transplantation 

in the postnatal mouse brain (Alvarez-Dolado et al., 2006; Wichterle et al., 1999), provided 

an opportunity to test the potential of interneuron transplantation as a therapy for 

interneuropathies and other conditions associated to circuit hyperexcitability. Here, we 

summarize advances in the emerging field of interneuron biology and transplantation and 

also review some work on the potential clinical relevance of interneuron transplantation. 

First, we briefly summarize telencephalic interneuron development and discuss their 

behavior upon transplantation in the postnatal mouse CNS. We then touch upon how 

transplantation has been used for the study of CNS development and eventually examine the 

disease-modifying properties of interneuron transplants from studies based on mouse models 

of epilepsy, Parkinson’s disease (PD), Alzheimer’s disease (AD), and psychiatric disorders.

2 DEVELOPMENT OF TELENCEPHALIC GABAergic INTERNEURONS

2.1 TANGENTIAL MIGRATION

The ability of interneurons to migrate after heterochronic transplantation into the post-natal 

mouse brain likely stems from the extensive migration they undergo during development. 

Excitatory and inhibitory cortical neurons emerge from two distinct compartments in the 

developing brain. Excitatory neurons are produced locally in the ventricular zone of the 

pallium and invade the cortex radially using the radial-glial scaffold as a migratory substrate 

(Götz and Huttner, 2005; Molyneaux et al., 2007).

In contrast, cortical inhibitory neurons are generated outside of the cortex in the ventral 

telencephalon and must migrate tangentially over long distances to reach their final position 

in the cortex (Anderson et al., 1997; de Carlos et al., 1996; DeDiego et al., 1994; Tamamaki 

et al., 1997; Wichterle et al., 2001). It is precisely this capacity to migrate across the radial-

glial scaffold that may allow young interneurons to disperse through the postnatal brain 

parenchyma, making them a strong candidate for transplantation and cell-based therapy in 

the CNS. While the subcortical origin of telencephalic interneurons and their migratory 

route to reach the cortex was originally described in mouse, nonradial migration from the 

ventral forebrain also applies to interneurons in the developing primate cortex (Hansen et al., 
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2013; Ma et al., 2013), which challenges earlier reports suggesting a cortical origin for these 

cells (Jones, 2009; Letinic et al., 2002; Yu and Zecevic, 2011).

2.2 ORIGINS AND DIVERSITY

In the mammalian cortex, inhibitory interneurons are less numerous than pyramidal cells by 

a ratio of ~1:5. However, this small population of local circuit nerve cells displays high 

diversity in shape and function. Deciphering the meaning and origin of this interneuron 

diversity is key for our understanding of how information is processed in the brain and how 

defects in specific interneuron circuits may give rise to diseases. Consequently, many groups 

have worked toward characterizing this cellular diversity as well as its functional relevance 

for cortical circuit physiology. Accordingly, interneurons can be classified in more than 20 

subtypes based upon various criteria (partially overlapping for some of them) including 

morphology, physiology, patterns of local connectivity, and molecular identity (DeFelipe et 

al., 2013; Gonchar and Burkhalter, 1997; Markram et al., 2004; Petilla Interneuron 

Nomenclature Group et al., 2008). While such an approach is necessary to fully appreciate 

the complexity of this heterogeneous cell population (DeFelipe et al., 2013; Petilla 

Interneuron Nomenclature Group et al., 2008), it is noteworthy that the expression of the 

calcium-binding protein parvalbumin (PV), the neuropeptide somatostatin (SST), and the 

ionotropic serotonin receptor 5HT3a (5HT3aR) defines three nonoverlapping groups of cells 

that account for nearly 100% of interneurons in the mouse primary somatosensory cortex 

(Rudy et al., 2011).

Subtype identity is dictated by the spatiotemporal origin of cortical interneurons during 

development (Butt et al., 2005; Flames et al., 2007; Fogarty et al., 2007; Gelman et al., 

2009; Ghanem et al., 2007; Miyoshi et al., 2010; Xu, 2004). The majority of mouse cortical 

interneurons are generated between E10.5 and E16.5 by progenitors located in the 

ventricular and subventricular zones of the subpallium, within the ganglionic eminences. 

This highly proliferative compartment of the embryonic brain can be anatomically and 

molecularly divided into three regions, namely, the lateral-, the medial-, and the caudal 

ganglionic eminences (LGE, MGE, and CGE, respectively). While it is commonly accepted 

that the LGE does not contribute to the mouse cortical interneuron population (Wichterle et 

al., 2001; Wonders and Anderson, 2006), the MGE and CGE are the two major sources of 

cortical interneurons and give rise to anatomically and functionally distinct subsets of cells 

(Anderson et al., 2001; Butt et al., 2005; Fogarty et al., 2007; Lavdas et al., 1999; Miyoshi et 

al., 2010; Nery et al., 2002, 2003; Rubin et al., 2010; Wichterle et al., 2001). MGE and CGE 

also produce interneurons that migrate to other brain regions, including striatum, septum, 

hippocampus, and amygdala, thus illustrating the heterogeneity and importance of these 

germinal zones.

MGE-derived neurons represent ≈60–70% of all cortical interneurons in rodents. These cells 

express either PV or SST and are born for the most part during early neurogenesis and 

preferentially locate to deep layers of the neocortex (Anderson et al., 2001; Marín, 2013; 

Wichterle et al., 2001; Xu et al., 2008). From a molecular standpoint, MGE-derived 

interneurons are specified by transcription factors including the Dlx genes, Lhx6, Sox6, and 

Nkx2.1 (Chédotal and Rijli, 2009; Flandin et al., 2011; Kessaris et al., 2014; McKinsey et 
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al., 2013; Sussel et al., 1999; Vogt et al., 2014). In contrast to the early production of MGE-

derived interneurons, interneuron generation in the mouse CGE has been shown to peak at 

around E16.5 (Miyoshi et al., 2010). Progenitors in the CGE express the orphan nuclear 

receptors COUP-TF I/II (Kanatani et al., 2008) and generate ≈30% of mouse cortical 

interneurons (Miyoshi et al., 2010; Nery et al., 2002; Rudy et al., 2011). CGE-derived 

neurons represent a very heterogeneous pool of cells expressing vasoactive intestinal poly-

peptide (VIP) and calretinin (CR) as well as a group of cells that do not express VIP and 

include neurogliaform reelin (RLN)-expressing cells (Rudy et al., 2011). Virtually all CGE-

derived interneurons express 5HT3aR in the neocortex (Lee et al., 2010; Vucurovic et al., 

2010). CGE-derived neurons mostly target the superficial layers of the neocortex 

independently of their time of birth (Lee et al., 2010; Miyoshi et al., 2010). Interestingly, 

more than half of human cortical interneurons are thought to originate from CGE 

progenitors (Hansen et al., 2013), which could reflect the evolutionary expansion of the 

upper layers of the cortex that are highly enriched in late-born CGE-derived neurons 

(Hansen et al., 2013; Miyoshi et al., 2010). In addition to the major contributions from both 

MGE and CGE, the preoptic area (POA) accounts for ≈10% of all cortical interneurons 

(Gelman et al., 2009). This group includes some neuropeptide Y (NPY)-expressing 

multipolar cells, as well as some PV- and SST-positive cells. Two distinct progenitor 

domains have been identified so far in the POA, one expressing Nkx5.1 and another Dbx1 

(Gelman et al., 2009, 2011).

3 TRANSPLANTATION AND THE STUDY OF BRAIN DEVELOPMENT

The initial studies that unraveled the subpallial origin of cortical interneurons were mostly 

based on dye labeling of discrete groups of cells in cultured mouse brain slices (Anderson et 

al., 1997; Tamamaki et al., 1997). Before the advent of genetic fate mapping techniques, 

transplantation allowed for the in vivo confirmation of migratory routes and also provided 

valuable information on the fate and functions of cortical interneurons. Additionally, 

transplantation studies demonstrated the remarkable ability for embryonic MGE and CGE 

cells to functionally integrate into both neonatal and adult host circuits (Fig. 1), and also 

provided key information on many aspects of interneuron development.

3.1 INTERNEURON INTRINSIC DEVELOPMENTAL PROGRAM

The extraordinary migratory potential of MGE cells was first demonstrated in vitro 

(Wichterle et al., 1999). Using embryonic mouse brain explants grown in matrigel, MGE-

derived neuroblasts were found to migrate extensively, as opposed to cells derived from 

neocortical explants. Upon homotopic and isochronic transplantation in utero using 

ultrasound guided injection, MGE cells were shown to migrate dorsally perpendicular to the 

radial-glial scaffold via both the neocortical subventricular and marginal zones. These 

homotopic and isochronic MGE transplant-derived cells primarily populated the neocortex 

but also contributed significantly to the globus pallidus, the striatum, the amygdala, and the 

CA1 region of the hippocampus (Wichterle et al., 2001). Transplanted MGE cells persisted 

into adulthood and mostly differentiated into aspiny local interneurons immunoreactive for 

GABA, PV, and SST, illustrating that the fate of interneurons was determined prior to their 

exit of the ganglionic eminence (Flames et al., 2007; Fogarty et al., 2007; Wonders et al., 
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2008). In contrast, LGE transplant-derived cells were found to migrate ventrally and 

anteriorly to give rise to medium spiny neurons in the striatum, nucleus accumbens, and 

olfactory tubercle, as well as granule and periglomerular cells in the olfactory bulb 

(Wichterle et al., 2001). Interestingly, upon isochronic transplantation in the MGE, LGE 

cells did not modify their migratory behavior and remained in the ventral forebrain, with 

very few cells populating the neocortex, thus suggesting that at least some aspects of the 

development of ventral forebrain neuronal progenitors are intrinsically determined.

Heterochronic transplantation studies further confirmed that transplanted immature 

interneurons from the ganglionic eminences preserve their internal developmental program 

(Fig. 1). First, when injected in the postnatal brain, MGE cells display an initial highly 

migratory phase reminiscent of their distant origins (Fig. 2). Accordingly, transplant-derived 

cells have been shown to migrate distances up to 2.5 mm in the adult rodent brain (Davis et 

al., 2015; De la Cruz et al., 2011; Hunt et al., 2013; Martínez-Cerdeño et al., 2010) and 5 

mm in the neonate (Alvarez-Dolado et al., 2006; Southwell et al., 2010). Second, in line 

with the postnatal maturation of inter-neurons in vivo (Okaty et al., 2009), following their 

migratory phase, transplanted MGE interneurons develop over the course of several weeks in 

the heterochronic environment before acquiring mature morphology, marker expression, and 

electro-physiological properties (Alvarez-Dolado et al., 2006; Howard and Baraban, 2016; 

Southwell et al., 2010) (Fig. 2). Finally, while transplanted MGE cells can develop in 

regions they normally migrate to, they similarly differentiate into mature interneurons in 

regions of the CNS they are not fated to populate. For instance, upon hetero-chronic 

transplantation in the spinal cord, MGE precursor cells migrate away from the injection site, 

survive, and eventually display molecular marker expression, morphology, and 

electrophysiological properties similar to those of cortical interneurons (Bráz et al., 2012, 

2014, 2015).

Recent results have shown that the development of CGE cells is also intrinsically 

determined. Indeed, despite the known ontogeny of cortical interneurons since the late 

1990s, it is only recently that studies addressed whether CGE cells, like their MGE 

counterparts, might be amenable to transplantation in the postnatal brain (Fig. 1). Not 

surprisingly, CGE transplant-derived cells were found to migrate extensively following 

heterochronic transplantation in the neonatal brain, with a dispersal similar to that of MGE 

cells (Hunt and Baraban, 2015; Larimer et al., 2016), thus suggesting that tangential 

migration of ventral forebrain inter-neuron precursors is a determinant factor for their 

dispersal upon transplantation. However, conflicting results were found following 

transplantation in the adult brain, with one report describing the failure of CGE cells to 

disperse in the mature cortex (Davis et al., 2015) and another study showing accentuated 

dispersal of CGE cells compared to that of MGE cells (Isstas et al., 2016). Such 

inconsistencies may be due to the lack of a clear anatomical distinction between MGE/LGE 

and CGE (Fig. 1). As the CGE is a caudal extension of both LGE and MGE, using the most 

rostral aspect of the CGE for transplantation may give rise to grafts enriched in LGE-derived 

cells that exhibit poor dispersal (Wichterle et al., 1999). However, in line with genetic fate 

mapping studies (Miyoshi et al., 2010; Rudy et al., 2011), CGE transplant-derived 

interneurons were more likely to localize to cortical layer I (Larimer et al., 2016) and 

express VIP, CR, and RLN (Hunt and Baraban, 2015; Isstas et al., 2016; Larimer et al., 
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2016) (Fig. 2). Altogether, this work shows that the fates of both MGE and CGE cells are 

instructed by developmental programs established in the embryo and that these grafts can be 

used to complement existing circuits with specific subsets of interneurons.

Starting at 35 days after transplantation, transplanted MGE progenitors display 

electrophysiological properties and intrinsic firing patterns similar to those of endogenous 

MGE-derived interneurons (Howard and Baraban, 2016; Larimer et al., 2016). Their 

synaptic integration was first illustrated using electron microscopy (Baraban et al., 2009; 

Southwell et al., 2010; Wichterle et al., 1999) and was confirmed by intracellular recordings 

on acute brain slices showing spontaneous and evoked post-synaptic currents (Alvarez-

Dolado et al., 2006; Howard and Baraban, 2016; Martínez-Cerdeño et al., 2010; Southwell 

et al., 2010), thus demonstrating that grafted cells receive functional inputs from host 

neurons. Paired recordings further showed inhibitory synapses made by transplanted MGE 

or CGE cells onto host pyramidal neurons (Howard and Baraban, 2016; Larimer et al., 2016; 

Southwell et al., 2012), as well as reciprocal inhibitory connections between CGE 

transplant-derived cells and host interneurons (Larimer et al., 2016). In agreement with their 

endogenous inhibitory function in the CNS and their functional integration upon 

transplantation, grafted MGE-derived interneurons can modify synaptic inhibition in the 

host brain (Alvarez-Dolado et al., 2006; Baraban et al., 2009; Bráz et al., 2012; Howard et 

al., 2014; Southwell et al., 2010) and are thus of a great clinical interest for the manipulation 

of inhibition in disorders that display circuit hyperexcitability (Chohan and Moore, 2016; 

Southwell et al., 2014; Tyson and Anderson, 2014). The therapeutic potential of CGE 

transplants has not been as extensively evaluated as that of MGE transplants so far. However, 

the expanded repertoire of transplantable interneurons allowed by these grafts will 

undoubtedly offer further insight into interneuron development.

3.2 INTERNEURON FATE AND SURVIVAL

Cortical interneuron precursor transplantation has been used to study the origin of 

interneuron subtypes. While MGE and CGE transplantation showed the variety of cortical 

interneurons generated by ventral forebrain progenitors, grafts of microdomains of the MGE 

provided insight into precursor cell heterogeneity. First, marker expression analysis revealed 

that each subregion of the subpallium can be further divided into distinct progenitor domains 

(Flames et al., 2007). In order to address whether these domains indeed corresponded to 

functionally distinct progenitor pools, homotopic and isochronic in utero transplants of the 

most dorsal and the most ventral domains of the MGE were generated. The neurochemical 

composition of the transplants was analyzed at postnatal day 14 (P14) and showed a strong 

bias for the generation of SST interneurons from the most dorsal region, as opposed to a bias 

for the production of PV interneurons by the ventral region (Flames et al., 2007). These 

results were corroborated using neonatal transplants (Inan et al., 2012; Wonders et al., 2008). 

Neonatal transplantation of microdomains has also been very useful to study the ontogeny of 

specific interneuron subtypes. Chandelier cells have attracted much attention due to their 

ability to both depolarize and hyperpolarize pyramidal neurons (Glickfeld et al., 2009; 

Szabadics et al., 2006; Woodruff et al., 2009, 2011) and their potential implication in 

schizophrenia (Howard et al., 2005). While genetic fate mapping techniques show that 

virtually all chandelier cells are generated in the MGE (Xu et al., 2008), transplantation 
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experiments demonstrate that there is a strong bias for the production of these cells by 

ventral MGE progenitors at late stages of neurogenesis (Inan et al., 2012). These findings 

were further confirmed using a tamoxifen-dependent lineage tracing strategy showing that 

chandelier cell production by Nkx2.1-positive progenitors peaks at E16.5 (Taniguchi et al., 

2013). Taken together, these findings suggest that cortical interneuron diversity may stem 

from the heterogeneity in progenitor populations found in the embryo.

The mechanisms of interneuron lamination in the neocortex have also been studied using 

transplantation techniques (Pla et al., 2006). While the secretion of RLN by Cajal Retzius 

cells (D’Arcangelo et al., 1995; Ogawa et al., 1995; Soriano et al., 2005) is required for the 

proper lamination of the neocortex (Caviness, 1982), homo-topic and isochronic transplants 

of MGE cells lacking the intracellular adaptor Dab1 required for RLN signaling revealed 

normal lamination of the mutant MGE cells, suggesting that cortical interneuron lamination 

does not depend on cell-autonomous RLN signaling. By contrast, WT MGE cells that are 

transplanted in the MGE of Dab1-deficient embryos fail to adopt a normal lamination and 

display a distribution that highly correlates that of misplaced pyramidal cells. Considering 

that interneurons invade the cortical plate after pyramidal cells have reached their final 

position and that synchronically born interneurons and pyramidal cells tend to locate in the 

same cortical layers, this work provides evidence that interneurons laminate in the cortex 

using cues presented by synchronically born pyramidal cells (Pla et al., 2006). This notion 

has been reinforced by (i) the aberrant lamination of both PV and SST interneurons in 

Fezf2-null mice that are lacking layer V corticofugal projection neurons (Lodato et al., 

2011) and (ii) the recruitment of additional inhibitory synapses from PV interneurons by 

layer II–III callosal neurons converted into corticofugal projection neurons following Fezf2 
overexpression (Ye et al., 2015). Nevertheless, the molecular nature of factors that govern 

interneuron positioning remains unknown.

Finally, interneuron transplantation has been employed to address the rules governing waves 

of programmed cell death that occur in the developing CNS and help sculpt neural circuits 

(Southwell et al., 2012). Throughout the development of the nervous system, great numbers 

of neurons are eliminated at a time that coincides with synaptogenesis (Dekkers et al., 2013). 

In the case of mouse cortical interneurons, this occurs at around P7. While the role played 

by supernumerary cells during CNS development is still unknown, it was widely accepted 

that such a selection is driven by limited trophic support for which developing neurons 

would have to compete: the so-called neurotrophin hypothesis (Hamburger and Levi-

Montalcini, 1949; Levi-Montalcini, 1949). If we were to extend this notion to MGE 

transplants, the host brain should thus be able to only accommodate a finite number of 

transplanted interneurons. In contrast, transplantation studies strongly suggest that 

interneuron survival is independent from signals arising from the host (Southwell et al., 

2012). Upon transplantation in the neonatal brain, MGE cells display developmental 

apoptosis coinciding with their own age, and not that of the host, and therefore 

asynchronously from endogenous interneurons (Fig. 2). Interestingly, the proportion of 

interneurons undergoing cell death remained constant across grafts of various sizes and was 

similar to the extent of cell death found among endogenous interneurons during normal 

development. Additionally, transplanted interneuron cell death was found to be independent 

of the neurotrophin receptor TrkB and was temporally recapitulated by cultured MGE cells 
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in vitro. Altogether this work indicates that interneuron developmental programmed cell 

death is intrinsically determined and that interneuron survival does not depend on extrinsic 

cues from the host cells. However, it is possible that transplanted interneuron survival could 

depend on competition for survival signals emanating from interneurons themselves. Self-

regulated cell death, at the individual cell level or at the population level, offers unique 

advantages for interneuron transplantation as the number of surviving transplanted cells is 

not adjusted with respect to the population of host interneurons, but mostly by the number of 

transplanted cells themselves. This work suggests that grafted cells execute their own 

endogenous program to determine the timing of cell death and the final number of surviving 

interneurons.

4 TRANSPLANTATION AND CORTICAL PLASTICITY

In recent years, interneuron transplantation has been used to induce cortical plasticity in 

mature animals that normally exhibit minimal plasticity (Fig. 3) (Davis et al., 2015; Isstas et 

al., 2016; Larimer et al., 2016; Southwell et al., 2010; Tang et al., 2014). This line of work 

has reinforced the importance of the intrinsic programs that govern interneuron development 

and their integration upon transplantation. The model chosen for this work is the mouse 

visual system that displays a developmental critical period of plasticity for ocular dominance 

during which thalamic afferents compete for space and synaptic strength in the binocular 

zone of the primary visual cortex (Espinosa and Stryker, 2012; Wiesel and Hubel, 1963). 

During the critical period, but neither before nor after, imbalancing visual inputs by suturing 

one eye induces a shift in cortical responsiveness in favor of the open eye (Fagiolini et al., 

1994; Prusky and Douglas, 2003). The induced rewiring of intracortical connectivity 

eventually leads to a loss of visual acuity for the closed eye, which mimics amblyopia, a 

condition found in humans and that affects ~4% of the population (Hensch, 2005). The 

opening of the critical period is governed by the maturation of cortical GABAergic circuits 

(Di Cristo et al., 2007; Fagiolini and Hensch, 2000; Hanover et al., 1999; Hensch et al., 

1998; Iwai et al., 2003; Kanold et al., 2009; Katagiri et al., 2007; Sugiyama et al., 2008). 

Accordingly, plasticity can be triggered ahead of time by promoting interneuron 

development (Di Cristo et al., 2007; Hanover et al., 1999; Sugiyama et al., 2008) or by 

pharmacologically enhancing inhibitory transmission in the visual cortex (Fagiolini and 

Hensch, 2000; Fagiolini et al., 2004). Interestingly, heterochronic transplantation of 

immature interneurons in the neonatal (Southwell et al., 2010) or adult (Davis et al., 2015) 

brain induces a second period of plasticity in the recipient visual cortex (Fig. 3). In both 

studies monocular deprivation was found to induce ocular dominance plasticity in MGE 

transplant recipients only if performed ~5 weeks after the transplantation of E13.5 MGE 

cells, well after the endogenous critical period has ended (Fig. 3). Interestingly, the age of 

the transplanted cells at the time of transplant-induced plasticity corresponds to that of host 

interneurons when endogenous ocular dominance plasticity reaches its maximum, 

suggesting that interneuron intrinsic developmental programs regulate critical period timing.

As MGE grafts primarily generate PV and SST interneurons, Tang et al. (2014) sought to 

determine the respective contribution of these two interneuron populations in MGE 

transplant-induced plasticity. Using the R26-GDTA allele that allows ablation of specific cell 

types through Cre-dependent diphtheria toxin alpha subunit expression, PV and/or SST cells 
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were specifically eliminated from MGE transplants. Surprisingly, PV- and SST-depleted 

transplants each induced robust plasticity, thus indicating that both PV and SST interneurons 

can induce ODP. However, elimination of both PV and SST cells prevented transplant-

induced plasticity, suggesting that a sufficient number of either cell type has to be present for 

MGE transplants to induce plasticity. It has been suggested that PV interneurons are a 

central hub for cortical plasticity gating (Bernard et al., 2016; Beurdeley et al., 2012; 

Chattopadhyaya et al., 2004; Fagiolini et al., 2004; Huang et al., 1999; Kuhlman et al., 2013; 

Maffei et al., 2006; Miyata et al., 2012; Pizzorusso et al., 2002; Spatazza et al., 2013; 

Sugiyama et al., 2008; Takesian and Hensch, 2013; Yazaki-Sugiyama et al., 2009). However, 

the role of SST interneurons in this system had been overlooked so far. The work by Tang et 

al. (2014) does not preclude the possibility that the induction of plasticity by transplanted 

SST interneurons may be mediated in part by their action on host PV cells. The 

demonstration that SST interneurons can also induce plasticity highlights the power of 

transplantation experiments to decipher the cellular mechanisms of plasticity.

The ability of SST neurons to induce cortical plasticity raised the question as to whether 

interneurons are in general capable of reopening sensory critical periods. To test this 

hypothesis, recent studies tested whether CGE-derived interneurons might be competent 

(Davis et al., 2015; Isstas et al., 2016; Larimer et al., 2016). The CGE gives rise to a pool of 

interneurons different from those originating in the MGE (Rudy et al., 2011). Just like MGE 

transplants, grafted CGE cells disperse and differentiate in the heterochronic environment. 

However, in contrast to the MGE, CGE-derived interneurons do not reactivate plasticity 

(Davis et al., 2015; Isstas et al., 2016; Larimer et al., 2016) despite being functionally 

integrated in the host brain (Larimer et al., 2016). One study found that PV and SST 

interneurons account for ~20% of CGE transplant-derived cells (Larimer et al., 2016), 

suggesting that some young interneurons generated in the MGE migrate through the CGE 

(Butt et al., 2005). Such mixed transplants were found to reopen plasticity, although 

plasticity induction is solely attributable to PV and SST interneurons as it is fully abolished 

following genetic ablation of these cells from CGE transplants (Larimer et al., 2016).

Taken together, these results suggest that transplant-induced plasticity is restricted to MGE-

derived PV and SST interneurons. It is unlikely that transplant-induced plasticity results 

from increased inhibition as pharmacological enhancement of inhibition does not trigger 

plasticity after the critical period (Fagiolini et al., 2004). The inability for CGE-derived 

neurons to induce plasticity also suggests that the mechanisms required to home the 

transplanted cells into the host cortical network are not enough to elicit functional 

reorganization. Endogenous critical period closure has been associated with the expression 

of molecular brakes that stabilize mature cortical networks (Bavelier et al., 2010; Morishita 

et al., 2010; Sajo et al., 2016). Transplanted PV and SST cells may alter the expression of 

such brakes and thus allow host cells to rewire upon sensory deprivation. Undoubtedly, the 

study of both MGE and CGE transplants provides a powerful new tool to investigate the 

molecular and synaptic mechanisms enabling transplant-induced plasticity. The induction of 

plasticity by heterochronically transplanted interneurons also offers an opportunity to 

modify neural circuits for clinical gains.
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5 DISEASE-MODIFYING PROPERTIES OF MGE TRANSPLANTS

Removing plasticity brakes in adulthood holds great promises for lifelong learning and the 

treatment of neurodevelopmental disorders (Bavelier et al., 2010; Takesian and Hensch, 

2013). Studies of transplant-induced cortical plasticity suggest that young interneuron 

transplantation could be employed to promote the functional reorganization of cortical 

networks following brain injury or trauma. While this hypothesis remains to be tested, it is 

supported by recent results showing that MGE transplantation in the adult visual cortex 

rescues amblyopia acquired upon visual deprivation in juvenile mice (Davis et al., 2015). 

Whether the plasticity-inducing effect of MGE transplants can be similarly applied to brain 

regions other than the visual cortex remains unknown. For example, the basolateral 

amygdala displays a critical period of plasticity during which fear memories can be erased 

by extinction training (Gogolla et al., 2009). Importantly, plasticity in the amygdala shares 

many features with that in the visual cortex, suggesting that common molecular and cellular 

determinants may be gating plasticity in both systems. Most notably, amygdala plasticity is 

constrained by the expression of perineuronal nets (Gogolla et al., 2009) and can be 

reactivated by antidepressant drugs (Karpova et al., 2011). It will be interesting to investigate 

whether interneuron transplantation can modify fear memory resiliency, which bears strong 

therapeutic implications for patients suffering from posttraumatic stress disorders. 

Interestingly, MGE cell transplants have been shown to reduce anxiety levels in WT animals 

(Valente et al., 2013).

Interneuropathies constitute a wide range of neurological disorders that directly result from 

interneuron dysfunctions (Kato and Dobyns, 2005). Whether they are caused by a reduction 

in interneuron number or more specific deficits in the firing properties of individual neurons, 

these syndromes share impaired GABAergic transmission (Kato and Dobyns, 2005; Marín, 

2012). Other conditions such as PD, Huntington’s disease, or neuropathic pain originate 

from imbalance between excitation and inhibition levels secondary to defects in other 

neuronal populations (Kato and Dobyns, 2005; Marín, 2012; Southwell et al., 2014). These 

diseases are all associated with network hyperexcitability, which led to the proposal that 

interneuron transplantation could be used to restore inhibition and thus alleviate the 

symptoms observed in animal models of these conditions (Fig. 3).

5.1 SCHIZOPHRENIA

Schizophrenia has been associated with impaired GABA signaling (Inan et al., 2013; Marín, 

2012). Injection of the NMDA receptor antagonist phencyclidine (PCP) triggers 

schizophreniform cognitive deficits in both healthy humans (Javitt and Zukin, 1991) and 

rodents (Mouri et al., 2007). PCP is thought to primarily act on NMDA receptors localized 

to cortical interneurons (Korotkova et al., 2010), which would result in altered activity of 

projection neurons in the prefrontal cortex (PFC). In order to address whether cortical 

interneurons could potentially help in the treatment of schizophrenia-related symptoms, 

MGE transplants were performed in the neonatal mouse brain 6 weeks before PCP acute 

administration (Tanaka et al., 2011). Interestingly, PFC transplants can prevent PCP-induced 

cognitive deficits, as opposed to visual cortex transplants that are ineffective in this system. 

Immediate early gene expression in PFC projection neurons was increased in MGE 
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recipients, suggesting that MGE transplant benefits on PCP-induced deficits are not simply 

linked to modulation of PFC neuron activity.

Disinhibition in the hippocampus is also thought to be determining schizophrenia-related 

positive symptoms (e.g., delusions and hallucinations) and psychosis (Heckers and Konradi, 

2010; Schobel et al., 2013). To study this aspect of the disease, Gilani et al. (2014) used the 

cyclin D2 (CCND2) genetic mouse model (Glickstein et al., 2007) that displays a reduction 

in hippocampal interneurons and increased hippocampal output in vivo. Interestingly, MGE 

transplants can restore normal hippocampal activity and rescue the hippocampus-related 

cognitive deficits exhibited by this model. These findings point to the importance of 

interneuron development and survival in the pathogenesis of psychotic disorders and 

demonstrate the procognitive effects of interneuron-based strategies, which could benefit 

treatment-resistant patients that demonstrate hippocampal hyperactivation at rest.

5.2 EPILEPSY

Epilepsy is a heterogeneous neurological disorder affecting more than 50 million people and 

characterized by repeated episodes of seizure activity (de Boer et al., 2008). While known 

genetic mutations are responsible for a small proportion of cases (Pandolfo, 2013), epilepsy 

can also develop as a result of traumatic brain injury, stroke, tumor, or surgery (Chang and 

Lowenstein, 2003). Hyperexcitability is a key feature of epilepsies and often reflects 

impaired inhibition, in both animal models (Cossart et al., 2001; Sloviter, 1987) and human 

patients (de Lanerolle et al., 1989; Mathern et al., 1995). Seizure reduction following 

interneuron transplantation was first demonstrated in a genetic mouse model of epilepsy 

displaying severe spontaneous seizures by the second to third postnatal week of age 

(Baraban et al., 2009). MGE progenitors were transplanted in the neonatal cortex and seizure 

events were recorded by video EEG starting 30 days after transplantation. A 90% reduction 

in seizure events was observed in grafted mutant animals over the course of a month-long 

monitoring period. In another model of acquired epilepsy (Hammad et al., 2015), neonatal 

transplantation of MGE cells also yielded a significant decrease in the frequency and 

duration of epilepsy episodes, as early as 3 weeks posttransplantation. Concomitantly, 

transplantation seemed to promote survival of the mutant animals, as 80% of the MGE graft 

recipients survived up to 4 months compared to an average survival of 29 days for control 

animals. Taken together, these findings demonstrate that neonatal MGE grafts can have a 

prophylactic effect in two distinct congenital seizure disorders.

MGE precursor cells also demonstrated efficacy in mouse models of induced epilepsy. 

Calcagnotto et al. (2010) injected MGE cells in the mouse neonatal cortex and employed 

maximum electroconvulsive shock (MES) in adult mice to address whether MGE grafts 

could protect against the induction of tonic seizures. MES acutely induces a single seizure 

and is often used as a platform to screen antiepileptic drugs. Upon MES induction at 2 

months posttransplant, the incidence of tonic seizure was significantly lower in the MGE 

grafts group compared to controls. Accordingly, animal survival rate was also increased 

among transplant recipients compared to controls. Interneuron transplantation in the adult 

cortex also reduces seizure propagation as indicated by local field potential measurement 

upon focal administration of 4-aminopyridine (4-AP), a potent convulsant and potassium 
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channel blocker (De la Cruz et al., 2011). Here, the beneficial impact of MGE grafts on 

epileptiform activity was detected as early as 2.5 weeks posttransplant and was also found to 

be independent of the extent of transplanted cell survival, which suggests that a critical 

amount of grafted cells is required for optimal tuning of neuronal inhibition (Southwell et 

al., 2010; Tang et al., 2014).

Upon saporin-induced elimination of hippocampal interneurons, MGE transplantation 

restored inhibitory postsynaptic currents onto CA1 pyramidal cells and reduced 

pharmacologically induced seizure susceptibility of the grafted animals (Zipancic et al., 

2010). The impact of interneuron transplantation on spontaneous recurrent seizures was also 

tested in the pilocarpine mouse model of temporal lobe epilepsy (Henderson et al., 2014; 

Hunt et al., 2013). In both studies, hippocampal MGE transplants were performed 

approximately 2 weeks after the animals reached status epilepticus. In the hippocampus of 

epileptic mice, grafted MGE cells differentiate into GABAergic interneurons, acquire mature 

electrophysiological properties, and form functional synapses onto endogenous granule 

cells. MGE transplant-induced seizure suppression was found at ~60 days after 

transplantation. Interestingly, prolonged video EEG monitoring of grafted animals showed 

that this effect did not persist in time despite the presence of functional transplanted cells 

(Henderson et al., 2014), which raises the question of the long-lasting effect of MGE grafts 

on the control of seizure phenotype.

Taken together, these findings indicate that local interneuron precursor transplants have a 

potent impact on seizures. However, further work is required to determine the molecular and 

cellular mechanisms of transplant-induced seizure suppression in order to guide the 

development of transplant-based strategies for the treatment of refractory seizures. 

Inconsistencies in the timing of MGE graft efficacy suggest that those mechanisms may not 

be conserved across seizure models. For instance, while the kinetics of seizure suppression 

observed in the pilocarpine model strongly suggest a role for synaptic mechanisms 

(Henderson et al., 2014; Hunt et al., 2013), the early effects observed in the 4-AP model (De 

la Cruz et al., 2011) would indicate a possible role for nonsynaptic mechanisms. MGE grafts 

enhance both synaptic and extrasynaptic inhibition (Baraban et al., 2009). Interestingly, the 

requirement of extrasynaptic GABA-A receptors for the transplant-mediated dampening of 

seizure propagation in the 4-AP model was recently shown (Jaiswal et al., 2015). Given the 

heterogeneity of MGE transplant-derived interneurons, it will be important to identify 

whether specific subtypes may prove therapeutic for specific forms of seizures.

5.3 PARKINSON’S DISEASE

Interneuron transplantation as a cell-based therapeutic strategy has also been tested in a 

mouse model of PD (Martínez-Cerdeño et al., 2010). PD affects a large population 

worldwide and is characterized by motor impairments as well as cognitive and autonomic 

dysfunctions. The motor symptoms result from the degeneration of substantia nigra pars 

compacta dopaminergic neurons that normally extend axonal projections to the striatum. 

Reduced dopamine release in the striatum induces a cascade of neurotransmitter release 

imbalance that inhibits the output of the basal ganglia and leads to motor dysfunctions 

(DeLong and Wichmann, 2007). Striatal GABAergic interneurons have been shown to gate 
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basal ganglia output (Tepper and Bolam, 2004) and, consequently, worsen striatal imbalance 

in the dopamine-depleted striatum (Mallet et al., 2006), thus contributing to the 

pathophysiology of PD. These findings indicate that striatal inhibition can be used as a 

nondopamine-based lever to alleviate some of the symptoms characteristic of PD. The 6-

hydroxydopamine (6-OHDA) rat model recapitulates the deterioration of the nigrostriatal 

pathway observed in PD patients. MGE progenitors transplanted into the striatum of 6-

OHDA-treated adult rats are able to disperse, differentiate into GABAergic interneurons, 

synaptically integrate locally, and survive for up to a year (Martínez-Cerdeño et al., 2010). 

Importantly, MGE grafts were able to dampen the motor deficits displayed in this animal 

model of PD. Of note, overall locomotor activity of naïve control animals was increased 

following striatal MGE transplantation, thus suggesting that added interneurons can also 

exert a strong influence on striatal-dependent behaviors in an intact environment. The 

mechanisms of MGE cell effects in this system remain unknown and further work will be 

required for their identification. Previous studies in rodents have reported amelioration of 

PD-associated symptoms upon modulation of basal ganglia activity by enhancement of 

GABA stimulation (Lee et al., 2005; Luo, 2002; Winkler et al., 1999). Accordingly, motor 

deficits were likely improved as a consequence of transplant-induced increase in striatal 

inhibitory transmission. Alternatively, it is plausible that interneuron transplantation induces 

secondary changes mediating behavioral improvements or provides exogenous trophic 

support to remaining dopaminergic processes in the striatum. Finally, 25% of MGE 

transplant-derived cells differentiate into oligodendrocytes in the striatum, which raises the 

possibility of additional nonneuronal trophic support.

5.4 ALZHEIMER’S DISEASE

Approximately 40 million people are affected by AD, a number that is predicted to triple by 

2050 (Wimo et al., 2013). Memory deficits in patients suffering from AD are associated to 

an excitation–inhibition imbalance in the dentate gyrus that leads to hippocampal 

hyperactivity (Huang and Mucke, 2012). While amyloid-β (Aβ) overproduction or 

accumulation leads to interneuron dysfunction (Palop et al., 2007; Verret et al., 2012), the 

expression of apolipoprotein (apo) E4, a strong genetic risk factor for AD, causes 

hippocampal hyperactivity in humans (Filippini et al., 2009) and a progressive decrease in 

hilar interneuron number in mice (Andrews-Zwilling et al., 2010; Leung et al., 2012; Li et 

al., 2009). As a result of aberrant neural network activity, AD patients have also been found 

to display increased incidence of epileptic events (Amatniek et al., 2006). Given the 

GABAergic dysfunctions observed both in patients and in mouse models of AD, it was 

tested whether interneuron replacement therapy leads to improvement of both cognitive and 

behavioral deficits in two widely used AD mouse models (Tong et al., 2014). Bilateral MGE 

transplantation was performed in the hilus of aged apoE4 knock-in mice. Transplanted cells 

were found to disperse throughout the hilus, extend dendrites into the molecular layer of the 

dentate gyrus, predominantly differentiate in GABAergic interneurons expressing SST, and 

survive for at least 90 days. Grafted cells functionally integrated and increased inhibitory 

transmission onto excitatory granule cells, thus compensating for the reduction of hilar 

interneurons in these mice. MGE cell transplantation rescued learning and memory deficits 

in apoE4 knock-in mice, both with and without Aβ plaques, to levels similar to those of 

wild-type mice. These findings suggest that interneuron replacement could ameliorate AD-
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related symptoms. The lack of significant modification of Aβ levels and plaques suggests 

that cognitive improvements are mediated by restored synaptic inhibition, although trophic 

support emanating from the transplanted cells onto remaining hilar interneurons cannot be 

ruled out. In this context it would be interesting to test whether early wild-type interneuron 

transplantation could have a prophylactic effect on interneuron decrease in apoE4 knock-in 

mice. Cell-based strategies for the treatment of AD appear as a viable approach given that 

wild-type MGE transplant-derived cells can survive in the apoE4-Aβ toxic environment.

5.5 NEUROPATHIC PAIN

Neuropathic pain is provoked by nerve injury and is characterized by both allodynia (where 

nonnoxious stimuli are painful) and hyperalgesia (where pain behaviors caused by normally 

painful stimuli are increased). While the complex molecular, biochemical, and cellular 

changes that occur upon nerve injury are central for both mechanical and thermal 

hypersensitivity, how they contribute to the pain described by patients is not fully resolved. 

It is accepted that peripheral nerve injury results in decreased GABAergic neurotransmission 

within the spinal cord dorsal horn. A loss of inhibitory interneurons has been reported in the 

lesioned spinal cord (Moore et al., 2002; Scholz et al., 2005), as well as the reduced 

expression of postsynaptic GABAA receptors (Fukuoka et al., 1998), decreased GABA 

release (Lever et al., 2003), and diminished glutamic acid decarboxylase (GAD) expression 

(Eaton et al., 1998; Lever et al., 2003). In agreement with the long-standing idea that 

disinhibition in the spinal dorsal horn could underlie neuropathic pain (Loeser and Ward, 

1967), GABA agonists have been found to improve allodynia and hyperalgesia (Munro et 

al., 2009).

A recent set of studies explored whether transplantation of MGE cells in the spinal cord 

could mitigate the behavioral features of two mouse models of neuropathic pain (see also 

chapter “Interneuron transplantation in spinal cord for treatment of pain” by Basbaum). 

Transplanted MGE cells can survive in the adult spinal cord for at least 6 months, 

differentiate into GABAergic interneurons that display a “cortical” signature, and 

functionally integrate within the host spinal circuitry. Importantly, mechanical 

responsiveness is returned to baseline levels following MGE transplantation in mouse 

models of both sciatic nerve lesion where animals develop a severe hypersensitivity (Bráz et 

al., 2012) and chemotherapy-induced neuropathic pain (Bráz et al., 2015). In the latter, MGE 

cells deficient for the vesicular GABA transporter (VGAT) failed to rescue the pain 

behavior, which suggests that synaptic GABA release is important for MGE transplant-

induced behavioral improvements in the paclitaxel model. As observed in other studies (De 

la Cruz et al., 2011; Southwell et al., 2010; Tang et al., 2014), there was no correlation 

between transplanted interneuron number and functional effect (Bráz et al., 2012). Taken 

together, this work highlights the efficacy of MGE cell transplants for the management of 

neuropathic pain. Considering the known side effects of the traditional pharmacological 

approaches used in patients, interneuron-based therapy may thus represent a promising 

avenue for future therapeutic strategies.
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6 CONCLUSION

The ontogeny of ventral telencephalon interneurons undoubtedly endows this cell population 

with the remarkable ability to disperse upon transplantation in the neonatal, juvenile, or even 

adult brain. Following migration, grafted interneurons have the ability to differentiate and 

synaptically integrate into functional circuits. Grafted interneurons can modify the activity 

of host target cells, which has strengthened the potential of interneuron-based therapies for 

the treatment of various conditions characterized by hyperexcitability. While the numerous 

preclinical studies discussed here offer promises for such approaches to be taken out of the 

laboratory and into the clinic, specific limitations still remain to be addressed. Notably, the 

mechanisms by which MGE transplants control target cell activity need further investigation. 

Moreover, a better understanding of each disease’s etiology will be required so that the 

composition of the transplants may be adapted to achieve optimal efficacy. The generation of 

safe human interneurons will also be crucial for clinical transition. Recent reports 

demonstrating the in vitro production of transplantable MGE-like interneurons from human 

pluripotent stem cells (Maroof et al., 2013; Nicholas et al., 2013) have generated great 

excitement, which was further reinforced by studies showing therapeutic efficacy for such 

cells in mouse models of disease (Cunningham et al., 2014; Fandel et al., 2016; Liu et al., 

2013).

Fundamental knowledge has also been gained from the remarkable ability of young 

interneurons to disperse and functionally integrate upon heterochronic transplantation. Here 

too, we anticipate that transplantation of interneurons will continue revealing basic insights 

about how these neurons find their way through complex and heterogeneous environments, 

how they choose to make connections with other neurons, and how they determine whether 

they survive or die. Additionally, the ability of transplanted interneurons to induce juvenile-

like plasticity offers a powerful tool to study basic mechanisms of critical periods of 

plasticity. Future work may also reveal what cell-intrinsic information within young 

interneurons endows them with their unique ability to migrate through the parenchyma of 

the postnatal brain.
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FIG. 1: 
Heterochronic transplantation of interneuron progenitors. The MGE or CGE is dissected 

from the embryonic mouse brain. The MGE is anatomically separated from the LGE by a 

large sulcus; the CGE is a caudal extension of both LGE and MGE. Dissociated cells from 

these ganglionic eminences can be transplanted using beveled glass needles into both 

neonatal and adult nervous system (see text). MGE and CGE interneuron progenitors have 

the ability to migrate and differentiate into multiple interneuron subtypes that become 

integrated into functional circuits; dispersal is more robust in the permissive neonatal brain.
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FIG. 2: 
Transplant-derived interneuron development in the heterochronic environment. MGE and 

CGE progenitors were transplanted into the cortex of a P2 host. At 6 days 

posttransplantation (6DAT), many MGE and CGE transplant-derived cells are found within 

the superficial layers of the cortex and are tangentially oriented, a behavior reminiscent of 

endogenous interneuron migration within the marginal zone of the developing neocortex 

(top). A large number of cells have also started to invade the cortex at 6DAT and display a 

radial orientation (top). At this stage, virtually all transplant-derived cells display a typical 

migratory morphology, with a long leading process and a short trailing process (bottom). At 

20DAT, many transplanted interneurons have undergone programmed cell death. The 

transplanted MGE cells that survive usually stay clear of cortical layer I (as opposed to 

transplanted CGE cells), distribute across all cortical layers (top), and display a more mature 

morphology (bottom). At 35DAT, the vast majority of MGE transplant-derived cells 

differentiate into GABAergic interneurons expressing either PV or SST. CGE transplants 

give rise to many neurogliaform neurons that express RLN and to VIP-expressing 

interneurons. Neurogliaform interneurons mostly localize to layer I. CC, corpus callosum. 

Scale bar: 50 μm.
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FIG. 3: 
Immature interneuron transplantation and therapeutic applications. (Top) Immature 

interneurons can be obtained directly from the embryonic MGE or in vitro from embryonic 

stem (ES) or induced pluripotent stem (IPS) cells directed to differentiate into MGE-like 

progenitors. Interneurons have been transplanted into multiple regions of the CNS, including 

the striatum, neocortex, hippocampus, and spinal cord. Transplanted interneurons display 

disease-modifying activity in animal models of Parkinson’s disease, Alzheimer’s disease, 

epilepsy, schizophrenia, anxiety, spasticity, chronic pain, and neuropathic itch. (Bottom) 

Interneuron transplantation has also been used to study and manipulate cortical plasticity. 

The timing of native critical period of plasticity in the mouse visual cortex is dictated by the 

maturation of endogenous interneurons. Ocular dominance plasticity peaks at around P30 

when inhibitory neurons are approximately 35 days of age (35D). Upon transplantation into 

both neonatal and adult visual cortex, interneurons induce ocular dominance plasticity when 

they reach a similar cellular age at approximately 35 days after transplantation (35DAT). 

Transplant-induced plasticity allows functional recovery of visual acuity in mouse models of 

developmentally acquired amblyopia. These findings suggest that interneuron development 
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is governed by molecular programs established in the embryo and that these programs are 

retained and executed by embryonic interneurons upon heterochronic transplantation.
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