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Implicit Detection of Event Interdependencies
and a PDP Model of the Process

Michael Kushner
Department of Psychology
Brooklyn College of CUNY
Brooklyn, NY 11210
hmkushnr @bklyn.bitnet

Abstract

We report on an experiment in which subjects were asked
to predict the location of a stimulus based on observation
of a series of five events. Unbeknownst to subjects, the
location of the sixth event was determined by a double
contingency between the second and fourth events in the
sequence. This material is therefore highly complex, since
the relevant events are embedded in a large number of
irrelevant contexts. The results indicated that subjects
improved their prediction performance over 10 sessions
encompassing over 2400 trials of training, despite the fact
that they remained completely unaware of the existence of
the rule, and unable to verbalize their knowledge of the
contingencies in the material. We propose a model of
performance in this task, in the form of a PDP model of
sequence processing. The model successfully accounts for
performance and illustrates how knowledge about the
temporal context may develop in a way that does not
necessarily yield decomposable representations.
Interestingly, the model also predicts that performance
would be worse if subjects were required to predict
successive events rather than simply observe them.

Introduction

Implicit learning is the process whereby knowledge about
complex, rule-governed stimulus environments is acquired
without specific intentions to learn and largely independently
of conscious knowledge about what was learned (Reber,
1989). This process has been explored in a wide variety of
experimental contexts including artificial grammar learning
(Reber 1967, 1989), patterned sequence learning (Lewicki,
Hill, & Bizot, 1988; Nissen & Bullemer, 1987; Cleeremans
& McClelland, in press), concept formation (Brooks, 1978),
probability learning (Reber & Millward, 1968, 1971), and
process control of simulated manufacturing plants (Berry &
Broadbent, 1984). In all cases subjects learn to make
decisions, classify novel stimuli, anticipate events, and solve
problems that required knowledge of the regularities in the
stimulus environment while showing little or no explicit,
reportable knowledge about those regularities.
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As has been argued elsewhere (Reber, 1989; Cleeremans
& McClelland, in press), these experiments all have in
common the property that the underlying knowledge base
that subjects extract from their interactions with the
stimulus environments can be captured by the notion of
covariation, That is, subjects’ behavior in all of these
experiments appears to reflect a single process: the detection
of covariations among events as they are instantiated in the
stimulus display. The generality of this process is
considerable and it has been observed across a wide range of
stimulus materials (see Reber, 1989, for a review).

In this paper we explore this notion of the detection of
covariation further by introducing a stimulus environment
that is based on a complex array of events whose underlying
structure is characterized by a remote, double- dependency
rule that is far more complex than anything that has been
studied to date. If implicit learning is as robust a process as
some have suggested (Lewicki, 1986; Lewicki & Hill, 1989;
Reber, 1989), then we ought to be able to observe this
process emerging in situations where the associative links
between events are complex and non-salient.

The procedure used in this study is a relatively simple
prediction experiment in which subjects had to “guess’ the
successor of a sequence of similar events. Subjects were
exposed to a series of five stimuli presented successively on
a computer monitor and were asked to predict the location of
the sixth stimulus. There were three possible locations,
arranged as the vertices of a triangle, at which the stimuli
could appear. The first five stimuli always appeared at
random locations; the location of the sixth stimulus was
determined on the basis of the relationship between the
locations of the 2nd and 4th stimuli. The Ist, 3rd, and 5th
stimuli were always irrelevant.

There are at least two reasons why this task may be quite
hard. First, there are more irrelevant events than useful ones.
Second, the rule that defines the location of the target
stimulus is complex in that it involves a relationship
between events rather than the particular events themselves.
This results in each component of the rule being instantiated
by different pairs of events, each of which may in turn be
embedded in a large number of different irrelevant contexts.
Nevertheless, we show that subjects do learn double
dependencies of this kind, and that they do so independently
of any explicit knowledge of the rules. We also show that


mailto:cleeremans@psy.cmu.edu

once the pattern has been picked up subjects are capable of
transferring their knowledge to a “shifted” rule despite the
fact that they were unaware of the rule change.

Finally, we present a simulation of the human data using
a Parallel Distributed Processing (PDP) model based on the
simple recurrent network (“SRN") architecture first
introduced by Elman (1990). Cleeremans and McClelland (in
press) showed that this model could successfully account for
implicit learning of sequential material in a choice reaction
situation where the sequences were generated from an
artificial grammar. This model therefore appears to be a
natural candidate for modeling implicit learning processes in
prediction tasks such as the one we describe in this paper.
We show that the model is successful in accounting for
some (but not all) aspects of performance in our situation.
The model illustrates how successful prediction performance
may emerge from representations that are not easily
decomposable, and thus possibly hard to verbalize. The
model also predicts that the particular training conditions
used in this experiment are critical for successful
performance. We conclude that the SRN model has the
potential of giving a reasonable characterization of implicit
learning in a variety of stimulus environments.

A complex sequence prediction task

Method

Subjects. Six Brooklyn College undergraduates
participated in the experiment. They were paid $40, and
received a bonus of one cent per correct prediction beyond
chance level.

Apparatus and display. The experiment was run on an
IBM microcomputer. The display consisted of three
numbered boxes located at the vertices of an invisible
inverted triangle, and measuring 6.5 cm X 7.5. cm each. A
trial consisted of five successive events. Each event consisted
of the appearance of a square stimulus (2.5 cm wide) in one
of the boxes. The stimulus remained on screen for 250 msec.
The inter-stimulus interval was 250 msec. During a series of
5 events, the stimulus moved from one box to another. After
the fifth event had occurred, subjects were asked to predict in
which box the stimulus would appear next. They entered
their prediction by typing a number between 1 and 3 on the
keyboard. The computer then displayed the correct response
by presenting the stimulus in the correct box for 2000 msec.
Subjects initiated the next trial by pressing the space bar.

Design and stimulus generation. We constructed 18
different random orders of the set of 243 (39) possible
sequences of 5 stimuli. Each of these 18 sets of 243
sequences was then blocked in 3 groups of 81 trials, for a
total of 54 blocks. Subjects were exposed to a total of 4374
trials over 6 days. There was a short pause between any two
blocks. All subjects were exposed to the same 18 random
orders. Intentionally vague instructions described the
experiment as being about “prediction behavior”.

The entire experiment was broken down in three phases
(the existence of which subjects were naturally kept
unaware). Phase I (the “training” phase) consisted of 2430
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trials (i.e., 30 blocks of 81 trials). During this phase, the
location of the sixth event could be predicted perfectly based
on the relationship between the locations at which the
second and fourth stimuli of the current trial had appeared. If
these stimuli had appeared at the same screen location, then
the sixth stimulus appeared in Box 1. If they had been in a
clockwise relationship, the sixth stimulus appeared in Box
2. The sixth stimulus appeared in Box 3 if the second and
fourth stimuli had been in a counter-clockwise relationship.

In Phase II (the “transfer” phase), the rule was
surreptitiously modified by shifting the location of the sixth
stimulus by one box for each component of the rule. For
instance, sixth events which had appeared in Box | during
Phase I now appeared in Box 2. Similarly, sixth events
which should have appeared in Box 2 now appeared in Box
3, and those which should have appeared in Box 3 now
appeared in Box 1. Subjects were asked to make 972
predictions (i.e., 12 blocks of 81 trials) in this phase.

During Phase III (the “random” phase), the rule was again
modified: the location at which the sixth stimulus may
appear was now simply determined at random. Subjects were
again asked to make 972 predictions (i.e., 12 blocks of 81
trials) in this phase of the experiment.

Finally, we conducted extensive interviews with each
subject immediately after completion of the experiment

Results

For each session of the experiment, we computed the average
proportion of correct predictions about the location of the
sixth stimulus. The results of this analysis are illustrated in
Figure 1. Subjects become increasingly better at making
accurate predictions over the first 10 sessions of training, and
end up reaching about 45% correct responses in the 10th
session. This is significantly above chance level (33%)!, and
clearly indicates that subjects have acquired knowledge about
the relevant regularities embedded in the material. The second
phase begins with a dramatic drop in performance (to chance
level), but there is again evidence of learning over the next
three sessions (p < .01). This suggests that subjects are able
to transfer relatively easily from one stimulus-response set
to another one. As expected, performance in the third,
random, phase is low and fails to be significantly over
chance level.

Despite this clear sensitivity to the complex regularities
embedded in the material, none of the subjects exhibited
explicit knowledge of the sequential structure when asked
after the task. Post-experimental interviews revealed that
subjects felt frustrated in their attempts to “learn the rule”
that determined the location of the sixth stimulus. All
subjects reported that they eventually abandoned the search
for rules, and started predicting according to their “hunches"”
or according to “what felt right”. Subjects were unable to
specify which covariations were crucial in the sequence of
five stimuli, not even in a general form such as “when the
nth stimulus was in box X, the correct answer was usually

1 All statistical tests reported in this section were conducted by
using a normal approximation to the binomial distribution, at
the .01 level.



Y”. No subject reported awareness of the rule shifts between
the three phases of the experiment.
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Figure 1: Mean proportion of cormrect predictions, over the 18
sessions of training, and for the three phases of the experiment
(“Training”, “Shift”, & “Random™).

Subjects’ poor knowledge of the constraints embedded in the
material was also confirmed by their performance on a
ranking task, in which they were asked to rate each of the
five stimuli in terms of their relevance in predicting the
location of the sixth stimulus. The results failed to reveal
sensitivity to the crucial events: On a scale of 1 (very
important) to 5 (not important), the crucial events received
average ranks of 3.5 (2nd event) and 2.67 (4th event),
whereas the first, third and fifth events were ranked 3.33,
3.67 and 1.83 respectively. However, there was some
evidence that particularly salient sequences which were
reported by subjects also elicited very good predictions. For
instance, sequences in which the first five stimuli had
appeared at the same location always predicted Box 1 as the
location of the sixth trial. (i.e., “11111 = 1", “22222 =
17, “33333 ->» 17). Similarly, alternating sequences such as
“12121" always predicted Box 1 as well. Subjects could
correctly predict the successor of repeating sequences in
about 61% of the cases of Phase 1 (49% for the alternating
sequences) — considerably better than average. This result
clearly indicates that, at least in some specific cases like
this, subjects have become aware of some of the regularities
embedded in the material. Subjects’ successful prediction
performance is far from being based only on these salient
patterns, however: The average prediction score during Phase
I only dropped by .0046 percentage points when the 3
possible “repeating’ and 6 possible “single alternating”
sequences were eliminated from the analysis. Clearly,
subjects have become sensitive to contingencies about which
they are unable to report.
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A simulation of human prediction
performance

This study is a natural candidate for exploring how well a
model of sequence processing first introduced by Elman
(1990) may be used to simulate human prediction
performance. Cleeremans & McClelland (in press) used the
“Simple Recurrent Network”, or “SRN", to model implicit
learning processes in a choice reaction situation. The SRN
(Figure 2) is a standard fully connected three-layers back-
propagation network (see Rumelhart, Hinton & Williams,
1986), with the added property that the hidden unit layer is
allowed to feed back on itself with a delay of one time step,
so that the intermediate results of processing at time r-/ can
influence the intermediate results of processing at time r. In
practice, the SRN is implemented by copying the pattern of
activation on the hidden units onto a set of “context units”,
which feed back into the hidden layer along with the next
input. All the forward-going connections in this architecture
are modified by back-propagation. The recurrent connections
from the hidden layer to the context layer implement a
simple copy operation and are not subject to training.

As reported elsewhere (Cleeremans, Servan-Schreiber &
McClelland, 1989, in press), we have explored the
computational aspects of this architecture in considerable
detail. Following Elman (1990), we have shown that an
SRN trained to predict the successor of each element of a
sequence presented one element at a time can learn to
perform this “prediction task" perfectly on moderately
complex material. For instance, the SRN can learn to predict
optimally each element of a continuous sequence generated
from small finite-state grammars such as those used by
Reber (1989). After training, the network produces responses
that closely approximate the optimal conditional
probabilities of presentation of all possible successors of the
sequence at each step. Note that the network is never
presented with more than one element of the sequence at a
time. Thus, it has to elaborate its own internal
representations of as much temporal context as needed to
achieve optimal predictions. Through training, the network
progressively comes to discover which features of the
previous sequence are relevant to the prediction task.

OUTPUT UNITS : Element t+1

A

HIDDEN UNITS

[+]+]

CONTEXT UNITS

——
INPUT UNITS : Elementt “

Figure 2: The simple recurrent network (SRN). Adapted from
Cleeremans & McClelland (in press).




This architecture — as well as other connectionist
architectures with which the SRN shares several basic
features — appears to be a good candidate for modeling
implicit learning phenomena. For instance, because all the
knowledge of the system is stored in its connections, this
knowledge may only be expressed through performance.
Further, the back-propagation learning procedure implements
the kind of elementary associative learning that seems
characteristic of many implicit learning processes. However,
there is also substantial evidence that knowledge acquired
implicitly is very complex and structured (Reber, 1989) —
not the kind of knowledge one thinks would emerge from
associative learning processes. The work of Elman (1990),
in which the SRN architecture was applied to language
processing, has demonstrated that the representations
developed by the network are highly structured and accurately
reflect subtle contingencies, such as those entailed by
pronominal reference in complex sentences. Thus, it appears
that the SRN embodies two important aspects of implicit
learning performance: elementary learning mechanisms that
yield complex and structured knowledge. The SRN model
shares these characteristics with many other connectionist
models, but its specific architecture makes it particularly
suitable for processing sequential material.

To model our experimental situation, we made the
following assumptions: First, each of the three possible
locations at which the stimulus may appear was represented
by activating a single unit in either the input pool or the
output pool. Second, we assumed that the activations of the
output units represent the network’s predictions about the
location of the next stimulus. Third, since no predictions
were required from subjects during presentation of the first
five trials of a series, learning was turned off for those trials.
The network was therefore merely storing successive events
during presentation of the first four trials. When the fifth
trial was presented as input to the network, learning was
turned on, and the network was trained to activate the output
unit corresponding to the location at which the sixth
stimulus would appear. Finally, since trials (i.e. blocks of
five events) were totally independent from each other, the
context units were reset to zero at the beginning of each
trial. Thus, the temporal context could influence processing
within a block of five events, but it was prevented from
carrying over to the next block.

Procedure. Three SRNs with 15 hidden units were trained
in exactly the same conditions as human subjects. Each
network used a different set of initial random weights, and
the learning rate was set to 0.5. (the momentum parameter
was not used in these simulations). On each of the 18
sessions of training (10 during Phase I, and 4 each during
Phases II and III), each network was exposed to 243
sequences of five events. On each trial, the network was
exposed to one of these sequences by activating the input
unit corresponding to each event in turn. Note that the
network was not trained at this point; it merely processed the
sequence of events. When the fifth event was presented,
however, learning was turned on, and the network was
trained to activate the unit corresponding to the sixth event
on its output layer. The error between its prediction and the
actual sixth event (as specified by the rules appropriate for
the current phase of training) was then computed and back-

218

propagated to modify the weights. To evaluate the model’s
performance, we recorded the activation of the output units,
and determined which unit was most active. A prediction
response was considered correct if the activation of the unit
corresponding to the actual sixth event was higher than the
activation of the two other units. On the next trial, the
context units were reset to zero, learning was turned off, and
the network was presented with another sequence of five
events.
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Figure 3: Mean proportion of correct predictions over the 18
sessions of training, and for the three phases of the experiment.
Filled symbols represent human data; open symbols represent
simulated data (epsilon = 0.5).

Figure 3 compares the human data with the average
proportion of correct prediction responses produced by the
networks, for each of the 18 sessions of training. It is clear
that the model is learning the regularity in Phase I. There are
other aspects of the data for which the correspondence with
the simulations was far from perfect. In particular, the main
discrepancy is located in Phase II: the model isn’t nearly as
good as the human subjects to readjust its performance to the
new rule. This is interesting because it points to a
shortcoming shared by most current simulation models of
implicit phenomena: their relative inability to transfer to a
different set of stimuli and responses which is structurally
identical to the original, but instantiated by different tokens.
We will return to this point in the discussion.

Figure 4a contrasts the model’s performance in predicting
the sixth event with its average performance in predicting
events 2-5. Recall that the network was not trained to predict
successive events during presentation of the first four events.
However, it still produced responses, which may be used to
compute a baseline “prediction” score against which to
compare actual prediction responses of the sixth event.
Figure 4a shows that this baseline curve remains flat and at
about chance level throughout training, thereby confirming
that the network is indeed acquiring information which is
specific to predicting the sixth event.
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Figure 4: Proportion of correct prediction responses plotted
separately for Events 2-5 (open symbols) and for Event 6 (filled
symbols). [a]: Data from an SRN trained only on presentation of
the 5th event. [b]: Data from an SRN trained on all events.

This analysis is most useful when comparing its results
with those of the same analysis conducted on the responses
of an SRN trained to predict the successor of each event.
Figure 4b represents these data. Interestingly, the model’s
performance is much worse under these conditions than when
it is trained to predict only the sixth event. Indeed, there is
almost no difference between the curves corresponding to
predictions of events 2-5 and to event 6: both curves remain
flat and at about chance level throughout training.This is
because the network is trained to predict random events
(events 2 to 5) four times as much as it is trained to predict
structured events (event 6). Because of the error
minimization resulting from back-propagation, the responses
of the network tend to represent the average probability of
each output unit to be active in the entire training set. Since
the probability of an output unit to be on in the entire
training set is about 0.33, the responses of the SRN are
essentially random when it is trained under these conditions.
Thus, the SRN model makes the somewhat counter-intuitive
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prediction that subjects would fail to learn the contingencies
embedded in the material if the task was such that they were
required to guess the nature of each successive event.

Discussion

Subjects were run on a complex task in which they were
required to predict where the sixth event of a series would
appear. Unbeknownst to them, the location of the sixth
stimulus was determined based on the relationship between
the second and fourth events of a sequence. Subjects’
prediction performance improved with training, despite the
fact that they remained unable to specify which events were
relevant, or even that there was any kind of structure present
in the material. Further, subjects could successfully transfer
the knowledge acquired during training to a different,
“shifted"”, rule.

The simulation work reported in this paper has
demonstrated how the SRN model may be applied to this
experimental situation. There are several interesting issues
here worth commenting on:

First, the results show that the model is capable of
learning the complex rule instantiated in the training
material, and to do so at about the same rate as human
subjects?. What are the mechanisms underlying this
sensitivity? During the first five events of each trial, the
model is merely storing information about each event, in the
form of a time-varying pattern of activation over the hidden
units. When the fifth trial is presented to the network, this
pattern of activation now represents the entire sequence of
five events. Different sequences will result in different such
representations, even in the absence of any training . This is
simply the result of the recurrent nature of the architecture
(see Cleeremans, Servan-Schreiber & McClelland, in press,
for a discussion of this point). It is on the basis of the
differences and similarities between these internal
representations that the network becomes capable of
predicting the sixth event. To do so, however, it has to learn
how to map clusters of internal representations
corresponding to sequences resulting in the same prediction
onto the output units corresponding to these predictions.

Another, more interesting point, is the observation that
the representations developed by the network are completely
opaque, in the sense that the information encoded by the
network allows successful performance, but is not readily
decomposable into critical features. Indeed, it would take
sophisticated analysis methods (such as hierarchical
clustering, see Cleeremans, Servan-Schreiber & McClelland,
1990) to uncover the regularities embedded in the internal
representations developed by the network. This characteristic
of the representational system of the SRN, and of PDP
networks in general, provides a natural explanation for the
fact that human subjects are unable to describe what

B Obviously, the learning rate is a free parameter in this model.
We conducted a large number of simulations, each with different
parameters. In some cases, the network failed to learn. In some
other cases, performance was better than in the human data. The
simulations discussed in this paper yielded the best fits with the
human data.



elements of their knowledge are responsible for successful
performance. Whether models are to be taken literally is
arguable, particularly when it comes to their representational
system, but this provocative interpretation of the SRN's
behavior is quite compelling.

A further point is related to training. The results revealed
that the network is unable to learn the task when trained on
each event of a series. The corresponding experiment with
human subjects remains to be done, but it is interesting to
speculate on the reasons for this interference. A typical result
in implicit learning experiments is that asking subjects to
look for structure where there is none results in worse
performance (see for instance Reber, 1976). In our situation,
asking the network to predict successive events rather than
simply observe them appears to have the same effects, and
for the same reasons: the model tends to elaborate
representations that fail to capture the relevant covariations,
because the structure is deeply embedded in many irrelevant
contexts.

One aspect of the SRN's performance in this task seems
to suggest that it is not yet a complete model of the human
data, however. Indeed, the lack of transfer to the new, shifted,
rule system used in Phase II of the experiment may be
incompatible with the idea that performance is based only on
the kind of mechanisms instantiated by the SRN. Why is it
hard for the SRN model to adjust its responses to the new
rule? The answer lies in an examination of how the SRN
model stores and processes knowledge about sequences.
Basically, in the case of this particular task, the connections
between the input units and the hidden units implement a
mapping between sets of sequences of events and distinct
internal representations. Optimally, each set of sequences
which results in the same prediction about the sixth event
should be associated to a unique code on the hidden units,
More likely, there is a number of distinct clusters of internal
representations, with each cluster grouping those internal
representations which result in the same response. The
connections between the hidden units and the output uvnits,
in turn, map these clusters of internal representations onto
the responses. The rule shift introduced in the experiment is
in effect a change in this latter mapping. Indeed, it does not
result in any change in which events are important, or in the
number of possible responses, etc. As a result, all the
network really needs to do in order to produce the shifted
responses is to adjust the connections from the hidden units
to the output units. But, even though weight adjustments are
known to be much faster in the last layer of connections
than in the others, this process of remapping the internal
representations appears to be quite a slow one: even though
it would eventually learn the correct new mapping, it appears
unable to do so within the limited amount of training
available during Phase II.

This difficulty in dealing with “shifted” material exhibited
by the SRN model is a very interesting shortcoming.
Subjects do indeed seem to be able to readjust their responses
to the new shifted rule rather quickly. Another, similarly
intriguing transfer result has been repeatedly described in
grammar learning experiments. For instance, Reber (1969)
reported that transfer performance was significantly over
chance with material generated from a grammar which had
the same structural properties as the grammar used during
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training, but used a different set of letters. By contrast (but
not surprisingly), transfer performance was much worse in a
control condition in which the same set of letters but a
different grammar were used. There appears to be no simple
way of accounting for this kind of result. The basic problem
is that successful models of implicit learning, including the
SRN, base their performance on the processing of
exemplars. If the representations that these models develop
encode the relevant structural properties of the material, they
are nevertheless expressed in terms of the exemplars
themselves, and not as more abstract characterizations of
these structural properties. The fact that subjects do transfer
successfully in this situation suggests that some additional
mechanisms may play an important role in implicit learning
performance. There is no doubt that the current generation of
simulation models of implicit learning phenomena will have
to address this issue in the future.
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