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Abstract

Data Driven Modeling of Geophysical Flows with Partial States

by Hayley Coyle

In recent years, machine learning models have offered an efficient approach

to studying geophysical fluid dynamics, particularly in scenarios where data

availability is often limited. This thesis project presents a study on the ap-

plication of a Fourier neural operator (FNO) to the quasi-geostrophic (QG)

system, an important system in geophysical fluid dynamics used to simulate

large scale atmospheric flows. The primary objective of this research is to

evaluate the performance of an FNO-based data-driven autoregressive model

in predicting the evolution of streamfunctions ψ1 and ψ2 under various inte-

gration schemes, such as first-order Euler, fourth-order Runge-Kutta, as well

as a simpler predictive approach where the FNO directly computes the next

state in a sequence from the current state without intermediate calculations

or corrections.

The key question driving this study is the exclusion of the moisture channel

from the training data, exploring whether or not we can effectively train the

model on only partial states of data and still be able to get accurate assessments

of large scale atmospheric flows. Our experiments demonstrate that while the

FNO-based approach shows some promise in capturing the underlying dynam-

ics of the QG system, excluding the moisture channel leads to challenges in

achieving stable and accurate predictions. Our results demonstrate sensitivity

of FNOs to missing state information, with evaluation metrics such as spec-

tral analysis, Anomaly Correlation Coefficient (ACC), and Root Mean Square

Error (RMSE) metrics showing us the impact of the moisture exclusion on the

accuracy of the predictions.
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Chapter 1

Introduction

Climate change and its impact on the global weather system and human pop-

ulation is a serious concern within the scientific community. Current research

has already identified human influences on the frequency and intensity of these

extreme events, so there is great importance on our understanding how these

events will evolve in a warmer climate. Determining the expected frequency

with which a particular extreme weather event may occur is crucial for under-

standing and managing the associated risks posed to humanity.

In recent years, predictive deep-learning models have shown great promise

in weather forecasting by leveraging vast amounts of data to anticipate atmo-

spheric phenomena. However, these models face significant challenges, par-

ticularly when it comes to long-term instabilities and data availability. The

frequent scarcity of complete weather data contributes to the challenge of ac-

curate weather prediction [5], and thus necessitates predictions based on only

partial data states.

This issue is only amplified by spectral bias, which is a tendency for neu-

ral networks to prioritize low-frequency components over high-frequency ones,

and has been identified as a universal causal mechanism for instabilities in

turbulent flow within deep learning architectures [2]. These models, by their
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nature, have a tendency to encounter spectral bias, causing the model to focus

primarily on learning and predicting large-scale dynamics while neglecting the

finer, small-scale details that are crucial for accurate long-term predictions.

This results in an amplification of errors as the prediction extends over time

and leads to significant deviations from the actual atmospheric state. The is-

sue of spectral bias is not limited to atmospheric models but is also prevalent

in various engineering applications involving turbulent flow [12].

This project aims to address long-term instabilities and the associated chal-

lenge of missing data by experimenting with a Fourier neural operator (FNO)

data-driven machine learning network on a QG system. We have implemented

integration schemes to the architecture in order to mitigate this error growth,

and have begun to see some marginally successful results with data-driven

methods.

1.1 Conventional vs. Data-driven methods

The field of weather prediction has traditionally relied on numerical weather

prediction (NWP) models, which are based on solving systems of PDEs that

describe atmospheric dynamics. These models are successful but they come

with significant computational costs [10]. In contrast, data-driven methods,

such as FNOs, offer a cost effective alternative that are generally faster and

less resource intensive while still providing accurate results.

One of the primary advantages of data-driven models over conventional

ones is computational efficiency. FNOs bypass the need to solve these equa-

tions directly by learning the underlying dynamics directly from the data.

The reduced computational demand of FNOs translates directly into lower in-

frastructure costs and can also offer scalability and flexibility that traditional

methods struggle to match. Scaling up an NWP model to higher resolutions or
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longer time frames typically involves a substantial increase in computational

costs and complexity. Each increase in resolution requires more grid points

and and thus more computational power. However, because FNOs learn at a

logarithmic rate directly from data, they can be trained much more efficiently

on a variety of resolutions and and time scales without the same exponential

increase in computational demands. The issue then becomes about dialing

in the model with the best parameters in order to get the most out of our

data-driven framework.

The FNO is unique in this context because, unlike a physics informed

neural network (PINN), the FNO does not explicitly incorporate the governing

physical laws into a loss function during training. A PINN is trained not only

to fit data but also to satisfy the physical laws that govern the system being

modeled. Instead, the FNO model learns the dynamics that are governed by

physical laws as encoded in the data. This is done implicitly, rather than

through explicit physical constraints in the loss function.
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Chapter 2

Model and Data

2.1 Quasi-Geostrophic model

For this study we have chosen to work with the Quasi-Geostrophic (QG) sys-

tem, an idealized two-channel system that focuses on large-scale geostrophic

flows by retaining the balance between the Coriolis force and pressure gradi-

ents, and is a good choice for mid-latitude regions where baroclinic instability

dominates [9] [11]. The data we used to train, test, and compare our FNO to

was generated by this model.

Figure 2.1: An example of the upper (ψ1) and lower (ψ2) layers of the QG
system, discussed in more detail in section 2.1.1.
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The two layers of the QG system as seen in figure 2.1 have a characteristic

distance y between ψ1 and ψ2, typically given by the Rossby deformation

radius, Ld, which is defined as NH
f0

. Here, N is the buoyancy frequency, H is the

depth of the layer, and f0 is the Coriolis parameter. This distance represents

the scale at which rotational effects become significant in the dynamics of the

flow between the two layers.

2.1.1 Potential Vorticity

The potential vorticity (qk), for both the upper (k = 1) and lower (k = 2)

layers are defined by:

qk = ∇2ψk + (−1)k(ψ1 − ψ2) + βy, (2.1)

where ψk represents each layer’s stream function, and β is an approximation

for the gradient of the Coriolis parameter with respect to the latitude, which

is denoted as y.

The governing equations for the model, which describe the conservation of

potential vorticity in each of the two layers, is given by:

∂qk
∂t

+ J(ψk, qk) = − 1

τd
(−1)k(ψ1 − ψ2 − ψR)−

1

τf
δk2∇2ψk − ν∇4qk + (−1)kLP,

(2.2)

respectively. Here, τd is the relaxation time scale, τf is the frictional time scale,

and A and σ are constants. This equation (2.2) is used separately to define

each layer, equal to the partial derivative of each layer with respect to time,
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added to the the Jacobian operator:

J(ψk, qk) = ψkxqky − ψkyqkx, (2.3)

where ψkx and ψky denote the partial derivatives of ψk with respect to the x

and y spatial coordinates, respectively. Similarly, qkx and qky represent the

partial derivatives of qk with respect to x and y.

The term ψkxqky here describes the interaction between the changes in the

streamfunction in the x-direction and the changes in the potential vorticity in

the y-direction, where the second term ψkyqkx describes the interaction between

the changes in the streamfunction in the y-direction and the changes in the

potential vorticity in the x-direction. The result is that the Jacobian J(ψk, qk)

represents the advection of potential vorticity by the flow described by the

streamfunction ψk.

In equation 2.2, the first term − 1
τd
(−1)k(ψ1 − ψ2 − ψR), accounts for solar

radiation with τd by relaxing the temperature τ = ψ1 − ψ2 towards ψR, which

is the equilibrium profile given by:

ψR = −σA tanh
(y
σ

)
(2.4)

This equilibrium profile (1.4) is asymmetric around y = 0.

In equation 2.2, the second term − 1
τf
δk2∇2ψk models surface friction in

the lower layer, with τf being the frictional time scale, and δk2 represents the

Kronecker delta, which is 1 when k = 2 (the lower layer) and 0 otherwise.

In equation 2.2, the third term −ν∇4qk introduces a hyperviscosity effect

by acting to dampen the small scale features of the potential vorticity field qk

through diffusion.

Finally, the last term (−1)kLP represents latent heating due to precipi-
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tation, where L is a constant and P is the precipitation rate, influenced by

moisture.

2.1.2 Moisture Conservation of Mass

In this model, the moisture m is assumed to be advected within k = 2 only.

The equation governing moisture conservation is given by:

∂m

∂t
+ J(ψ2,m) = E − P −∇ · u2, (2.5)

where E is evaporation, P is precipitation, and the last term ∇ · u2 is the

divergence of the ageostrophic wind velocity field of the flow in the lower layer,

measuring the rate at which the flow is expanding or compressing at any point

in the lower layer. This is essential for maintaining the consistency of the

quasi-geostrophic framework.

Evaporation (2.6) and precipitation (2.8) are defined as follows:

E =


Ê|u2|(ms −m), if m < ms,

0, if m ≥ ms,

(2.6)

where Ê is a constant, and ms represents the saturation of moisture, which

is determined through the linearized Clausius-Clapeyron relation (2.7) which

simply states that that the saturation moisture content is proportional to the

temperature difference between the two layers, represented by the difference

in streamfunctions ψ1 and ψ2:

ms ≡ CT = C(ψ1 − ψ2), (2.7)

where C is a constant. In equation 2.5, precipitation is defined as:
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P =


0, if m ≤ ms,

m−ms

τp
, if m > ms,

(2.8)

where τp is the timescale for precipitation. Thus, precipitation occurs wherever

the moisture exceedsms, indicating a transfer of mass between the layers, while

evaporation dominates in regions where moisture is below ms.

2.1.3 Numerical simulation of the QG system

For the high-resolution numerical simulation of the QG system, considered the

”truth”, we have used a Fourier-Fourier pseudospectral method. The spatial

discretization is spectral in both x and y, where we have retained 128 Fourier

modes. The length and width of the domain are equal to 46 and 68, respec-

tively. Sponge layers are applied to the northern and southern boundaries.

Note that the domain is wide enough for the sponges to not affect the dynam-

ics. Here 5τadv ≈ 1 Earth day ≈ 200∆t, where ∆t = 0.025 is the time step

of the leapfrog time integrator used in the numerical scheme, and τadv is the

advection time scale of the system.

2.2 Exclusion of Moisture Channel

From the QG system, we generated three channels of data: ψ1, ψ2, and mois-

ture, where ψ1 is the stream function for the upper layer, and ψ2 is the stream

function for the lower layer. However, since the primary objective of this ex-

periment is to investigate whether the model can effectively learn and predict

the behavior of a system that includes moisture dynamics, even when a critical

piece of data (moisture itself) is missing. Thus, we have challenged our model

by only providing it with partial states, ψ1 and ψ2, which implicitly contain
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latent information about moisture, despite the exclusion of the generated mois-

ture channel generated by the QG system. Any information about moisture

or precipitation is still inherent within the streamfunctions. If the model can

still predict the system’s evolution accurately, it would indicate that the model

has learned to compensate for the missing data by learning the finer details

of the underlying dynamics. This approach could be significant in real-world

applications, where data availability is frequently limited or incomplete.
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Chapter 3

Fourier Neural Operator

A Fourier neural operator (FNO) is a neural network that’s been specifically

designed to learn mappings between function spaces. Traditional neural net-

works operate directly in the spatial or temporal domains but FNOs perform

computations in the Fourier domain and by doing so allow us to better capture

long range dependencies and complex patterns in data.

Figure 3.1: The architecture of our model containing N , the FNO, where u(t)
is the state of the system that is predicted. This model is further detailed by
Chattopadhyay et al [1]. See section 3.3 for more details.
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3.1 Spectral Convolutional Layer

The FNO uses spectral convolution layers that perform the fast Fourier trans-

form (FFT) to reduce the complexity of the convolution operation toO(n log n)

where n is the number of grid points in the spatial domain. Then, an inverse

fast Fourier transform (IFFT) is used to reconstruct the spatial features in the

original domain after the filtering operation.

Our model applies four layers of integral operators and activation functions,

where each Fourier layer retains modes up to 64 using the linear transform R

(fig. 3.1). After these operations, the output is projected back to the target

dimension by a neural network to produce the final output u(t).

We use two sets of weights to handle the different frequency components

of the input data. The first set of weights is responsible for processing the

positive frequencies which correspond to the Fourier modes with non nega-

tive indices. These frequencies capture the forward propagating waves or the

regular, positive oscillations in the data. The second set of weights handles

the negative frequencies, which correspond to the Fourier modes with nega-

tive indices and are crucial for capturing the backward-propagating waves or

inverse oscillations in the data. This is how the model learns and represents

the complete range of frequency components present in the input.

Fourier transform

In our FNO, FFT is used to transform spatial data into the frequency domain

where we perform convolution operations. Given a 2D input u(t), which in the

context of this experiment is a two-channel data input of ψ1 and ψ2, the FFT

computes the frequency domain representation û(kx, ky) as:

û(kx, ky) =
N−1∑
x=0

M−1∑
y=0

u(t) e
−2πi

(
kxx
N

+
kyy

M

)
(3.1)
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where û(kx, ky) are the Fourier coefficients corresponding to the wave numbers

kx and ky.

Once in the frequency domain, the spectral convolution is performed by

multiplying the Fourier coefficients with learned weights in the frequency do-

main:

v̂(kx, ky) = û(kx, ky) ·R(kx, ky) (3.2)

where R(kx, ky) represents the learned filter in the frequency domain. Then

we apply the IFFT to bring the transformed data back to the spatial domain:

u(t) =
1

NM

N−1∑
kx=0

M−1∑
ky=0

v̂(kx, ky) e
2πi

(
kxx
N

+
kyy

M

)
(3.3)

This process allows the FNO to efficiently capture and manipulate patterns

in the data across different scales, leveraging the FFT and IFFT to handle

convolution operations in the frequency domain.

3.2 Multi-Layer Perceptron

Our FNO uses Multi-Layer Perceptrons (MLP) to complement the spectral

convolutional layers, which are used to project the data to higher dimensional

spaces or reduce it back to the original dimensions through a series of linear

transformations followed by non-linear activation functions. Given an input

vector x ∈ Rd the MLP applies a linear transformation using a weight matrix

W ∈ Rd′×d and a bias vector b ∈ Rd′ to obtain a transformed vector in a

higher-dimensional space:

h = σ(Wx+ b) (3.4)
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where σ is a non-linear activation function, and h ∈ Rd′ represents the data

in the new dimensional space. In our model, we use the Gaussian error linear

unit (GELU) as our activation function. GELU combines the properties of

ReLU and Gaussian noise, defined as GELU(x) = x · Φ(x), where Φ(x) is the

cumulative distribution function of the standard normal distribution.

To reduce the dimensionality back to the original or target dimensions,

another linear transformation is applied, typically using another weight matrix

W′ ∈ Rd′′×d′ and bias vector b′ ∈ Rd′′ , followed by an activation function:

y = σ(W′h+ b′) (3.5)

Here, y ∈ Rd′′ is the output in the reduced dimensional space.

3.3 Model Architecture

3.3.1 Stepping Schemes for Prediction

The purpose of integrating the stepping schemes with the FNO is to help with

error mitigation and provide a structured way to advance the state of the

system through time. This ultimately helps with making sure the predictions

remain coherent and accurate over multiple time steps, especially for nonlinear

systems like the QG system (and many other systems that involve nonlinear

dynamics). We have opted to utilize first-order Euler and fourth-order Runge-

Kutta schemes that can handle these nonlinearities when advancing the system

state and making sure the predictions remain physically meaningful. Addi-

tional information regarding the benefits to using these schemes are explained

later in this chapter.

These stepping schemes are applied after the FNO generates a prediction.

The FNO itself processes input data to produce an output that represents the

13



state of the system at the next time step. The stepping schemes then take

this output and adjust it according to the chosen method (1st order Euler, 4th

order Runge-Kutta, or directly) to mitigate errors and attempt to improve the

accuracy of the prediction.

As for the choice of schemes, we opted to use differing stepping schemes

because they offer varying levels of accuracy and stability that can be useful

when attempting to dial in a model’s parameters or analyze its success. Gener-

ally the RK4 method is known for its higher accuracy compared to the simpler

Euler method, which can be less accurate but computationally cheaper.

Direct-step prediction method

Our first stepping scheme is a straightforward one-step prediction method

where the FNO is applied directly to the current state to predict the next

state without considering intermediate steps or the rate of change.

Similar to Chattopadhyay et al. [1], we define the governing partial differ-

ential equation for the reduced atmospherical system using initial condition

X(t). The evolution of the state, X, is given by:

dX

dt
= F(X(t)). (3.6)

In order to integrate our system from the initial condition, we define equa-

tion 3.6 in its discrete form:

X(t+∆t) = X(t) +

∫ t+∆t

t

F(X(t)) dt︸ ︷︷ ︸
N [o,θ]

. (3.7)

Here, N is an FNO that parameterizes F with four Fourier layers, similar to

Li et al. [8], each layer retaining 64 Fourier modes. θ represents approximately

80× 106 trainable parameters for the FNO.

14



Fourth-order Runge-Kutta (RK4) integration scheme

We chose RK4 as a stepping scheme for prediction to dampen error propagation

and because it provides a balanced trade off between computational efficiency

and accuracy, allowing for stable integration over time. It can also handle non

linearities which makes it espsecially well-suited for simulating geophysical fluid

dynamics.

Instead of a direct prediction X(t+∆t), as done in Eq. (3.7), we represent

F(X(t)) in Eq. (3.6) with an FNO, N [o, θ], with trainable parameters, θ:

X(t+∆t) = X(t) +

∫ t+∆t

t

F(X(t)) dt︸ ︷︷ ︸
H[N [o,θ]]

(3.8)

The layer H[o] performs the integration between t and t+∆t via the RK4

scheme following Krishnapriyan et al. [7] as shown in Eq. (3.3). The operations

in the H are given by:

i1 = N [X(t), θ] , (3.7a)

i2 = N
[
X(t) +

1

2
i1, θ

]
, (3.7b)

i3 = N
[
X(t) +

1

2
i2, θ

]
, (3.7c)

i4 = N [X(t) + i3, θ] , (3.7d)

z = X(t) +
1

6
(i1 + 2i2 + 2i3 + i4) . (3.7e)

(3.9)

We then obtain the predicted state with z = H [N [X(t), θ]].

First-order Euler integration scheme

We chose 1st order Euler step as a stepping scheme for prediction because it

offers simplicity and speed. It approximates the solution at the next time step

by adding the product of the current derivative and the step size to the current

15



value.

Given an ODE of the form

dX

dt
= F(X(t)), (3.10)

with an initial condition X(t0) = X0, the Euler method updates the solu-

tion as follows:

Xn+1 = Xn + h · F(Xn, tn), (3.11)

where h is the step size, Xn is the current state, and F(Xn, tn) is the derivative

of X at time tn. Our stepping scheme computes the next state using the FNO

to estimate the derivative, which is then added to the current input batch,

thus advancing the solution by one time step at a time.

3.3.2 MSE Loss Function

The goal of training an FNO is to minimize a loss function thereby improving

the model’s predictions. The loss function in this context is based on the mean

squared error (MSE) between the predicted output and the target. We define

this as:

L =
1

N

N∑
i=1

(ŷi − yi)
2 , (3.12)

where ŷi is the predicted value, yi is the true value, and N is the number of

samples. The MSE measures the average squared difference between the esti-

mated values and the actual values, providing a way to quantify the accuracy

of the predictions.

We apply the loss function at each time step during training to the predicted

output N (u(t)) generated by the FNO. Specifically, after every step where
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the FNO produces an intermediate prediction u′(t +∆t) or a final prediction

u(t + ∆t), the loss function evaluates the difference between these predicted

states and the true state utrue(t+∆t). This difference is then used to compute

the gradient that informs the adjustment of the model parameters through

backpropagation.

3.3.3 Spectral Loss Function

The purpose of utilizing a spectral loss function is to measure the prediction

error while accounting for spectral bias [1]. Spectral bias refers to the tendency

of neural networks to underrepresent high-frequency components, which can

lead to inaccurate predictions in models dealing with turbulent flow or other

complex systems [1].

The spectral loss function is defined as:

L(θ) =
1

T

T∑
t=0

∥∥up(t+∆t)− utrue(t+∆t)
∥∥
2
+ λ

∥∥ûp(t+∆t)− ûtrue(t+∆t)
∥∥
2

(3.13)

In this equation, up(t+∆t) denotes the predicted state at time t+∆t, while

utrue(t+∆t) represents the true state at the same time. The terms ûp(t+∆t)

and ûtrue(t + ∆t) refer to the Fourier-transformed versions of the predicted

and true states, respectively. The parameter λ is a regularization factor that

balances the contributions of the prediction error in the physical domain and

the spectral domain.

This loss function helps in mitigating the spectral bias by incorporating

the error in both the physical and spectral domains. The first term of the

loss function measures the difference between the predicted and true states in

the physical domain using the L2 norm. The second term, weighted by the

regularization parameter λ (see section 3.4), measures the difference in the

spectral domain, where the Fourier transforms of the predicted and true states
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are compared. By including both terms, the loss function encourages the model

to accurately predict both the low-frequency and high-frequency components,

which we hope that by incorporating into our experiment, will lead to more

stable and accurate predictions and result in a noticeable decrease of spectral

bias. [1].

3.4 Training Parameters

Detailed below are the values of selected, key parameters for both the QG

system and the FNO that were utilized in the training of our network.

Initial Wavenumbers: We use parameters kinit and kinit,y to specify the

initial wavenumbers in the x and y directions, respectively. In the context of

the QG system, these define the scale of the smallest waves that the spectral

loss function considers in the Fourier-transformed space.

Fourier Modes: The parameter for the Fourier modes, set to 64 for both

the x and y directions, controls the resolution of the spectral convolution op-

eration by limiting the number of frequencies considered in each direction.

Spinup Time: The spinup time is set to 10,000 iterations or time steps, defin-

ing the initial period required for the QG system to reach a quasi-equilibrium

state before the actual data collection or analysis begins. This ensures that

the initial transients are not included in the final analysis.

Regularization Parameter λ: Our regularization parameter λ is set to 0.2

in this model and is used in the loss function to balance the mean squared

error (MSE) loss and the spectral loss. A smaller value of λreg places more
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emphasis on the MSE loss, which directly measures the error in predicting the

physical state, while a larger value emphasizes the spectral loss, focusing on

the accuracy of the Fourier-transformed components.

Learning Rate: The learning rate, set to 0.001, controls the step size at

each iteration while moving towards a minimum of the loss function. A smaller

learning rate allows for finer adjustments to the model parameters but requires

more iterations while a larger learning rate speeds up convergence but risks

overshooting the minimum.

Epochs: We have set the number of epochs to 40, specifying the number

of times the entire training dataset passes through the neural network during

training. More epochs can improve model performance by allowing the network

more opportunities to learn, but excessive epochs can lead to overfitting.
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Chapter 4

Results

Our experiment did not achieve long-term stability, but does reflect some in-

teresting findings about short-term accuracy.

To discuss these findings, we use standard metrics such as root mean square

error (RMSE) and anomaly correlation coefficient (ACC) to evaluate the FNOs

predictions against the corresponding ”truth” time series produced by the QG

system. During these evaluations, we use a snapshot from the state vector that

serves as the initial condition for the model.

Additionally, we perform analysis on amplitude spectrum plots to gain in-

sights into spectral bias, the decay of amplitude over time, and how well our

model retains accuracy across various spectral modes (particularly in predict-

ing small-scale features).

The truth data in this context refers to data generated using the dry QG

system. Each timestep in the simulation represents a specific point in the

model’s evolution, and for the purposes of these analyses, every five timesteps

are considered to represent one ”day” in the simulated atmospheric system.
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4.1 Benchmarks and metrics

4.1.1 Stable Model Benchmark

In addition to the truth, we use a stable, dry-QG FNO model as a benchmark

against which to compare our model. The stable model is a direct step model

trained with the spectral loss function and specifically trained on all three

states of data: the two streamfunction variables, ψ1 and ψ2, as well as the

third moisture state. Direct access to the moisture data allows the model to

access and utilize more than just the latent information about moisture in the

system through our two streamfunctions.

This benchmark model was able to achieve numerical stability over 250

days for the particular set of parameters it was trained on. One difference in

the stable model’s design is its use of a modified regularization parameter λ

(see section 3.4). Unlike our experimental model where λ = 0.2, the stable

model’s λ was adjusted by dividing it by a factor of 1
110

, resulting in a modified

λ value. This adjustment was made after a careful comparison of the average

spectral loss to the grid loss, as we had determined that the spectral loss was

approximately 110 times greater than the associated grid loss. This is a small

adjustment but it is worth noting, as it directly affects the training process.

4.1.2 Root Mean Square Error (RMSE) Metric

The RMSE provides a sense of the total error accumulated through the pre-

diction. The RMSE is calculated simply as the root mean square difference

between the truth and the prediction of each variable at each time step as

RMSEp,i =

√√√√ Ny∑
j=1

Nx∑
k=1

(
ppred,(i,j,k) − p(i,j,k)

)2
. (4.1)

where ppred,(i,j,k) is the predicted value and p(i,j,k) is the truth value.
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4.1.3 Anomaly Correlation Coefficient (ACC) Metric

The ACC metric is used to assess the similarity between the temporary or

short-lived features and variations predicted by the FNO against the ”truth”

patterns obtained from the QG system. This helps us in identifying extreme

events, which are an important part of the climate systems variability. Here

”extreme” refers to anomalies with magnitudes farther than average from the

temporal mean.

We first establish the temporal mean for any given variable p by

pc(j, k) =
1

Nt

Nt∑
i=1

p(i, j, k), (4.2)

where Nt denotes the total number of time steps within the time series, and

(j, k) represent the (y, x) spatial indices. Therefore, for each variable p at

a specific time step i (with i = 0 indicating the initial snapshot used for

prediction), the ACC is determined as the correlation,

ACCp,i =

∑Ny

j=1

∑Nx

k=1 (ap,i,j,k · bp,i,j,k)√∑Ny

j=1

∑Nx

k=1 (ap,i,j,k · ap,i,j,k)
∑Ny

j=1

∑Nx

k=1 (bp,i,j,k · bp,i,j,k)
, (4.3)

between the forecasted anomalies

ap,i = ppred,i − pc −
1

NyNx

Ny∑
j=1

Nx∑
k=1

(ppred,i,j,k − pc(j, k)) , (4.4)

and the truth anomalies,

bp,i = pi − pc −
1

NyNx

Ny∑
j=1

Nx∑
k=1

(p(i, j, k)− pc(j, k)) , (4.5)

where Nx and Ny correspond to the number of grid points in each the x and y

directions.
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4.2 Models trained with MSE loss function

Below we detail the results for three variations of our model trained with the

MSE loss function as defined in section 3.3.2: Direct Step with MSE loss, Euler

with MSE loss, and RK4 with MSE loss.

4.2.1 RMSE Results

For the upper layer in the QG system (ψ1), our FNO displays, on average, a

higher total error accumulated than the stable model. However, for the lower

layer ψ2, we see a lower accumulation of error between the prediction and truth

values. This is a particularly interesting find because the lower layer in the

QG system has the only moisture advection seen in between both layers in the

system. There could be many reasons for this result but we suspect it may be

because of the integration system that is coupled with the FNO, mitigating

error as it is supposed to.

Figure 4.1: The RMSE comparison between the upper (ψ1) and lower (ψ2)
layers of the QG system for each of the three stepping schemes: RK4, Euler,
and the direct-step method wherein no integration is applied.
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4.2.2 ACC Results

Figure 4.2: The ACC comparison between the upper (ψ1) and lower (ψ2) layers
of the QG system for each of the three stepping schemes: RK4, Euler, and the
direct-step method wherein no integration is applied. In all three cases, long-
term instabilities are seen but short-term accuracy is greater than a stable
model trained with full states of data.

The ACC results indicate that all three experimental models—Direct Step,

Euler, and RK4—are unstable in predicting the evolution of ψ1 and ψ2 over

time. In particular, the ACC for all models drops below 0.6 relatively early

in the time steps, which is a critical threshold indicating that the models no

longer provide meaningful predictions. All models fail to maintain an ACC

above 0.6 past the 30th time step.

4.2.3 QG system Flows

We use a comparison of our ’truth’ data to compare each of our FNO models

trained on each of our three stepping schemes: RK4, Euler, and Direct. The

stable model has access to additional moisture data, and noticeably shows

more accurate and stable predictions across all time steps, as evidenced by the

more coherent and consistent structures over time.
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In contrast, the three FNO-trained models demonstrate increasing insta-

bility, with noticeable differences in the flow patterns and the degradation of

predictive accuracy as time progresses. This shows a lack of accuracy over

extended time periods without the additional moisture data.

Below we see figures for ψ1 and ψ2 of the QG system over time, and for each

of the models. As we see in figure 4.3, the models fall under the threshold of

meaningful prediction at around 30 time steps, which is around 7 days. This

decline in accuracy is significant because it highlights the limitations of the

FNO-based autoregressive models when they are not provided with moisture

information. The exclusion of moisture seems to cause a quicker degradation in

the model’s predictive capabilities, particularly as we move beyond the short-

term predictions. The visual differences between the prediction and the truth

also become increasingly apparent as time progresses with each of the models

deviating more significantly from the true states.

In contrast, figure 4.4 shows the behavior of ψ2 where the patterns are

similar but the model degradation appears more rapid possibly suggesting

that ψ2 may be even more sensitive to the exclusion of moisture data or to the

particular small-scale dynamics being modeled.
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Figure 4.3: Flows for ψ1 of the QG system as predicted with various FNOs
trained on MSE loss. Our FNO is trained on three different stepping schemes,
resulting in three models, compared to a stable model benchmark. Each row
represents a different model, while each column corresponds to a different day
of prediction, where one day is 5 time steps through the FNO.

4.3 Models trained with Spectral Loss

Below we detail the results for three variations of our model trained with the

spectral loss function as defined in section 3.3.3: Direct Step with MSE loss,

Euler with MSE loss, and RK4 with MSE loss.
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Figure 4.4: Flows for ψ2 of the QG system as predicted with various FNOs
trained on MSE loss. Our FNO is trained on three different stepping schemes,
resulting in three models, compared to a stable model benchmark. Each row
represents a different model, while each column corresponds to a different day
of prediction, where one day is 5 time steps through the FNO.

4.3.1 RMSE Results

Our spectral loss models failed to achieve stability and, in fact, exhibited rapid

divergence as is seen in the RMSE plot (figure 4.5). Despite testing various

regularization parameters, this scenario represented the best outcome, or the

slowest divergence, for models employing spectral loss on partial states. In-
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terestingly, the direct step model showed some signs of stabilization, although

the error remains significantly high. This observation is noteworthy, especially

considering that our stable benchmark model also utilizes a direct step ap-

proach with spectral loss. Among the six models we trained, this was the one I

was most optimistic about. Although further training is certainly needed, the

current results provide intriguing insights.

Figure 4.5: The RMSE comparison between the upper (ψ1) and lower (ψ2)
layers of the QG system for each of the three stepping schemes: RK4, Euler,
and the direct-step method wherein no integration is applied.

4.3.2 ACC Results

The ACC plot (figure 4.6) suggest some short-term accuracy despite the lack of

stability. This is possibly due to the hard constraint of the integration scheme

forcing the model towards lower error rates, as discussed in Chapter 3.
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Figure 4.6: The ACC comparison between the upper (ψ1) and lower (ψ2) layers
of the QG system for each of the three stepping schemes: RK4, Euler, and the
direct-step method wherein no integration is applied. In all three cases, long-
term instabilities are seen but short-term accuracy is greater than a stable
model trained with full states of data.

4.3.3 QG system Flows

As described in section 4.2.3, we use a comparison of our ’truth’ data to com-

pare each of our FNO models trained on each of our three stepping schemes:

RK4, Euler, and Direct. With the models that were trained with the spectral

loss scheme, the three FNO-trained models quickly lost stability, with drastic

differences in the flow as soon as day 10, especially for ψ2.

This quick degradation in the model’s predictive capabilities despite a loss

scheme explicitly meant to mitigate error is counterintuitive and suggests that

additional experimentation is needed. The visual differences between the pre-

diction and the truth become immediately apparent as time progresses with

each of the models deviating more significantly from the true states.
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Figure 4.7: Flows for ψ1 of the QG system as predicted with various FNOs
trained on spectral loss. These flows are shown at different days in the ex-
periment, compared against the ’truth’ data. Our FNO is trained on three
different stepping schemes, resulting in three models, compared to a stable
model benchmark. Each row represents a different model, while each column
corresponds to a different day of prediction, where one day is 5 time steps
through the FNO.
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Figure 4.8: Flows for ψ2 of the QG system as predicted with various FNOs
trained on spectral loss. These flows are shown at different days in the ex-
periment, compared against the ’truth’ data. Our FNO is trained on three
different stepping schemes, resulting in three models, compared to a stable
model benchmark. Each row represents a different model, while each column
corresponds to a different day of prediction, where one day is 5 time steps
through the FNO.
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Chapter 5

Discussion

In this project, we report the development of an FNO-based autoregressive

model for predicting Ψ1 and Ψ2 of two-layer QG moist system without explicit

access to moisture information. We showed that a hard-constrained higher-

order integrator inside the FNO architecture results in better prediction accu-

racy and lower error growth. While this is a prototypical system for weather

and climate, we hope to extend this work to systems that are close to fully

coupled ocean-atmosphere. Here, we discuss some of the challenges, ongoing

work, and future directions we have to investigate.

5.1 Impact of Moisture Exclusion

While the model showed comparable short-term performance in predicting ψ1

and ψ2 in the absence of moisture information, we could not realize a stable

model despite the inclusion of the integration scheme. This is expected since

the absence of small-scale physics typically available to the system via the

moisture data would eventually lead to a mismatch in the energy budget of

the system. However, since most systems that are operational would only have

a few observable states, further work into understanding how these small-scale
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processes can be parameterized in data-driven models need to be investigated.

5.2 Additional Experiments with Spectral Loss

One of the ways that previous work [2] had incorporated small-scale infor-

mation was by correcting the spectrum of the dynamics in the small-scales

with a spectral regularizer. However, that model still had access to all the

states. In our experiments, preliminary results show that the spectral regu-

larizer does not improve our performance and in fact leads to quick numerical

blow up. While we conducted searches in the scaling parameter that weighs

the regularizer, further work in this direction may improve the stability of the

model.

5.3 Considerations on λ

The choice of the regularization parameter λ plays a very important role in

balancing the different components of the loss function particularly when in-

corporating spectral regularization. In this study we set λ to 0.2 as it provided

the closest match to stabilize the model during training. However, it is impor-

tant to note that this value was chosen based on limited experimentation due

to the constraints of training on partial data.

While λ = 0.2 offered a preliminary solution it is evident that further tun-

ing could potentially improve model performance and stability especially as the

spectral regularization is highly sensitive to this parameter. More extensive

experimentation with different λ values might reveal a better balance that mit-

igates the issues observed, such as quick numerical blow ups. However the need

for a more optimal regularization parameter becomes even more pronounced

given that the FNO was trained without explicit moisture information, which
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likely exacerbated the challenges in achieving stable, long term predictions.

Future work will need to involve more comprehensive searches in the param-

eter space, considering not only λ but also other aspects of the loss function,

to fully understand its impact on model stability and performance.
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