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Abstract 

 

On December 13, 2004, the Zero Deforestation Law made deforestation illegal in Eastern 

Paraguay. Deforestation did not stop, however the law may have decreased deforestation. Most 

deforestation in this region is conducted to clear land for agriculture. In this dissertation, I 

conduct three analyses to investigate patterns of deforestation in Eastern Paraguay and the 

impact of this law on aggregate deforestation, predictors of deforestation, and post-deforestation 

agricultural land uses. 

The first analysis investigates drivers of deforestation in Eastern Paraguay before the Zero 

Deforestation Law. I use satellite-derived deforestation data in a linear probability model to 

investigate how physical and anthropological land characteristics are correlated with forest loss 

between 2001 and 2004. I find that physical land characteristics including slope, elevation, soil 

group, and ecoregion were useful for predicting deforestation. Only some anthropological land 

characteristics predicted deforestation. Distances to towns or roads were not correlated with 

deforestation. Proximity to patchy forest cover, such as in areas of existing agricultural clearings, 

was correlated with more deforestation.  
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The second analysis investigates whether deforestation fell after the Zero Deforestation Law was 

implemented, and whether the relationship between land characteristics and deforestation 

changed. I use a linear probability model on a panel dataset of deforestation and land 

characteristics. My results show that deforestation fell by around a quarter after implementation. 

In addition, the predictive power of some drivers of deforestation weakened. One relationship 

reversed. Pre-policy, deforestation was more likely with less tree cover nearby, while post-policy, 

deforestation was more common near more densely forested areas, possibly indicating a desire to 

hide. My results cannot be explained by other events that took place during this time, and they 

provide strong evidence that the Zero Deforestation Law successfully lowered deforestation in 

Eastern Paraguay.  

The third analysis investigates how these decreases in deforestation post-policy were distributed 

across small-scale subsistence-oriented agriculture, large-scale commodity-oriented agriculture, 

and large-scale cattle ranches. Data does not exist on post-deforestation agricultural land use, so I 

generate my own data using a three-step process. First, I manually identify the post-deforestation 

land use for randomly sampled deforested locations in Eastern Paraguay. Second, I use these 

observations to train random forest models that predict post-deforestation land use from physical 

and anthropological land characteristics. Third, I use these models to generate land use 

predictions for all pixels deforested in Eastern Paraguay within four years before or after the 

Zero Deforestation Law came into effect. I find that the decrease in deforestation after 

implementation can mostly be attributed to a decrease in deforestation for large-scale agriculture. 

Clearing for large-scale agriculture fell by over 60%, from 34 thousand hectares annually on 

average before the policy to 12 thousand hectares annually on average after the policy. This was 

due to a composition effect, under which different locations were deforested after the policy was 
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implemented than before, and a land use effect, under which the same deforested locations were 

used for different agricultural classes in the pre- and post-policy periods. Levels of deforestation 

for rangeland and small-scale agriculture remained relatively steady between the pre- and post-

policy periods.  
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I. Introduction 

 

Deforestation and agricultural expansion have proceeded hand in hand in Eastern Paraguay. 

National policy encouraged farmers to clear land in the interior of the country for crops and 

livestock since the mid-20th century. This benefited a national economy that relies heavily on 

agriculture. However, this agricultural expansion came with tradeoffs. Forests provide valuable 

local and global ecosystem services that are lost or diminished when the forest is cleared. These 

ecosystem services include carbon sequestration, maintenance of local and regional climates, 

biodiversity habitat, water filtration, and the provisioning of food and timber resources (Taye et 

al., 2021).  

Recognizing the potential harms of excessive deforestation and that deforestation was 

proceeding at an unsustainable rate, Paraguay implemented the Zero Deforestation Law in 

December 2004. This law made deforestation in Eastern Paraguay illegal. However, the ban did 

not stop deforestation. This is not unexpected. Legal bans commonly fail to fully eliminate their 

targeted offense. For example, this is often true of drug use bans. Regardless, the passage and 

implementation of the Zero Deforestation Law was important because it marked the transition of 

deforestation from a legal to an illegal activity in Eastern Paraguay.  

In this dissertation I investigate three questions after providing background information and a 

discussion of data in section II. First, I investigate which land characteristics were correlated 

with deforestation in Eastern Paraguay before the implementation of the Zero Deforestation Law, 

when deforestation was legal. A rich literature exists linking deforestation with characteristics 

that make deforestation more likely to occur in a location. Generally, land that is physically 
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better suited for agriculture, or land that is nearer to populations or infrastructure, is more likely 

to be deforested. I use satellite-derived data on deforestation from Global Forest Watch (Hansen 

et al., 2013) in a linear probability model to investigate how physical and anthropological land 

characteristics were correlated with forest loss in Eastern Paraguay from 2001 through 2004. I 

find that before the Zero Deforestation Law was implemented, physical land characteristics 

including slope, elevation, soil group, and ecoregion were useful for predicting where 

deforestation will occur. Only some measures relating to human activity were useful for 

predicting deforestation. Distances to towns or roads were not correlated with deforestation. 

Proximity to patchy forest cover, such as in areas of existing agricultural clearings, was 

correlated with more deforestation. My results underline the importance of physical suitability 

for agriculture in predicting where deforestation will occur. Accessibility was less important, 

contrary to findings in prior literature. This may be because Eastern Paraguay was already 

extensively developed and deforested by 2001. Deforestation did not occur along a remote 

frontier, but rather patchily and situated amongst areas of existing development. Understanding 

whether these commonly identified patterns held in Eastern Paraguay pre-policy sets a baseline 

for further study of the impacts of the Zero Deforestation Law. 

In the second analysis, I investigate how the Zero Deforestation Law impacted aggregate 

deforestation and how it altered the drivers of deforestation. My analysis of deforestation data 

from Global Forest Watch shows that while the Zero Deforestation Law did not stop 

deforestation in Eastern Paraguay, deforestation slowed after the law was implemented. 

Deforestation fell from 93 thousand hectares per year on average between 2001 and 2004 to 71 

thousand hectares per year on average between 2005 and 2008, a decrease of nearly 25%. 

Identifying this drop in the rate of deforestation is informative but leaves the story incomplete. I 
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argue that this decrease in deforestation can be attributed to the Zero Deforestation Law by 

considering and dismissing alternative explanations for a drop in deforestation that coincide with 

the law. I then analyze whether the change in aggregate deforestation between the pre- and post-

policy periods is significant, and whether the relationship between commonly identified drivers 

of deforestation changed following the law. To do this, I run a linear probability model with 

deforestation as the outcome on a panel dataset of forested locations before and after the Zero 

Deforestation Law was implemented. I find that the decrease in deforestation post-policy 

remains statistically significant after controlling for characteristics of forested land. I also find 

that, in addition to lowering deforestation, the ban shifted how some land characteristics 

examined in the previous section correlated with deforestation post-policy. Many drivers became 

less useful in predicting where deforestation will occur. For example, while land that was more 

suitable for agriculture in terms of slope and elevation remained more likely to be deforested, 

this trend was not as strong as it was before the ban. This change has important policy 

implications. Deforestation became more dispersed across physical characteristics in the post-

policy period. If Paraguay wishes to pursue a further decrease in deforestation, the increased 

uncertainty in where deforestation is most likely to occur will make this decrease more difficult 

to achieve.  

Finally, I investigate how changes in deforestation after implementation of the Zero 

Deforestation Law were distributed across the diverse types of agriculture in Eastern Paraguay. 

The agricultural groups that I consider are small-scale subsistence-oriented farms, large-scale 

commodity-oriented farms, and large-scale cattle ranches. Understanding the distribution of 

impacts is important because policies to slow deforestation have additional and sometimes 

unanticipated environmental, social, and economic consequences. For example, a law that shifts 
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the use of newly deforested land from small-scale to large-scale agriculture could have negative 

distributional impacts since access to newly cleared land decreased for the more economically 

vulnerable group, as well as potentially more adverse environmental impacts since small-scale 

systems are typically more biodiverse.  

The distribution of policy impacts across agricultural groups is difficult to analyze because there 

is no dataset summarizing what each deforested plot is subsequently used for. I present a method 

to do so. Specifically, I manually identify the post-deforestation agricultural use for a sample of 

deforested locations using satellite imagery and knowledge of agricultural patterns in the regions. 

These data points are used to train random forest models to predict the post-deforestation land 

use of all land deforested in Eastern Paraguay in the four years directly before and after the Zero 

Deforestation Law was implemented. These predictions are based on physical land 

characteristics, such as slope and soil type, and anthropological land characteristics, such as 

proximity to population centers and roads. Data on these physical and anthropological 

characteristics are available globally, meaning that this method can be replicated for other data-

scarce regions, offering a contribution to the distribution literature. 

When I disaggregate deforested areas by their predicted post-deforestation agricultural use a 

clear pattern emerges. Deforestation for large-scale agriculture was most strongly impacted by 

the Zero Deforestation Law. Before the Zero Deforestation Law was implemented, an average of 

34 thousand hectares of forest were cleared per year for large-scale agriculture. Afterwards, this 

fell to an average of 12 thousand hectares per year. In contrast, deforestation for small-scale 

agriculture or rangeland continued at similar levels for the entire period. The shift away from 

clearing for large-scale agricultural use is because different locations are cleared, referred to as 



5 
 

the composition effect, and because deforested locations are being put to a different use after the 

ban, referred to as the land use effect.  

The remainder of the dissertation is organized as follows. Section II provides background on 

deforestation in Eastern Paraguay and describes the data used in this dissertation. Section III 

investigates the drivers of deforestation in Eastern Paraguay, and how they compare to drivers 

commonly identified in the literature. Section IV looks at the impact of the Zero Deforestation 

Law on aggregate deforestation and how relationships between land characteristics identified as 

drivers of deforestation and deforestation change after the law is implemented. Section V 

analyzes how post-deforestation land use changed after the Zero Deforestation Law was 

implemented by describing the manual generation of land use data, the random forest models 

used to predict agricultural land use, and revealed land use patterns both before and after the 

policy is enacted. Section V concludes.  

 

Deforestation in Eastern Paraguay 

Paraguay is a landlocked country at the heart of South America. Eastern Paraguay, the region of 

interest in this analysis, is separated from Western Paraguay by the Paraguay River and bordered 

by Argentina and Brazil. Most deforestation is driven by agriculture, therefore an understanding 

of the agricultural landscape of Eastern Paraguay is useful.  

Land in Paraguay’s interior was primarily under state control until the War of the Triple Alliance 

in the late 1800s, after which some areas passed to large-scale private ownership (Nickson, 

1981). Widespread development did not take off until the 1950s when government policy began 

encouraging settlement and clearing of idle and underutilized land for agriculture (Richards, 
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2011; Blanc, 2015). The development of road networks and the 1957 establishment of the city 

Ciudad del Este on Paraguay’s eastern border encouraged expansion. A bridge soon connected 

Ciudad del Este to the adjacent Brazilian port of Paranagua, facilitating the export of agricultural 

commodities (Richards 2011). Legislation also drew people to the interior. The Agrarian Statute 

of 1963 granted land titles for settlements. This attracted small-scale farmers eastward from the 

areas surrounding Paraguay’s capital city Asuncion to the agricultural frontier in the interior of 

the region. The statute also led large landowners to preemptively deforest to avoid land grabs 

(Nagel 1999). An amendment to the Agrarian Statue in 1967 allowed foreigners to purchase 

property within 150 kilometers of the border, leading to an influx of Brazilian farmers along the 

eastern border. The Itaipu hydroelectric project upriver from Ciudad del Este, begun in 1975 and 

completed in 1982, brought thousands of laborers to the region, many of whom established 

agricultural settlements.  

Satellite images, available since 1972 (Finer et al., 2018), document the later years of this 

transformation from forest to agriculture. Huang et al. (2007) found that in the early 1970s three 

quarters of the Atlantic Forest region, which extends halfway across Eastern Paraguay from the 

border with Brazil, was forested. By 2000, only one quarter of the Atlantic Forest region 

remained under forest cover. This represents a loss of over four million hectares of forest, an area 

approximately the size of Denmark, in just over 25 years. 

The agricultural groups that settled and deforested the region over the last century still dominate 

the landscape today. The main crops are strongly correlated with farm size (Weisskoff, 1992). 

Eastern Paraguay’s most expansive crop is soy, which is produced primarily on large-scale 

systems. In 2010, soy was cultivated on over 2.5 million hectares in Eastern Paraguay and 

covered more than three times the area of the second highest area crop, maize. Mechanized soy 
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took off after being introduced by Brazilian settlers and expanded further with the illegal 

introduction of genetically modified soy in 1996 (Correia, 2019). A lack of land, capital and/or 

credit have prevented small-scale farmers from adopting mechanized soy production (Peters, 

2015). Ownership patterns in soy production persist, with a substantial portion of large-scale soy 

operations under Brazilian ownership (Galeano, 2012). Large-scale cattle ranching also plays an 

important role in the Paraguayan economy. Over half of Paraguay’s 12 million head of cattle 

were produced in Eastern Paraguay in 2010 (Ministerio de Agricultura y Ganaderia, 2010). On 

the other side of the spectrum, small-scale farmers use labor-intensive methods to produce crops 

largely for personal consumption. Small-scale crops with the largest area include mandioca, 

beans, corn, and peanuts, as well as small quantities of livestock for family and local 

consumption. Cotton was an important market crop for small-scale farmers until the mid-1990s 

after which it declined due to a dismal global market (Richards, 2011). 

 

II. Data 

 

The three analyses in this dissertation use the same data, which I have compiled from a variety of 

sources to create a single coordinated spatial dataset. I use the 30-meter pixel from the Global 

Forest Watch data as my level of observation. All additional data sources are resampled to match 

this resolution. Different subsets of the data are used in the different analyses, as noted in their 

respective methodology sections.  
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Data on Forest Cover 

I use a 30 percent forest cover cutoff to define forested area. The cutoff matches the official 

definition of forest used by Paraguay (UN FAO, 2020), and is supported by measures of percent 

tree cover in forested areas of Eastern Paraguay (Huang et al., 2009). In 2000, the baseline year 

for this analysis, Eastern Paraguay had around 6.5 million hectares of forest. 

Deforestation is provided as annual pixel-level indictors of loss, beginning in 2001 (Hansen et 

al., 2013). Figure 1 plots cumulative deforestation in Eastern Paraguay between 2001 and 2008. 

In the four years before the Zero Deforestation Law came into effect, 93 thousand hectares of 

forest were lost on average annually in Eastern Paraguay. In the four years after implementation, 

between 2005 and 2008, an average of 71 thousand hectares of forest cover were lost per year. 

The locations of deforestation in the four years before and after the Zero Deforestation Law was 

implemented is mapped in Figure 1.  

 

Figure 1: Cumulative deforestation in Eastern Paraguay from 2001 through 2008, based on 

Global Forest Watch tree cover and deforestation data (Hansen et al., 2013). The dotted line 

indicates the implementation of the Zero Deforestation Law at the end of 2004. 
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Figure 2: A map of baseline forest cover and deforestation in Eastern Paraguay in the four years 

preceding and following the implementation of the Zero Deforestation Law. 

Two features of the Global Forest Watch data are particularly important. First, tree cover is 

defined as all vegetation over five meters in height. The data does not differentiate between 

natural forest and tree plantations or agroforestry. This is unlikely to affect the analysis in a 

substantive way because tree plantations and agroforestry play a small role in the agricultural 

economy of Paraguay. Eucalyptus, the most common tree crop, was cultivated on only around 55 
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thousand hectares in 2008. Yerba mate, a traditional tree product of the region, was cultivated on 

less than half this area. In comparison, soy was cultivated on nearly 2.5 million hectares in 2008 

(Ministerio de Agricultura y Ganaderia, 2009). An alternative deforestation dataset, Tropical 

Moist Forests (Vancutsem et al., 2021), omits agricultural tree cover. Deforestation in the two 

datasets is similar, as can be seen in a comparison of the datasets in appendix A1. Second, Global 

Forest Watch does not allow the same pixel to be lost multiple times. If tree cover were lost 

multiple times, the first loss since 2000 is recorded. This is again unlikely to substantively 

impact results as cumulative reforestation data from Global Forest Watch shows minimal 

planting or regrowth in Paraguay.  

 

Data on Land Characteristics 

I utilize data on physical and anthropological land characteristics. These characteristics have 

been identified in the literature as drivers of deforestation, or factors that make deforestation 

more likely to occur in a location (Busch and Ferretti-Gallon, 2017). In my analyses, these land 

characteristics are used two ways. First, I use them to explore the relationships between land 

characteristics and deforestation in the context of Eastern Paraguay. Second, I use them to predict 

the post-deforestation agricultural land use of deforested pixels in Eastern Paraguay.   

Physical characteristics used in my analysis include slope, elevation, soil group, and ecoregion. 

Slope and elevation come from GLAD (Potapov et al., 2020). These measure the topological 

characteristics of the land. Elevation is measured in meters, and slope is measured in degrees. 

Maps of elevation and slope can be seen in Figure 3 and Figure 4. 
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Soil group provides information on potential agricultural productivity, and comes from the 

International Soil Reference and Information Centre (ISRIC) Soil and Terrain Database for Latin 

America and the Caribbean (ISRIC, 2005). Soil groups vary across Eastern Paraguay’s 

geography and elevation, including tropical yet productive nitisols in the southeast, wetland 

gleysols in the west, and weakly developed regosols in the north, among others. A map of 

Paraguay’s soil groups can be seen in Figure 5. Descriptions of soil groups can be found in 

appendix A2 (Driessen et al, 2001). 

Ecoregions data is from terrestrial ecoregions of the world (TEOW), which classifies areas based 

on the dispersion of communities and species prior to major land use change and are intended for 

use in conservation (Olson et al. 2001). Most land area in Eastern Paraguay falls into one of three 

ecoregions: the Humid Chaco, the Atlantic Forest, and the Cerrado. The Humid Chaco, the 

westernmost ecoregion, is a mosaic of woodland and savannah where frequent flooding turns 

low elevation areas into bogs. The Atlantic Forest in the east is naturally forested from river 

plains to mid-level plateaus. Pockets of Cerrado, an ecoregion whose natural vegetation ranges 

from open fields to dense forest, are found on the northern plateaus. A map of the ecoregions can 

be seen in Figure 6. 
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Figure 3: A map of elevation in Eastern Paraguay, measured in meters (Potapov et al., 2020). In 

general, lower elevation areas are found in the east and higher elevation areas are found in the 

west.  
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Figure 4: A map of slope in Eastern Paraguay, measured in degrees (Potapov et al., 2020). 
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Figure 5: A map of soil groups in Eastern Paraguay (ISRIC, 2005). See appendix A2 for 

information on soil groups. 
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Figure 6: A map of ecoregions in Eastern Paraguay (Olson et al. 2001). Ecoregions classify 

areas based on the dispersion of communities and species prior to major land use change.  
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I consider anthropological variables including distance from main roads and towns, brightness of 

nearby nighttime lights, and measures of nearby tree cover. Distance from a main road is 

calculated using spatial road data from Open Street Maps (Open Street Maps, 2021). The focus is 

on roads classified with codes 5112 and 5113. These include major highways connecting urban 

areas, as well as important rural transit routes. The latter includes relatively low traffic routes that 

may contain large unpaved segments but are important for the transport of agricultural goods. A 

map of this road network can be seen in Figure 7. 

Nighttime lights (NTL) is a measure of nocturnal visible and near-infrared lights visible from 

satellite (Roman et al., 2021). The data are cleaned to correct for cloud cover, moonlight, 

atmospheric radiance, and other distortions. This represents human activity patterns. Annual 

nighttime lights values from 2012, the earliest year available, are used. The values are relative, 

with higher values indicating brighter lights and lower values indicating weaker or no light. In 

Eastern Paraguay, a value of 1000 corresponds to cities, a value of 200 corresponds to a large 

town, and single digit values correspond to settlement towns with population of a few hundred or 

less, or other rural infrastructure such as agricultural buildings with lights. Values between these 

indicate areas of human development between these scales. NTL data is used to generate distance 

from a town, where a town is defined as areas with NTL values of 200 or more. This data is also 

used to generate the NTL value at a pixel location, the brightest NTL value within one kilometer 

and the brightest NTL within ten kilometers. The latter two indicate whether there is a 

settlement, town, or city within these radii of a pixel. The location of towns and larger population 

centers can be seen in Figure 8. 

Some locations are preserved or otherwise protected by public or private entities. I take data on 

protected areas from the World Database on Protected Areas and other effective area-based 
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conservation measures (UNEP-WCMC, 2019). The map in Figure 9 displays area that were 

protected before 2000, the baseline year of my study, and additional locations that were protected 

between 2001 and 2008. 

Mean tree cover in the year 2000 is a measure of the initial forest cover. This is given for the 

pixel location, and calculated for a one-hundred-meter and a one-kilometer radius. A mean tree 

cover value of 50 could indicate that all pixels have fifty percent tree cover, or could indicate a 

densely forested area that is partially cleared. The standard deviation of tree cover in 2000, 

calculated for the same radii, helps complete the forest cover picture by providing a measure of 

patchiness. In areas with uniform tree cover standard deviation is low. Where tree cover is 

partially cleared the standard deviation is higher. A map of tree cover in the year 2000 can be 

seen in Figure 10. 
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Figure 7: A map of the main roads in Eastern Paraguay, including both major highways and 

important rural transit routes (Open Street Maps, 2021). 
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Figure 8: A map of nighttime lights values in Eastern Paraguay (Roman et al., 2021). Nighttime 

lights (NTL) is a measure of nocturnal visible and near-infrared lights visible from satellite, and 

is commonly used as a measure of economic development.  
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Figure 9: A map of protected areas in Eastern Paraguay (UNEP-WCMC, 2019). 
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Figure 10: A map of tree cover in 2000 in Eastern Paraguay, measured as the percent of a 30m 

pixel under forest cover (Hansen et al., 2013). 
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Macroeconomic Variables 

I include commodity prices and unemployment data to investigate whether macroeconomic 

trends explain deforestation, rather than changes in Paraguay’s deforestation policy. Global 

commodity prices come from the International Monetary Fund (IMF), and are downloaded using 

an annual timestep from the Federal Reserve Bank of St. Louis (IMF, 2024a; IMF, 2024b; IMF, 

2024c). I consider prices for soy, cotton, and beef, the most important market-oriented 

commodities for large-scale producers, small-scale producers, and ranchers respectively. 

Soybean price is measured in U.S. dollars per metric ton, while cotton and beef prices are 

measured in U.S. cents per pound. In all cases, values represent benchmark prices determined by 

the largest exporter of a commodity and are considered representative of the global market. I 

expect the global prices of these commodities to influence commodity production decisions in 

Paraguay. However, Paraguay’s production does not make up a large portion of global supply, 

therefore I do not expect changes in Paraguay’s production to impact global prices. All prices are 

deflated using a consumer price index for Paraguay with a base year of 2010, from the 

International Monetary Fund and downloaded from the World Bank (IMF, 2024d).  

Unemployment data provides information on the state of Paraguay’s economy. When 

unemployment is higher, I expect that more people may rely on agriculture, specifically 

subsistence agriculture, for their livelihoods. The unemployment rate is provided by Paraguay’s 

National Institute of Statistics (INE, 2024).  
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III. Drivers of Deforestation in Eastern Paraguay 

 

In this section I investigate how previously identified drivers of deforestation serve as predictors 

of deforestation in Eastern Paraguay before 2004, when deforestation was a legal activity.  

Understanding the drivers of deforestation is important for managing deforestation dynamics. By 

2004, Paraguay had reached a point where less deforestation was desired. Identifying which land 

characteristics are associated with higher deforestation makes it possible to predict where 

deforestation is most likely to occur next. This is valuable information for law enforcement, 

NGOs, or other groups working to slow deforestation and need to prioritize the use of limited 

resources in a way that best fits their goals.  

Deforestation is a land use question, and whether to clear a plot of land or not depends on the 

characteristics of the land as well as the resources and motives of the person making the land use 

decision. The best land use choice for an individual landowner is the one that leads to the highest 

utility, a measure encompassing both monetary and nonmonetary benefits. This approach draws 

on Ricardian theory, where land rents are determined by biophysical characteristics of the land, 

as well as Thunian theory, which incorporates distance to markets and transport costs. Given a 

set of resources and incentives, the best choice may be to leave the parcel forested and enjoy 

benefits such as firewood, shade, and leisure activities. Alternatively, the best choice may be best 

to clear the parcel and engage in small-scale labor-intensive agricultural production, commercial 

agricultural production, or ranching, or to clear for urban development or infrastructure. Using 

this framework, it is possible to identify factors that may promote more or less deforestation in 

an area. These factors are referred to as drivers of deforestation.  
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A large literature has focused on identifying the drivers of deforestation (Busch and Ferretti-

Gallon, 2017). These drivers can be physical characteristics of the land, such as the terrain and 

soil characteristics, or anthropological measures related to human activity, such as the proximity 

to infrastructure or population centers. Identifying the drivers of deforestation sheds light on 

which locations are at higher risk of deforestation. This knowledge can inform land use policies 

and shape land protection priorities.  

Agriculture is a major driving force for deforestation. A recent report from the Food and 

Agriculture Organization of the United Nations found that nearly 90 percent of global 

deforestation between 2000 and 2018 was related to agriculture (FAO, 2022). The importance of 

agriculture is supported by the land characteristics that have been found to promote deforestation 

in prior literature. Previous analyses of physical drivers of deforestation found that deforestation 

is more likely to occur where land is physically better suited for agricultural production. 

Deforestation is less likely to occur on steep slopes and at higher elevations, and more likely 

where soil is more productive for local agriculture.  

Regarding anthropological land characteristics, the literature again emphasizes the importance of 

agriculture. Deforestation is more likely closer to cities or towns, especially where local 

agricultural input markets are well developed (Garrett et al., 2013). Deforestation is more likely 

closer to roads, which facilitate access for people as well as the transport of machinery and 

agricultural products. Deforestation is more likely nearer to existing agriculture and previously 

cleared land. Deforestation is less likely to occur where it is legally restricted, particularly if law 

enforcement is strong.  

Relationships between commonly identified drivers and deforestation vary across settings. For 

example, in areas dominated by agroforestry production proximity to cities and soil suitability 
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for agriculture have been found to increase forest cover, rather than decrease it (Blackman et al., 

2008). Contrary to frequently held expectations, logging activity is not consistently associated 

with higher deforestation. Logging activity can be a driver of deforestation, but can also be a 

product of managed agroforestry systems, which include planned cycles of planting and cutting, 

or may increase dependence on local forests leading to more sustainable forest management.  

In this analysis I test whether the physical and anthropological characteristics discussed above 

hold in the context of Eastern Paraguay. I test seven specific hypotheses to determine if 

relationships between commonly identified drivers of deforestation and deforestation hold in this 

setting.  

My results show that before the Zero Deforestation Law was implemented, physical land 

characteristics were significant predictors of deforestation in Eastern Paraguay. Only a few of the 

anthropological land characteristics were helpful in predicting where deforestation will occur 

during this period. Measures of nearby tree cover behaved as expected and were statistically 

significant predictors of deforestation. However, the hypothesized relationships with large 

population centers, towns, and roads did not hold, with the latter two showing no significant 

relationship.   

This analysis contributes to the literature on drivers of deforestation by expanding the geographic 

area from which our knowledge is drawn. Existing deforestation studies focus on a few locations. 

Brazil alone represents around half of all deforestation studies conducted in Latin America (Da 

Ponte et al., 2015; Busch and Ferretti-Gallon, 2017). Within this, much of the research focuses 

on the Brazilian Amazon, which is located two thousand kilometers to the north of Eastern 

Paraguay (i.e. Alix-Garcia and Gibbs, 2017; Garrett et al., 2013, Macedo et al., 2012). These 

prior studies reveal that suitability for agriculture and proximity to infrastructure and population 
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centers are important predictors of deforestation (Busch and Ferretti-Gallon, 2017). Widening the 

geographic area of study broadens our understanding of deforestation dynamics. Eastern 

Paraguay’s different administrative, cultural, and policy environment provide a valuable 

opportunity to check the external validity of these trends. This is especially valuable since 

eastern Paraguay is dominated by similar agricultural activities as the Brazilian Amazon, and 

thus deforestation for agriculture might be expected to behave similarly (De Sy et al., 2015; Laso 

Bayes et al., 2022; Curtis et al., 2018). I show that some of the frequently identified patterns in 

drivers of deforestation do not hold in the Eastern Paraguayan context. While suitability for 

agriculture remains an important driver of deforestation, proximity to infrastructure and 

population centers is less predictive of deforestation. This may be because Eastern Paraguay is 

already heavily deforested and clearing no longer takes place along a well-defined agricultural 

frontier. Understanding how drivers perform as predicted or differ from previous studies in a new 

context, such as in Eastern Paraguay, enables better deforestation policy and action in Paraguay 

and in other areas that are underrepresented in deforestation research.  

This analysis also contributes to knowledge of deforestation dynamics in Eastern Paraguay 

during the naughts. Prior research reveals that Paraguay was a top contributor to deforestation at 

both the regional and global levels during the 2000s (i.e., Austin et al., 2017, Hansen et al., 

2013). These national-level deforestation statistics are difficult to interpret due to significant 

differences between Eastern and Western Paraguay. Population and agricultural patterns also 

vary significantly between Eastern and Western Paraguay. As of 2002, 97 percent of Paraguay’s 

population resided in the more hospitable Eastern region which supports a wide range of 

agricultural activities and rangeland (DGEEC, 2004). Western Paraguay, in contrast, is sparsely 

populated and agriculturally is almost entirely rangeland (De Sy et al., 2015; Laso Bayes et al., 



27 
 

2022; Caldas et al., 2015; Fehlenberg et al., 2017). In addition, the Zero Deforestation Law, the 

focus of my later analyses and an important piece of deforestation legislation, only applies in 

Eastern Paraguay and was implemented mid-decade. This analysis provides important 

clarification on the deforestation patterns within the Eastern region of the country during the 

2000s.  

Finally, this research sets the stage for later analysis of how changing deforestation from a legal 

to illegal activity impacted how, where, and for what purposes deforestation was conducted. 

Analyzing the drivers of deforestation pre-policy sets a baseline for future work in this area.  

 

Data and methods 

The land characteristics investigated in this analysis include elevation, slope, soil group, 

ecoregion, the mean and standard deviation of tree cover within a 100-meter radius, the 

maximum nighttime lights value within ten kilometers, the distance from a town, and the 

distance from a main road.  

Data sources for each variable are described in section II. The analysis is run on a random 

sample of one percent of all pixels in Eastern Paraguay due to computing limitations, and also to 

partially control for spatial correlation between nearby variables. From this sample, pixels that 

have forest cover of at least thirty percent, the cutoff used throughout this analysis to define 

forested areas, in 2000 are retained. This results in just under one million observations.  

Table 1 provides summary statistics for the random sample and the predicted relationship 

between each variable and the probability of deforestation based on the prior literature. I test 

seven hypotheses. For physical characteristics, I hypothesize that locations with higher elevation 
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will have more deforestation than locations with lower elevation, and that locations with steeper 

slopes will have less deforestation than flatter locations (Busch and Ferretti-Gallon, 2017). For 

anthropological characteristics, I hypothesize that locations with higher average nearby mean 

tree cover will have less deforestation than locations with lower mean tree cover nearby, and that 

locations with patchier tree cover nearby will have more deforestation than areas that are more 

uniformly forested. These two hypotheses stem from findings that deforestation is more likely 

near existing clearings, for example existing agricultural fields, which would exhibit this low 

mean forest cover and patchiness. I hypothesize that the maximum nighttime light value within 

10 kilometers is positively correlated with deforestation, that locations closer to towns will have 

more deforestation than locations further from towns, and that locations closer to roads will have 

more deforestation than locations further from roads. These hypotheses stem from findings in 

previous literature that deforestation is more likely near population centers and infrastructure 

(Busch and Ferretti-Gallon, 2017). In addition, I expect soil groups and ecoregions that are better 

for agriculture to be more likely to be deforested (FAO 2022). These hypothesized relationships 

are summarized in the final column of Table 1. 
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Table 1: Summary statistics for land characteristics in the random sample of forested pixels, and 

hypotheses on the relationship between each of these land characteristics and deforestation.  

The land characteristic measures are not highly correlated, as shown in the variance covariance 

matrix in Table 2.  

 

Table 2: Variance covariance matrix showing the low correlation between land use 

characteristics used to predict deforestation in the pre-policy period. 

I test the relationship between these land characteristics and deforestation in Eastern Paraguay 

using a linear probability model: 

𝐷𝑖 = 𝛽𝑋𝑖 + 𝜖𝑖 

Variable Unit Mean St. Dev. Min Max

Elevation meters 195.39 92.29 43 812 -

Slope degrees 3.37 2.93 0 52.21 -

Soil group categorical . . . . N/A

Ecoregion categorical . . . . N/A

Mean tree cover within 100m percent 63.38 24.21 0.633 95.048 -

St. dev. of tree cover within value 28.62 7.00 4.425 50.251 +

Maximum NTL within 10km NTL value 90.99 177.03 0 2142 +

Distance from a town 5 km bins 30.878 16.539 0 100* -

Distance from a main road 5 km bins 15.346 10.812 0 60 -

* All locations over 95km from a town are included in '100'. This category contains less than 1% of observations

Expected 

relationship with 

deforestation

elevation slope mean 

cover

sd cover max 

NTL

dist town dist road

elevation 1.00 0.35 0.29 0.21 -0.11 0.08 -0.01

slope 1.00 0.18 0.20 0.00 0.00 -0.02

mean tree cover within 100m 1.00 0.17 -0.15 0.18 0.07

st. dev. of tree cover within 100m 1.00 0.05 -0.10 -0.10

maximum NTL within 10km 1.00 -0.46 -0.33

distance from a town 1.00 0.54

distance from a main road 1.00
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The outcome variable, 𝐷𝑖, is an indicator equal to 1 if a pixel lost forest cover between 2001 and 

2004, and equal to 0 otherwise. 𝑋𝑖 is a vector of time-invariant land characteristics that have 

been identified as drivers of deforestation in the literature. All continuous variables are 

normalized by dividing by their standard deviation and demeaned. 𝜖𝑖 is an error term, and errors 

are clustered at a half-degree latitude longitude grid to control for spatial correlation.  

Additionally, I run specifications where the outcome is deforestation in a single year. This tests 

whether the relationships between potential drivers of deforestation and the probability of 

deforestation are consistent across time, as opposed to being driven by strong patterns from a 

single year. Pixels that lose forest cover before the year in question are removed.  

 

Results 

By the end of 2004, 6% of pixels that were forested in 2000 had been deforested. The rate of 

deforestation increased slightly throughout this period, from just under 1% of forested pixels lost 

in 2001 to just over 2% of forested pixels lost in 2004. This is due primarily to increased 

deforestation during these years, as can be seen in the annual deforestation in appendix A1, as 

well as to a smaller total remaining forested area in each year in the denominator.  

Results from the linear probability model regressions are shown in Table 3. The first 

specification examines the relationship between land characteristics and deforestation that 

occurred between 2001 and 2004, before the policy made deforestation illegal. Some of the 

relationships found here differ from results in the prior literature. Physical characteristics, 

including elevation, slope, soil group, and ecoregion, are significant predictors of deforestation, 

though not always in the expected manner. Anthropological characteristics are not as predictive 



31 
 

as the physical characteristics are. I address each of the coefficients of the potential drivers of 

deforestation in this specification in more detail below. The discussion refers to the first 

specification unless noted otherwise.  

 

Table 3: Results from linear probability models relating potential drivers of deforestation to the 

probability of deforestation. 

Between 2001 and 2004 deforestation was more likely to occur at higher elevations, contrary to 

previous findings. Regression results in from the first specification show that a one standard 
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deviation increase in elevation, which is an increase of around 100 meters in Eastern Paraguay, 

increases the probability of deforestation between 2001 and 2004 by 0.034 percentage points. 

This is nearly a 60% increase from the average probability of deforestation of 5.8% between 

2001 and 2004. That the probability of deforestation increases with elevation, rather than 

decreases as was hypothesized, may be because Eastern Paraguay contains low-lying areas that 

experience issues with wetness and waterlogging. Meanwhile, the highest elevation forested 

locations are at only around 800 meters of elevation, thus the region does not suffer from 

expanses of inhospitable high elevations.  

Slope is negatively correlated with deforestation, as expected. A one standard deviation increase 

in slope leads to a 0.017 percentage point decrease in the probability of deforestation. This is 

expected because flatter areas are more suitable for agriculture, which is the main use of 

deforested land in Eastern Paraguay.  

Anthropological land characteristics are not as clearly linked to deforestation in Eastern 

Paraguay. The literature predicts that deforestation will be more likely nearer to population 

centers and roads. However, the coefficients on distance from a town and distance from a main 

road are both insignificant. This mismatch may be because past studies often focused on 

deforestation that encroaches into large, uncleared areas such as the Brazilian Amazon. In 

Eastern Paraguay, by contrast, deforestation is widespread and current deforestation removes 

remaining patches rather than expanding the frontier.  

While roads and towns are not significant predictors of deforestation, some anthropological land 

characteristics do play a role. Deforestation becomes less likely as nighttime lights within a ten-

kilometer radius become brighter, indicating that deforestation is less likely in the immediate 

vicinity of cities or large towns. This is the opposite of the hypothesized relationship, that more 
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deforestation occurs near population centers. This may be because agriculturally suitable land 

close to very dense population centers has already been cleared. However, the magnitude of the 

coefficient is small. My results show that a one standard deviation increase in the brightest 

nearby nighttime lights value, around a 200-point jump, results in a 0.004 percentage point 

decrease in the probability of deforestation. This corresponds to a 7% change in the probability 

of deforestation, from 5.8% probability of being deforested on average to a 5.4% probability of 

being deforested in areas where the brightest nighttime light within 10 kilometers is one standard 

deviation higher than average, all else constant. However, the distribution of values for the 

nearest nighttime lights are heavily skewed to the right. Most forested pixels have low nearby 

nighttime lights values, with over half the observations having a value below 26, and 86% of 

forested pixels falling within one standard deviation of the minimum value of 0. Therefore, while 

this relationship is statistically significant, its contribution to predicting where deforestation 

occurs is small.  

Nearby tree cover metrics also significantly predict deforestation. While tree cover can be the 

result of natural suitability of the land for forest, in developed areas it is often the result of 

agriculture and other human-conducted clearing. A one standard deviation increase in the 

standard deviation of nearby tree cover leads to a 0.018 percentage point increase in 

deforestation. This is expected because areas with patchy forest due to agricultural clearings are 

more likely to be deforested than uniformly forested areas that have not experienced this partial 

clearing. A one standard deviation increase in mean tree cover within 100 meters leads to a 0.006 

percentage point decrease in the probability of deforestation. This aligns with expectations that 

deforestation is more likely to occur where there is less nearby tree cover, potentially due to 

existing manmade clearings. The magnitudes of these coefficients are small, meaning that a 
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change in their standard deviation is less predictive than, say, a one standard deviation in slope. 

However, they are more predictive than the brightest nearby nighttime lights, which has a similar 

magnitude, due to the values of these variables having a relatively less skewed distribution.  

Soil groups and ecoregion are also statistically significant predictors of where deforestation 

occurs. The coefficients for these land characteristics can be found in appendix A3. Because soil 

groups and ecoregions cover large, continuous areas these controls essentially serve as additional 

fixed effects.  

The final four specifications examine the relationship between land characteristics and 

deforestation year-by-year. The magnitudes of the coefficients on these annual deforestation 

regressions are lower to accommodate the lower area deforested in a one-year period as 

compared to a four-year period. For example, a one standard deviation change in elevation leads 

to a 0.005 percentage point increase in the probability of deforestation in 2001. This is a 55% 

increase from the annual average rate of 0.9%, comparable to the 57% increase in the probability 

of deforestation from a one standard deviation increase in elevation found in the pooled 2001-

2004 model. The average rate of deforestation for each year is listed at the bottom of the table.  

The direction and significance of relationships from the single-year regressions are generally 

consistent with the pooled regression findings. This indicates that the relationships identified 

above between land characteristics and deforestation are not driven by anomalies in any single 

year. In the annual deforestation linear probability models, elevation, slope, and the standard 

deviation of tree cover remain strongly significant predictors of deforestation. The mean nearby 

tree cover and the maximum nighttime lights value within 10 kilometers are weakly predictive of 

deforestation. The distance from a town and the distance from a road consistently lack predictive 

power.  
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Additional specifications in appendix A3 show that these findings are generally robust to the 

inclusion of additional fixed effects, variations in the clustering of standard errors, and to using a 

logit specification in place of the linear probability model.   

 

Discussion 

This investigation into drivers of deforestation in Eastern Paraguay provides a baseline for the 

patterns of deforestation that dominated in the years before the Zero Deforestation Law was 

implemented. Some of the land characteristics identified in the previous literature as drivers of 

deforestation are statistically significant predictors of deforestation during this time. However, 

the relationships that I found do not always match the results from previous research.  

In Eastern Paraguay, land that is physically better suited for agriculture is more likely to be 

deforested, as expected. Anthropological drivers, however, are less helpful than physical 

characteristics in determining where deforestation will occur. While the literature suggests that 

land nearer to population centers and infrastructure is more likely to be deforested than land that 

is further from these, I do not find that this holds. Proximity to towns and to roads does not 

significantly predict deforestation. On the other hand, proximity to patchily forested areas, which 

can indicate proximity to existing man-made clearings such as fields, is associated with higher 

levels of deforestation. 

This deviation from expected relationships likely results from the stage of agricultural 

development and deforestation in Eastern Paraguay. Much of the literature focuses on less 

deforested regions where deforestation is removing land on a forested frontier, such as in the arc 

of deforestation in the Brazilian Amazon (Kalamandeen et al., 2021). In these areas, 
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deforestation moves outwards into the forest from established roads and settlements. However, 

Eastern Paraguay has been deforested to the point where there is no clear forested frontier. 

Deforestation instead removes patches that remain between existing developed areas, some of 

which are near to towns and roads while others are not.  

The statistically significant drivers of deforestation show that the characteristics that underlie 

land’s suitability for agriculture were of vital importance when predicting where deforestation 

will occur in Eastern Paraguay. Meanwhile, anthropological characteristics cannot be counted on 

as heavily to predict where deforestation is more likely to occur. This implies that understanding 

the accessibility of a location is not a high priority when looking to understand its risk of 

deforestation. This provides valuable information for groups, such as law enforcement of NGOs, 

who wish to influence or eliminate deforestation.  

In addition to providing information that can help to enforce the Zero Deforestation Law, this 

understanding of pre-policy deforestation dynamics sets a baseline for understanding how 

deforestation changed after the Zero Deforestation Policy came into effect.  

 

IV. The Zero Deforestation Law and Aggregate Deforestation 

 

In this section, I investigate whether and how the Zero Deforestation Law impacted aggregate 

deforestation in Eastern Paraguay, and whether it impacted how drivers of deforestation predict 

deforestation. Theoretically, the law should have eliminated deforestation altogether. A quick 

look at deforestation after the Zero Deforestation Law came into effect (appendix A1) shows that 

this did not happen. However, even though it did not eliminate deforestation, the Zero 
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Deforestation Law may still have slowed it. In this section, I test whether a decrease in 

deforestation following the implementation of the Zero Deforestation Law occurred.  

Understanding the impact of the Zero Deforestation law on deforestation and on drivers of 

deforestation is important because it was such a groundbreaking piece of legislation in Paraguay. 

The outcome of this law can be used as evidence for or against similar command-and-control 

style legislation to slow deforestation in similar settings. Understanding the strengths and 

shortcomings of the policy can help Paraguay to develop more effective future policies and 

future policy implementation in the attempt to quell excessive deforestation.  

I use a linear probability model on a panel dataset of deforestation to investigate how 

deforestation changed after the Zero Deforestation Law was passed. My results show that 

deforestation fell significantly after the law was implemented. In addition, I find that commonly 

identified drivers of deforestation relate to deforestation differently in the pre- and post-policy 

periods. After deforestation became illegal, many variables become less predictive of 

deforestation. Deforestation also goes from being more common in areas with lower forest cover, 

to being more common in areas with higher forest cover, perhaps indicating a desire to hide the 

illegal action behind remaining tree cover. This analysis is not causal, but it provides strong 

suggestive evidence that the Zero Deforestation Law led to a decrease in deforestation. Other 

significant events that occurred during this time frame do not explain this decrease in 

deforestation.  

This analysis contributes to our understanding of deforestation dynamics in Eastern Paraguay. As 

mentioned in section III, Paraguay was a top contributor to deforestation globally during the 

2000s (i.e., Austin et al., 2017, Hansen et al., 2013). The Zero Deforestation Law was a major 
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piece of legislation meant to reverse this trend. The impact of this groundbreaking law on 

deforestation has not been studied in the academic literature. This study fills this gap. 

In addition, this analysis contributes to the literature on drivers of deforestation. The 

implementation of the Zero Deforestation Law provides a new setting in which to investigate 

how the relationships between land characteristics that have been identified as common drivers 

of deforestation and deforestation change when deforestation becomes illegal. Understanding 

how drivers of deforestation change when deforestation becomes illegal will enable better 

policies by allowing policymakers to anticipate the changes in deforestation patterns that a ban 

may create. It also provides valuable information for enforcement agencies acting with limited 

resources. Knowing how drivers of deforestation change once deforestation becomes illegal 

allows these organizations to update their enforcement strategies without needing to wait years 

for new data on deforestation and a new understanding of where deforestation will most likely 

occur.   

 

Assumptions for Causality 

This analysis investigates whether the Zero Deforestation Law slowed deforestation, which is 

difficult to test. If the law had been implemented at different times in different regions it would 

be possible to analyze these multiple changes over time, while other influential factors varied. 

However, the law was implemented uniformly and immediately. In addition, neighboring regions 

do not provide suitable comparison groups. Western Paraguay is physically separated from 

Eastern Paraguay by the Paraguay River and differs dramatically from Eastern Paraguay in 

population and agricultural practices. Neighboring areas in Brazil and Argentina are also 
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unsuitable because the administrative and legal settings are significantly different. Therefore, to 

analyze whether the Zero Deforestation Law impacted aggregate deforestation I examine 

whether there was a level shift in the rate of deforestation in Eastern Paraguay before and after 

its implementation.  

This approach requires assumptions for causality. Specifically, causality requires that no other 

event caused the observed changes in deforestation between the pre- and post-policy periods. I 

argue that there are few events of significance that occurred during the years in question, and that 

the potentially influential events that took place around the time of the implementation of the 

Zero Deforestation Law acted in the opposite direction of a deforestation ban, to promote 

increased deforestation in Eastern Paraguay.  

Agricultural production of soy, cattle, and, historically, cotton drove deforestation in Eastern 

Paraguay by large-scale commodity-producing and small-scale subsistence-oriented farmers and 

ranchers. Therefore, influential events with regards to the production of these commodities might 

be expected to influence deforestation. I review potential events here.  

To begin, I investigate whether fluctuations in commodity prices or unemployment rates can 

explain deforestation patterns across the pre- and post-policy periods. When prices for a 

commodity are higher the area devoted to cultivating that commodity may expand, which may 

cause more deforestation to increase the total amount of available agricultural land. I expect the 

effect to be immediate, since clearing land occurs early in the process of expanding agricultural 

area. There may also be a positive relationship between deforestation and lagged prices, as 

farmers continue to expand their cleared land in response to high prices in the previous year. 

When unemployment is higher, I expect more people to engage in agriculture, especially small-

scale subsistence-oriented agriculture, and potentially to clear more land to do so.  It is not 
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problematic for causality if deforestation is heavily influenced by these variables. However, if 

there is a shift in commodity prices or unemployment that aligns temporally with the policy, then 

changes in deforestation may be attributable to these changes rather than to changes in the 

legality of deforestation.  

Summary statistics suggest that such a shift did not occur. The average CPI-adjusted market price 

for soy remained nearly stable between the four years pre-policy and the four years post-policy, 

going from 262 to 263 CPI-adjusted U.S. dollars per metric ton. The average CPI-adjusted 

market prices for cotton and beef fell, from 92 to 75 and from 168 to 146 adjusted U.S. cents per 

pound respectively. Unemployment fell from 8.4% to 5.8% between these periods.  

I test whether these macroeconomic variables explain changes in pre- and post-policy 

deforestation better than the Zero Deforestation Law using a simple regression of total annual 

deforestation on a post-policy indicator, annual prices, and annual unemployment rates between 

2001 and 2008. The regression results are shown in Table 4. The first specification includes only 

a post-policy indicator. The coefficient is negative, and reveals that annual deforestation in the 

post-policy period is, on average, 23 thousand hectares less than in the pre-policy period. This 

relationship is not statistically significant. However, with only eight annual data points this is not 

surprising.  

The second specification includes annual commodity prices and annual unemployment rates, and 

tests whether these variables better explain the decrease in deforestation than the post-policy 

indicator. The coefficient on post remains insignificant and becomes substantially more negative. 

Once commodity prices and unemployment have been controlled for, changes in the post-policy 

period such as implementation of the Zero Deforestation Law would need to decrease 

deforestation by 308 thousand hectares per year to explain the lower deforestation seen in the 
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data. Rather than prices explaining the decrease in deforestation between the pre- and post-policy 

periods, they appear to increase deforestation. The third specification uses lagged prices, and the 

large negative coefficient on post also suggests that rather than explaining the decrease in 

deforestation, prices and unemployment may increase deforestation over this period.  

 

Table 4: Regression of total annual deforestation on annual commodity prices and unemployment 

in Paraguay between 2001 and 2008, with policy implementation at the end of 2004. 
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In addition to changes in the macroeconomic environment, changes in the policy environment or 

larger trends in commodity markets might explain deforestation during this time. Cotton, 

previously a profitable crop for small-scale producers, had fallen to a fraction of its peak area by 

the early 2000s making it no longer an influential player in land use decisions (Richards, 2011). 

Genetically modified soy was introduced in 1996 and legalized in 2004 (Correia, 2019; Richards, 

2011). Therefore, the legalization of this new production method for soy is in the time frame of 

interest. However, by 2004 genetically modified soy was already common practice (Peters, 

2015), and in any case would be expected to increase, not decrease, deforestation especially for 

large-scale agriculture.  

In 2006, the Soy Moratorium severely limited markets for soy produced on recently deforested 

land in the Brazilian Amazon. The Brazilian Amazon is geographically distant from Paraguay, 

and regions including the Brazilian Cerrado stand between the Brazilian Amazon and Eastern 

Paraguay to absorb spillovers. These limitations on clearing in the Brazilian Amazon would 

again be expected to increase, not decrease, Paraguayan deforestation through potential 

spillovers, especially for large-scale production.  

Paraguayan soy production has close ties with Brazil (Galeano, 2012), so changes in Brazilian 

policy may be relevant. In 2006, Brazil banned deforestation in the remaining Brazilian Atlantic 

Forest. This sudden change in land available for deforestation might have pushed farmers and 

other agriculturalists across the border to deforest Paraguay instead. However, little forested land 

remained in the Brazilian Atlantic Forest in 2006. A ban on deforestation on the Brazilian side of 

the border there would not be expected to generate large spillovers. If it did, that would again be 

expected to increase, not decrease, deforestation in Eastern Paraguay in the post-policy period.  
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Non-agricultural factors may have influenced deforestation in Eastern Paraguay. Previous work 

has shown that deforestation increases around elections (Ruggiero et al., 2021). Visual inspection 

of deforestation data suggests that deforestation in Eastern Paraguay spikes the year prior to a 

presidential election after deforestation becomes illegal, as shown in appendix A1. While there is 

an election in the analysis post-policy period, this again would work opposite the expected 

impact of the ban to attenuate any detected decrease in deforestation.  

Another potential concern is that changes in deforestation may be caused by a shortage of 

forested land suitable for a certain agricultural use after 2004. After all, by 2004 Paraguay had 

progressed beyond clearing an empty frontier to clearing areas of remaining forest. If this is the 

case, deforestation may decrease after 2004 due to a lack of land, rather than due to the new 

policy. If a change in the availability of land explains changes in deforestation following the Zero 

Deforestation Law, then I would expect to see a shift in the characteristics of available land that 

occurred around the time of the law’s implementation. I do not. Table 5 provides summary 

statistics for characteristics of land that remained forested at the beginning of each year. Each 

column shows the mean and standard deviations of each land characteristic for pixels that had 

forest cover at the beginning of that year and could potentially be deforested in that year.  
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Table 5: Mean and standard deviation of land characteristics for all pixels that remain forested 

at the start of each year. 

While there are gradual changes in the characteristics of forested pixels between 2001 and 2008, 

there is no evidence of a discontinuous shift between 2004 and 2005 when the Zero 

Deforestation Law came into effect. For example, the mean elevation of forested pixels fell from 

195 meters in 2001 to 191 meters in 2008. This matches my findings that, all else held constant, 

higher elevation pixels are more likely to be deforested in Eastern Paraguay. Between 2004 and 

N

Elevation mean 195.1 194.7 193.9 193.0 192.0 191.5 191.3 190.7

meters (stdv) (92.27) (92.27) (92.18) (92.19) (92.29) (92.49) (92.54) (92.76)

Slope mean 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4

degrees (stdv) (2.92) (2.93) (2.93) (2.95) (2.96) (2.97) (2.98) (2.99)

Mean tree cover mean 77.2 77.2 77.0 76.9 76.7 76.5 76.4 76.1

percent (stdv) (23.57) (23.60) (23.65) (23.71) (23.77) (23.81) (23.83) (23.88)

Mean tree cover within 100m mean 63.1 63.1 63.1 63.0 62.9 62.7 62.7 62.4

percent (stdv) (24.35) (24.35) (24.35) (24.36) (24.38) (24.38) (24.38) (24.39)

St. dev. of tree cover within 100m mean 28.6 28.5 28.5 28.4 28.4 28.4 28.4 28.3

value (stdv) (7.05) (7.04) (7.03) (7.02) (7.02) (7.03) (7.04) (7.06)

Mean tree cover within 1km mean 40.2 40.1 40.1 40.1 40.0 39.9 39.8 39.6

percent (stdv) (19.05) (19.06) (19.07) (19.08) (19.10) (19.09) (19.08) (19.06)

St. dev. of tree cover within 1km mean 37.2 37.2 37.1 37.1 37.0 36.9 36.9 36.8

value (stdv) (7.54) (7.55) (7.56) (7.57) (7.59) (7.60) (7.61) (7.63)

NTL mean 1.7 1.7 1.7 1.7 1.8 1.8 1.8 1.8

NTL value (stdv) (15.55) (15.60) (15.69) (15.78) (15.92) (15.97) (16.00) (16.04)

Maximum NTL within 1km mean 5.3 5.3 5.4 5.4 5.4 5.5 5.5 5.5

NTL value (stdv) (31.35) (31.45) (31.61) (31.80) (32.05) (32.19) (32.25) (32.41)

Maximum NTL within 10km mean 91.2 91.4 91.9 92.1 92.6 93.0 93.1 93.6

NTL value (stdv) ###### ###### ###### ###### ###### ###### ###### ######

Distance from a town mean 30.9 30.8 30.8 30.8 30.8 30.8 30.8 30.8

5 km bins (stdv) (16.54) (16.55) (16.58) (16.64) (16.70) (16.72) (16.73) (16.76)

Distance from a main road mean 15.3 15.3 15.3 15.3 15.4 15.4 15.4 15.4

5 km bins (stdv) (10.82) (10.83) (10.84) (10.87) (10.89) (10.91) (10.91) (10.91)

2007 2008

934,944 926,917 915,451 900,482 881,394 869,839 863,943 849,084

2001 2002 2003 2004 2005 2006
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2005, however, the mean elevation of forested pixels only fell by only one meter. This is a 

similar magnitude as the change in mean elevation of forested pixels between 2002 and 2003, or 

between 2003 and 2004.  

Other land characteristics also display a gradual change over the period and do not exhibit an 

abrupt shift between 2004 and 2005. This indicates that land that was available to be deforested 

in 2004 did not differ significantly from land that was available to be deforested in 2005. Abrupt 

changes in post-deforestation land use patterns after the Zero Deforestation Law came into effect 

should not, therefore, be attributed to changes in the type of land still under forest cover and 

potentially available to be deforested. Instead, the evidence suggests that change in post-

deforestation agricultural land use seen after the implementation of the Zero Deforestation Law 

can be attributed to the passage of this law. 

All larger trends and events considered during this time therefore would either not be expected to 

impact deforestation, or would be expected to increase deforestation after the Zero Deforestation 

Law was passed. Therefore, I argue that any significant change in deforestation between the 

periods immediately before and after implementation can be largely attributed to this law and its 

enforcement.  

 

Data and Methods 

I use a linear probability model to investigate the impact of the Zero Deforestation Law on 

aggregate deforestation. The model tests whether there was a level shift in the rate of 

deforestation before and after implementation. The analysis uses the same random sample as the 

analysis of the drivers of deforestation. I select one percent of the pixels in Eastern Paraguay, and 



46 
 

retain pixels that have forest cover of at least thirty percent in 2000, resulting in just under one 

million observations. These observations are duplicated to create a panel with one copy of each 

observation before and one copy after implementation. Pixels that lost forest cover in the pre 

period are removed from the post period data. This duplication enables me to analyze 

deforestation before and after the Zero Deforestation Law is implemented simultaneously in a 

single model. Standard errors are clustered at a half degree latitude longitude grid to control for 

spatial correlation in the error term. 

The outcome of the linear probability model is a deforestation indicator equal to 1 if the pixel 

lost forest cover between 2001 and 2004 for the pre observations and equal to 1 if the pixel lost 

forest cover between 2005 and 2008 in the post observations.  

The variable of interest is a post-policy indicator. The indicator equals one for all location 

observations in the post-period, both those that remain forested throughout the post period and 

those that lose cover during the post period. I estimate three specifications.  

The first specification includes the post-policy indicator and does not control for any additional 

explanatory variables. This specification tests whether there was a significant change in the 

amount of deforestation in the pre-policy and post-policy periods.  

𝐷𝑖𝑡 = 𝑝𝑜𝑠𝑡𝑡 + 𝜖𝑖𝑡 

The second specification includes the post-policy indicator and also controls for physical and 

anthropological land characteristics that have been identified as drivers of deforestation in the 

literature. All continuous explanatory variables are demeaned and normalized by their standard 

deviation. This specification investigates whether any changes in deforestation between the pre- 
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and post-policy periods can still be attributed to the law’s implementation once other factors have 

been accounted for.  

𝐷𝑖𝑡 = 𝑝𝑜𝑠𝑡𝑡 + 𝛽𝑋𝑖 + 𝜖𝑖𝑡 

The third specification adds to the second by including interactions between the physical and 

anthropological characteristics and the post-policy indicator. The interaction terms reveal how 

the relationships between land characteristics and deforestation change after the Zero 

Deforestation Law is implemented.  

𝐷𝑖𝑡 = 𝑝𝑜𝑠𝑡𝑡 + 𝛽𝑋𝑖 + 𝑝𝑜𝑠𝑡𝑡 ∗ 𝛽𝑋𝑖 + 𝜖𝑖𝑡 

Additional specifications are investigated and reported in appendix A4.  

 

Results 

The results of the linear probability model investigating the impact of the Zero Deforestation 

Law on aggregate deforestation in Eastern Paraguay are shown in Table 6. Full results, including 

the coefficients on soil groups and ecoregions, can be found in appendix A4.  
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Table 6: Linear probability models regressing deforestation on land characteristics and a post-

policy indicator. 

The negative and significant coefficient on the post-policy indicator in the first specification 

indicates that deforestation decreased after the Zero Deforestation Law was implemented. Not 

controlling for any other variables, the probability of deforestation fell by 0.011 percentage 

points between the pre- and post-policy periods. This matches the drop in the deforestation rate 

from around 6% of forested pixels lost in the four years before the policy was enacted, to around 

5% of forested pixels lost in the four years after. This drop in deforestation significant, implying 

that it is larger than would be expected if it were due to random variation rather than to a change 

in deforestation after the Zero Deforestation Law was implemented.  

The coefficient on the post-policy indicator remains consistent in the second specification, which 

controls for land characteristics. This indicates that the decrease in deforestation after the policy 

was enacted is not due to changes in the characteristics of land available to be deforested. That is 

to say, the drop in deforestation is not due to a sudden shortage of land with characteristics that 

make it suitable for agriculture. The relationships between land characteristics used as control 

variables and deforestation are consistent with findings in section III. Deforestation is more 

likely on higher elevation, flatter land with patchy tree cover that is not near dense population 

centers.  

The third specification allows these relationships between land characteristics and deforestation 

to vary before and after the Zero Deforestation Law came into effect. This is done by including 

interactions between the post-policy indicator and each explanatory land characteristic with the 

two exceptions of soil group and ecoregion. This is because these two controls cover large 

continuous areas, and can be seen as fixed effects that offer insufficient variation with which to 
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estimate meaningful coefficients. Interacted land characteristics are demeaned, allowing the 

coefficient on the post-policy indicator to be interpreted as-is despite the interaction terms. The 

coefficient on the post-policy indicator is consistent with the prior specifications, showing a 0.01 

percentage point decrease in the probability of deforestation after the Zero Deforestation Law 

was implemented.  

Coefficients on these interactions identify whether and how the relationship between each land 

characteristics and deforestation changed after the Zero Deforestation Law was implemented. 

Post-implementation, deforestation shifts towards relatively steeper and relatively lower lying 

land than was cleared before the policy. Before implementation, deforestation was 0.034 

percentage points more likely to occur on land where elevation is one standard deviation above 

the mean, all else constant. After implementation, the impact of a one standard deviation increase 

in elevation is reduced by 0.021 percentage points, meaning that locations where elevation is one 

standard deviation higher 0.013 percentage points more likely to be deforested. This means the 

probability of deforestation drops from 13.5% to 11.3% for locations that have an elevation one 

standard deviation above the mean when added to a baseline average deforestation rate of 10.1% 

between 2001 and 2008. The results are similar for slope. Before implementation, a one standard 

deviation increase in slope meant a 0.017 percentage point decrease in the probability of 

deforestation. After implementation, this falls to a 0.012 percentage point decrease in the 

probability of deforestation. The shifts are not large enough to reverse the patterns, and 

deforestation remains more likely to occur on flatter, higher elevation areas even after the ban 

occurs. However, the magnitude of the relationship and therefore the power of the land 

characteristic to predict deforestation is weakened. This means that it became more difficult to 

predict where deforestation will occur based on these characteristics after implementation.  
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Deforestation also becomes more likely in areas that are more densely forested and less patchy. 

Deforestation remains more likely to occur in areas of patchy cover, but the relationship between 

this variable and the probability of deforestation is again weakened.  

The relationship between nearby forest cover and deforestation reverses in the post-policy 

period. After the law is implemented, deforestation is more likely to occur in areas with high 

nearby forest cover, whereas before the policy deforestation was more likely to occur in areas 

with low nearby forest cover. This could indicate that new deforestation is hidden within existing 

forest, or that deforestation is moving into areas that were previously less desirable and therefore 

left uncleared. Deforestation also becomes more likely closer to bright nighttime lights values, 

but the relationship remains negative and the magnitude, when taken into account with the 

extreme skewedness of the variable, is nearly negligible. Distance from a town and distance from 

a road remain insignificant in predicting deforestation after the ban is put in place.  

Results are generally robust to additional specifications which can be found in appendix A4. 

Additional specifications include varying the level of clustering for the standard errors, including 

alternate fixed effects, using a logit model, and removing deforestation in 2004 and 2005 from 

the panel. Most relationships remain consistent. The logit specification suggests that distance 

from towns and roads may be significant, however the predictive power of this relationship is 

low. Removing the years directly before and after implementation provide evidence that the 

magnitude of the decrease in deforestation may be lower than found on the main specification, 

but do not discredit the main results. Additional causal research will be needed to confirm how 

much of the amount of the decrease in deforestation detected between the pre- and post-policy 

period can truly be attributed to the Zero Deforestation Law.  
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Discussion 

After the Zero Deforestation Law was implemented at the end of 2004, deforestation became 

illegal. Although it did not stop, the rate of deforestation decreased. This decrease cannot be 

attributed to other significant events that took place at the end of 2004, or in the years directly 

proceeding or following this time. In fact, many events that might have impacted deforestation 

during this time would be expected to increase deforestation after the ban, leading to a potential 

attenuation of the measured impact of the ban.  

This decrease in deforestation also cannot be explained by a change in the characteristics of land 

available to be deforested in the pre- and post-policy period. There is no abrupt change in the 

characteristics of land available for deforestation between 2004 and 2005. In addition, 

regressions of deforestation on a post-policy indicator and land characteristics reveal a 

significant decrease in deforestation after the Zero Deforestation Law is implemented. This 

decrease in deforestation is robust to controlling for land characteristics, and also to including 

interactions between these land characteristics and the post-policy period. This second 

specification with interaction terms reveals that in addition to the rate of deforestation slowing 

after deforestation becomes illegal, the types of land that are deforested change. After the ban is 

enacted, land that is relatively lower-lying, steeper, less patchy, and nearer to bright nighttime 

lights is more likely to be cleared. The change is not enough to reverse the relationships between 

these variables and deforestation. However, the magnitudes and therefore the predictive power of 

these variables is decreased.  

After the ban, the relationship between nearby mean forest cover and deforestation does reverse, 

with more deforestation occurring in areas with higher mean forest cover within 100 meters. This 

may indicate that the deforestation that occurs after the ban is implemented is conducted in areas 
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hidden by existing forest cover. It may also indicate that, once deforestation is illegal, areas that 

were previously less desirable and left densely forested are now more attractive for clearing.   

The evidence suggests that this command-and-control policy had a statistically significant impact 

on deforestation. However, deforestation continues. If Paraguay wants to further decrease 

deforestation, then additional policies, or additional means of implementing this policy, must be 

considered. These future approaches should take into account the ways in which deforestation 

patterns changed post-policy to proactively plan appropriate enforcement or policy actions.  

 

V. Heterogeneous Policy Impacts Across Groups of Farmers 

 

In the previous section I showed that deforestation in Eastern Paraguay decreased after the Zero 

Deforestation Law was implemented. However, the amount that deforestation fell may have 

varied across different land uses. In this section, I investigate whether the extent of the decrease 

in deforestation varied across three types of farming systems: small-scale subsistence-oriented 

farming, large-scale commodity-oriented farming, and ranching following the implementation of 

the Zero Deforestation Law.  

The Zero Deforestation Law altered the decision-making process of whether to clear land or to 

leave it forested by making deforestation illegal. For some land managers the magnitude of the 

potential punishment, which could be 500 to 2000 daily wages, a common measure of the pay for 

a day of work, or 3 to 8 years’ incarceration, in combination with the low enforcement rate were 

insufficient to deter deforestation when weighed against the benefits of clearing. For others, the 
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possibility of punishment was enough to halt clearing. The decision varied depending on 

characteristics of the land parcel in question and characteristics of the land manager. 

The distribution of decreases in deforestation across agricultural groups has important 

implications for environmental, equity, and economic impacts of the Zero Deforestation Law. 

The three post-deforestation land uses considered here are associated with different 

environmental outcomes, socioeconomic groups, and GDP-generating potential. Understanding 

the heterogenous impacts of a policy within its area of implementation is important to avoid 

unintended or unanticipated side effects.  

It is difficult to analyze how small-scale farmers, large-scale farmers, and ranchers were 

impacted by the Zero Deforestation Law because the use of land in Eastern Paraguay after it is 

deforested is not systematically tracked. Therefore, to answer this question, I generate a dataset 

classifying deforested areas into post-deforestation agricultural use categories. I generate this 

data by combining the rich Global Forest Watch data on where deforestation occurs with widely 

available physical and anthropological attributes of these locations. The process has three basic 

steps. First, I manually label the post-deforestation land use for a sample of deforested locations 

as either small-scale agriculture, large-scale agriculture, rangeland, or other.  

Second, I use this sample to train random forest models that classify the type of agriculture most 

likely to occur on deforested locations based on land characteristics. I expect that land that is 

more likely to be deforested due to a specific characteristic, such as having low slope, is also 

most likely to be deforested for a specific use. Flatter parcels may be more likely to be 

deforested, and also more likely to be deforested for large-scale mechanized soy production 

which cannot be conducted on steeply sloping parcels. Even land characteristics that do not 

significantly impact the probability of deforestation may significantly impact the type of 
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agriculture practiced post-clearing. In my earlier analyses, I find no significant link between 

proximity to towns or roads and deforestation. However, parcels near towns may be more likely 

to be deforested for small-scale agriculture than for large-scale agriculture or for rangeland 

because small-scale producers typically cultivate fields within easy walking or driving distance 

from their homes. Meanwhile, locations far from population centers or far from roads may be 

more likely to be deforested for rangeland or large-scale agricultural because these require less 

frequent local labor.  

Finally, I predict the post-deforestation agricultural uses for all locations deforested around the 

time the Zero Deforestation Law was implemented. I find that less area is deforested for large-

scale agricultural use post-policy than is deforested for large-scale agricultural use pre-policy. 

This change includes a composition effect and a land use effect. Under the composition effect, 

different locations are selected for deforestation after deforestation becomes illegal. Some 

parcels that would have been cleared in a world where deforestation is allowed are no longer 

cleared when deforestation is illegal, and vice versa. In net, less area is cleared in the post-policy 

period than in the pre-policy period. Under the land use effect, the use of deforested land changes 

after the law came into effect. I find that land that is deforested post-policy is less likely to be 

used for large-scale agriculture and more likely to be used for small-scale agriculture or 

rangeland than that same parcel had it been deforested pre-policy. For rangeland and small-scale 

uses, the increase in deforestation from the composition effect makes up for the decrease in 

deforestation due to the land use effect. When the two effects are considered, total deforestation 

for rangeland and small-scale use remains nearly stable pre- and post-policy. Meanwhile both the 

land use effect and the composition effect lead to a decrease in deforestation for large-scale 
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agriculture. This leads to an overall decrease in clearing for large-scale agriculture post-policy as 

compared to pre-policy.  

This research contributes to the literature on the distribution of deforestation policy impacts 

across local populations. This is in contrast to a more traditional focus on a deforestation policy’s 

efficiency in slowing aggregate deforestation, which I investigate in section IV. Heterogeneous 

policy impacts can take many forms. For example, heterogenous impacts can show up as 

different policy outcomes across groups, across space, or across both groups and space (Kazungu 

et al., 2021; Carvalho et al., 2017; Assuncao et al., 2017). In this analysis I focus on 

heterogeneous impacts across agricultural groups. The distribution of these impacts is important 

to understand because different outcomes may exacerbate any existing economic inequalities 

between groups (Nagel, 1999; Kovacic and Viteri, 2017). While implications of deforestation 

policies for specific groups of farmers are often discussed (i.e. Grabs et al., 2021), little empirical 

research focuses on this topic. This analysis contributes to this gap by showing that the Zero 

Deforestation Law primarily slowed deforestation for large-scale agricultural land use, but did 

not lead to meaningful changes in total deforestation for small-scale or rangeland uses. This 

finding provides valuable information for future work on the environmental, equity, and 

economic implications from the distribution of impacts of the Zero Deforestation Law.  

This analysis also contributes to our understanding of drivers of deforestation. As mentioned in 

previous sections, a rich literature exists on the land characteristics that drive deforestation or 

that slow deforestation. In the first two analyses I investigate how these drivers relate to 

deforestation in Eastern Paraguay, both before and after the Zero Deforestation Law. In this 

section, I further this understanding of drivers of deforestation by showing that they can be used 

not only to predict deforestation, but also to predict the use for which land is deforested. While 
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anthropological characteristics are not very useful in predicting deforestation in Eastern 

Paraguay, they are useful in determining the type of land use post-deforestation. Physical 

characteristics are significant predictors both of whether deforestation will occur, and what the 

post-deforestation land use will be. I find that measures of nearby characteristics are often better 

predictors of what the post-deforestation land use will be than measures of land characteristics at 

a location. Understanding what type of deforestation is most likely to occur in locations with 

different characteristics is valuable information for enforcement agencies attempting to manage 

deforestation.  

Finally, this analysis contributes a method to classify post-deforestation land use that can be 

replicated in other data-scarce regions. Paraguay, like many less developed regions, lacks data on 

post-deforestation land use. The three-step method outlined in this analysis relies on manually 

generated training data and globally available, open-source satellite-derived data to classify land 

use. This method can be used in other regions where there is limited information on the use of 

land. This method vastly expands the regions for which this type of analysis can be undertaken, 

and can help to broaden the focus of existing deforestation research.  

 

Generating Post-Deforestation Land Use Training Data 

The first step I take to generate data on agricultural land uses after deforestation is to generate 

labeled training data. I use stratified random sampling to select a sample of pixels from the set of 

all pixels in Eastern Paraguay that have at least thirty percent forest cover in 2000 and that lost 

forest cover between 2001 and 2010. Sampling is stratified by year of loss, with the number of 
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observations in each year proportional to the total deforestation between 2001 and 2010 that took 

place in that year.  

I use Google Earth Pro images to manually categorize the post-deforestation agricultural land use 

for each sampled location as small-scale, large-scale, rangeland or other. Categorization is based 

on a few key characteristics of the satellite images. The first is clearing size. Clearing size is the 

area, in hectares, of the pasture, field, or other cleared area that contains the sampled deforested 

location, as delineated by visible field boundaries or boundaries between forest and cleared 

areas. The clearing size is assessed using built-in measurement tools. The second key 

characteristic is signs of mechanized agriculture. This appears in the satellite images as uniform 

areas with linear vegetation patterns left behind by tractors or other farm equipment. The final 

key characteristic is settlement patterns. In Eastern Paraguay settlement patterns most commonly 

display as houses along a road with property boundaries extending outwards from the residences. 

Within these property boundaries are numerous small fields and pasture areas. In some cases, 

settlement patterns are circular with fields radiating from a central group of houses, or less 

structured with houses and small fields interspersed in a less planned manner.  

Recently deforested pixels that are in a clearing of less than five hectares and located within 

settlement patterns are categorized as having been cleared for small-scale agriculture. Recently 

deforested pixels that are in a clearing larger than five hectares, display patterns of mechanized 

agriculture, and are not located within a settlement pattern are categorized as having been cleared 

for large-scale agriculture. Recently deforested pixels that are in a clearing greater than five 

hectares, do not show evidence of mechanized agriculture, and are not located within a 

settlement pattern are categorized as rangeland. Figure 3 shows examples of recently deforested 
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locations that I sorted into small-scale agriculture, large-scale agriculture, and rangeland, 

respectively.  

 

Figure 11: Examples of each post-deforestation agricultural land use category in training 

location satellite imagery from Google Earth Pro.  

Recently cleared pixels that do not fit into one of these categories are classified individually 

based on information from the satellite image. For example, a 10-hectare mechanized field that is 

adjacent to a settlement would be classified as large-scale agriculture despite the proximity to 

houses that is typical of small-scale clearings. Deforestation for non-agricultural purposes, such 
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as deforestation for a road or for urban development, are classified as other. The final training 

sample includes 136 observations of small-scale agriculture, 145 observations of large-scale 

agriculture, and 191 observations of rangeland. 29 observations, or 6% of the sample, fall into 

the other category. The distribution of post-deforestation agricultural land uses in the training 

data by land use category and year can be found in appendix A5.   

 

Classifying Agricultural Land Use  

I use the sample of data labeled with post-deforestation use to train random forest classification 

models that predict whether a pixel is most likely to be used for small-scale agriculture, large-

scale agriculture, rangeland, or other uses after being cleared. Random forest is a decision tree-

based machine learning algorithm that generates predictions by averaging the predicted outcome 

across many decision trees. The prediction is the class that is chosen most frequently across all 

trees. The number of trees is set to 500, and at each branch a split is made based on one of four 

characteristics randomly selected from the list of physical and anthropological variables.  

These characteristics on which the predictions are based are physical or anthropological land 

characteristics that have been identified as drivers of deforestation in the literature. I expect that a 

characteristic that makes land more likely to be deforested also makes land more likely to be 

deforested for a specific reason. For example, I found in previous sections that land with a lower 

slope is more likely to be deforested than land with a higher slope. It may also be more likely to 

be deforested for large-scale, mechanized soy production since this production practice cannot be 

conducted in steeply sloped areas. Meanwhile, steeper areas may be more likely to be deforested 

for small-scale agriculture, which can more easily alter fields to deal with higher grades. Similar 
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patterns may exist with respect to other characteristics, including those that are not associated 

with more or less deforestation. For example, my analyses of the drivers of deforestation found 

that distance from a town has no significant relationship with deforestation. However, I expect 

that land closer to a town will be more likely to be deforested for small-scale agriculture 

practiced by residents of that town. Land that is further from a town may be more likely to be 

deforested for large-scale agriculture or rangeland uses, which do not require local labor.    

The training data for which I generate labels is representative of the full set of deforested 

locations, which is the set of pixels for which I will generate agricultural land use predictions. 

Table 7 summarizes the means and standard deviations of land characteristics that are used as 

predictive variables. The first three columns summarize land characteristics for pixels in the 

training data, all together and separated into pixels deforested pre- and post-policy. The final 

three columns summarize land characteristics for all pixels deforested in Eastern Paraguay 

during the same period, again all together and separated into pixels deforested pre- and post-

policy. The means and standard deviations are similar between the training and full datasets, 

indicating that the training data represent the full dataset well.  
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Table 7: Summary statistics of explanatory variable values for all pixels deforested in Eastern 

Paraguay, and for pixel observations in the training dataset for the random forest models. 

I train two random forest models. A pre model is trained using observations that were deforested 

before the Zero Deforestation Law came into effect (before 2005) and reflects patterns in 

deforestation that dominated when deforestation was legal. A post model is trained using 

observations that were deforested after the Zero Deforestation Law came into effect (after 2004) 

and reflects patterns in deforestation that dominated when deforestation was illegal. Statistics on 

the models’ accuracies are in appendix A6. 

training training

pre

training

 post

all all

pre

all

post

2001-2010 2001-2004 2005-2010 2001-2010 2001-2004 2005-2010

Variable unit
N = 501 N = 255 N = 246

N = 

10,500,507

N = 

5,335,085

N = 

5,165,422

Elevation meters mean 238.435 252.949 223.39 235.0 247.5 222.1

(stdv) (82.62) (84.28) (78.24) (74.91) (73.98) (73.66)

Slope degrees mean 3.157 3.199 3.113 3.1 3.2 3.0

(stdv) (2.10) (2.23) (1.97) (2.11) (2.13) (2.09)

Soil group categorical mean . . . . . .

(stdv) . . . . . .

Ecoregion categorical mean . . . . . .

(stdv) . . . . . .

Mean tree cover percent mean 87.519 86.588 88.484 87.8 86.8 88.9

(stdv) (17.68) (18.10) (17.23) (17.04) (17.28) (16.73)

Mean tree cover within 100m percent mean 69.155 65.945 72.483 69.7 66.7 72.8

(stdv) (23.11) (23.95) (21.75) (22.99) (23.60) (21.91)

St. dev. of tree cover within 100m value mean 30.691 31.333 30.026 30.5 31.3 29.6

(stdv) (7.18) (7.60) (6.68) (6.52) (6.88) (6.00)

Mean tree cover within 1km percent mean 44.757 40.855 48.801 45.2 42.9 47.7

(stdv) (19.11) (18.89) (18.53) (18.15) (17.90) (18.09)

St. dev. of tree cover within 1km value mean 39.956 39.456 40.475 40.5 40.4 40.5

(stdv) (6.16) (6.35) (5.92) (5.72) (5.87) (5.56)

NTL NTL value mean 1.312 0.481 2.174 1.0 0.9 1.2

(stdv) (16.28) (1.45) (23.18) (10.21) (7.75) (12.24)

Maximum NTL within 1km NTL value mean 3.52 2.468 4.611 3.8 3.4 4.2

(stdv) (21.77) (7.16) (30.19) (19.71) (16.45) (22.57)

Maximum NTL within 10km NTL value mean 59.517 66.652 52.12 67.8 66.6 69.0

(stdv) (106.78) (125.31) (82.96) (124.40) (119.80) (128.97)

Distance from a town 5 km bins mean 31.537 30.98 32.114 31.4 31.3 31.5

(stdv) (14.19) (13.41) (14.96) (14.28) (13.67) (14.88)

Distance from a main road 5 km bins mean 15.729 15.569 15.894 15.1 15.1 15.1

(stdv) (10.77) (10.41) (11.15) (9.99) (9.59) (10.40)

Protected when deforested indicator mean 0.06 0.02 0.09 0.06 0.05 0.07

(stdv) (0.24) (0.17) (0.30) (0.24) (0.21) (0.26)
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Some land characteristics are more influential in predicting the post-deforestation agricultural 

land use than others. This is reflected in the importance metric, which measures the mean 

decrease in the Gini coefficient of the model’s classification that can be attributed to that 

variable. A variable with a higher importance value is more informative for splitting observations 

into the correct categories than a variable with a lower importance value. The importance of 

explanatory variables for predicting post-deforestation land use for the pre and post models 

ordered by importance is shown in Figure 12.  

The order of importance is similar between the pre and post models. In both models, variables 

related to human activity are ranked higher in importance. Influential human activity-related 

variables include the maximum nighttime lights values within one and ten kilometers, the 

distance to the nearest town, and the distance to a main road. Elevation and soil group are 

influential predictors as well, especially in the pre model. Another pattern that emerges is that 

statistics of nearby areas are more influential than values at the pixel location. This can be seen 

in the low importance of measures of nighttime lights and measures of tree cover at the pixel 

location.  
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Figure 12: Variable importance plots for the pre and post random forest models that predict 

post-deforestation agricultural land use. 

The output of the model is predicted agricultural land use. I generate a land use prediction for 

every pixel that lost forest cover in Eastern Paraguay in the four years before and after the Zero 

Deforestation Law’s implementation. Predictions generated using only subsets of explanatory 

variables in the final model can be mapped to visualize how the model builds complexity with 

the addition of relevant variables. This is illustrated in Figure 13. Panels A through C predict 

post-deforestation land use with pre-policy deforestation observations, using models trained on 

progressively more explanatory variables.  Panel D predicts post-deforestation land use with 

post-policy deforestation observations. The area lost is amplified for visibility, and therefore 

greatly overestimates the amount of deforestation. The actual amount of deforestation that 

occurred between 2001 and 2008 is mapped in Figure 2. 
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The predictions in Panel A are generated based only on elevation. In general, the western side of 

Eastern Paraguay has lower elevation, and the eastern side of Eastern Paraguay has higher 

elevation. This as can be seen in the map of elevation in Figure 3. The results of this simple 

prediction show that, not controlling for any other variables, low-lying land is more likely to be 

used for small-scale agriculture after deforestation and higher elevation land is more likely to be 

used for large-scale agriculture. However, I expect that other variables are also important 

predictors of deforestation and should be accounted for in the prediction.  

Panel B predicts the land use category using all of the physical characteristics from the full 

model: elevation, slope, soil group, and ecoregion. The distribution of these land characteristics 

are mapped in figures 3 through 6. The pattern of small-scale agriculture in low-lying areas and 

large-scale agriculture at higher elevations is still evident but it is less pronounced. Clear 

divisions now emerge between the land use classes along soil group boundaries. For example, on 

the western side of the region a distinct break appears between acrisols, which are predominantly 

predicted to go to large-scale agriculture, and leptosols, which have a more even mix of predicted 

agricultural classes. 

Panel C illustrates predictions from the full pre model, which incorporates all physical and 

anthropological explanatory variables summarized in Table 7. Maps of the data underlying these 

anthropological variables can be found in figures 7 through 9. Patterns revealed using only 

physical characteristics remain. However, the predicted boundaries in land use classes are less 

exact once human patterns are considered. In addition, areas near towns are roads become much 

more likely to be small-scale agriculture once these characteristics have been added to the model. 

For example, land surrounding the capital city of Asuncion, around the midpoint of the western 

border, is almost entirely predicted to go to small-scale agriculture post-deforestation. In 
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addition, there is a linear pattern of small-scale predictions along the highway connecting 

Asuncion with Cuidad del Este on the eastern border. Panel D again uses all explanatory 

variables in the prediction, but this time the model is trained using deforestation that took place 

post-policy, rather than pre-policy. Similar patterns are evident overall, including less large-scale 

agriculture predicted at lower elevations, different classes dominating predictions in different soil 

groups, and a dominance of small-scale predictions surrounding population centers and 

important roads. However, there are minor but visible differences between the post-policy 

prediction in panel D and the pre-policy prediction in panel C. For example, in the post-policy 

prediction the dominance of large-scale agriculture in the acrisols soil group is diminished 

compared to the pre-policy prediction.  



67 
 

 

Figure 13: Maps of post-deforestation land use predictions illustrate how predicted lan use 

distributions are influenced by the addition of explanatory variables. Deforested area is 

magnified for visibility. Panel A predicts pre-policy land use using only elevation. Panel B 

predicts pre-policy land use using all physical land characteristics. Panel C predicts pre-policy 

land use using all physical and anthropological characteristics. Panel D predicts post-policy 

land use using all physical and anthropological characteristics.  
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Partial plots of the relationship between each variable and the agricultural land use classes reveal 

how the probability of predicting each class changes as the value of a land characteristic varies, 

holding all else constant. Because they are run separately, magnitudes should not be compared 

between the pre and post models. Some interesting patterns emerge. The correlation between 

elevation and land use noted in the maps is again evident in the partial plot for elevation, in 

Figure 14. Small-scale use is more likely to be predicted at moderately low elevations, and large-

scale use is more likely to be predicted at higher elevations. There is a weaker predictive pattern 

for rangeland.  

 

Figure 14: Partial plots for elevation for large-scale, rangeland, and small-scale post-

deforestation uses. Partial plots of the relationship between each variable and the agricultural 
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land use classes reveal how the probability of predicting each class changes as the value of a 

land characteristic varies, holding all else constant. 

The maximum nighttime lights values within one and within ten kilometers had among the 

highest importance values of all explanatory variables. The partial plots for these two variables 

are shown in Figure 15. The plots do not include the full range of nighttime lights values to 

emphasize variation at lower values where the training data is denser.  

The patterns track reasonable expectations about the locations of the different types of 

agriculture. In Eastern Paraguay towns and settlements have nighttime lights values ranging from 

the double to triple digits. Pixels within one kilometer of towns or settlements are much more 

likely to be converted to small-scale agriculture than to rangeland or large-scale use after 

deforestation, all else constant. It is intuitive that pixels in the direct vicinity of settlements will 

be used by residents of these settlements for small-scale agriculture. Having a town or settlement 

within ten kilometers, however, does not bias the prediction towards small-scale use. Meanwhile 

pixels near no or very low nighttime lights, indicating no or very low economic activity, are less 

likely to be small-scale and more likely to be rangeland, all else held constant. This matches 

reasonable expectations since rangelands do not require heavy human capital inputs and 

therefore can be located further from population centers. Rangeland is a viable use of land with 

lower soil fertility, meaning rangeland can be more easily established in areas that agricultural 

populations did not prioritize. Partial plots for the remaining variables can be found in appendix 

A7.  
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Figure 15: Partial plots for the maximum nighttime lights value within 1 kilometer and the 

maximum nighttime lights value within 10 kilometers for large-scale, rangeland, and small-scale 

post-deforestation uses. Partial plots of the relationship between each variable and the 

agricultural land use classes reveal how the probability of predicting each class changes as the 

value of a land characteristic varies, holding all else constant. 

 

Post-Deforestation Agricultural Land Use 

The goal of this section is to analyze changes in the agricultural use of newly cleared land before 

and after the Zero Deforestation Law was implemented. Data on post-deforestation land use with 

which to do this do not exist, but the models generated above can be used to predict this data. 
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This prediction is the final step in this three-step process to generate post-deforestation land use 

data.  

Predictions are generated for all pixels that lost forest cover in Eastern Paraguay in the four years 

before and after implementation using the pre and post models. The best prediction for a pixel 

deforested before the Zero Deforestation Law was implemented is made with the pre model. The 

best prediction for a pixel deforested after the Zero Deforestation Law was implemented is made 

with the post model. I use “best” to describe these predictions to differentiate between these 

predictions and other possible predictions discussed later.  

 

Figure 16: The proportion of the area deforested in each year that went into large-scale, 

rangeland, or small-scale agricultural use, or other uses. Deforestation is for the calendar year, 

from January 1st to December 31st of the stated year. 

Figure 16 summarizes the proportion of the area that was deforested in each year by land use, 

using the best predictions. Each year includes the deforestation that occurred during that calendar 
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year, from January 1st and December 31st. Implementation of the Zero Deforestation Law is 

indicated by the dashed line between 2004 and 2005. The results reveal a drop in the proportion 

of deforested area going into large-scale agricultural use after the Zero Deforestation Law is 

passed, and a corresponding increase in the proportion of deforested area going into rangeland 

and small-scale uses. A negligible proportion of the total area cleared is predicted to go to other 

uses in both the pre- and post-policy periods.  

Figure 17 plots the magnitude of the area that was deforested in each year by land use. The best 

predictions are shown in solid lines. Variation in the total amount of deforestation between years 

is due to variation in the total deforestation that occurred in each year, rather than due to model 

outcomes. A decrease in the area going to large-scale use after the Zero Deforestation Law is 

implemented is again evident when considering the magnitude of deforestation predicted for 

each land use, rather than the proportion. Addition years of predictions are available in appendix 

A8, though it should be noted that predictions become less reliable as time from the training data 

increases.  
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Figure 17: Agricultural land use predictions after deforestation for pixels deforested between 

2001 and 2019. Solid lines are best predictions generated using the model corresponding to the 

deforestation year, the pre model until 2004 and the post model after 2004. The dashed lines are 

counterfactual land use predictions generated using the alternative model. 

In addition to the best predictions, counterfactual land use predictions can be made for deforested 

pixels. These counterfactual predictions are made on pixels that are actually deforested. They do 

not account for changes in the location or amount of deforestation between the pre and post 

policy periods. Rather, the counterfactual predicts the land use that a pixel would be put to if it 

had been deforested under the counterfactual policy scenario. These counterfactual predictions 

are made by predicting land use for deforested pixels with the model that does not match the 

period in which deforestation occurred. For pixels deforested after the Zero Deforestation Law 
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was passed, the counterfactual prediction shows the use that the pixel would have gone to if it 

had been deforested before the law was passed, when deforestation was legal. For pixels 

deforested before the law was passed, the counterfactual prediction shows the use that the pixel 

would have gone to if it were deforested post-policy implementation, when deforestation is 

illegal.  

This sheds light on how the decrease in deforestation for large-scale agriculture revealed by the 

best predictions was achieved. The counterfactual predictions for the post-policy period are 

shown in dashed lines in Figure 17. The counterfactual predictions for the pre-policy period are 

not shown in Figure 17 in order have a cleaner figure for the discussion. The mean values, 

however, are provided in Table 8. Table 8 provides, for both the best predictions and the 

counterfactual predictions, the magnitude and the average percent of total deforestation by land 

use class for the four years before and the four years after the Zero Deforestation Law.  
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Table 8: The average percent of total deforested area and the hectares of deforested area 

predicted go into each land use post-deforestation are summarized for the four years before and 

the four years after the Zero Deforestation Law was implemented. The predicted area, in the top 

portion, is the best prediction. This uses the pre model in the pre-policy period and the post 

model in the post-policy period. The counterfactual predicted area below is the counterfactual 

land use prediction, which uses the post model in the pre-policy period and the pre model in the 

post-policy period.  

Investigating the best and the counterfactual predictions together reveals that changes in the area 

deforested for each agricultural land are due to both different locations being cleared, and to the 

same locations being put to different uses post-deforestation. I refer to these as a composition 

effect and a land use effect.  

large 36% 135,893 ha 18% 49,834 ha

rangeland 36% 135,594 ha 48% 134,998 ha

small 27% 102,153 ha 32% 90,228 ha

other 0% 39 ha 1% 1,488 ha

total 100% 373,678 ha 100% 283,419 ha

large 24% 89,896 ha 27% 76,772 ha

rangeland 46% 170,268 ha 41% 116,396 ha

small 30% 112,594 ha 32% 90,228 ha

other 0% 921 ha 0% 23 ha

total 100% 373,678 ha 100% 283,419 ha

Counterfactual Predicted Area for Each Land Use

2001-2004

post model

2005-2008

pre model

2001-2004

pre model

2005-2008

post model

Predicted Area for Each Land Use
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Under the composition effect, the locations that are deforested change when the policy is 

implemented. Areas that would have been deforested in the post-policy period if the Zero 

Deforestation Law never came into effect may no longer be deforested once the law is 

implemented, and vice versa.  

The composition effect is most clearly visible in Figure 17 when comparing the best prediction 

for large-scale agricultural use in the pre period with the counterfactual prediction for large-scale 

agricultural use in the post period. Both predictions are generated using the pre model for pixels 

that were deforested in the Global Forest Watch data. If there was no change in the locations or 

amount of deforestation after the law was implemented, I would expect the predictions to remain 

relatively stable across periods since they are generated with the same model. Instead, there is a 

notable decrease between the pre and post periods. In total, 136 thousand hectares were 

deforested for large-scale use in the pre-policy period. If the pre-policy use patterns had 

continued for pixels deforested in the post period, only 77 thousand hectares would have gone 

into large-scale agricultural use post-policy. This suggests that some land that would have gone 

into large-scale agriculture based on pre-policy patterns was not cleared at all in the post-policy 

period, and is therefore not in the data on which these counterfactual predictions are generated. 

The composition effect can also be seen in the proportion of total deforestation that is predicted 

to be used for large-scale agriculture, rather than the magnitude. 36% of total deforestation went 

to large-scale use in the pre-policy period. If the pre-policy use patterns had continued for pixels 

cleared post-policy, only 27% of deforested land would have gone into large-scale use. This drop 

is due to the composition effect shifting where deforestation occurs. While the composition effect 

is most evident  for large-scale agriculture, all three agricultural classes were impacted. 136 

thousand hectares and 102 thousand hectares were deforested for rangeland and small-scale use, 
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respectively, in the pre-policy period. If the pre-policy use patterns had continued for pixels 

cleared in the post-policy period, only 116 thousand hectares and 90 thousand hectares would 

have gone into rangeland and small-scale use, respectively. In the post-policy period, land that 

would have been used for each land use class, but especially land that would have gone into 

large-scale agriculture in the pre-policy period is less likely to be deforested at all.  

The same deforested locations are also sometimes put to a different use after the policy was 

implemented than they would have been before the policy. This is the land use effect. For 

example, land that would have gone into large-scale agricultural use may be used for rangeland 

instead after the Zero Deforestation Law is implemented.  

The land use effect is visible when comparing counterfactual predictions and best predictions in 

the post-policy period in Figure 17. Both predictions are made on the same set of pixels, all 

pixels deforested in the post-policy period. A decrease is visible in the deforested area going to 

large-scale agriculture between the counterfactual prediction and the best prediction. Under the 

counterfactual prediction, 77 thousand hectares or 27% of the total deforested area go to large-

scale agriculture between 2005 and 2008. Under the best prediction, this drops to 50 thousand 

hectares or 18% of the total deforested area. The land that no longer goes to large-scale 

agriculture primarily goes into rangeland use. Under the counterfactual prediction 116 thousand 

hectares or 41% of the total deforested area go to rangeland between 2005 and 2008. Under the 

best prediction, this increases to 135 thousand hectares or 48% of the total deforested area. 

Model confusion matrices, which provide estimates for correct and incorrect land use 

classifications by class and are provided in appendix A6, suggest that this movement from large-

scale production to rangeland post-policy may even be larger. There is no change in the total area 

predicted to go into small-scale use using the pre or post model for 2005 through 2008. This does 
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not exclude a land use effect, as a similar area may have switched out of and switched into being 

deforested for small-scale use after the Zero Deforestation Law was passed. Overall, it is evident 

under the land use effect that in some cases the same locations are used for different purposes in 

the pre- and post-policy periods.  

When both the composition and land use effects are considered, there is nearly no change in the 

amount of land cleared for rangeland in the four years before and after the Zero Deforestation 

Law was implemented. Using the best predictions, deforestation for rangeland use changes by 

less than one thousand hectares between the pre and post periods. Deforestation for small-scale 

use drops by around 11 thousand hectares. Meanwhile, deforestation for large-scale agriculture 

experienced the biggest impact from the law. This decreased by 63%, from 136 thousand 

hectares between 2001 and 2004 to 50 thousand hectares between 2005 and 2008. Deforestation 

for small-scale agriculture decreased marginally, from 102 thousand hectares between 2001 and 

2004 to 90 thousand hectares between 2005 and 2008, a decrease of only 12%.  

The random forest model uses a winner-take-all approach when predicting the outcome. The 

predicted post-deforestation land use is the land use with the highest probability for that pixel, 

regardless of whether this probability is 99% or 50%. Another approach is to examine the 

average probability, across all pixels, of each land use class in each period to see how this 

average probability changes. A decrease in the average probability of a land class indicates that 

this land use was less likely to be predicted across pixels, regardless of whether this decrease in 

probability was enough to alter the winner-take-all algorithm.  

In the pre-policy deforestation best predictions, there is a 34% probability, on average, that a 

pixel went to large-scale agriculture after being cleared. In the post-policy deforestation best 

predictions this probability, on average, falls to 25%. Meanwhile the mean probability of a small-
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scale prediction does not change much, from 27% before to 29% after. The mean probability of a 

rangeland prediction behaves similarly, increasing slightly from 34% before to 37% after. This 

supports the findings above that the Zero Deforestation Law primarily decreased deforestation 

for large-scale agriculture.  

 

Causality of Predictions 

Patterns in the total area predicted for each agricultural land use class reveal how deforestation 

for each class changed following the implementation of the Zero Deforestation Law. Attributing 

the changes to the law assumes that these changes are not explained by other events that took 

place simultaneously or in the years immediately surrounding its implementation. A discussion 

of events that could have impacted deforestation and land use can be found in the causality 

discussion in section IV. These include commodity prices, unemployment rates, policy changes, 

election cycles, and changes in land availability. I argue that there are few other events with 

significance to deforestation that occurred during the years included in my study, and the events 

that did take place acted in the opposite direction of a deforestation ban, to promote 

deforestation. In particular, many events that took place during these years promoted more, 

rather than less, deforestation for large-scale agricultural production and soy production 

specifically.  

I extend the discussion on causality from section IV here by investigating whether changes in 

commodity prices and unemployment rates explain changes in patterns of post-deforestation land 

use in the post-policy period. I test this by regressing the annual area deforested for each 

agricultural land use on a post-policy indicator, current and lagged annual commodity prices, and 
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unemployment rates. The results are shown in Table 9. Specifications 1 through 3 investigate 

clearing for large-scale production, specifications 4 through 6 investigate clearing for rangeland 

production, and specifications 7 through 9 investigate clearing for small-scale production.  

The post-policy indicator is only significant in the first specification and indicates a decrease of 

around 22 thousand hectares per year of deforestation for large-scale production after the policy. 

The second specification additionally controls for annual commodity prices and unemployment, 

and the third specification additionally controls for lagged commodity prices and unemployment. 

These additional controls do not explain the decrease in deforestation for large-scale production 

in the post-policy period. In fact, the impact of the post-policy indicator on deforestation would 

need to be even larger once these factors are accounted for.  

Specifications 4 and 7 reveal that there is nearly no change, significant or not, in the average area 

deforested pre- and post-policy for rangeland or for small-scale agriculture. However, once 

commodity prices and unemployment are controlled for, the coefficient on the post-policy 

indicator grows in magnitude. This indicates that the patterns detected between deforestation and 

these macroeconomic variables indicate that deforestation should have increased post-policy, 

while the observed data shows a decrease. This again provides suggestive evidence that the Zero 

Deforestation Law decreased deforestation in Eastern Paraguay, and that this change cannot be 

explained by commodity prices or by unemployment rates.  
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Table 9: Regressions of area deforested for each land use on a post-policy indicator, annual commodity prices, and unemployment. 

These price and unemployment controls do not explain the decrease in large-scale use better than the Zero Deforestation Law.  
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I therefore argue that the decrease in deforestation for large-scale agriculture and the relative lack 

of a decrease in deforestation for small-scale agriculture and rangeland can be attributed to the 

Zero Deforestation Law. By this same logic, I also argue that the composition and land use 

effects discussed above can also be attributed to the policy.  

 

Discussion 

Understanding how impacts of deforestation policies are distributed is important because these 

policies can have significant environmental, social, and economic implications. Evidence 

presented here suggests that the Zero Deforestation Law in Paraguay successfully decreased 

deforestation by around 25%. Nearly all deforestation in this region is conducted for agricultural 

expansion, therefore this decrease can be expected to have had an impact on farming groups. In 

this section, I investigated how the impacts of the Zero Deforestation Ban on deforestation 

patterns were distributed across agricultural groups.  

Data on the land use of deforested locations is not available, and so I generated this data using a 

replicable three step process. First, I manually identified the post-deforestation land use for a 

subset of deforested pixels. Second, I use this data to train random forest models that predict 

post-deforestation agricultural use. Third, I use the models to generate data on the post-

deforestation agricultural use of all deforested pixels in Eastern Paraguay.  

My results reveal that deforestation primarily decreased for large-scale crop production post-

policy. In the four years before the law was implemented, an average of 34 thousand hectares 

were cleared for large-scale agricultural production each year. In the four years after the law was 

implemented this fell to an average of 12 thousand hectares per year, more than a 60% decrease. 
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Small-scale and rangeland production were not as impacted by the law, with the average clearing 

for these uses remaining close to constant between the pre- and post-policy periods.  

This change in the amount of deforestation for large-scale agriculture can be attributed to two 

effects. The Zero Deforestation Law changed where deforestation occurred, called the 

composition effect. Less land was cleared in total post-policy, and this led to decreases in 

clearing land that would have gone to all three types of agriculture had the law never been 

implemented. The second effect is the land use effect. Under the land use effect, the same 

location would be put to different uses depending on if it was cleared pre-policy or post-policy. 

After the Zero Deforestation Law was implemented, much of the land that would have been used 

for large-scale agriculture is instead used for rangeland or small-scale agriculture. Taken 

together, these effects led to the noted decrease in deforestation for large-scale agriculture after 

the policy was enacted.  

The findings from this analysis expand understanding of the wider impacts of the Zero 

Deforestation Law. From an environmental perspective, the fact that the decrease in deforestation 

came primarily from a decrease in deforestation for large-scale systems is a potential benefit for 

biodiversity. Large-scale systems are often less biodiverse than rangeland and small-scale 

systems, due to low crop diversity in conventional crop production, and to having fewer field 

borders and uncultivated areas which can host additional flora and fauna (Fahrig et al., 2014). It 

should be noted, however, that any deforestation is a setback for maintaining the biodiversity 

habitat and other ecosystem services that forests provide. This biodiversity benefit is not 

absolute, but rather relative to other possible distributions of deforestation reductions across land 

uses.  
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This distribution of impacts across types of agriculture also may represent an equity gain relative 

to other possible outcomes. This is because the decrease in deforestation did not come at the 

expense of the more economically vulnerable small-scale farmers. In Paraguay, and in general, 

large-scale producers and ranchers have access to more capital, land, and other resources than 

subsistence farmers. Whether or not it is desirable for the subsistence farmers to remain in 

agriculture, and potentially continue deforestation, is a topic open to debate (Dorward et al., 

2009; DFID, 2015). Regardless, a deforestation law that would push small-scale farmers out of 

their farming livelihood as a side effect, without offering a safety net or alternative income path, 

would increase the socioeconomic gap between subsistence farmers and other agricultural 

groups. That the Zero Deforestation Law decreased deforestation without changing overall 

patterns in deforestation for these subsistence farmers is, therefore, a potential equity win.  

Finally, the disproportionate impact of the Zero Deforestation Law on deforestation for large-

scale agriculture may have negatively impacted Paraguay’s economy and economic growth. 

Agriculture is an important part of Paraguay’s economy, and large-scale agriculture plays an 

important role in Paraguay’s economic development that continues today (Weisskoff, 1992).  

This investigation sets the stage for future research. I present suggestive evidence for a causal 

relationship between implementation of the Zero Deforestation Law and patterns in deforestation 

pre- and post-policy. Future research can verify this causal link. I also present evidence that the 

Zero Deforestation Law decreased deforestation for large-scale agriculture. However, this is not 

the same as saying that the Zero Deforestation Law decreased expansion of large-scale 

agriculture. It is possible that large-scale agriculture continued to expand by moving into land 

that was already cleared for other uses. My data cannot address this question. Future research on 
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potential spillovers will be important to fully understand the implications of this distribution of 

the laws impacts on the different agricultural groups.  

 

VI. Conclusion 

 

In this dissertation I delve into the dynamics of deforestation in Eastern Paraguay and how these 

dynamics change after the Zero Deforestation Law was implemented by addressing three 

research questions. My findings contribute to a better understanding of deforestation in this 

understudied region, as well as contributing a method to investigate similar questions in other 

data-scarce regions of the world.  

In the first analysis, I investigate how commonly identified drivers of deforestation relate to 

deforestation in Eastern Paraguay before the Zero Deforestation Law is implemented. I test seven 

hypotheses on the direction of the relationship between these variables and deforestation. My 

results show that not all patterns I hypothesized based on prior literature hold in the context of 

Eastern Paraguay. Physical land characteristics are predictive of where deforestation will occur, 

as expected. However, one of the physical characteristics, elevation, is significantly related to 

deforestation in the opposite direction from my expectation. This may be due to Paraguay’s 

geography, which includes expansive low-lying waterlogged areas.  

Anthropological land characteristics are not as useful as physical characteristics in predicting 

where deforestation will occur. Previous literature suggests that proximity to population centers 

and infrastructure increases the probability of deforestation. This does not hold in Eastern 

Paraguay. This divergence from the findings in other regions highlights the importance of 



86 
 

understanding deforestation dynamics for specific settings. Some anthropological characteristics, 

however, are predictive. Proximity to existing clearings, such as agricultural fields, increases the 

probability of deforestation as hypothesized.  

This analysis provides important information for law enforcement, nongovernmental 

organizations, and other organizations that would like to manage forests or impact deforestation. 

Understanding the types of land on which deforestation is most likely to occur enables these 

groups to prioritize their actions and resources, for example by prioritizing protection of land that 

has high ecological value and high deforestation risk. This analysis also lays the foundation for 

the second two analyses in this dissertation by establishing a baseline of deforestation patterns.  

The second analysis investigates how deforestation changed after the implementation of the Zero 

Deforestation Law, and how relationships between drivers of deforestation and deforestation 

changed in this post-policy period. My results suggest that the Zero Deforestation Law 

successfully reduced the rate of deforestation. I argue that these changes were caused by the Zero 

Deforestation Law because other events that occurred around this time cannot explain the 

decrease in deforestation. In addition, the relationships between commonly identified drivers of 

deforestation and deforestation were altered in the post-policy period. The magnitude of the 

relationship between drivers of deforestation and deforestation decreases for many land 

characteristics. After the law is implemented, land that is higher elevation and flatter remains 

more likely to be deforested than low-lying, steep land, however the probability of deforestation 

for land with these characteristics is lower post-policy. I also find that the relationship between 

mean nearby tree cover on the probability of deforestation reverses after the law is implemented. 

Before the Zero Deforestation Law came into effect, pixels with low nearby mean forest cover 

were more likely to be deforested. After the law, pixels with high nearby mean forest cover are 
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more likely to be deforested. This may imply that once deforestation becomes illegal, newly 

cleared plots are hidden in dense forest. It might also imply that forested locations that were 

initially passed over are now reinvestigated and sometimes cleared.  

One implication of the diminished relationships between drivers of deforestation and 

deforestation in the post-policy period is that deforestation becomes more difficult to predict. 

Deforestation is now more widely dispersed across land with characteristics that previously had 

been useful in predicting deforestation, including elevation, slope, and that maximum nearby 

nighttime lights. This means that organizations wishing to manage forests or impact deforestation 

can no longer predict as accurately where deforestation will occur. This, in combination with 

evidence that plots cleared post-deforestation may be actively hidden under remaining forest 

cover, makes the Zero Deforestation Law more difficult to enforce.  

In the final analysis I investigate the distribution of impacts of the Zero Deforestation Law across 

types of agriculture. Results reveal that deforestation was the most changed for large-scale 

agriculture after implementation of the Zero Deforestation Law. Meanwhile, deforestation for 

small-scale and rangeland systems was relatively unaffected. The changes in deforestation are 

due both to changes in the locations cleared (composition effect), and changes in the use of 

cleared areas (land use effect). The composition effect shows that, after the law was passed, 

deforestation decreased across land that would have gone into each of the three post-

deforestation use categories. The largest decrease in deforestation is seen on land that was more 

likely to go to large-scale agriculture before deforestation became illegal. The land use effect 

shows that this decrease in deforestation from the composition effect was accentuated by a shift 

in the agricultural use of deforested land away from large-scale agricultural use and into, 

primarily, rangeland use. The net impact of these two effects was a large decrease in 
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deforestation for large-scale agricultural use, from 138 thousand hectares to 52 thousand hectares 

in the four years before and after the policy was implemented. Meanwhile, relatively minor 

changes in deforestation were observed for small-scale agricultural are rangeland uses pre- and 

post-policy.  

This third analysis sets the stage for a more thorough investigation into the implications of the 

Zero Deforestation Law. In addition to slowing deforestation in Eastern Paraguay, this law 

altered the patterns of agricultural expansion. Post-policy, less forest is cleared for large-scale 

agricultural expansion. This outcome has important environmental, equity, and economic 

implications relative to other potential outcomes, due to the different environmental, and 

socioeconomic characteristics of the different systems. Future research can investigate the full 

implications of the distribution of impacts identified here.  

This dissertation uncovered novel knowledge on the patterns of deforestation in Eastern 

Paraguay and how these patterns changed with the implementation of the Zero Deforestation 

Law. The incomplete impact of the law and the uneven distribution of impacts reveals that 

additional enforcement methods or laws may be needed to further decrease deforestation, and 

especially to reduce deforestation for small-scale and rangeland land use. Before the law was 

implemented, deforestation for small-scale agriculture or rangeland made up 60% of all 

deforestation for agricultural expansion. After implementation, these two groups made up over 

80% of deforestation for agricultural expansion. Therefore, these groups must be considered for 

Paraguay to decrease overall deforestation substantially. While the law is an example of success 

in that it lowered deforestation notably, there is still substantial work to be done if deforestation 

is to be eliminated as the law’s name suggests.   
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Appendix 

A1. Additional Deforestation Data 

Annual and cumulative deforestation is plotted by year in Eastern Paraguay using the Global 

Forest Watch (Hansen et al., 2013) and Tropical Moist Forests (Vancutsem et al., 2021) datasets. 

Global Forest Watch deforestation is restricted to pixels with forest cover of at least 30% in 

2000. The Tropical Moist Forest data excludes a low forest cover region in the southwest of 

Paraguay. The two datasets display similar patterns in deforestation during the time of interest, 

despite differences in the data generating methods. A visual inspection of the data suggests an 

increase in deforestation the year prior to presidential elections (2003, 2008, 2013, 2018) after 

deforestation becomes illegal. 
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A2. Soil Group Descriptions 

Soil group Description Connotation 

Acrisols characterized by accumulation of low activity 

clays in an argic subsurface horizon and by a 

low base saturation level. 

strongly weathered acid soils 

with low base saturation; from 

L. acris, very acid. 

Arenosols sandy soils, both soils developed in residual 

sands, in situ after weathering of old, usually 

quartz-rich soil material or rock, and soils 

developed in recently deposited sands as occur 

in deserts and beach lands. 

sandy soils 

Chernozems soils with a thick black surface layer rich in 

organic matter. 

black soils rich in organic 

matter 

Fluvisols genetically young, azonal soils in alluvial 

deposits. 

soils developed in alluvial 

deposits 

Ferralsols the `classical', deeply weathered, red or yellow 

soils of the humid tropics. These soils have 

diffuse horizon boundaries, a clay assemblage 

dominated by low activity clays (mainly 

kaolinite) and a high content of sesquioxides. 

red and yellow tropical soils 

with a high content of 

sesquioxides 

Gleysols wetland soils that, unless drained, are 

saturated with groundwater for long enough 

periods to develop a characteristic "gleyic 

colour pattern". This pattern is essentially 

made up of reddish, brownish or yellowish 

colours at ped surfaces and/or in the upper soil 

layer(s), in combination with greyish/bluish 

colours inside the peds and/or deeper in the 

soil. 

soils with clear signs of excess 

wetness 

Leptosols accommodates very shallow soils over hard 

rock or highly calcareous material but also 

deeper soils that are extremely gravelly and/or 

stony. Leptosols are azonal soils with an 

incomplete solum and/or without clearly 

expressed morphological features. They are 

particularly common in mountain regions. 

shallow soils 

Lixisols strongly weathered soils in which clay has 

washed out of an eluvial horizon (L. lixivia is 

washed-out substances) down to 

an argic subsurface horizon that has low 

strongly weathered soils in 

which clay is washed down 

from the surface soil to an 
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activity clays and a moderate to high base 

saturation level. 

accumulation horizon at some 

depth 

Nitisols deep, well-drained, red, tropical soils with 

diffuse horizon boundaries and a subsurface 

horizon with more than 30 percent clay and 

moderate to strong angular blocky structure 

elements that easily fall apart into 

characteristic shiny, polyhedric (`nutty') 

elements. Nitisols are strongly weathered soils 

but far more productive than most other red 

tropical soils. 

deep, red, well-drained 

tropical soils with a 

clayey `nitic' subsurface 

horizon that has typical `nutty', 

polyhedric, blocky structure 

elements with shiny ped faces 

Planosols soils with bleached, light-coloured, eluvial 

surface horizons that show signs of periodic 

water stagnation and abruptly overly dense, 

slowly permeable subsoil with significantly 

more clay than the surface horizon. 

soils with a degraded, eluvial 

surface horizon abruptly over 

dense subsoil, typically in 

seasonally waterlogged flat 

lands 

Regosols a taxonomic rest group containing all soils that 

could not be accommodated in any of the 

other Reference Soil Groups. In practice, 

Regosols are very weakly developed mineral 

soils in unconsolidated materials that have 

only an ochric surface horizon and that are not 

very shallow (Leptosols), sandy (Arenosols) 

or with fluvic properties (Fluvisols). Regosols 

are extensive in eroding lands, in particular in 

arid and semi-arid areas and in mountain 

regions. 

soils in the weathered shell of 

the earth 

Solonetz soils with a dense, strongly structured, clay 

illuviation horizon that has a high proportion 

of adsorbed sodium and/or magnesium ions. 

Soils with a high content of 

exchangeable sodium and/or 

magnesium ions 

Source: Driessen et al. 2001 
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A3. Additional specifications of the Deforestation Model 

I. Main specification, showing soil group and ecoregion coefficients 

The following table shows the full regression table for the linear probability model regressions 

from the main text, of deforestation on demeaned and normalized land characteristics that have 

been identified as drivers of deforestation in the literature. Nearly all soil groups and nearly all 

ecoregions are significant predictors of deforestation in each period tested. All coefficients on all 

groups are negative, to adjust for positive coefficients elsewhere. However, the magnitudes of the 

coefficients reveal how the probability of deforestation varies between soil groups. No soil group 

is omitted, because there is no constant in the regression.  

The Atlantic Forest is the omitted category for ecoregions. All other ecoregions have negative 

and significant coefficients. This indicates that deforestation was most likely to occur in the 

Atlantic Forest Ecoregion.   
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II. Robustness to clustering standard errors 

All specifications in the table below are identical except for the level of clustering of the standard 

errors. The first specification does not cluster standard errors. The second specification clusters 

standard errors at the one-degree latitude longitude grid. The third specification is identical to the 

main results, clustering at the half degree level. The fourth specification clusters standard errors 

at the department level.  

The regression results are largely robust to clustering standard errors at different levels, though 

the increase in significance when no clustering of standard errors is included on this spatial 

dataset suggests that clustering at some level is important. The increase in significance when 

there is no clustering of standard errors is due in part to spatial correlation. When standard errors 

are clustered across space this partially controls for similarities in outcomes for nearby pixels 

that do not represent a truly i.i.d. sample. 

Clustering standard errors at any of the levels tested yields similar results.  
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III. Robustness to the inclusion of additional fixed effects 

The regression results are generally robust to the inclusion of additional fixed effects. The main 

specification reported in the results section includes soil group and ecoregion fixed effects. In 

this regression table, the first specification does not include any fixed effects, including 

ecoregion and soil group fixed effects. The second specification includes soil group and 

ecoregion fixed effects, and in addition includes a department fixed effect. The third 

specification includes soil group and ecoregion fixed effects, and in addition includes a half 

degree latitude longitude grid fixed effect. In all cases, the sign of the coefficient is the same as 

in the main specification. The magnitudes are also similar when alternative fixed effects are 

employed. The significance changes in some cases, but occurs for the same variables that 

sometimes lacked significance in single-year regressions in the main specification, so this is not 

altogether surprising. 
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IV. Robustness to a Logit specification 

The main results from this section, and every alternative specification displayed in this appendix 

section, has used a linear probability model. An alternative option is to model the relationship 

between land characteristics and deforestation using a logit model. The functional form of this 

model may be more appropriate for a probabilistic outcome, such as the likelihood of 

deforestation.  

I find that the results are robust to the logit specification. The magnitudes of the coefficients in 

the logit model cannot be directly compared to those in the linear probability model because 

different functional forms are used. However, the logit model supports the conclusions from the 

primary model. In all cases, the signs of the coefficients are the same between this logit model 

and the main linear probability model specification. In addition, the magnitude and significance 

are similar between the models for all coefficients.  
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A4. Additional Specifications of the Post-Policy Impacts Model 

I. Main specification, with soil group and ecoregion coefficients 

The following table shows the full results of the linear probability model investigating the 

change in aggregate deforestation and changes in patterns of deforestation after implementation 

of the Zero Deforestation Law. All specifications are the same as Table 4 in the main dissertation, 

but here the coefficients for soil groups and ecoregions are displayed. Acrisols is the omitted soil 

group and the Atlantic Forest is the omitted ecoregion. There are significant differences in the 

probabilities of deforestation between soil groups, all else held constant. The Atlantic Forest 

ecoregion is more likely to be deforested than the others, all else held constant.  
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II. Robustness to clustering standard errors  

The regression results are largely robust to clustering standard errors at different levels, though 

clustering at some level is important. All specifications are identical, and the same as the third 

specification in Table 4 in the main text, except for the level of clustering of the standard errors. 

The first specification does not cluster standard errors. The second specification clusters standard 

errors at the one-degree latitude longitude grid. The third specification is identical to the main 

results, clustering at the half degree level. The fourth specification clusters standard errors at the 

department level.  

The increase in significance when there is no clustering of standard errors is due in part to spatial 

correlation. When standard errors are clustered across space this partially controls for similarities 

in outcomes for nearby pixels that do not represent a truly i.i.d. sample. 

Clustering standard errors at any of the levels tested yields similar results, though with a limited 

quantity of differences in levels of significance.  
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III. Robustness to the inclusion of additional fixed effects 

The regression results are generally robust to the inclusion of additional fixed effects. The main 

specification reported in Table 4 includes soil group and ecoregion fixed effects. In this 

regression table, the first specification does not include any fixed effects, including ecoregion 

and soil group fixed effects. The second specification includes soil group and ecoregion fixed 

effects, and in addition includes a department fixed effect. The third specification includes soil 

group and ecoregion fixed effects, and in addition includes a half degree latitude longitude grid 

fixed effect. In all cases, the sign of the coefficient is the same as in the main specification. The 

magnitudes are also similar when using alternative fixed effects. There are limited cases where 

the significance of a variable changes across specifications.  
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IV. Robustness to a Logit Specification 

The table below uses a logit specification to investigate changes in aggregate deforestation and 

drivers of deforestation after the Zero Deforestation Law is implemented. Most relationships are 

consistent with findings in the main text.  

However, the distance from a town becomes significant, with deforestation more likely closer to 

a road. This matches expectations from the literature. In addition, distance to a town and distance 

to a main road become significant in the post-policy period, suggesting that deforestation may be 

moving closer to infrastructure once deforestation becomes illegal, all else constant. The 

magnitudes of these coefficients of the normalized variables are small relative to other variables, 

however, so a one standard deviation change in these variables remains less predictive than, for 

example, a one standard deviation change in elevation or slope, all else held constant.  
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V. Remove the years before and after implementation 

There may be concern that the detected post-policy decrease in deforestation is driven by a ramp-

up in deforestation pre-policy. Land managers may have learned that the law would pass, and 

decided to clear while deforestation was still legal. This would increase deforestation in the pre-

policy period. Similarly, delayed awareness of the law may have delayed a decrease in 

deforestation. This could increase deforestation in the post-policy period. Either of these 

scenarios could be problematic. To investigate the impact of deforestation trends directly before 

and after implementation, I remove one year before and after implementation from my panel.  

The interpretation for land characteristics and interaction terms are similar to the main 

specification. The coefficient on the post-policy indicator remains negative, but is no longer 

significant. The magnitudes suggest a decrease in the rate of deforestation in the range of 3.5% to 

7% from a pre-deforestation rate of 5.8%. This is lower than the nearly 20% reduction in the rate 

of deforestation implied from the full results. This suggests that the Zero Deforestation Law may 

have impacted deforestation less than suggested there. However, this estimation relies on only 

three years in the pre-policy and three years in the post-policy period. Deforestation in one of the 

post-policy years, 2007, may be inflated by pre-election-year trends that are not controlled for in 

this regression, as discussed in section IV. This would attenuate a decrease in deforestation, both 

here and in the main regression. These results suggest that the decrease in deforestation post-

policy may have been less than the main specification suggests, however these results do not 

discredit the findings above. Further causal analyses are needed to determine how much of the 

detected decrease in deforestation can be attributed to the Zero Deforestation Law.  
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A5. Training Data Summary  

The 501 post-deforestation land use observations that are classified as one of the three 

agricultural land uses or other use are plotted here, summarized here by type of land use and year 

of deforestation. These observations were sampled using a stratified random sampling 

methodology. These data are used to train the random forest models that predict land use class. 

The vertical dashed line indicates the implementation of the Zero Deforestation Law at the end 

of 2004.  
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A6. Random Forest Model Statistics 

Each decision tree in the random forest model is calculated using a random subset of the training 

dataset. The random forest algorithm uses the remaining training data to test the tree, similar to a 

leave-one-out method. The out of box (OOB) error summarizes the error in the model revealed 

through this testing. The confusion matrix reports the number of correct and incorrect 

classifications by category. The OOB error and confusion matrices for the pre and post random 

forest models are displayed in the table below.  

 

The OOB error rate shows that around 35% to 40% of pixels are misclassified. This rate is 

substantially lower than would be expected from a random classification of observations into 

four classes, indicating that the model does have predictive power. The pre model distributes 

these errors approximately equally across the agricultural land use classes, with large-scale pixels 

predicted incorrectly 33% of the time, rangeland pixels predicted incorrectly 32% of the time, 

and small-scale pixels predicted incorrectly 37% of the time.  

The distribution of errors is less even across agricultural land uses in the post model predictions. 

Large-scale pixels are predicted incorrectly far more often than the other classes, at 51% of the 

time. Large-scale pixels are most likely to be misclassified as rangeland, which adds strength to 

my result that the largest decrease in in deforestation post-policy came from a decrease in 

clearing for large-scale agriculture. In the training dataset, a full 36% of pixels with large-scale 

pre model post model

predicted class predicted class

large rangeland small other large rangeland small other

large 56 18 10 0 33% 30 22 9 0 51%

class rangeland 18 63 11 0 32% 12 74 11 2 25%

small 14 12 45 0 37% 9 14 42 0 35%

other 2 4 2 0 100% 5 3 3 0 100%

OOB error: 36% OOB error: 41%

class 

error

class 

error
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use post-clearing were misclassified into rangeland. Meanwhile, only 12% of pixels with 

rangeland use post-clearing were misclassified into large. Thus, the errors suggest that in reality 

there may be even less large-scale use and more rangeland use post-clearing than the predictions 

reveal.  

Other is consistently predicted incorrectly in both models, though this is not altogether surprising 

since this category encompasses a variety of unrelated land uses.  

In addition to the OOB errors, I conducted a manual test of prediction accuracy using training 

and testing datasets. These should, and do, reveal similar results as the OOB error. I randomly 

selected 100 observations to be withheld from the training dataset. I then generated pre and post 

models using the remaining data and used these to predict the land use category for the withheld 

test observations. The pre model predicted observations in the pre-policy period with 62% 

accuracy, while the post model predicted observations in the post-policy period with 52% 

accuracy. These imply an error rate of 38% and 48%, in line with OOB error estimates obtained 

above. The prediction results for the withheld test dataset are summarized below.  

  

pre model post model

overall pre data post data overall pre data post data

% error 45% 38% 52% 44% 40% 48%

count 100 48 52 100 48 52

correct 55 30 25 56 29 27
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A7. Random Forest Partial plots 

Partial plots are generated using the pre and post random forest models that predict post-

deforestation land uses. These reveal how the relationship between a land characteristic and the 

probability of predicting each post-deforestation land use class changes as the value of a land 

characteristic varies, holding all else constant. Because the pre and post models are run 

separately, magnitudes should not be compared between the pre and post models. 
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A8. Agricultural Land Use Predictions Through 2019 

The predicted post-deforestation agricultural land use for all pixels that lost forest cover in 

Eastern Paraguay between 2001 and 2019 is summarized by year below. The random forest 

models are generated using training data from 2001 through 2010. Predictions after this period 

may not be as reliable. The ‘best’ prediction is generated using the model that best reflects the 

time period, which is to say the pre model before the Zero Deforestation Law was passed at the 

end of 2004, and the post model after the law was passed. The counterfactual, shown in dashed 

lines, uses the pre model to predict post-agricultural land use in the post period. This reflects 

what land that was actually deforested when deforestation was already illegal would most likely 

have gone to when deforestation was still legal.  

 

 




