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Abstract

Essays on Bimatrix Games in the Laboratory

by

Shuchen Zhao

The dissertation presents three experimental studies with an emphasis on dynamics of

some repeated bimatrix games. The first chapter studies the equilibrium convergence

and cyclical dynamics in asymmetric matching pennies games. The second and third

chapters focus on coordination and dynamic patterns in two continuous time coordina-

tion games, especially the turn taking dynamics in continuous time battle of the sexes

games.

The first chapter focuses on a matching pennies game with a unique mixed

Nash equilibrium under various environments. Mixed Nash equilibrium (NE) is a cor-

nerstone of game theory, but its empirical relevance has always been questionable. The

chapter studies in the laboratory two games whose unique NE is in completely mixed

strategies; other treatments include the matching protocol (pairwise random vs pop-

ulation mean matching), whether time is discrete or continuous, and whether players

can specify mixtures explicitly or only pure strategy realizations. NE mixes predict

observed behavior better than maximin in all treatments, but uniform mixes are better

predictors than any equilibrium mixture in many treatments. By contrast, in a con-

trol game with a unique NE in pure strategies, the best point prediction is NE. Mixed

equilibrium predictions are more useful in population mean matching than in standard

ix



pairwise matching. Regret-based sign preserving dynamics capture regularities across

all treatments.

The second chapter switches to study the impact of continuous time interac-

tion on two iconic coordination games: stag hunt and battle of the sexes in a laboratory

environment and compare results to possible theoretical explanations. Experimental

results show that subjects consistently coordinate better in continuous time than in

discrete time under various treatment environments. In continuous time, they are also

more likely to converge to payoff-dominant equilibrium in stag hunt games and alter-

nating dynamics in battle of the sexes games. Furthermore, the coordination rate is

affected by complexity of action sets and weakly influenced by payoff matrices. The

chapter also explores some stylized facts that result in the treatment effects.

The third chapter follows the results of the second chapter and goes deeper

into the alternating dynamics in continuous time battle of the sexes with laboratory

experiments. In discrete time battle of the sexes games, players often interact with

alternating strategies and switch between two pure Nash equilibria, which is difficult

to coordinate in continuous time because the players must determine both the order

of alternations and how long to remain at each pure equilibrium. Overall, laboratory

subjects behave differently in the two time environments. Although the continuous

time interactions accelerate the initial convergence to one of the pure strategy equilibria

and divergence from mismatches, they undermine the subjects’ subsequent ability to

coordinate moves from one equilibrium to the other. Compared to the alternating

pattern in discrete time, the pattern in continuous time is unstable and diverse, and

x



the transitions are mainly motivated by the disadvantaged subjects. The difficulty in

alternation also slows the learning process in continuous time.
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Chapter 1

When Are Mixed Equilibria Relevant? 1

“There he goes,” said Holmes, as we watched the [special train] carriage
swing and rock over the point. “There are limits, you see, to our friend’s
intelligence. It would have been a coup-de-mâıtre had he deduced what I
would deduce and acted accordingly.”
— Arthur Conan Doyle (1893)

1.1 Introduction

Generalized matching pennies games capture the essence of strategic situations

(e.g., in hunting, warfare, and sports) where success comes from outguessing opponents.

For example, in the epigraph above, Sherlock Holmes gloats that his own level-3 strategy

of exiting at Canterbury bested his archenemy Moriarty’s level-2 strategy of engaging

a special train to Dover,2 but Holmes recognizes that higher levels are possible. Since

level-(k + 1) beats level-k for every positive k in generalized matching pennies, these

games suffer from infinite regress, a Gordian knot that blocked progress in game theory

1The first chapter is a joint work with Daniel Friedman.
2Aficionados of A.C. Doyle’s story and of level k reasoning might regard random attacks by Moriarty

as level 0, and regard Holmes taking the train to Dover as level 1.

1



for centuries. Neumann (1928) finally cut that knot with the idea of mixed strategy

equilibrium.

Although mixed strategy equilibrium remains a cornerstone of game theory, it

continues to provoke theoretical and empirical controversy, as noted in the next section.

We will see that different theoretical models differ sharply on the predictive power of

mixed Nash equilibrium. Applied economists typically focus on a pure strategy Nash

equilibrium if any exist, but turn to mixed NE in games (such as generalized matching

pennies) with no pure NE. We will see that field and laboratory evidence supporting

those mixed equilibria is, however, itself mixed at best.

The present paper is motivated by the following research questions. First, un-

der what conditions (if any) does mixed Nash equilibrium do a good job of predicting

behavior in generalized matching pennies games? Second, is there a better point predic-

tion — perhaps maximin, as von Neumann proposed, or quantal response equilibrium?

Third, can qualitative or quantitative dynamic models explain behavior when it departs

from point predictions?

These questions are important to applied social scientists and biologists as

well as to theorists. Cyber-attacks and -defenses are naturally modeled as generalized

matching pennies games, as are military exercises and actual conflicts. Standard bi-

ological models of predator-prey interactions can be regarded as dynamic versions of

matching pennies games. Answers to our research questions should help guide work in

such applications.

We use a laboratory experiment to address those questions. The experiment

2



deploys a variety of treatment combinations intended to reveal circumstances under

which each of the competing equilibrium concepts has predictive power. The treatments

include two different simple matching pennies games as well as a control game that

has only a pure Nash equilibrium; two matching protocols that contrast population

games (as in biology and some economic applications such as national cybersecurity

policy) to standard pairwise matching; do-it-yourself randomization versus automated

randomization with chosen mixing weights; and simultaneous moves in discrete time

versus asynchronous moves in continuous time.

The results are instructive. We find some circumstances under which Nash

equilibrium predicts human subject behavior well, but find no circumstances under

which maximin does better. There is a surprisingly wide range of circumstances under

which level-0 uniform random mixing predicts better than Nash equilibrium. For the

generalized matching pennies games we consider, logit quantal response equilibrium

generally does not predict better than its edge cases, Nash equilibrium, and uniform

mixing. The upshot is that mixed equilibria are empirically relevant over a narrower

range of circumstances than one might have supposed.

After reviewing some previous literature in Section 2 and some established

theory in Section 3, we present our experimental design in Section 4. We implement our

2x2 bimatrix games using a new graphical screen display for players. Section 4 concludes

with lists of testable hypotheses about competing point predictions, about treatment

effects on mean choices and on dispersion, and about adaptive learning dynamics.

Section 5 collects results. Some point predictions do better than others in some

3



circumstances, but overall none of them predicts especially well. The data are generally

consistent with a qualitative directional learning model, and a quantitative regret-based

version of directional learning captures important regularities. A concluding discussion

in Section 6 summarizes our findings and suggests implications for game theory and for

applied research. Appendices include supplementary data analysis, and instructions to

subjects.

1.2 Previous literature

The early game theory emphasized two-player zero-sum bimatrix games, where

Nash equilibrium (NE) and maximin (MM) mixed strategies coincide, but recognized

that NE and MM mixes differ in asymmetric matching pennies games (e.g., Solan et al.

(2013)). Early theoretical work on fictitious play dynamics (Robinson (1951); Brown

(1951)) established that time-average play converges to equilibrium in the zero-sum case,

but Shapley (1964) devised a non-zero-sum game with a unique NE in mixed strategies

for which fictitious play dynamics converge to a limit cycle and not to the NE.

Subsequent theory does not yield clear predictions on dynamic stability. Stahl II

(1988), Crawford (1985) and others showed that convergence to equilibrium in asym-

metric matching pennies games generally fails for their favored dynamics. On the other

hand, such games Fudenberg and Kreps (1993) show that stochastic fictitious play con-

verges, and the noise inherent in the Erev and Roth (1998) reinforcement learning model

produces a similar result. Hopkins (2002) shows that that for both of those stochastic

4



models, convergence is to QRE and thus to NE in the limit as noise amplitude vanishes.

Convergence fails for replicator dynamics (Taylor and Jonker (1978)): the matching

pennies NE is neutrally stable. Hofbauer and Hopkins (2005) find that for a broad class

of dynamics, stable mixed equilibria are vanishingly rare in games with more than 2

pure strategies. Of course, unless the step size decreases to zero, discrete dynamics in

a finite population typically can’t converge to an interior equilibrium but at best will

bounce around in its neighborhood.

These heterogeneous theoretical results on point predictions and dynamics

underline the need for empirical work, but so far the empirical results are also quite

heterogeneous. Rapoport and Orwant (1962) surveyed early laboratory experiments,

and found that average play typically was closer to a uniform mix (e.g., .50-.50) than

to a NE or MM mix. O’Neill (1987) found that overall time-average play is surprisingly

close to the NE mix in a particular zero-sum 4x4 game, but Brown and Rosenthal

(1990) noted that this does not imply that individual players employ NE strategies,

and they indeed found substantial departures from the specified iid mixes. Subsequent

empirical contributions such as Walker and Wooders (2001), Chiappori et al. (2002) and

Palacios-Huerta (2003) left many readers with the impression that professionals closely

approximate equilibrium mixed strategies but the usual undergrad lab subjects cannot.

A closer reading suggests that, outside their familiar environments, professionals are

no more successful than the usual subjects (Wooders (2010); Levitt et al. (2010)), but

that populations of the usual subjects can collectively, if not individually, implement

equilibrium mixtures (e.g., Friedman (1996); Binmore et al. (2001)).

5



The empirical literature pertaining directly to our second research question is

limited and inconclusive. To our knowledge, only one previous empirical paper compares

maximin mixtures to NE mixtures. Ochs (1995) considers several treatments (including

one that uses a set of 9 explicit mixtures) in asymmetric matching pennies games, but

finds that neither Nash equilibrium nor maximin tracks the observed changes in average

play when game parameters change. Goeree et al. (2003) find that quantal response

equilibrium with one free parameter (for logit precision) also fails to track such changes,

but adding a second parameter (for risk aversion) improves performance.

There is also empirical literature on adaptive dynamics in matching pennies

games. Mookherjee and Sopher (1994) find that belief learning (responsive to payoffs

that would have been earned by strategies not employed) beats reinforcement learning.

On the other hand, Erev and Roth (1998) find that their three parameter reinforcement

learning model compares favorably to other learning models in predicting behavior in

12 laboratory studies of games with unique interior mixed NE. Camerer and Hua Ho

(1999)’s EWA model includes an extra parameter to hybridize belief learning (a la Che-

ung and Friedman (1997)) with reinforcement learning; the authors show that it is able

to fit a variety of games, including some matching pennies games. Tang (2001) presents

two 3x3 bimatrix games with different predicted dynamic stability properties; the data

favor the Selten (1991) anticipatory dynamics model over the Crawford (1985) model.

Stephenson (2019) reports an experimental test of evolutionary models in coordinated

attacker-defender games that include own-population effects (Friedman (1991)) not con-

sidered in our generalized matching pennies games. His results are consistent with a
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class of adaptive dynamic models. Taken together, these papers suggest that there may

be a useful empirical role for dynamic models of some sort, but it is not yet clear which

sorts are best nor when they will predict convergence or non-convergence to a point

prediction.

In sum, despite important prior work by leading game theorists and experi-

mentalists, all three motivating research questions remain open.

1.3 Theoretical Considerations

Table 1.1: Payoff bimatrices and equilibrium mixtures.

Name AMPa AMPb IDDS

Bimatrix

(
800, 0 0, 200
0, 200 200, 0

) (
300, 100 100, 300
100, 200 700, 100

) (
200, 500 0, 600
400, 300 200, 100

)
NE (0.5, 0.2) (0.33, 0.75) (0, 1)
Maximin (0.2, 0.5) (0.75, 0.67) (0, 1)

The notation (a, b) refers to row mixture aTop⊕(1− a)Bottom and column mixture bLeft⊕(1−

b)Right.

Point predictions. Table 1.1 shows the specific bimatrix games that we will

study. The first two are asymmetric matching pennies games. The Appendix includes

the straightforward computation of the unique Nash equilibrium (NE) and maximin

strategies; these games were chosen in part to create separation between those mixtures.

The third game, named IDDS because it is dominance solvable, is intended as a control;

its unique NE is in pure strategies.

Figure 1.1 graphically displays the mixed extension of the AMPa game from
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Figure 1.1: Heatmap for AMPa row player.

The color at coordinates (x, y) indicates, via scaled thermometer at right, the row player’s

expected payoff at mixed strategy profile 100(b, a). NE, MM, Center respectively mark the

coordinates of Nash equilibrium, maximin and Center profiles. The arc connecting Center

(x, y) = (50, 50) to NE includes all Logit quantal response equilibrium (QRE) profiles. The

Figure uses a limited palette to better display overlaid text; the actual heatmap palette seen by

subjects is shown in Figure 1.3.

the Row player’s perspective: at mixed strategy profile (a, b) ∈ [0, 1]2 her payoff is

fR(a, b) = (a, 1− a)

800 0

0 200


 b

1− b

 = 800ab+ 200(1− a)(1− b)

= 1000ab− 200a− 200b+ 200. (1.1)
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These payoffs are displayed as colors in a “heat map;” the thermometer bar on

the right side shows the corresponding numerical values. These range bi-linearly from

0 at the corners (a, b) = (0, 1), (1, 0) to 200 at (0,0) and to 800 at (1,1). Superimposed

on the heatmap are alternative point predictions of empirical average mixtures: Nash

equilibrium (NE), Maximin (MM), Center (i.e., the point (0.50, 0.50)), and the arc of

Logit quantal response equilibria (QRE) as the precision parameter ranges from 0 (at

Center) to ∞ (at NE).

At least since Nash (1951), game theorists have recognized two different in-

terpretations of equilibrium in 2-player games. In the first interpretation, two highly

rational individuals, fully aware of each other’s circumstances, make choices (possibly

mixtures) that they have no incentive to change. In the second, members of a large row

player population match anonymously with members of a large column player popula-

tion, and an equilibrium distribution of action profiles remains unchanged as individual

players adapt. Binmore et al. (2001), among others, claim that the appropriate dynamic

model of how players adapt their choices, and thus the stability of an equilibrium profile,

may depend on whether the game is played by pairs of individuals or by populations.

That claim motivates the mean-matching vs random-pairwise protocols presented in

Section 4.

Of course, the adaptation process, and hence the stability of mixed equilibrium,

may also depend on whether individual players can choose mixture weights explicitly

(as for example, a political strategist deciding the fraction of positive vs negative ads

to run) or can choose only the frequency of pure actions. The adaptation process also
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depends on whether players’ choices are made simultaneously in discrete time (as in most

laboratory experiments) or asynchronously in continuous time (as in online pricing of

airline tickets, for example). Such considerations motivate the action space and time

treatments presented in Section 4.

Sign preserving dynamics. In games where each player has only two pure

strategies, there is a broad class of adaptive dynamics that applies to both the indi-

vidualistic and the population interpretations (Friedman (1991); Friedman and Fung

(1996); Weibull (1997)). The idea is simply that players (individually or collectively)

should increase the weight on the pure strategy with the currently higher payoff.

To formalize, let the time t mixed strategy profile be (a(t), b(t)) for a bimatrix

game M = (MR;MC). For example, in the AMPa game, MR =

800 0

0 200

. For

smooth play in continuous time, (ȧ(t), ḃ(t)) denotes time rate of change. The payoff

difference between pure strategies is denoted DR(t) = (1,−1)MR · (b(t), 1− b(t)) for the

row player(s) and DC(t) = (1,−1)MC · (a(t), 1− a(t)) for the column player(s).

The dynamic process is sign preserving if, at all interior profiles (a(t), b(t)) ∈

(0, 1)2, we have ȧ(t)DR(t) > 0 unless DR(t) = 0, and ḃ(t)DC(t) > 0 unless DC(t) = 0.

That is, for both row and column players, the weight a(t) or b(t) on the first pure strategy

strictly increases (resp. decreases) whenever it has a strictly higher (resp. lower) payoff

than the alternative strategy. This is a fundamental property of learning and evolution,

satisfied (at least approximately)3 by all standard versions of adaptive dynamics. To

3The reason for this qualification is that a lower payoff strategy’s share when sufficiently small may
be increased by a noise term (e.g., in stochastic best response dynamics), as noted e.g. by Stephenson
(2019).
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see the implications, suppose that dynamics are continuous and sign preserving. Draw

the isoclines DR = 0 and DC = 0, i.e., the lines for which, respectively, row players and

column players are indifferent between their pure strategies. These isoclines divide the

state space in (a(t), b(t)) ∈ [0, 1]2 into regions, each with its own implied direction of

change.

Figure 1.2: Classifying directional changes in AMPa Matching Pennies.

The horizontal (column player’s) axis is reversed to be consistent with the heatmap in Figure

1.1. Arcs and arrows in each rectangle indicate the four possible directions defined in the text.

Figure 1.2 illustrates for the AMPa game. From equation (1.1), DR = f(1, b)−

f(0, b) = 800b− (200− 200b) = 1000b− 200, so the isocline DR = 0 is the vertical line
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b = 0.2. Similar calculations show that DC = 200 − 400a so the isocline DC = 0 is

the horizontal line a = 0.5. These isoclines necessarily intersect at the NE point, and

they chop the state space into four rectangles. For example, in the Northeast rectangle

a > 0.5, b < 0.2, we have DR < 0, DC < 0, so sign preserving dynamics imply a

trajectory with ȧ < 0, ḃ < 0, that is, moving clockwise towards the Southeast rectangle

a < 0.5, b < 0.2. Similarly, in that Southeast rectangle, sign preserving dynamics imply

ȧ < 0, ḃ > 0, moving clockwise towards the Southwest rectangle. Indeed, straightforward

calculations show that sign preserving dynamics for the AMPb game as well as the

AMPa game imply clockwise moves from each rectangle to the next.

Of course, human subject behavior is noisy, so the prediction from this theory

is only that clockwise (CW) will be the most common direction of change. Figure 1.2

depicts the other three possible directions: counterclockwise (CCW), diagonal (DD)

towards the Nash equilibrium mix, and counterdiagonal (CD) towards the corner (pure

strategy profile) contained in that rectangle. These directions are all defined by the

signs of ȧ and ḃ or, in empirical practice, by the signs of first differences in successive

observations of a(t) and b(t).

In do-it-yourself randomization treatments, pairs of individual subjects must

satisfy a(t), b(t) ∈ {0, 1}, so sign preserving dynamics will jump clockwise from one

corner to the next. If the time between jumps is roughly constant, the average strategy

profile will approximate the Center, (.5, .5). On the other hand, for protocols that either

allow automated mixing or that involve population matching, the trajectory typically

lies in the interior of the state space. Clockwise trajectories may converge to NE via
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damped cycles, or may cycle endlessly with constant average amplitude, or may spiral

away from the intersection (at NE) of the zero isoclines. These possibilities are all

consistent with sign preserving dynamics.

Directional learning model. We now construct a more quantitative model

of sign preserving dynamics called regret-based directional learning. Let sit ∈ [0, 1]

denote player (or player population) i’s mixture at time (subperiod or tick) t, and let

fi(sit, s−it) be the corresponding payoff. For example, for a row player i in the AMPa

game, fi(sit, s−it) = fR(a(t), b(t)). Regret is defined as the normalized shortfall from

maximal payoff,4 Rit = fi(ŝit,s−it)−fi(sit,s−it)
max0≤x,y≤1 fi(x,y)

≥ 0 for ŝit ∈ argmaxxfi(x, s−it). The model

predicts the change in mixture 4sit = si,t+1− sit as a sign-preserving linear function of

regret,

4sit = β1Ritsign(ŝit − sit) + εit. (1.2)

The sign function is sign(ŝit− sit) = +1 if ŝit− sit > 0; = 0 if ŝit− sit = 0; and = −1 if

ŝit − sit < 0. When argmaxxfi(x, s−it) includes some values larger than sit and other

values smaller than sit, then the convention is that sign{ŝit − sit} = 0.

As long as β1 > 0, equation (1.2) implies sign preserving dynamics in which the

adaptation speed is proportional to regret, that is, to the potential advantage. Cruder

variants (whose estimation is reported in the Appendix) include best response learning

4sit = β1(ŝit − sit) + εit (1.3)

4The normalization assumes that maximal payoff is positive, as is the case in the bimatrix games
used in the present paper. Otherwise the denominator could be replaced by max0≤x,y≤1 fi(x, y) −
min0≤x,y≤1 fi(x, y).
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and pure directional learning

4sit = β1sign(ŝit − sit) + εit . (1.4)

1.4 Laboratory Implementation

1.4.1 Treatment variables

Our experiment has four treatments. The first is the payoff bimatrix: as noted

earlier, we consider two generalized matching pennies games, denoted AMPa and AMPb,

as well as a dominance solvable game denoted IDDS.

The second treatment is the action set. In condition P (pure strategy), subjects

use radio buttons to select one of two bimatrix rows. The display highlights the cell with

payoffs for that choice, given the column chosen by the matched player.5 In condition

M (mixed strategy), subjects use a vertical slider to adjust an explicit mixture of the

two strategies, as illustrated in Figure 1.3. The heatmap display indicates the payoff

resulting from the player’s chosen mix and the matched players’ mix.

The third treatment concerns time. In our standard discrete time (D) condi-

tion, subjects’ choices are updated simultaneously at regular time intervals, here 6000

ms (6 seconds). In the continuous time (C) condition, subjects update choices asyn-

chronously in real time, with an imperceptible latency of around 50 ms, and data are

recorded every 500 ms. Previous literature (e.g., Oprea et al. (2011) and Friedman

et al. (2015)) argues that continuous time is more realistic in many applications in

5To maintain consistency from the subjects’ perspective, every player’s screen shows her own choice
as between rows, even for subjects labelled in this paper as column players.
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sports, e-commerce, and elsewhere, and that it can facilitate cooperation and speed

convergence. To our knowledge, there is no previous report of the impact of continuous

time treatments on games such as generalized matching pennies where cooperation is

infeasible.

Payoffs are flows accumulated over time in condition C, as illustrated in the

lower right graph in Figure 1.3. In condition D, the blue area representing payoffs is of

adjoining rectangles of width 6 seconds and of height given by the payoff at the chosen

profile.

The remaining treatment is the matching protocol. As noted earlier, the dy-

namic adjustment process and the stability of an equilibrium profile may depend on

whether the game is played out by pairs of individuals or at the population level, and

each interpretation has real-world applications. In our experiment, there are always two

distinct populations: row players match only with column players and vice-versa. In the

standard random pairwise (rp) protocol, each subject interacts directly with only one

matched opponent, and subjects are randomly rematched at the beginning of each new

period. In the mean matching (mm) protocol, each subject plays against the average

choice of all subjects in the other population or, equivalently for bimatrix games, gets

the mean payoff over matches with all subjects in the other population. In terms of

notation introduced earlier, s−it is the time-t action of a particular randomly assigned

opponent in rp, while in mm it is the time-t mean action of all possible opponents.
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Figure 1.3: Main features of oTRw screen for MCrp AMPa game.

The subject uses slider at left to adjust her mixture (horizontal line); vertical line shows matched

player’s current mix. Heatmap color at intersection of these lines codes her current flow payoff;

thermometer sets scale. Graph at lower right shows how her flow payoffs accumulate (blue area);

black line is matched player’s (average) flow payoff. Graph in upper right shows evolution of

own and matched player’s mixtures. Small red heatmap in upper left shows matched player’s

payoff function.

1.4.2 Design

The data analyzed below come from the 8 sessions specified in Table 1.2. Each

session is equally divided into 5 blocks, each with a given payoff bimatrix; the sequence

across blocks is AMPa, AMPb, IDDS, AMPa, and AMPb. The other three treatments
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— action set, matching, and time — are constant within each session but vary across

sessions according to the classic full factorial design; this enables the entire data set to

be used to test the direct impact of each of those treatments. In each block, subjects

play several periods as detailed in Table 1.2: in rp sessions, the periods last 90 seconds,

with random rematching to start each new period, while they last 150 seconds in mm

sessions. In D sessions, each period is divided into numerous 6-second subperiods and

subjects update choices simultaneously, while in C sessions the subjects update freely

in real time.

The oTRw software for conducting the experiment is a hybrid of oTree (Chen

et al. (2016)) and LEEPS lab’s Redwood suite, illustrated for the most distinctive

treatments in Figure 1.3. Inexperienced subjects were recruited from the LEEPS lab

subject pool using a local implementation of ORSEE (Greiner (2015)). Each session

lasted for around 90 minutes, with a 20-minute instruction/practice stage, 60-minute

game play stage and 10-minute payment/closing stage. Payments ranged from US $14

to $24, and averaged about $17 per subject.

1.4.3 Testable Hypotheses

Our design transforms the original research questions into a series of testable

hypotheses. Hypotheses H1-H3 below concern first two research questions on point

predictions, while H4-H5 concern the third research question on dynamics.

H1: The time-average observed profile will not differ significantly from: (H1a) Nash

equilibrium, or (H1b) Maximin, or (H1c) Center (.5, .5) , or (H1d) logit quantal response
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Table 1.2: Experiment Design.

Date Treatment Block Size # Subjects

4/4/2019 PCrp 6 x 90s periods 8
4/4/2019 MDrp 6 x 90s periods 10
4/5/2019 PDrp 6 x 90s periods 12
4/5/2019 MCrp 6 x 90s periods 8
4/11/2019 PDmm 4 x 150s periods 8
4/11/2019 MCmm 4 x 150s periods 10
4/16/2019 PCmm 4 x 150s periods 8
4/16/2019 MDmm 4 x 150s periods 12

P=pure, M=mixed action set; C=continuous, D=discrete time; rp=random pairwise,

mm=mean matching protocol. For these three treatments, the 2x2x2 full-factorial design allows

us to split the data into two 4-session groups to test the treatment effect. The 5 blocks of each

session use the following sequence of bimatrices: AMPa, AMPb, IDDS, AMPa, and AMPb.

Block Size reports the number and the length of periods in each block.

equilibrium for some positive precision parameter.

That is, we shall test the predictive power of NE mixture in our overall data. We shall

do the same for the alternative equilibrium predictions MM and QRE, as well as for the

non-equilibrium uniform mix Center.

H2 and H3 below summarize our initial conjectures, based on folk wisdom and

fragmentary existing evidence, on the circumstances most conducive to convergence to

equilibrium.

H2: The time-average observed profile will be closer to Nash equilibrium (NE): (H2a)

under mean matching (mm) than under random pairwise (rp) matching protocol; (H2b)

with automated mixes (M) than with only pure actions (P); and (H2c) in continuous

time interaction (C) than in discrete time (D). For other versions of H2, replace NE by
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an alternative point prediction such as Maximin (MM).

H3: There will be less dispersion around the time average observed profile: (H3a) under

mm than under rp matching protocol; (H3b) with M (automated mixes) than with P

(only pure actions); and (H3c) in C (continuous time) than in D (discrete time).

We operationalize dispersion as the geometric mean interquartile range. That

is, for dR = 75th percentile - 25th percentile of Row mixes a(t) in the sample, and

dC similarly defined for Column mixes b(t), dispersion is defined as dG = d0.5R d0.5C .

Alternative dispersion measures explored in the Appendix include the harmonic mean,

dH = (d−1R /2 + d−1C /2)−1 = 2dRdC
dR+dC

and the arithmetic mean dR+dC
2 . All measures

explored give qualitatively similar results.

The remaining hypotheses deal with our qualitative and quantitative models of

dynamics. H4 comes directly from discussion of sign-preserving dynamics in Section 3,

and from noting that both players can easily switch pure actions in a 6 second subperiod.

H5 is the basic hypothesis of regret-based adjustment together with our conjecture on

conducive treatments.

H4: In all treatments in generalized matching pennies games, the most frequently

observed direction of change will be clockwise (CW). In pure strategy discrete time

(PD) treatments, diagonal (DD) will also be frequently observed.

H5: Estimates of the rate coefficient β1 in learning model (1.2) will be significantly

positive in all treatments. Estimates will be more positive for mm than for rp matching,

and more positive for P than for M action treatments.
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1.5 Results

To gain perspective before reporting hypothesis tests, we examine a few ex-

amples of raw data. Each panel in Figure 1.4 displays the time path of action profiles

for one instance of each treatment combination in the AMPa bimatrix game. Panel

a shows the pure strategy choices of a pair of players in discrete time, the treatment

combination most common in previous lab studies. In this instance, the players al-

ways best respond to the previous period profile, resulting in a clockwise tour of the

four corners of state space. Thus average play is close to the Center, and dispersion

is maximal. In Panel b, time is continuous and the (pure) strategy profile is recorded

twice per second. The short vertical segments of the time path indicate episodes where

both players stayed with their previous strategies, but again the most common change

is a clockwise motion to the next corner of the state space. In a handful of episodes,

both players switch strategies in the same half-second interval and so make a diagonal

(DD) move. In panel c, the players can choose explicit mixtures in discrete time, and

there is far less dispersion, but it is unclear whether the average play is closer to the

Center or to NE in this instance. The player pair in Panel d usually moves clockwise,

sometimes wandering around NE and sometimes wandering away. The next four panels

of Figure 1.4 come from mean-matching (population game) sessions. They all have less

dispersion than their random-pairwise counterparts. In particular, the mixed strategy

discrete time profile path shown in Panel g is usually in the vicinity of NE.

In testing point predictions, it is appropriate to focus on settled behavior,
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Figure 1.4: Sample time paths of action profiles.

The horizontal plane is the state space, the (a, b) square. The vertical axis is time remaining,

so the time paths begin at the top and spiral downward, and reach the bottom plane at the end

of the period. Point predictions are time-invariant and therefore appear as vertical lines.
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so subsequent analysis drops the first period in each block, and first 18 seconds (or

3 subperiods) of each period. For the remaining part of each remaining period in a

given matching, we collapse the time path to its time average profile, and look at the

distribution over all instances for a given treatment combination. Figure A.2 and A.3

in the Appendix respectively display the mean and standard deviation, and the median

and interquartile of these time averages.

1.5.1 Point Predictions

Table 1.3 summarizes tests of Hypotheses 1 and Table 1.4 summarizes tests

of Hypotheses 2 and 3; robustness checks using both mean and median profiles can

be found in the Appendix. For each instance (matching and period) τ , we compute

the time average profile (aτ , bτ ) and its Euclidean distance [(aτ − ap)2 + (bτ − bp)2)]0.5

from a given point prediction (ap, bp). For example, the first line of Table 1.3 shows

that for mean matching instances in the AMPb game (pooling over Continuous and

Discrete time, and over Pure and Mixing action sets), the mean distance between the

time-average profile and the NE prediction is just 0.157. According to a two sample

t-test, this is significantly (p < 0.05) less than 0.224, the mean distance between those

same time average profiles and the Center point. The rest of that line shows that the

mean distance to the maximin prediction, 0.398, is significantly larger.

Thus the first lines of Panels A and B in Table 1.3 support Hypothesis H1a,

that NE is the best point prediction, for mean-matching treatments in our matching

pennies games. Consistent with Hypothesis H1c, Center is best in all other treatments in
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Table 1.3: Mean distance to predictions of time average profiles.

Distance to NE Distance to Center Distance to MM Num of Pairs

Panel A: AMPb games
mm 0.157 <∗∗ 0.224 <∗∗∗ 0.398 24
rp 0.313 >∗∗∗ 0.124 <∗∗∗ 0.295 40
Mixed 0.242 >∗∗∗ 0.135 <∗∗∗ 0.339 32
Pure 0.268 >∗∗∗ 0.188 <∗∗∗ 0.328 32
Continuous 0.301 >∗∗∗ 0.181 <∗∗∗ 0.330 32
Discrete 0.208 >∗∗∗ 0.142 <∗∗∗ 0.337 32

Panel B: AMPa games
mm 0.150 <∗∗∗ 0.255 <∗∗∗ 0.463 24
rp 0.247 >∗∗∗ 0.115 <∗∗∗ 0.321 40
Mixed 0.211 >∗∗ 0.159 <∗∗∗ 0.352 32
Pure 0.210 > 0.176 <∗∗∗ 0.397 32
Continuous 0.263 >∗∗∗ 0.156 <∗∗∗ 0.375 32
Discrete 0.159 < 0.179 <∗∗∗ 0.374 32

Panel C: IDDS games
mm 0.219 <∗∗∗ 0.521 >∗∗∗ 0.219 12
rp 0.283 <∗∗∗ 0.479 >∗∗∗ 0.283 20
Mixed 0.241 <∗∗∗ 0.517 >∗∗∗ 0.241 16
Pure 0.277 <∗∗∗ 0.472 >∗∗∗ 0.277 16
Continuous 0.244 <∗∗∗ 0.496 >∗∗∗ 0.244 16
Discrete 0.274 <∗∗∗ 0.494 >∗∗∗ 0.274 16

Subscripted asterisks indicate p-values of .10(*), .05(**) and .01(***) for one-sided t tests as-

suming unequal variance between adjacent columns.

these games, with the possible exception of discrete AMPa, where NE is insignificantly

better. In Panels A and B, there is no support for the maximin hypothesis H1b. Panel

C confirms that the pure strategy NE (which coincides here with maximin) is a better

point prediction than Center in all treatments for the dominance solvable game.

Testing Hypothesis H1d is potentially more complicated, since there is a whole

arc of QRE that connects NE to Center, not just a single point prediction. However,

as shown in the Appendix and Figure 1.1, that arc usually bends away from the mean

profiles. In all treatments, the closest point on the arc turns out to be at or very near to

either NE or Center. We, therefore, conclude that our data do not support Hypothesis

H1d.
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Table 1.4: Coefficients (± standard errors) for OLS regressions with clustering at session
level.

continuous 0.10±0.018*** -0.04±0.031 0.02±0.017 -0.06±0.004***
pure -0.06±0.018** -0.06±0.025* 0.05±0.016** 0.18±0.005***
mm -0.18±0.023*** 0.02±0.021 0.11±0.024*** -0.00±0.007
AMPa -0.06±0.023** -0.01±0.022 0.04±0.016** 0.02±0.006***
continuous pure 0.06±0.012*** 0.01±0.028 0.04±0.016* 0.04±0.008***
continuous mm -0.10±0.013*** 0.06±0.031* 0.02±0.018 0.01±0.009
continuous AMPa 0.01±0.035 0.01±0.033 -0.06±0.023** 0.00±0.007
pure mm 0.15±0.013*** 0.11±0.031** -0.04±0.018* -0.02±0.009*
pure AMPa -0.03±0.035 0.05±0.033 -0.04±0.023 -0.02±0.007**
mm AMPa 0.06±0.035 0.04±0.036 0.04±0.023 -0.01±0.007
Constant 0.28±0.013*** 0.34±0.017*** 0.08±0.014*** 0.31±0.003***
Observations 128 128 128 128
R-squared 0.630 0.538 0.611 0.954

Dependent variable in last column is geometric mean dispersion, and in other columns is Eu-

clidean distance from mean observed profile to predicted profile. Independent variables are

treatment indicators and interactions; the baseline (omitted) indicators are for AMPb, mixed

strategy, discrete time, and random pairwise matching. Observations is total number of periods

in all sessions. Significance levels 1, 5, and 10% respectively denoted ∗∗∗,∗∗ ,∗.

For the same empirical time average profiles, Table 1.4 shows the results of

regressing treatment dummies and their interactions on prediction error and on dis-

persion. Hypothesis H2 asserts that relevant predictions are more accurate for certain

treatments. The first column of Table 1.4 supports Hypothesis H2a, that NE is more

accurate under mean matching than under random pairwise matching, since the mm co-

efficient is significantly negative. Conclusions regarding H2b and H2c are more nuanced

due to significant interactions: the direct effect of pure strategies and of mean matching

both reduce NE prediction error while continuous time increases prediction error, but

these are largely offset by the interactions of mean matching with continuous and pure.

The upshot is that NE predicts especially well in mixed mean-matching treatments,
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confirming the impression from the previous table. The entries in the second column

confirm that maximin prediction errors are large in all treatments. Many treatments

and interactions have opposite signs in the first and third columns, suggesting that they

shift the observed behavior away from NE and towards Center, or the reverse.

Hypothesis 3 concerns dispersion. The last column of Table 1.4 reports the

geometric mean of row dispersion (standard deviation) and column dispersion (standard

deviation) as defined in the previous section. The second line of the Table supports H3b,

that dispersion is less with mixed strategies. The significantly negative coefficient in

line 8 offers limited support for H3a: mean matching reduces dispersion in pure strategy

treatments but perhaps not in general. The Table also supports H3c: dispersion seems

to be less for Continuous than for Discrete time treatments.

1.5.2 Qualitative Dynamics

The large constant term in the last column of Table 1.4 suggests that behavior

typically does not settle down to a behavioral equilibrium. Does that mean that players

wander aimlessly, or is there some regularity such as clockwise cycles?

To investigate, recall how Figure 1.2 classified profile moves ∆st = (∆sRt,∆sCt)

= (sRt+1 − sRt, sCt+1 − sCt) 6= 0 as clockwise (CW), diagonal (DD), counterclockwise

(CCW), or counter diagonal (CD).

Figure 1.5 shows how the classifications change over time in random pairwise

matching sessions. For example, in the top panels we see that in the 15 six-second

Discrete subperiods (14 moves since the cyclical behavior is determined by two consec-
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Figure 1.5: Classification over time in random pairwise matching sessions.

clockwise (red), diagonal (yellow), counter-diagonal (grey), stay (green) and counter-clockwise

(blue). AMPa on left, and AMPb on right, by subperiod or tick within period and averaged

across periods.
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Figure 1.6: Classification over time in mean matching sessions.

clockwise (red), diagonal (yellow), counter-diagonal (grey), stay (green) and counter-clockwise

(blue). AMPa on left, and AMPb on right, by subperiod or tick within period and averaged

across periods.
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utive subperiods), there is a preponderance of CW moves (in red), a fair number of

DD moves, no CD moves (impossible in Pure treatments), rather few CCW moves, and

perhaps 10 - 30% Stay (∆st = 0). Indeed, in all treatments CW is more common than

other moves, as predicted by sign preserving dynamics. It is no surprise that Stay is

far more common and DD is relatively rare in Continuous treatments, since sampling

there is twice a second. CCW is especially rare in Pure Continuous sessions. CD is rare

even in mixed treatments. DD is not uncommon in discrete time treatments, where

it may indicate anticipatory behavior in the sense of Selten (1991). There seem to be

no strong trends in behavior within periods, nor major differences between AMPa and

AMPb games. There is, however, considerable heterogeneity across matched pairs, as

can be seen from the by-pair breakdown in Appendix Figure A.4.

Figure 1.6 presents similar evidence for mean matching sessions, where ∆st

represents population profile moves rather than individual pair moves. Not surprisingly,

with mean matching we see fewer Stay and more CW moves in most treatments. DD

becomes more common while CD and CCW remain rare.

The data shown here (and in the Appendix, e.g., Tables A.1 and A.4) thus

support Hypothesis H4. Overall, CW moves are indeed the most prevalent, representing

up to half of the total observations. DD often ranks second, and other directional

moves are relatively rare. Move types have similar distributions in the two bimatrices

and (if we ignore Stay) in continuous time and discrete time. The distributions also

seem roughly similar in pure and mixed strategy conditions and in mean matching and

random pairwise.
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1.5.3 Fitted Dynamic Model

To test the more quantitative dynamic hypothesis H5, we fit the regret-based

learning model (1.2), allowing for fixed effects and using indicator variables Dk to cap-

ture treatment-specific response to regret,

4sit = (β1 +
∑
k

βkDk)Ritsign{ŝit − sit}+ bi + ct + εit. (1.5)

Table 1.5 collects the results. The first row clearly supports H5: the baseline

response to regret β1 is very significantly positive. Remaining rows show that this

support is not reversed by any treatment or interaction considered. H5 also predicts

that response is stronger in pure strategy treatments (since moves there must be to

corners, not just incremental); the continuous time data clearly support this prediction,

but the impact is insignificant in discrete time. The remaining part of H5 predicts

stronger response in mean matching than in random pairwise matching. This prediction

is supported for Row players in continuous time sessions, but elsewhere the impact is

insignificant.

Other entries in the Table mostly seem reasonable upon reflection. Since con-

tinuous time data are sampled twelve times as frequently as discrete time data, it is

natural for the continuous time coefficients to be much smaller in absolute value. Col-

umn players adjust more slowly in AMPa, perhaps because of the greater asymmetry in

that game than in the AMPb baseline. Adjustment is faster in IDDS in discrete time

with pure strategies, perhaps due to the strategic clarity of that treatment combination.

The Appendix reports regressions for related specifications (1.3) and (1.4), with results
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Table 1.5: Directional Learning Model (1.5) coefficient estimates (± standard error) for
Row and Col(umn) player actions in Continuous and Discrete time.

Row-Continuous Row-Discrete Col-Continuous Col-Discrete
β1 0.12±0.021*** 1.14±0.099*** 0.26±0.028*** 1.06±0.111***
pure 0.47±0.067*** -0.14±0.116 0.55±0.078*** -0.02±0.131
mm 0.24±0.050*** -0.16±0.218 -0.04±0.051 0.33±0.267
AMPa -0.03±0.025 -0.22±0.134 -0.17±0.032*** -0.62±0.120***
IDDS 0.04±0.057 0.07±0.244 -0.24±0.031*** 0.28±0.319
pure mm -0.03±0.153 0.75±0.292** -0.18±0.151 0.35±0.345
pure AMPa 0.10±0.090 0.22±0.155 -0.14±0.087 0.17±0.147
pure IDDS -0.21±0.123* 0.98±0.335*** -0.20±0.123 1.12±0.406***
mm AMPa -0.03±0.066 0.00±0.316 0.06±0.061 0.17±0.303
mm IDDS -0.13±0.099 -0.12±0.368 0.06±0.055 -0.35±0.450
pure mm AMPa -0.34±0.195* 0.24±0.390 -0.10±0.164 -0.75±0.384*
pure mm IDDS 0.53±0.314* -0.36±0.472 0.36±0.217* -0.26±0.626

Observations 79,145 4,995 79,145 4,995
R-squared 0.213 0.337 0.251 0.253
Number of Pairs 415 345 415 345

Observations show number of time ticks in each regression. Least squares with pair and tick

fixed effects. the baseline (omitted) indicators are for AMPb, mixed strategy, discrete time, and

random pairwise matching. Nominal significance levels 1, 5, and 10% denoted ∗∗∗,∗∗ ,∗ .

generally consistent with those of Table 1.5.

To complement the hypothesis tests, we ran simulations of equation (1.5) using

the coefficient estimates reported in Table 1.5 with error terms set to zero. Figure 1.7

shows that, according to two of the fitted models (the others are qualitatively similar),

players (or populations) move in clockwise cycles that converge to a limit cycle sur-

rounding the Nash equilibrium. Thus the data suggest that, practically speaking, there

will never be convergence to any point prediction, but rather that (a) cycles will persist

for a very long time, and (b) Nash equilibrium is a crude approximation of the long-run

time-average profile. See the Appendix for a more careful analysis using a Poincarè

map.
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Figure 1.7: Simulation of (1.5) using fitted parameters from continuous time mixed
strategy AMPa games.

panel (a) is for random pairwise matching and (b) is for mean matching. Simulations are each

run 300 periods from 10 different initial profiles.

1.6 Discussion

Our results speak to the broader questions behind the testable hypotheses, and

suggest the following practical advice for applied researchers.

First, we find that mixed Nash equilibrium is a reasonably good predictor of

behavior in population games. For example, consider an application to the market for

an intermediate good where upstream firms deal with many downstream firms, and

conversely. When the market model has no pure NE, our results suggest that mixed

Nash equilibrium may be a good candidate for describing time-average behavior.

Second, for most other circumstances in generalized matching pennies games,

we find that uniform random behavior outpredicts mixed Nash equilibrium. In an
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otherwise similar application where a given upstream firm deals mainly with a single

downstream firm and conversely, the mixed NE may not be the best predictor of time

average behavior.

Third, for our asymmetric matching pennies games, we found no circumstances

in which alternative equilibrium concepts such as maximin and Quantal Response Equi-

librium improved on both Nash equilibrium and uniform mixes. This may simplify work

for applied economists.

Applied economists more interested in short run dynamics than in long run

time average behavior should find our experiment particularly instructive. We found

persistent dispersion and systematic directional change in our data. A regret-based

directional learning model had significant explanatory power, and its coefficients were

fairly consistent across treatments. Applied economists may be able to deploy models

that similarly aim to capture directional adaptations that are sensitive to regret (i.e.,

to the magnitude of potential gains).

Our main message for theorists is that mixed equilibrium (Nash or otherwise) is

relevant over a narrower range of circumstances than might have been supposed. We find

reliable convergence to pure Nash equilibrium in a (control) dominance solvable game,

and to a lesser extent we find convergence to mixed NE in matching pennies population

games. However, in traditional pairwise matching (especially with traditional pure

strategy choice) for matching pennies, we find persistent dispersion that centers more

on the uniform random mix than on an equilibrium mix.

A more positive message is that there is order beneath the dispersion. We find
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a clear tendency for players to cycle in generalized matching pennies games. Typically

one player (or player population) has a stronger incentive to switch strategies, and doing

so strengthens that incentive in the other player or population, creating (with our sign

conventions) clockwise cycles. In discrete time treatments we saw some evidence that

players tried to anticipate and exploit these regularities, but they nevertheless persist,

especially in continuous time and in population games. We encourage game theorists

to further develop models of adaptive dynamics that are sensitive to circumstances of

the sort we have explored.

Our experiment also suggests possible follow-up work in the laboratory. Our

subjects explicitly choose their mixes in M treatments and receive the expected payoff,

and so do not need to randomize actions dynamically. In contrast, Romero and Rosokha

(2018) elicit subjects’ history-dependent actions in a repeated prisoners’ dilemma. It

might be interesting to try similar elicitation procedures in repeated matching pennies

games. It may also be worthwhile to seek new treatments that facilitate convergence to

Nash equilibrium or other point predictions. In some pilot sessions, we tried displays

of best and worst possible payoffs, and tried slowing adjustment speed in continuous

time, but found little impact. Finally, it seems worthwhile to design experiments that

can better distinguish among different models of adaptive learning.

We hope especially that our results encourage applied researchers to work in

a more nuanced fashion with mixed strategy equilibrium and adjustment dynamics.

Biologists since Lotka and Volterra (Lotka (1926)) have recognized that dynamics are

crucial to understanding generalized matching pennies interactions such as between
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predators and prey. Social scientists may benefit from similar thinking. For example,

‘hot spot’ dispatch of law enforcement resources (e.g., Lazzati and Menichini (2016)) is

a generalized matching pennies population game, and our work suggests how adaptive

dynamics could supplement equilibrium analysis.
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Chapter 2

Coordination Games in Continuous

Time

2.1 Introduction

Coordination failure has been studied for decades both in laboratory environ-

ments and in real world scenarios where people fail to coordinate their choices at certain

strategy profiles. To illustrate coordination failure, game theorists commonly point to

two iconic games. In the pareto-ranked games such as stag hunt games, there exist

two pure Nash equilibria with one’s payoff strictly higher than the other. However, the

one with a lower payoff comes with an insurance when players mismatch, which creates

tension between two equilibria and players tend to choose the risk-dominant strategy

instead of payoff-dominant strategy. In the mixed-motives games such as battle of the

sexes, players prefer different pure Nash equilibria and find it difficult to coordinate
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their conflicts to achieve both efficiency and equality. Lack of coordination reduces the

efficiency in both games.

Previous studies of coordination failure have focused on efficiency improve-

ment and optimal learning in one-shot games and discrete time repeated interactions

(e.g. Devetag and Ortmann (2007)). However, continuous time interactions may also

enhance human cooperation, as is shown in general by both theoretical work (Simon and

Stinchcombe (1989); Bergin and MacLeod (1993)) and by laboratory results (e.g. Fried-

man and Oprea (2012)). In continuous time, decision makers can choose the reaction

timing almost freely and make quick responses to observable changes, thus creating a

richer set of strategies than that in the discrete time where actions can only be chosen at

fixed points in time. Based on these studies, the continuous time environment provides

an opportunity for researchers to better understand and solve coordination failure as it

allows players to interact at high frequency and move asynchronously and thus reduces

the strategic uncertainty people face and motivates their cooperative behaviors.

The empirical study of the continuous time interaction can provide results

applicable to real-world contexts. With the development of technologies, the world

is becoming faster than ever before and many decisions nowadays can be considered

as continuous time processes, especially with the introduction of the 5th generation

network. For instance, the price in online marketplaces can be adjusted at any time

with biddings and transactions updated in seconds. Understanding the impact of such

technological growth on human coordination becomes necessary for firms and policy

makers, especially when they face such choices in the high-tech industries.
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This paper introduces coordination games in the continuous time to the lab-

oratory and compares possible theoretical predictions to the laboratory results in a

systematic environment. As the first paper that studies stag hunt games and battle

of the sexes games in the continuous time environment, this paper contributes to the

literature in both fields of repeated coordination and continuous time interaction by

showing that continuous time interaction facilitates coordination and increases the effi-

ciency, which provides another method of solving coordination failure and enhances the

general impression that continuous time interaction improves human cooperation.

The experimental results show how continuous time environments improve the

efficiency in both games from different perspectives. In the continuous time environ-

ments, lab subjects interact in milliseconds, while the discrete time environment is the

same as conventional repeated games. This study demonstrates that, in both types of

games, lab subjects coordinate better in continuous time than in discrete time. In stag

hunt games, subjects tend to switch from risk-dominant equilibrium to payoff-dominant

equilibrium. In battle of the sexes games, subjects are more likely to alternate between

equilibria in battle of the sexes games.

In addition to the comparison between continuous and discrete time environ-

ments in two types of coordination games, the experiment is also designed to test the

difference in a systematic environment. Subjects experience three payoff matrices in

each game that motivates them towards different equilibrium. They also experience

action sets with two levels of complexity. In pure action sets treatment, subjects’ action

sets are binary, while in mixed action sets treatment they face action sets with contin-
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uous values. Although both treatments share the same pure Nash equilibrium as focal

points, mixed action sets treatments are visually more complicated than pure action

sets treatments and could cause less coordinate behavior. The results confirm the con-

sistency of the main treatment effect of continuous time interaction. Furthermore, the

differences between the two action set treatments are statistically significant but there

is little difference among payoff matrices.

The paper begins with reviewing some previous theoretical and experimental

work related to our investigation in Section 2. Sections 3 and 4 layout our theoretical

foundation and experimental design, respectively. Experimental results of stag hunt

games are discussed in Section 5, which in general show that continuous time interaction

enhances coordination. Similar results are found for battle of the sexes games in Section

6 with a unique turn taking pattern. Section 7 concludes the main findings and points

out unsolved questions for future studies.

2.2 Literature Review

2.2.1 Experiments in Continuous Time

Although most economic laboratory experiments employed a discrete time

framework, continuous time theory has been developed for quite a long time. Models

that work in discrete time cannot be directly copied to the continuous time environ-

ment because the concept of “period” is not well-defined in continuous time. Previous

theories have been focused on modelling traditional games in continuous time environ-
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ments and show new equilibria, where the most well-known findings show that both

perfect continuous time and inertia continuous time with reaction lags support cooper-

ation in games similar to prisoners’ dilemma (Simon and Stinchcombe (1989); Bergin

and MacLeod (1993); Park (2014); Alós-Ferrer and Kern (2015); Calford and Oprea

(2017)). With the development of laboratory techniques, experimental economists began

to study continuous time games in recent years in the lab environment where subjects

interact in milliseconds. Although subjects cannot really respond in milliseconds, the

high frequency interaction allows them to react much faster than they react in discrete

time environments and many experimental findings support theoretical predictions. In

prisoner’s dilemma games, the cooperation rate between players tends to be higher in

continuous time than in discrete time (Friedman and Oprea (2012)), while a follow-up

study found that termination rule and time horizon affect the coordination rate (Bigoni

et al. (2015)). Similar cooperative behaviors have also been observed in the continuous

time public good games with communication (Oprea et al. (2014)).

Some lab studies in continuous time environments focus on other types of be-

havioral difference between continuous and discrete time environments. In the continu-

ous time evolutionary hawk and dove game, symmetric mixed equilibrium is more likely

to be selected in the one-population game, whereas separation equilibrium is stronger

in the two-population game (Oprea et al. (2011)). This finding has been further devel-

oped under the uniparametric model (Benndorf et al. (2016)) and the perturbed best

response dynamics (Benndorf and Martinez-Martinez (2017)). Furthermore, continuous

time treatments affect subjects’ behaviors in market competition games. Subjects are

39



more likely to converge to Nash equilibrium in the 4-player Hotelling location competi-

tion in continuous time (Kephart and Friedman (2015)). The effect of continuous time

in oligopoly competition requires further exploration: there are findings showing that

tacit collusion exists in long term Cournot game (Friedman et al. (2015)) but other

evidence shows that collusion rate is higher in discrete time than in continuous time,

which contrasts the general idea that continuous time treatments tend to facilitate co-

operation (Horstmann et al. (2016)). Besides these, continuous time treatments have

also been adopted in minimum effort games (Deck and Nikiforakis (2012); Leng et al.

(2018)) and network formation (Berninghaus et al. (2006)).

2.2.2 Coordination Failure and Repeated Coordination

Although coordination games have been popular over past decades, coordina-

tion games in continuous time have received little attention in the previous literature.

In early studies, coordination failure is considered to be a common phenomenon in the

laboratory (e.g. Van Huyck et al. (1990), Van Huyck et al. (1991); Cooper et al. (1990),

Cooper et al. (1992); See Devetag and Ortmann (2007) for an overview). Coordination

failure describes either failure to coordinate on any one of the multiple equilibria or

failure to coordinate on the payoff dominant equilibrium. Researchers have studied co-

ordination failure in the past decades for robustness tests and potential improvements

using games such as stag hunt, battle of the sexes and order statistics. In discrete time

treatments, what researchers have learned is that efficiency can be enhanced through

lower attractiveness of the secure action (Battalio et al. (2001); Dubois et al. (2012)),
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lower cost of experimentation (Van Huyck et al. (2007)), less stringent coordination

requirements (Van Huyck et al. (2007)), fixed matching protocols (Clark and Sefton

(2001)), full information feedback (Berninghaus and Ehrhart (2001)), communication

(Blume and Ortmann (2007)) and social interaction (Bolton et al. (2016)). Further-

more, asymmetric information also affects coordination in global games but the effect

remains ambiguous (Cabrales et al. (2007); Van Huyck et al. (2018)).

Theorists have studied coordination problems and focus on repeated interac-

tion since Crawford and Haller (1990). They built a model where players apply ran-

domized mixed strategies to facilitate coordination, optimize intertemporal payoffs and

maintain coordination thereafter. Their model indicates that maintaining coordination

requires players to stay at either payoff-dominant or risk-dominant equilibrium in stag

hunt games, while players can also take turns between two pure Nash equilibria in battle

of the sexes games. Lau and Mui (2008) and Lau and Mui (2012) developed the idea of

randomized coordination as “turn taking with independent randomization” and applied

it to explain alternating dynamics. Strategies such as individual evolutionary learning

(Arifovic and Ledyard (2018)) also involve a randomized experimentation stage before

players converge to any equilibrium. Romero and Zhang (2018) compares equilibrium

with various normative principles and finds that equal payoff and equal opportunities

are the most frequently played guideline for alternating dynamics. Correlated equilib-

rium and third-party signals have also been proved as a method to solve coordination

problems in battle of the sexes games (Duffy et al. (2017); Anbarci et al. (2017) ).

Some other papers discuss alternating dynamics with pre-defined punishment strategy
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and randomized cost structure (Leo (2017)) and comparison between alternations and

cut-off strategy (Kaplan and Ruffle (2011)).

Another flow of research was focused on players’ learning and convergence in

coordination games with both multiple-period random matching and repeated interac-

tions. In early literature (Crawford (1995)), subjects update their belief based on the

observed actions from the other player in previous periods and form the best response in

the current period. Cheung and Friedman (1997) tested games with a three-parameter

belief learning model and found considerable heterogeneity among individual players.

Hyndman et al. (2009) added a forward-looking component to the model , which better

fits the data in coordination games. Strategic teaching is a method of efficient coordi-

nation where experienced players sacrifice short-term payoff for long-term coordination.

In stag hunt games, for example, experienced players may intentionally stay at payoff-

dominant strategy and wait for the other player to catch up (Hyndman et al. (2009)).

In battle of the sexes games, experienced players can also demonstrate alterations to the

other player with their observable choices (Cason et al. (2013b)). Subjective principled-

player learning is another approach to study interactions in long-run coordination games

where players form subjective ideas of their opponents’ behavior instead of quantified

belief of actions (Sandroni (2000)). One of the recent breakthroughs is from Ioannou

and Romero (2014b) and Ioannou and Romero (2014a). Instead of using action-based

learning, they built a strategy-based learning model from a finite strategy space, a new

mapping from history to strategies and an asynchronous belief updating process. Al-

though it is difficult to define the strategic space and history in continuous time, their
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idea provides a new direction for understanding repeated interactions. These learning

models provide a solid reference of how subjects interact in repeated coordination games

though none of them is tested under continuous time treatments.

Studying coordination games in the continuous time contributes new findings

to the literature in both fields of repeated coordination and continuous time interaction.

On one hand, it could provide another method of solving coordination failure, which

has not been tested before. On the other hand, it enriches our understanding of how

continuous time interaction impacts human coordination and cooperation.

2.3 Theoretical Predictions

2.3.1 Nash Equilibria for One-Shot Games

The paper focuses on two standard coordination games: stag hunt (SH) and

battle of the sexes (BOS). In each game, three payoff matrices are implemented to test

the consistency of the treatment effects. Table 2.1 shows the payoff matrices.

Table 2.1: Payoff bimatrices of stag hunt games and battle of the sexes games.

SH BOS

a b a b
A (x,x) (0,y) A (d,c) (0,0)
B (y,0) (z,z) B (0,0) (c,d)

Row players choose between A (top) and B (bottom). Column players choose between a (left)

and b (right).

To simplify the notation, let (p, q) denotes players mixture (pA+(1−p)B, qa+

(1−q)b). Three payoff matrices of stag hunt games are: SH0.6R ((x,y,z)=(450,420,120)),

43



SH1R ((x,y,z)=(450,400,200)) and SH2R ((x,y,z)=(450,350,400)) (Battalio et al., 2001).

On one hand, all three payoff matrices have the same pure Nash equilibria (1,1) and (0,0)

((A,A) and (B,B)) and mixed Nash equilibrium ((0.8,0.8)) ((0.8A+0.2B, 0.8A+0.2B)).

On the other hand, they are different in the optimization premium (Battalio et al., 2001,

defined as the expected payoff difference between the two strategies, which shows the

steepness of the payoff functions near the equilibrium. For row players, given column

players’ mixture q, OP (q) = π(A, q)−π(B, q) = δ(q−q∗), where δ = x−y+z and q∗ refers

to the column player’s mixed Nash strategy) and relative riskiness (Dubois et al., 2012,

defined as the ratio of the expected payoff ranges between safe and risky strategies. For

row player, RR = |y−z|
x ). SH0.6R has the lowest optimization premium and the highest

relative riskiness so players are predicted to be more likely to play the payoff-dominant

strategy. On the contrary, SH2R has the highest optimization premium and the lowest

relative riskiness, which makes the risk-dominant strategy more attractive. SH1R is

between these two payoff matrices.

Three payoff matrices of battle of the sexes games are: BOSha ((d,c)=(400,40)),

BOSma ((d,c)=(400,160)) and BOSla ((d,c)=(400,280)) (Anbarci et al., 2017). All three

payoff matrices have the same pure Nash equilibria ((1,1) and (0,0)) but different mixed

Nash equilibrium ((0.91,0.09) for BOSha, (0.71,0.29) for BOSma, (0.59,0.41) for BOSla).

The difference between payoff matrices is mainly about how asymmetric the payoff is

in its two pure Nash equilibria (Lau and Mui (2008)). BOSla apparently has the lowest

level of asymmetry while the payoffs are highly asymmetric in BOSha. BOSma is be-

tween these two payoff matrices. Players are less likely to coordinate when the level of
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asymmetry is higher.

Both games have the same two pure Nash equilibria and one distinct mixed

Nash equilibrium. The Nash equilibria provide a reference of potential convergence in

the laboratory experiments. In most cases, the literature focuses on two pure Nash equi-

librium as they are most frequently played. There are two other normative reasons that

explain the importance of pure Nash equilibria. In the evolutionary context, although

there exists a saddle path that leads to mixed strategy equilibrium, the population mix-

ture converges to either of the two pure Nash equilibria. Mixed strategy equilibrium is

also less efficient than any of the pure Nash equilibria. Given the instability of mixed

strategy Nash equilibrium, there should be little difference between pure action sets

and mixed action sets, as the pure Nash equilibria are the same between two action sets

treatments.

2.3.2 Comparing Continuous and Discrete Time Repeated Interac-

tions

Literature in repeated coordination games explains the repeated interactions

mainly through strategic play and belief updating. However, as discussed in literature

on continuous time theory, models that work in discrete time cannot be directly copied

to the continuous time environment because the concept of “period” is not well-defined

in continuous time. History-dependent strategies thus require a new mapping between

continuous time history to strategies. Similarly, the strategies that describe the future

by “period” such as turn taking strategies can no longer be implemented. Although
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the basic ideas of learning and coordination in both SH and BOS do not vary between

continuous time and discrete time environments, strategies need to be redefined to meet

the definitions in continuous time environments.

However, if we focus on the difference between the time treatments, some

qualitative hypotheses can be summarized easily. Although human beings cannot react

and respond in milliseconds, the reaction lag is usually much lower than the length of

“period” in repeated games. Players interact with their counterpart, update their belief

and adjust their strategies much more frequently in continuous time than in discrete

time, which speed up the convergence to equilibrium in all types of repeated coordination

models. The nature of continuous time interaction also causes asynchronous play and

further facilitates coordination.

In models with randomized experimentation, players can experiment and ad-

just strategies faster than they do in discrete time. For instance, the mixed strategy

randomization in battle of the sexes games in discrete time with homogeneous reaction

lag can be easily transformed to a continuous time version. At every time tick where

players can adjust their strategy, they pick one of two possible actions with a mixed

strategy p∗ that maximizes the intertemporal payoff. If they observe a mismatch at the

current time tick t, they continue to play the mixed strategy. If they observe coordina-

tion at t, they stop the mixed strategy and stay at the current equilibrium (or alternate

between two equilibria). The game becomes even simpler if players share heterogeneous

reaction lags: fast players immediately converge to the other players’ location and the

coordination is then satisfied. In the learning models, the total time consumed in the
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learning stage can be greatly reduced with any learning mechanisms given the high

frequency interactions. The continuous time environment also provides a richer set of

observable data per unit of time than that in the discrete time. Both speed up con-

vergence to Nash equilibria. Another benefit from continuous time treatment is that

players have a higher expected utility of playing the risky actions in continuous time

than in discrete time. Players can also easily switch back to safe actions if the other

player does not cooperate. Both benefits reduce strategic uncertainty and make them

more willing to try risky actions and perform strategic teaching during the game.

As discussed above, continuous time interaction is expected to enhance coor-

dination and cooperation in both SH and BOS. In perfect continuous time, the limit

of players’ reaction lag goes to 0 and players have the ability to reach instantaneous

coordination, especially in SH. Due to positive reaction lag, subjects in the experiment

are expected to coordinate at a slower speed compared to that in perfect continuous

time but still faster than the convergence in discrete time.

However, is the efficiency always increased with the continuous time environ-

ment? The answer to the question could be ambiguous in BOS. On one hand, shortening

the learning stage apparently raises efficiency. On the other hand, players suffer from

an efficiency loss in the coordination stage each time they alternate, as players have

reaction lags and the player who follows the alternation needs time to switch. The loss

becomes larger when the game is longer. In discrete time, however, once the alternation

is formed, players alternate without loss of efficiency. The idea will be further explored

in the appendices of this paper.
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2.4 Experimental Design

The data is collected from 10 sessions run between October 26th to November

15th in 2018. 5 sessions applied stag hunt games and the others applied battle of the

sexes games. In each session, the experiment used a balanced 3 x 2 x 2 full-factorial

within-subjects design with 3 types of payoff matrices, 2 time treatments (continuous

and discrete) and 2 action sets treatments (pure and mixed). Overall, the paper imple-

ments a balanced 2 x 3 x 2 x 2 full-factorial design, where the selection between SH and

BOS is between-subjects and other treatments are within-subjects.

80 subjects (42 in stag hunt sessions and 38 in battle of the sexes sessions) were

recruited on UCSC LEEPS online platform ORSEE. In each session, subjects played 36

periods of 60-second bi-matrix games. Each subject was randomly paired anonymously

each period with a counterpart so the experiments use the random matching protocol

between periods and fixed matching protocol within each period. The experiment uses

the continuous bi-matrix program on software called oTree/Redwood. The average

payment is 19 US dollars and the length of the sessions is about 1 hour and 20 minutes,

with a 20-minute instruction, a 50-minute gameplay, and a 10-minute closing.

In each session, all 36 60-second periods are equally divided into 3 blocks.

Table 2.2 shows the design for both stag hunt sessions and battle of the sexes sessions

in block 1, respectively. Subjects experienced all 12 combinations of treatments in each

block. The design in block 2 is similar to that in block 1 but in reverse order. Block 3

and block 1 share the same design. Figure 2.1 and 2.2 show two samples of user interface
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subjects faced in the experiment. In each period, subjects had access to the previous

payoffs and actions of both players in the current period, which are displayed on the

right side of the screen. Before the blocks start, subjects play a 2-period practice with

the same treatments but a different payoff matrix.

In continuous time treatments, payoffs and actions move in real time, are

calculated and exchanged between players every 50 milliseconds and are recorded every

500 milliseconds.

In discrete time treatments, each period is equally divided into 10 subperiods,

each lasting for 6 seconds. The green fill bar at the top shows the time remaining of

the current subperiod. Subjects’ subperiod payoff depends only on the last choices both

players make before the end of the subperiod. The data is recorded every subperiod.

In pure action sets treatments, subjects can only choose two options A and B.

Subjects can freely click back and forth between the rows using the radio buttons and

the current chosen strategies will be shown in the blue shade on the payoff matrix.

In mixed action sets treatments, subjects make their choices in an action set

with a continuous number of actions by clicking the slider next to the heat map. The

action sets are constructed by adding all possible mixtures between A and B. Although

the mixed action sets treatment does not necessarily allow subjects to play mixed strat-

egy, both action sets treatments have the same corner Nash equilibria and mixed action

sets treatment is visually more complicated than pure action sets treatment. The heat

map shows the payoff of all possible profiles, where the horizontal line shows the sub-

ject’s current chosen action and the vertical line shows the counterpart’s current chosen
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one. The counterpart’s payoff heat map is displayed on the top left of the screen.

At the end of each session, subjects were asked to complete a post experimental

survey about how they choose their actions in the experiment. The results of the survey

are considered as a supplement material to study subjects’ behavior and are explained

in Appendix A.

Figure 2.1: Subjects interface in practice periods for games in the pure action sets and
discrete time treatment.

2.5 Results in Stag Hunt Games

Data from block 1, the first 2 subperiods in discrete time treatments and

equivalently the first 12 seconds in continuous time treatments are dropped to eliminate

learning during the experiment and unintentional mismatch caused by the transition

between periods. In this case, 8 observations in discrete time treatments and 96 obser-
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Figure 2.2: Subjects interface in practice periods for games in the mixed action sets and
continuous time treatment.

Table 2.2: Design table of block 1 for stag hunt sessions and battle of the sexes sessions.

Period Matrix in SH Matrix in BOS Time Action sets

1 SH2R BOSla Discrete Pure
2 SH1R BOSma Discrete Pure
3 SH0.6R BOSha Discrete Pure
4 SH0.6R BOSha Discrete Mixed
5 SH1R BOSma Discrete Mixed
6 SH2R BOSla Discrete Mixed
7 SH2R BOSla Continuous Pure
8 SH1R BOSma Continuous Pure
9 SH0.6R BOSha Continuous Pure
10 SH0.6R BOSha Continuous Mixed
11 SH1R BOSma Continuous Mixed
12 SH2R BOSla Continuous Mixed

The order of time treatments and action sets treatments are the same in both sessions and the

only difference in design is the order of payoff matrices. In each session, all 36 periods are equally

divided into 3 blocks. Block 2 is similar to block 1 but in reverse order and block 3 is the same

as block 1.
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vations in continuous time treatments are collected for each pair of subjects in blocks 2

and 3 and there are 504 pairs left in SH.

To study the behavior at pair level instead of at individual level, strategy

profiles are classified into different types. In stag hunt games, strategy profiles can be

classified into 4 types: “payoff dominant” ((p, q ≥ 0.9), “risk dominant” (p, q ≤ 0.1),

“mixed NE” (p, q ∈ (0.7, 0.9)) and “mismatch” (the rest of the profiles). Table 2.3

provides a summary of classified strategy profiles while focusing on 4 corner strategy

profiles based on the classification. Overall speaking, subjects play more payoff domi-

nant equilibrium and less mismatch in continuous time treatments than in discrete time

treatments and in pure action sets treatments than in mixed action sets treatments.

They also play more risk dominant equilibrium and less payoff dominant equilibrium

when the payoff matrix favors risk dominance. Mixed NE is rarely played.

Table 2.3: Summary table for classified strategy profiles in stag hunt games.

payoff dominant risk dominant mixed NE mismatch observations

SH0.6R,PD 0.63 0.21 - 0.15 336
SH0.6R,PC 0.81 0.11 - 0.08 4032
SH0.6R,MD 0.43 0.16 0.03 0.38 336
SH0.6R,MC 0.64 0.17 0.01 0.17 4032
SH1R,PD 0.56 0.28 - 0.16 336
SH1R,PC 0.80 0.16 - 0.05 4032
SH1R,MD 0.40 0.23 0.01 0.36 336
SH1R,MC 0.58 0.23 0.00 0.18 4032
SH2R,PD 0.43 0.47 - 0.10 336
SH2R,PC 0.67 0.27 - 0.06 4032
SH2R,MD 0.37 0.30 0.01 0.32 336
SH2R,MC 0.59 0.27 0.01 0.13 4032

First four columns show the frequency of each type of strategy profile. Last column shows the

total number of observations of each treatment.

52



2.5.1 Treatment Effects

The summary tables show an overview of subjects’ choices but little about the

dynamics, which makes it necessary to check the dynamics by the classified strategy

profiles we defined in the previous subsection and show how the fraction of each type

changes over time. Figure 2.3 shows how the fraction of each type being played changes

over time in all treatments in stag hunt games. Under the same payoff matrix, there

exists an obvious difference between the two time treatments and the two action sets

treatments. Pairs are more likely to play payoff-dominant equilibrium in continuous

time than in discrete time and in pure action sets treatments than in mixed action

sets treatments. The fraction of mismatches is low in pure action sets treatments and

is decreasing in mixed action sets treatments. Furthermore, mixed Nash equilibrium

is rarely played in all mixed action sets treatments. Between payoff matrices, pairs

are less likely to play payoff-dominant equilibrium and are more likely to switch to

risk-dominant equilibrium when the optimization premium is getting higher.

Table 2.4 shows some statistical evidence. As “mixed NE” is rarely played, I

only create three “type dummy variables” for type “payoff dominant”, “risk dominant”

and “mismatch”. Another type “either NE” combines the first two types and denotes

observations that stay at either pure NE. To focus more on the treatment effects instead

of relations between types, I run “one vs all” logistic regressions as follows:

P (Y = 1|X = x) =
ex
′β

1 + ex′β
(2.1)

x′β = β0 + β1 ∗ treatments. (2.2)
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Here Y represents either of the four type dummies. Treatments include all

basic treatments and their intersections. As this is an experiment with a 3 x 2 x 2

design, there exist 11 independent treatment terms and “mixed action sets, discrete

time, SH1R” is served as the baseline. There is also a dummy variable for the second

half of each period and another dummy for block 3 to study learning within each period

and between blocks.

Results from Table 2.4 reports all βs in (2) and confirms impressions from

Figure 2.3. Both continuous time treatment and the pure action sets treatment affect

the probability of playing pure NE and “mismatch” just as what we have seen in Figure

2.3. But if we consider two pure NE separately, only continuous time treatments have

a significant effect on “payoff-dominant” equilibrium. Furthermore, the coefficient of

within period learning shows significant learning effects: pairs learn to coordinate from

the first half to the second half of the period. Another finding is that optimization

premium weakly affects pairs’ probability of playing risk-dominant equilibrium and the

direction is consistent with previous papers: the coefficient of SH2R and SH0.6R in

column 2 is large but insignificant.

2.5.2 Classification at Pair Level

Showing how each fraction of classified types moves over time provides an

overview of the dynamics within each period. However, as the data is aggregated, the

real dynamics of each pair is lost, which makes it necessary to check the dynamics and

classification problem at the pair level. Here pairs are classified into various types and
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Figure 2.3: Classification over time in stag hunt games.

payoff dominant(red), risk dominant(blue), mixed NE(yellow) and mismatch(green). The figures

show how each fraction of dynamics types changes in the period.

show how pairs’ types change between treatments.

In stag hunt games, pairs can be classified into 4 types: “payoff dominant”

(pairs play payoff-dominant equilibrium for at least 75% of the time), “risk dominant”

(pairs play risk-dominant equilibrium for at least 75% of the time), “mixed NE” (pairs

play mixed Nash equilibrium for at least 75% of the time) and “mismatch” (the rest of
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Table 2.4: One vs all logistic regression of classification over time in SH clustered at
pair level.

Treatments payoff risk either NE mismatch

SH2R -0.15(0.424) 0.39(0.401) 0.17(0.365) -0.16(0.361)
SH0.6R 0.09(0.412) -0.42(0.400) -0.19(0.340) 0.10(0.327)
continuous 0.73(0.424)* 0.03(0.419) 0.97(0.396)** -0.94(0.391)**
pure 0.64(0.401) 0.25(0.398) 1.11(0.329)*** -1.07(0.325)***
continuous pure 0.40(0.602) -0.76(0.621) 0.41(0.547) -0.44(0.544)
continuous SH2R 0.16(0.597) -0.18(0.596) 0.12(0.589) -0.24(0.588)
continuous SH0.6R 0.15(0.591) 0.04(0.619) 0.15(0.545) -0.14(0.529)
pure SH2R -0.38(0.583) 0.45(0.555) 0.36(0.493) -0.37(0.490)
pure SH0.6R 0.21(0.566) 0.06(0.577) 0.23(0.477) -0.15(0.469)
continuous pure SH2R -0.28(0.844) 0.04(0.849) -0.86(0.774) 0.98(0.773)
continuous pure SH0.6R -0.36(0.845) -0.08(0.903) -0.76(0.766) 0.76(0.755)
second half 0.05(0.056) 0.13(0.069)* 0.30(0.102)*** -0.30(0.106)***
block 3 0.35(0.231) -0.34(0.249) 0.20(0.242) -0.20(0.236)
Constant -0.60(0.327)* -1.13(0.310)*** 0.27(0.283) -0.30(0.275)
Observations 26,208 26,208 26,208 26,208

Dependent variables are dummy variables of the type of strategy profiles. Payoff and risk refer to

payoff dominant type and risk dominant type, respectively. Either NE refers to the observations

that play either pure NE. Standard deviation shown in the parentheses. Significance level: ***

0.01 ** 0.05 * 0.1.

the pairs that can not be classified into any of the types above). The classification of

pairs is completely based on the classification of observations in section 5.2 and the data

is still based on the modified dataset where the first 20% of observations are dropped.

As a result, 75% of the time refers to 6 subperiods in discrete time and 36 seconds in

continuous time

Figure 2.4 shows the frequency and percentage of each type in all treatments

and the results are similar to those in section 5.2. Under the same payoff matrix, pairs

are more likely to stay in payoff-dominant equilibrium and less likely to stay mismatch-

ing in continuous time than in discrete time and in pure action sets treatments than
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in mixed action sets treatments. Between payoff matrices, pairs are more likely to play

payoff-dominant equilibrium instead of risk-dominant equilibrium when the optimiza-

tion premium of the payoff matrix is higher. Not a single pair stays in mixed Nash

equilibrium in mixed action sets treatments.

Table 2.5 shows some statistical evidence. Four type dummies are created for

type “payoff dominant”, “risk dominant”, “mismatch” and “either EQ” that combines

the first two types. The results supported what has been shown in Figure 2.4 about

the treatment effects of continuous time treatments on payoff-dominant equilibrium

and mismatch. The coefficient of pure action sets treatments becomes significant if we

combine two types of coordination. Although the coefficients are not significant, the

effect of payoff matrices still affects the probability that a pair stays at risk-dominant

equilibrium given the large magnitude of the coefficients.

The results in stag hunt games can be summarized as follows.

Result 1:

(a) In stag hunt games, subjects are more likely to coordinate at pure Nash equilibria

in continuous time treatments and pure action sets treatments.

(b) Subjects are more likely to converge to payoff-dominant equilibrium in stag hunt

games in continuous time than in discrete time.

(c) Subjects also learn to coordinate within each period.
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Figure 2.4: Classification at pair level in SH.

Numbers show the number of pairs that coordinate at certain equilibrium for at least 75 percent

of the time in a certain period.

2.6 Results in Battle of the Sexes Games

Data is dropped in BOS in the same way as it is dropped in SH. In BOS,

456 pairs remain in the dataset. In battle of the sexes games, strategy profiles can be

classified into 6 types: “coordinate(A,A)” (p, q ≥ 0.9), “coordinate(B,B)” (p, q ≤ 0.1),

58



Table 2.5: One vs all logistic regression of classification at pair level in SH.

Treatments payoff risk either EQ mismatch

SH2R -0.21(0.457) 0.63(0.571) 0.19(0.439) -0.19(0.439)
SH0.6R -0.00(0.451) -1.21(0.849) -0.38(0.439) 0.38(0.439)
continuous 0.78(0.446)* 0.18(0.606) 0.94(0.468)** -0.94(0.468)**
pure 0.58(0.444) 0.63(0.571) 1.07(0.477)** -1.07(0.477)**
continuous pure 0.43(0.661) -1.27(0.880) -0.10(0.760) 0.10(0.760)
continuous SH2R 0.21(0.636) -0.18(0.794) 0.22(0.686) -0.22(0.686)
continuous SH0.6R 0.10(0.632) 1.21(1.031) 0.51(0.669) -0.51(0.669)
pure SH2R -0.18(0.635) 0.25(0.745) 0.44(0.721) -0.44(0.721)
pure SH0.6R 0.29(0.631) 0.92(1.003) 0.52(0.683) -0.52(0.683)
continuous pure SH2R -0.64(0.917) 0.26(1.130) -1.24(1.094) 1.24(1.094)
continuous pure SH0.6R -0.53(0.932) -1.67(1.467) -1.20(1.050) 1.20(1.050)
block 3 0.30(0.187) -0.25(0.238) 0.18(0.211) -0.18(0.211)
Constant -0.64(0.333)* -1.67(0.455)*** 0.01(0.327) -0.01(0.327)
Observations 504 504 504 504

Dependent variables are dummy variables of the type of pairs. Payoff and risk refer to payoff

dominant pairs and risk dominant pairs, respectively. Either EQ combines the first two types of

pairs. Standard deviation shown in the parentheses. Significance level: *** 0.01 ** 0.05 * 0.1.

“mismatch ohenry” (p ≤ 0.1, q ≥ 0.9, showing they choose strategies that are benefical

to the other player, the type is named after the novel called “The Gift of the Magi”),

“mismatch selfish” (p ≥ 0.9, q ≤ 0.1, showing they choose strategies that are benefical

to themselves), “mixed NE” (difference between subject’s mixture and mixed Nash

equilibrium is less than 0.05) and “mismatch” (the rest of the profiles). Table 2.6 shows

the summary table of battle of the sexes games. The frequency of playing two pure

Nash equilibria is almost equally likely in all treatments. However, mismatches are

more common in battle of the sexes games than in stag hunt games, especially the

mismatches when both subjects prefer their advantageous strategy. The comparison of

coordination and mismatch between the two time treatments and the two action sets

treatments is similar to the results in stag hunt games. Though the result comes with
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no statistical testing and does not consider the heterogeneity among pairs, it provides

a first impression of the data.

Table 2.6: Summary table for classified strategy profiles in battle of the sexes games.

(A,A) (B,B) mixed NE mismatch selfish mismatch ohenry mismatch observations

BOSla,PD 0.27 0.33 - 0.30 0.11 - 304
BOSla,PC 0.38 0.44 - 0.15 0.03 - 3648
BOSla,MD 0.15 0.14 0.00 0.11 0.04 0.55 304
BOSla,MC 0.23 0.25 0.00 0.13 0.01 0.38 3648
BOSma,PD 0.33 0.27 - 0.31 0.09 - 304
BOSma,PC 0.35 0.43 - 0.19 0.02 - 3648
BOSma,MD 0.16 0.14 0.01 0.15 0.02 0.51 304
BOSma,MC 0.24 0.25 0.01 0.14 0.02 0.34 3648
BOSha,PD 0.22 0.31 - 0.38 0.10 - 304
BOSha,PC 0.34 0.37 - 0.27 0.03 - 3648
BOSha,MD 0.07 0.09 0.03 0.18 0.02 0.62 304
BOSha,MC 0.17 0.18 0.01 0.14 0.01 0.49 3648

First four columns show the frequency of each type of strategy profile. Last column shows the

total number of observations of each treatment.

2.6.1 Treatment Effects

Figure 2.5 shows how the fraction of each type being played changes over time

in all treatments in battle of the sexes games. Under each payoff matrix, it seems that

pairs are more likely to coordinate in continuous time than in discrete time and in pure

action sets treatments than in mixed action sets treatments. What is more, neither of

the pure Nash equilibria dominates the other one. Comparing two kinds of mismatches

at corners, the fraction of pairs playing selfishly is always higher than the fraction of

pairs playing altruistically. However, there exists a large area of general mismatches

in mixed action sets treatments and the fraction seems consistent over time, which

indicates that the coordination problem might be worse in battle of the sexes games

than that in stag hunt games. Similar to previous results, mixed Nash equilibrium is
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rarely played. Between payoff matrices, there is little difference in pure action sets

treatments but pairs are less likely to coordinate in mixed action sets treatments when

the level of payoff asymmetry is higher.

Table 2.7 shows some statistical evidence. Four type dummies are created

for type “coordinate at (A,A)”, “coordinate at (B,B)”, “mismatch” and “either NE”

which combines the first two types. “mismatch” includes all 3 kinds of mismatches

in the previous classification. “mixed action sets, discrete time, BOSma” is served as

the baseline. The results show that both continuous time treatments and pure action

sets treatments increase the probability of playing pure Nash equilibria and lower the

probability of mismatches, which is consistent with Figure 2.5. Learning effects also

exist within each period and between blocks. However, in the second half of the period

pairs are less likely to play (A,A) but more likely to play (B,B). One possible reason

could be that for alternating dynamics, pairs tend to start with (A,A), which causes

them to play more (B,B) in the second half of the period. It is also worth noticing that

the probability of mismatch increases in the second half of the game and the probability

of coordination decreases, which is counter-intuitive and possibly results from the fact

that pairs systematically mismatch when switching between two pure Nash equilibria

in continuous time. What is more, a high level of payoff asymmetry increases the

probability of mismatches.
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Figure 2.5: Classification over time in battle of the sexes games.

(A,A)(red), (B,B)(blue), mismatch ohenry(yellow), mismatch self(green), mixed NE(grey) and

other mismatches(light blue). The figures show how each fraction of dynamics types changes in

the period.

2.6.2 Classification at Pair Level

In battle of the sexes games, pairs can be classified into 5 types: “alternating”

(pairs play either pure Nash equilibria for at least 75% of the time and both Nash

equilibria exist at least 37.5% of time), “one NE” (pairs play either pure Nash equilibria
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Table 2.7: One vs all logistic regression of classification over time in BOS clustered at
pair level.

Treatments (A,A) (B,B) either NE mismatch

BOSla -0.05(0.329) 0.03(0.352) -0.02(0.310) 0.08(0.303)
BOSha -0.96(0.388)** -0.57(0.346) -0.87(0.343)** 0.74(0.320)**
continuous 0.52(0.284)* 0.73(0.311)** 0.83(0.307)*** -0.80(0.296)***
pure 0.93(0.270)*** 0.83(0.252)*** 1.25(0.274)*** -1.19(0.266)***
continuous pure -0.39(0.342) -0.02(0.356) 0.07(0.398) -0.10(0.389)
continuous BOSla -0.02(0.417) -0.05(0.449) -0.05(0.433) 0.02(0.425)
continuous BOSha 0.51(0.466) 0.16(0.467) 0.28(0.463) -0.17(0.439)
pure BOSla -0.22(0.387) 0.23(0.398) 0.00(0.390) -0.06(0.384)
pure BOSha 0.43(0.441) 0.73(0.381)* 0.59(0.414) -0.46(0.395)
continuous pure BOSla 0.41(0.497) -0.18(0.520) 0.28(0.564) -0.25(0.558)
continuous pure BOSha -0.06(0.539) -0.59(0.527) -0.43(0.582) 0.32(0.562)
second half -0.47(0.105)*** 0.33(0.092)*** -0.13(0.075)* 0.15(0.076)*
block 3 0.20(0.116)* 0.30(0.126)** 0.47(0.161)*** -0.45(0.158)***
Constant -1.47(0.249)*** -2.18(0.252)*** -1.00(0.249)*** 0.92(0.240)***
Observations 23,712 23,712 23,712 23,712

Dependent variables are dummy variables of the type of strategy profiles. (A,A) and (B,B) refer

to types that coordinate at (A,A) and (B,B), respectively. Either NE refers to the observations

that play either pure NE. Standard deviation shown in the parentheses. Significance level: ***

0.01 ** 0.05 * 0.1.

for at least 75% of the time but the pair does not play alternation), “mismatch selfish”

(pairs play the selfish type of mismatch for at least 75% of the time), “mixed NE”

(pairs play mixed Nash equilibrium for at least 75% of the time) and “mismatch” (the

rest of the pairs that can not be classified into any of the types above). Figure 2.6

shows the frequency and percentage of each type in all treatments and the results are

similar to those in section 5.2. Under the same payoff matrix, pairs are more likely

to coordinate and less likely to mismatch in continuous time than in discrete time and

in pure action sets treatments than in mixed action sets treatments. Pairs also play

alternating dynamics more frequently in continuous time or in the pure action sets

treatments. Between payoff matrices, pairs are less likely to coordinate when the level
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of asymmetry of the payoff matrix is higher. No pair stays in mixed Nash equilibrium

in mixed action sets treatments but there are a few pairs that consistently play selfishly

and do not compromise.

Table 2.8 shows some statistical evidence. Four type dummies are created for

type “alternating”, “oneNE”, “mismatch” and “either EQ” that combines the first two

types. “mismatch” includes all 3 types of mismatches in the previous classification.

Pairs are more likely to coordinate and less likely to mismatch in continuous time than

in discrete time and in pure action sets than in mixed action sets. The treatment effects

on “alternating” types are large but not significant. The payoff matrices also have an

insignificant effect on the coordination rate.

The results in battle of the sexes games can be summarized as follows.

Result 2:

(a) In battle of the sexes games, subjects are more likely to coordinate at pure Nash

equilibria in continuous time treatments and pure action sets treatments.

(b) Subjects are more likely to converge to alternating dynamics in battle of the sexes

games in continuous time than in discrete time. The treatment effects are large but not

significant.

(c) High level of payoff asymmetry reduces the coordination rate.

(d) Similar to stag hunt games, learning exists between blocks and within each period.

(e) Coordination problem in BOS is worse than that in SH.
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Figure 2.6: Classification at pair level in BOS.

Numbers show the number of pairs that coordinate at certain equilibrium for at least 75 percent

of the time in a certain period.

2.7 Conclusions

As has been studied both in theory and in laboratory experiments, continuous

time interaction is believed to be an effective method to improve human cooperation

(e.g. Friedman and Oprea (2012)). This paper applies continuous time environments to
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Table 2.8: One vs all logistic regression of classification at pair level in BOS.

Treatments alternating one NE either EQ mismatch

BOSla -0.43(0.944) 1.15(1.178) 0.25(0.714) -0.25(0.714)
BOSha -1.16(1.179) -13.70(932.832) -1.47(1.143) 1.47(1.143)
continuous 0.97(0.734) 1.94(1.107)* 1.49(0.630)** -1.49(0.630)**
pure 1.14(0.722) 1.47(1.143) 1.37(0.634)** -1.37(0.634)**
continuous pure -0.42(0.905) -0.01(1.269) 0.46(0.815) -0.46(0.815)
continuous BOSla 0.89(1.097) -1.37(1.348) -0.03(0.859) 0.03(0.859)
continuous BOSha 0.50(1.359) 12.92(932.833) 0.64(1.265) -0.64(1.265)
pure BOSla 0.43(1.099) -0.34(1.351) 0.20(0.861) -0.20(0.861)
pure BOSha 1.31(1.302) 13.39(932.833) 1.47(1.245) -1.47(1.245)
continuous pure BOSla -0.33(1.323) 0.11(1.574) -0.28(1.128) 0.28(1.128)
continuous pure BOSha -1.05(1.556) -13.29(932.833) -1.70(1.448) 1.70(1.448)
block 3 0.30(0.247) -0.07(0.271) 0.20(0.223) -0.20(0.223)
Constant -2.62(0.618)*** -3.57(1.022)*** -2.24(0.542)*** 2.24(0.542)***
Observations 456 456 456 456

Dependent variables are dummy variables of the type of pairs. ”alternating” and ”one NE” refer

to types that play alternating dynamics and stay at one pure Nash equilibrium, respectively.

Either EQ combines the first two types of pairs. Standard deviation shown in the parentheses.

Significance level: *** 0.01 ** 0.05 * 0.1.

the classic problem of coordination failure using stag hunt games and battle of the sexes

games with a balanced 2 (the battle of the sexes and the stag hunt) x 2 (continuous and

discrete time treatments) x 2 (pure and mixed action sets treatments) x 3 (three payoff

matrices for each game) full-factorial experimental design.

The experimental results show how continuous time environments improve the

efficiency in both games from different perspectives. Subjects consistently coordinate

better in continuous time than in discrete time. In stag hunt games, subjects are more

likely to reach the payoff-dominant equilibrium in continuous time than in discrete time.

In battle of the sexes game, subjects prefer to alternate between two pure Nash equilibria

when the time treatment is continuous. Apart from the two time environments, payoff
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matrices and the complexity of the action sets also affect subjects’ coordinative behavior,

though payoff matrices only show a weak influence. Comparing two coordinate games,

stag hunt games receive a higher coordination rate in all treatments, while subjects are

less cooperative in battle of the sexes games. This is suggested by the nature of two

coordination games as people have common interests in stag hunt games but mixed

motivations in battle of the sexes games. The results match our qualitative hypotheses

in Section 3 that continuous time environments enhance coordination.

This paper provides instructive results to the literature by showing that con-

tinuous time interaction facilitates coordination and improves efficiency. The findings

provide a method of solving coordination failure and enhance the general impression

that continuous time interaction improves human cooperation. However, people may

lose efficiency if they need to alternate among multiple focal points as there are mis-

matches between alternations. Furthermore, people can coordinate better when the

problem is easier and when the parametrized incentives are stronger. Another inves-

tigation of battle of the sexes games in the appendices shows that subjects’ switches

between equilibrium status and mismatches are mainly caused by selfish motivations.

The positive impact of continuous time interaction encourages firms and policy mak-

ers to adopt new technologies that enable high frequency of interaction such as high

speed networks. The new technologies can potentially mitigate the coordination failure

problem.

Some quantitative questions are still unsolved. First, as the concept of “period”

does not exist in continuous time, what is the optimal frequency of alternation that
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players should follow in battle of the sexes games? Second, the learning algorithm in

continuous time remains a puzzle and needs further study. Although the difference

between learning in the two time environments seems obvious, how players learn and

update belief in continuous time requires a quantitative modelling approach. If we

follow Ioannou and Romero (2014b)’s discrete-time strategic learning, it would also

be a fruitful topic to transform the history-dependent finite automation from discrete

time to continuous time environment. Third, stylized facts in the experiment show

that subjects also tend to compete for higher payoff instead of coordination, which is

different from traditional theory prediction. To address this problem, future theoretical

researchers can study similar games with turn taking dynamics under such a competitive

framework.
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Chapter 3

Taking Turns in Continuous Time

3.1 Introduction

In game theoretical models with repeated interactions, players usually make

decisions in “discrete time”; the game is divided into a finite or infinite number of

periods, and the players interact in one period after another. The theoretical work by

Simon and Stinchcombe (1989) and Bergin and MacLeod (1993) introduced another

time environment called “continuous time” in which the game moves in real time, and

the players can adjust their strategies and affect the outcomes at almost any time during

the game. Their most notable finding is that the continuous time environment supports

full cooperation in finitely repeated social dilemma games1, which is supported by recent

laboratory experiments by Friedman and Oprea (2012). Subsequently, the continuous

time environment has been applied to other game theoretical models, which have been

1The equilibrium is proved in “perfect continuous time” and “inertia continuous time” with ε-
equilibria.
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shown to support cooperation and improve equilibrium convergence (e.g., Oprea et al.

(2014); Calford and Oprea (2017); Leng et al. (2018)).

However, whether the benefit of continuous time interactions can be extended

to all games remains unclear. We consider 2-player battle of the sexes games in which

continuous time interactions may harm social welfare. As a type of mixed-motive co-

ordination game, battle of the sexes games are quite common in real-world scenarios

(e.g., cooperative teamwork, resource allocation, and congestion problems). The players

generally prefer distinct pure strategy Nash equilibria and, thus, may fail to coordinate.

With the development of technology, people are currently facing such problems in on-

line environments. For instance, parties may face online congestion problems when they

need to access resources on multiple servers as follows: the parties may prefer a sin-

gle server but accessing this server together substantially slows the connection speed,

causing a low payoff for everyone. Since the problem occurs in an online environment,

coordination may take place under online tracking systems, where both actions and per-

formance can be adjusted, tracked and updated in real time. Would it be better to allow

people to make decisions in discrete intervals or real time? An understanding of how

the continuous time environment affects coordination could have vital empirical value

and indicate whether people should accelerate or slow interactions with such problems.

What is the critical feature of battle of the sexes games that renders coordi-

nation difficult in continuous time? The recent literature concerning continuous time

games mostly considers social dilemma games (e.g., the prisoner’s dilemma) and games

in which the efficient Nash equilibrium is difficult to reach (e.g., minimum effort games).
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A common feature of these games in continuous time is that the players proactively make

only a single decision and best respond to others’ strategy in the equilibrium. However,

the previous literature investigating battle of the sexes games in discrete time has found

that players tend to take turns and play their preferred pure Nash equilibria when the

game is played repeatedly. The equilibrium path is modeled as “alternating dynam-

ics” (or “turn-taking dynamics”) and is supported by many theories and laboratory

experiments (e.g., Lau and Mui (2008); Ioannou and Romero (2014b); Arifovic and

Ledyard (2018)). Although alternating dynamics achieve both efficiency and fairness

between players, directly transferring such dynamics to a continuous time environment

is difficult because a “turn” is not well-defined in continuous time. The players must

determine how to coordinate both the order of alternations and how long they remain at

each pure Nash equilibrium. Furthermore, the players must make decisions at multiple

history-dependent timings and decide both whether to switch and how long to stay at

each time. In contrast, in a discrete time setting, the players need to coordinate only

the order of alternations and take turns. Even though a player can react quickly and

asynchronously (Alós-Ferrer and Kern (2015)) in continuous time, it is still difficult to

replicate alternating dynamics and achieve both efficiency and fairness.

This paper compares subjects’ interactions in battle of the sexes games under

continuous time with their interactions under discrete time to address the following

three major research questions. First, will a continuous time environment facilitate

coordination in battle of the sexes games? Second, what may cause the difference

between the two time environments? Third, how do subjects alternate between Nash
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equilibria in continuous time? If the players choose another dynamics path, what other

types of dynamics will they choose? In addition to the major comparison between the

two time environments, our experiment applies three payoff matrices as a robustness

check.2

This paper contributes to the literature from both empirical and theoretical

perspectives. First, this paper offers practical suggestions for people who face coordi-

native tasks in online environments. Second, this paper provides evidence advancing

the general theory of continuous time games because the alternating dynamics in bat-

tle of the sexes games are quite different from the equilibrium pattern in the current

literature. Third, as people can move asynchronously in continuous time, the order of

alternations and the duration of the Nash equilibrium reveal what motivates players to

take turns from a new perspective.

Our experimental results show that subjects behave quite differently in the

two time environments. Although continuous time interactions accelerate initial con-

vergence to one of the pure strategy equilibria and divergence from mismatches, they

undermines players’ subsequent ability to coordinate moves from one equilibrium to

another. Laboratory subjects are substantially less likely to play alternating dynamics

in continuous time than discrete time. Compared to the strong alternating pattern

observed in discrete time, the dynamics in continuous time are diverse and unstable,

further slowing the learning process in continuous time. Ultimately, the two significant

2The matrices are adopted directly from Anbarci et al. (2017), who introduce the inequality aversion
model (Fehr and Schmidt (1999)) to battle of the sexes games. The three payoff matrices differ in the
level of payoff asymmetry between the players at pure Nash equilibria and, thus, show how fairness
concerns affect coordination.

72



forces offset each other and render the treatment effect insignificant. Moreover, the

difference among the three payoff matrices is minimal.

We also find the following general patterns of how subjects interact in con-

tinuous time: the disadvantaged players who earn a low payoff tend to move first,

and the advantaged players follow. The transitions between pure Nash equilibria and

mismatches in which both players choose what they prefer also represent the major

motivation of transitions in continuous time. In continuous time, it appears that the

dynamics motivated by the disadvantaged players are more common than the traditional

dynamics (e.g., strategic teaching). Furthermore, the subjects’ willingness of staying at

their opponents’ preferred Nash equilibrium is squeezed out over time, especially in the

last 30 seconds of the game.

The remainder of this paper is organized as follows. Section 2 reviews the

literature concerning both continuous time games and battle of sexes games. Section

3 introduces the experimental design and hypotheses of this study. Section 4 presents

the experimental results and discusses the differences between the two time environ-

ments. Finally, Section 5 concludes the main findings and notes unsolved questions to

be addressed in future studies.

3.2 Related Literature

Although most economic laboratory experiments have employed a discrete time

framework, continuous time games have been developed in theory for quite a long time.
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Models that work in discrete time cannot be directly transferred to continuous time

environments because the concept of “period” is not well-defined in continuous time.

Previous theories focusing on modeling traditional games in continuous time have identi-

fied new equilibria, and the most notable finding shows that continuous time interactions

support full cooperation in social dilemma games, such as the prisoner’s dilemma, and

timing games in finite time horizons, which fundamentally differs from predictions in

discrete time and improves social welfare (Simon and Stinchcombe (1989); Bergin and

MacLeod (1993)). Recent continuous time theories focus on the effect of natural reac-

tion lags (also called inertia) in social dilemma games (Park (2014); Calford and Oprea

(2017)) and the asynchronous nature of continuous time games (Alós-Ferrer and Kern

(2015)).

With the development of laboratory techniques, experimental economists have

recently begun to study continuous time games in laboratory environments in which

subjects interact in milliseconds. Although subjects cannot respond in milliseconds (ex-

cept for using the “time freezing” technique described by Calford and Oprea (2017)), the

high frequency interactions allow them to react much faster than they could in discrete

time, and many experimental findings support the theoretical predictions. In prisoner’s

dilemma games, the cooperation rate between players in continuous time tends to be

higher than that in discrete time (Friedman and Oprea (2012)). A follow-up study finds

that the termination rules and time horizon also affect the cooperation rate (Bigoni et al.

(2015)). Similar cooperative behavioral patterns have been observed unconditionally in

long-term Cournot games (Friedman et al. (2015)), conditionally on communication in
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public good games (Oprea et al. (2014)), and conditionally on the information struc-

ture in minimum effort games (Deck and Nikiforakis (2012); Leng et al. (2018)). Some

other laboratory studies in continuous time focus on convergence to Nash equilibria. In

the continuous time evolutionary hawk and dove game, a symmetric mixed equilibrium

is more likely to be selected in the one-population game. In contrast, the separation

equilibrium is stronger in the two-population game (Oprea et al. (2011)). This finding

has been further developed under the uniparametric model (Benndorf et al. (2016))

and the perturbed best response dynamics (Benndorf and Martinez-Martinez (2017)).

Continuous time interactions have also been found to support Nash equilibria in the

4-player Hotelling competition (Kephart and Friedman (2015)) and network formation

games (Berninghaus et al. (2006)).

However, the games used in theories and experiments thus far do not require

a complex equilibrium path, such as alternation between Nash equilibria. Research

investigating continuous time battle of the sexes games expands our ideas of how players

generally interact in continuous time when they need to make multiple decisions at

multiple timings. Furthermore, to the best of our knowledge, no theory or experiment

provided evidence that continuous time can potentially harm social welfare, but battle

of the sexes games may show different results.

This paper is also related to the literature concerning battle of the sexes games,

especially the “alternating dynamics” (or “turn-taking dynamics”) in repeated interac-

tions. Since the first discussion of alternating dynamics by Luce and Raiffa (1989), such

dynamics have been widely discussed and applied to a wide range of empirical topics,
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including the management of common pool resources (Janssen and Ostrom (2006)),

repeated traffic route choices (Helbing et al. (2005)), entry into markets of natural

monopoly (Dixit and Shapiro (1984)), and network externalities (Besen and Farrell

(1994)). The first experimental evidence of alternating dynamics in battle of the sexes

games in laboratory studies was derived from the fixed-matching protocol by Prisbrey

(1992), and some subsequent experiments found similar patterns (e.g., Bhaskar (2000);

Sonsino and Sirota (2003); Kuzmics et al. (2014)). For example, in Kuzmics et al.

(2014), alternating dynamics are used in more than 80% of the repeated battle of the

sexes games.

Many theories and related experiments support alternating dynamics in dis-

crete time. Lau and Mui (2008) and Lau and Mui (2012) develop the idea by Crawford

and Haller (1990) as “turn taking with independent randomization”, where players

choose mixed strategies before they reach the equilibrium path and play Nash equilibria

strategies after they determine the alternating dynamics. Arifovic and Ledyard (2018)

introduce their individual evolutionary learning theory to battle of the sexes games and

prove that this theory can support the alternating dynamics if one player knows the

dynamics at the beginning of the game. Romero and Zhang (2018) compare equilibrium

with various normative principles and find that equal payoff and equal opportunities are

the most frequently played guidelines for alternating dynamics. Experienced players can

also teach the other player to play alternating dynamics during the game (Cason et al.

(2013b)). The other mechanisms that support alternating dynamics include correlated

equilibrium (Duffy et al. (2017); Anbarci et al. (2017)), action-based belief learning
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(Cheung and Friedman (1997)), subjective principle learning (Sandroni (2000)), and

strategy-based belief learning (Ioannou and Romero (2014b)). Some other papers also

discuss alternating dynamics with a predefined punishment strategy and random cost

structure (Leo (2017)), comparison between alternations and cut-off strategies (Kaplan

and Ruffle (2011)), and how coordination is affected by preplay communication (Cooper

et al. (1989)) and a third compromise option (He and Wu (2020)).

However, these theories cannot be directly transferred to the continuous time

environment as the critical concept of a “period” is not well-defined in real numbers.

Although we do not propose a theory in this paper, we hope that our experimental

results can shed light on the continuous time battle of the sexes theory for theorists.

Furthermore, the comparison of subjects’ behaviors in the two time environments has

an empirical impact. Currently, people face traditional coordinate problems in online

environments, such as online teamwork assignments, the allocation of online resources

that require cooperation, and the coordination of internet traffic. Research investigat-

ing continuous time battle of the sexes games could indicate whether people should

accelerate or slow interactions with such problems.

3.3 Experimental Design

This paper applies a 2x3 full-factorial design with two time environments (con-

tinuous time and discrete time) and three payoff matrices. The experiments use a

between-subjects design for the two time treatments and a within-subject design for the
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three payoff matrices. In each experimental session, the subjects play 12 supergames

after 3 practice games, each lasting for 2 minutes. The subjects are randomly paid

based on their earned payoff in one of the supergames. Each subject is randomly and

anonymously paired with another subject in each supergame; thus, the experiments use

a random matching protocol between supergames and a fixed matching protocol within

each supergame. The remainder of this section discusses the treatments, hypotheses,

and session information.

3.3.1 Time Environments and User Interface

Each supergame lasts for 2 minutes. In the continuous time scenario, the

payoffs and choices move in real time, are calculated and exchanged between players

every 50 milliseconds and are recorded twice each second. Each supergame is equally

divided into 20 periods in discrete time, and each period lasts for 6 seconds. The data

are recorded every period. The length of the periods is similar to that in Friedman and

Oprea (2012)’s “grid-8” treatment. More data are collected during sessions with a short

period length than sessions with a longer period. Based on Friedman and Oprea (2012),

there are significant differences between the continuous time treatment and “grid-8”

treatments; thus, we could expect the subjects to play the 6-second discrete time games

differently from the continuous time games. In both time environments, the subjects’

initial choices are randomly determined. In the data sections, we remove the data from

the practice games and the first 2 seconds of the continuous time scenarios to avoid a

reaction lag to the initial random choices.
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Figure 3.1: Sample user interface in the games in continuous time.

Since we adapt a between-subjects design in the two time environments, the

subjects are presented with different user interfaces in different sessions based on the

time environment. Figure 3.1 shows a sample user interface presented to the subjects

on their screen in the continuous time setting. The payoff matrix on the left side of the

screen shows the battle of the sexes game subjects playing in the current supergame.

The subjects are randomly divided into two roles (row player and column player) in each

game. The subjects can freely click back and forth between the rows using the radio

buttons, and the current chosen choice is shaded in blue on the payoff matrix. The other

subject controls the columns. We transpose the payoff matrix for the column players

such that all subjects see themselves as the row player on their screen. As the game is

played in continuous time, their decisions affect their payoffs in real time. The history

of the current supergame is shown on the right side of the screen. The subjects have
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access to the previous payoffs and choices of both players in the current supergame. In

the continuous time scenario, both charts move in real time and are updated every 50

milliseconds, and the subjects can monitor their counterpart’s choices in real time. In

the discrete time scenario, each supergame is divided into 20 periods, and only the last

choice in each period is used to determine the payoff for that period. Additionally, the

subjects cannot observe their counterparts’ current decision. The subjects see a green

bar on the top right showing the remaining time of the current period, and both choices

and payoff charts are updated period-by-period.

3.3.2 Payoff Matrices

Table 3.1 shows the three payoff matrices used in the experiment, which are

variants adapted from Anbarci et al. (2017). The major difference among the payoff

matrices is the level of payoff asymmetry. The name of the matrix “BoSX” is based on

the level of payoff asymmetry when players coordinate at either pure Nash equilibria.

“X” is the ratio of the advantaged player’s payoff over the disadvantaged player’s payoff

at either pure Nash equilibria and represents the level of payoff asymmetry. All three

payoff matrices have the same pure Nash equilibria but different mixed Nash equilibrium.

In this study, we focus on two pure strategy Nash equilibria and two mismatches. To

make it understandable, we rename the four cells of the payoff matrix as follows: (A,a)

as “Row player preferred Nash equilibrium (RPNE )”, (B,b) as “Column player preferred

Nash equilibrium (CPNE )”, (A,b) as “Aggressive mismatch (Aggressive)”, and (B,a) as

“Accommodating mismatch (Accommodating)”. In battle of the sexes games, players
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reach the efficient status when they choose either pure Nash equilibrium. In the repeated

interactions, fairness is another concern and players achieve complete fairness when they

alternate equally between two pure Nash equilibria.

Since we adopt a within-subject design for the payoff matrices, we design two

between-subjects game sequences to assess the order effect. The following two sequences

show the order of the payoff matrices in the practice games and the 12 supergames. In

Sequence 1, the subjects start with the matrix that is the easiest to coordinate among the

three payoff matrices and play in the order of (1*BoS1.4, 1*BoS2.5, 1*BoS10, 2*BoS10,

2*BoS2.5, 2*BoS1.4, 2*BoS1.4, 2*BoS2.5, 2*BoS10). In Sequence 2, the subjects start

with the matrix that is the most difficult to coordinate among the three payoff matrices

and play in the order of (1*BoS10, 1*BoS2.5, 1*BoS1.4, 2*BoS1.4, 2*BoS2.5, 2*BoS10,

2*BoS10, 2*BoS2.5, 2*BoS1.4). In both game sequences, the sessions are divided into

3-game practice and two 6-game blocks, and the subjects play each payoff matrix twice

in each block. Due to technical constraints, we do not fully randomize the order of

the games; however, the two game sequences show two opposite cases and can fully

represent how the order effect affects the subjects’ coordination.

Table 3.1: Payoff matrices in the experiment.

BoS1.4 BoS2.5 BoS10

a b a b a b
A (400,280) (0,0) A (400,160) (0,0) A (400,40) (0,0)
B (0,0) (280,400) B (0,0) (160,400) B (0,0) (40,400)

The row players choose between A (top) and B (bottom). The column players choose between

a (left) and b (right).
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3.3.3 Hypotheses

Although no directly relevant theory explains how players interact in continu-

ous time battle of the sexes games, we can still develop some hypotheses to guide our

experimental study. The hypotheses proposed in this section are based on a discussion

regarding how the continuous time environment affects behavior in general based on the

continuous time games literature, how people learn and alternate based on the battle

of the sexes games literature, and intuitive thinking.

The most important research question in this paper is related to a comparison

of coordination rates between continuous time and discrete time. The coordination rate

is defined as the average fraction of time that pairs of subjects stay at either pure Nash

equilibria (RPNE or CPNE). As discussed in the introduction, there are considerable

differences between the two time environments, including the difficulty in playing al-

ternating strategies and how fast the subjects can respond. We first hypothesize that

the coordination rate in continuous time is higher than that in discrete time based on

general conclusions in the previous literature.

Hypothesis 1 Define the coordination rate as the average fraction of time that pairs

of subjects stay at either pure Nash equilibria (RPNE or CPNE). The coordination rate

in continuous time is higher than that in discrete time.

Another dimension of the treatments is the payoff matrices adapted from An-

barci et al. (2017), who introduce inequality aversion from Fehr and Schmidt (1999)

to battle of the sexes games. Based on their theoretical predictions and experimen-

82



tal results, the subjects’ coordination rate decreases from BoS1.4 to BoS10. With two

between-subjects game sequences, the subjects may also learn to coordinate in general

more slowly in Sequence 2 than Sequence 1. We propose the following hypothesis based

on their research findings:

Hypothesis 2 The subjects’ coordination rate increases when the level of payoff asym-

metry decreases from BoS10 to BoS1.4. The average coordination rate in the sessions

with Sequence 1 is higher than that in the sessions with Sequence 2.

The following assumptions more closely examine the differences between the

two time environments. As discussed in the introduction, it is more difficult for subjects

to play alternating dynamics in continuous time than discrete time mainly because the

subjects must coordinate both the order and the duration of alternations in continuous

time. In contrast, the subjects only need to coordinate the order of alternations and

take turns in discrete time.

Hypothesis 3 Define alternating dynamics as pairs who maintain both efficiency (frac-

tion of time at pure Nash) and fairness (difference in time at either pure Nash). The

subjects are less likely to play alternating dynamics in continuous time than discrete

time.

The difficulty in playing alternating strategies may also affect the learning

process in continuous time. The subjects learn with their counterpart during each

supergame. Although the subjects switch counterparts between supergames, they can
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bring their experience to new supergames and, thus, improve coordination between

supergames. We hypothesize that learning occurs in both time environments, but we

investigate the learning pattern based on the data.

Hypothesis 4 The subjects learn to coordinate. The coordination rate increases over

time between supergames and within each supergame.

Although the players have difficulty playing alternating dynamics, the previous

literature shows that players can interact quickly and asynchronously in continuous time.

The subjects do not have to wait for the next period and can immediately follow what

the other subject is playing. As a result, the initial convergence to pure Nash equilibria

in continuous time is faster than that in discrete time and subjects also deviate from

mismatches more quickly in continuous time than discrete time.

Hypothesis 5 The subjects spend less time reaching their first pure Nash equilibria in

the supergames and spend less time remaining at mismatches in continuous time than

discrete time.

Regarding the second research question, we are interested in how subjects al-

ternate between pure Nash equilibria, especially in continuous time. To construct the

dynamics pattern, we investigate what motivates the subjects to transition between ac-

tion profiles and the duration of time the subjects remain at either pure Nash equilibria.

First, there are three possible transition patterns. If the subjects follow strategic teach-

ing, the transitions should be motivated by a single player in a cyclical pattern, and we
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should observe that the transition probabilities between two mismatches and pure Nash

equilibria are almost equal. If the dynamics are motivated by either the disadvantaged

players or advantaged players, they should be motivated by two players in turn. In

disadvantaged-player dynamics, the transitions between Aggressive and Nash equilib-

ria should be more frequent than those between Accommodating and Nash equilibria.

In advantaged-player dynamics, the transition frequencies should be the opposite. A

showcase of all three dynamics are shown in Figure 3.2. Second, given the difficulty in

alternation in continuous time, we expect the duration of time the subjects remain at

pure Nash equilibria to be more diverse in continuous time than discrete time.

Figure 3.2: Three possible transition dynamics.

(a) disadvantaged-player dynamics; (b) advantaged-player dynamics; (c) strategic teaching. The

red arrows show the transitions motivated by row players and the blue arrows show the transi-

tions motivated by column players.

3.3.4 Sessions

The data are collected during 8 sessions conducted between August 26th and

October 5th of 2020, and in total, 84 subjects were recruited from the UCSC Leeps On-
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line platform ORSEE (Greiner (2015)). The session information is shown in Table 3.2.

The experiment uses a continuous bimatrix program using the software oTree/Redwood

(Pettit et al. (2014); Chen et al. (2016)). The subjects earn points based on the results

of one randomly selected nonpractice game, and the conversion rate between points

and US dollars is 20:1, with a show-up payment of 4 US dollars. The average payment

is approximately 15 US dollars, and the length of a session is approximately 1 hour,

including 20 minutes of instruction and 40 minutes of gameplay. All experiments are

conducted in online environments following the UCSC online experimental protocol.

Table 3.2: Session Information.

Time Sequence Num of subjects Num of sessions

Continuous 1 22 2
Continuous 2 18 2
Discrete 1 22 2
Discrete 2 22 2

The “Time” column shows the time environment implemented during the session. The “Se-

quence” column shows the order of the payoff matrices, which is explained in the main text.

3.4 Results

3.4.1 Treatment Effects

The data are collected during 504 supergames after removing the data from

the practice games and the first 2 seconds in the continuous time scenario. In each

supergame, the subjects are grouped in pairs, and we use pairs to represent two subjects

in the same supergame. Each of the three continuous time environments consists of
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18880 observations, and each discrete time environment has 1760 observations. Starting

from Hypotheses 1-2, panel A in Table 3.3 shows a summary of the coordination rate

(the fraction of time the pairs stay at either pure Nash equilibria) in each treatment.

The subjects are approximately 3% less likely to coordinate in continuous time than

discrete time and are more likely to coordinate when the level of payoff asymmetry

is lower. Although the sign of the treatment effects follows the hypotheses, no effect

is statistically significant, and neither Hypothesis 1 nor Hypothesis 2 appears to be

supported by the data.

One possible reason for the failure to find support for Hypothesis 2 is the

within-subject design. Treatment effects are difficult to observe when subjects learn all

three payoff matrices as a whole. To assess the treatment effect of the payoff matrices

from another perspective, we design two game sequences and vary the sequences between

sessions. How does the order effect in the two game sequences influence the coordination

rate? Notably, the subjects start with a low level of payoff asymmetry (BoS1.4) in

Sequence 1 and a high level of payoff asymmetry (BoS10) in Sequence 2. Panel B in

Table 3.3 compares the coordination rates between the sessions that apply Sequence

1 and the sessions that use Sequence 2. Although the subjects indeed have a higher

chance to coordinate in Sequence 1 than Sequence 2, the effect is insignificant. Overall,

it is difficult to confirm that the game sequence affects the coordination rate.

Column (1) in Table C.2 in the Appendix also shows the logistic regressions

and confirms our findings in this section. The treatment effects can be summarized as

follows.
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Table 3.3: Coordination rates by treatments and order effect.

Panel A: coordination rates by treatment

Continuous Discrete C-D

BoS1.4 0.68 0.71 -0.03
BoS1.4-BoS2.5 0.01 0.02
BoS2.5 0.66 0.69 -0.03
BoS2.5-BoS10 0.03 0.00
BoS10 0.63 0.69 -0.05

Panel B: coordination rates by sequence

Sequence 1 Sequence 2 S1-S2

Continuous 0.67 0.64 0.04
Discrete 0.70 0.69 0.02

Subscripted asterisks indicate p-values of .10(*), .05(**) and .01(***) in two-sided t-tests as-

suming unequal variance between adjacent columns. The data are clustered at the supergame

level.

Result 1 The treatment effects of both the time environments and payoff matrices are

weak.

(1) The coordination rate in continuous time is insignificantly lower than that in discrete

time under all payoff matrices.

(2) The payoff matrices only slightly affect the coordination rates, and the order effect

is weak.

3.4.2 Pair Classification and Learning

Based on the observed insignificant treatment effects, can we conclude that

the subjects behave similarly in the two time environments? Is there any difference

between the two time environments beneath the coordination rate? We raise some

possible mechanisms in the introduction and summarize them in the hypotheses section
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with Hypotheses 3-5. We explore Hypotheses 3 and 4 in this section.

Figure 3.3: Examples of alternating dynamics.

The upper row shows two examples in discrete time and the lower row shows two examples in

continuous time.

In Hypothesis 3, we state that it is more challenging to play alternating dy-

namics in continuous time than discrete time as the players need to coordinate both the

order and the duration of alternations in continuous time but need to coordinate only

the order of alternations and take turns in discrete time. The alternating dynamics

in the two time environments can also be quite different and Figure 3.3 shows some

examples of alternating dynamics in the two time environments. The pairs may also

remain at one pure Nash equilibrium as it is easier to reach than reaching alternating

dynamics in continuous time. To compare the dynamics in the two time environments,
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we first classify each pair of subjects by the dynamics path they play. Since we are

interested in stabilized equilibrium paths, we first use the data from the second half of

each supergame when classifying the types (last 10 periods in discrete time and last 60

seconds in continuous time).

To classify the pairs, we consider both efficiency and fairness. We classify

the pairs as “Alternating” pairs if they coordinate for no less than 80% of the time (8

periods in discrete time and 48 seconds in continuous time) and the difference between

the time they remain at the two pure Nash equilibria is no more than 20% of the time

(2 periods in discrete time and 12 seconds in continuous time). If the pairs coordinate

for more than 80% of the time but do not satisfy the second criteria, they are classified

as “One NE”. Since we focus on two subsets of equilibrium types, we classify all other

pairs as “Other”.3 For example, suppose a pair of subjects play 5 RPNE, 3 CPNE, and

2 mismatches in the last 10 periods in the discrete time scenario. In this case, the pair

is classified as playing alternating dynamics regardless of the exact alternating pattern.

If the pairs play 6 RPNE, 2 CPNE, and 2 mismatches, they are classified as preferring

one pure Nash equilibrium to the other. If the pairs mismatch more than 3 times, they

are classified as “Other”. Figure 3.4 shows a scatter plot showcasing the classification

of all 504 supergames under the current criteria.

Panel A in Table 3.4 shows the results. The subjects are significantly more

likely to play alternating dynamics and are less likely to prefer one Nash equilibrium

3More pairs are classified as belonging to the two coordinate types if the criteria decrease, and fewer
pairs become coordinative types if the criteria increase. We change the criterion of coordination from
60% to 90% and the criterion of alternation from 3 periods (18 seconds) to 0 periods (0 seconds). The
treatment effect remains robust.
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Figure 3.4: Scatter plot showing the classification of all 504 supergames colored by the
time environments under the 80%/2 periods criteria.

The size of the points indicates the number of supergames overlapping at the coordinate.

in discrete time than continuous time. Since the subjects might alternate based on the

entire supergame in continuous time, will the treatment effects differ if we use the whole

supergame to classify the pairs? Panel B in Table 3.4 shows the classification under the

same criteria based on the whole dataset, and the results are similar. In both panels,

approximately 50% of the pairs in discrete time and 25% of the pairs in continuous time

are classified as “Alternating” types. Staying at one pure Nash equilibrium is almost

as popular as alternating dynamics in continuous time but quite uncommon in discrete

time. Columns (2)-(5) in Table C.2 in the Appendix confirm the statistical significance
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with a logistic regression.

Table 3.4: Classification at the pair level.

Alternating One NE

Panel A: second half
Continuous 0.24 0.23
Discrete 0.53 0.06
C-D -0.30*** 0.18***

Panel B: full dataset
Continuous 0.25 0.17
Discrete 0.45 0.02
C-D -0.20*** 0.15***

Subscripted asterisks indicate p-values of .10(*), .05(**) and .01(***) in two-sided t-tests as-

suming unequal variance between adjacent columns.

Does the difficulty of playing alternating strategies affect the learning process?

On the basis of Hypothesis 4, we assess the learning effect and determine whether the

coordination rate is improved between supergames and within each supergame. Figure

3.5 shows the average coordination rate within supergames. We find strong within-

game learning in discrete time as follows: the coordination rates in discrete time are

lower than those in continuous time at the beginning of the supergames, but the rates

catch up approximately one-fourth of the way through the game. In the second half

of the supergames, coordination in discrete time becomes better than coordination in

continuous time. Meanwhile, we do not observe any learning in continuous time. Figure

C.3 in the Appendix further separates the two curves by payoff matrices and shows the

same trend.

To determine whether the subjects carry what they learn between supergames,

we compare the average coordination rates in block 1 (Game 1-6) and block 2 (Game
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Figure 3.5: Coordination rate within supergames.

7-12). Table 3.5 shows the coordination rates in the two blocks of the session. Similar

to the observations in Figure 3.5, the coordination rate in block 2 is significantly higher

than that in block 1 under discrete time but not under continuous time. This result

is further supported in column (1) in Table C.2 in the Appendix. In general, both

between-supergame learning and within-supergame learning support Hypothesis 4 in

discrete time but not continuous time.

Although there is no significant treatment effect between the two time envi-

ronments, the subjects interact and learn quite differently. The results in this section

confirm Hypothesis 3 and part of Hypothesis 4, illustrating the following advantages

of discrete time: it is easier to learn to play alternating strategies and learn to coor-

dinate in discrete time than continuous time. In the Appendix (Figure C.1), we also
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Table 3.5: Coordination rates between Games 1-6 (first half of the session) and Games
7-12 (second half of the session).

Game1-6 Game7-12 (G7-12)-(G1-6)

Continuous 0.67 0.64 -0.03
Discrete 0.66 0.73 0.08**

Subscripted asterisks indicate p-values of .10(*), .05(**) and .01(***) in two-sided t-tests as-

suming unequal variance between adjacent columns. The data are clustered at the supergame

level.

show that the payoff in continuous time is more unequal than that in discrete time as

a consequence of the lack of alternation.

Result 2 The discrete time environment has the following advantages:

(1) The subjects are more likely to stay at one Nash equilibrium and less likely to alter-

nate between Nash equilibria in continuous time than discrete time.

(2) The subjects learn between and within supergames in discrete time; however, the

learning pattern in continuous time is weaker than that in discrete time.

3.4.3 Reaction to Changes

The previous literature has shown that players react faster to changes in contin-

uous time than discrete time. Given the findings in the literature, the subjects should

deviate from mismatches and reach Nash equilibria more quickly in continuous time

than discrete time. Does this expectation hold in battle of the sexes games? Alterna-

tively, is the continuous time environment dominated by the discrete time environment?

Figure 3.6 shows the empirical cumulative distribution functions of the time at which

the subjects first reach either Nash equilibrium in each supergame and supports the
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first statement of Hypothesis 5. The subjects spend less time reaching their first Nash

equilibria in continuous time than discrete time. This result is also consistent with the

initial high coordination rate in continuous time. Figure C.4 in the Appendix further

separates the two curves by payoff matrices and shows the same trend.

Figure 3.6: CDF of the time at which the pairs first reach either pure Nash equilibrium.

To determine how long subjects stay at mismatches, we first combine the

adjacent observations in which the subjects make the same decisions and reorganize the

dataset into multiple “events” (notably, the data are collected in each period in discrete

time and every 500 milliseconds in continuous time). Each event shows the subjects’

choices and how long they maintain their choices. For instance, if the subjects play

RPNE for 5 periods, switch to CPNE for 10 periods, and return to RPNE in the last

5 periods, there are three “events” in this pair of subjects. Here, we focus only on the

events involving mismatches (Aggressive and Accommodating). Figure 3.7 shows the

empirical cumulative distribution functions of the duration during which the subjects

remain at either of the two mismatches (length of mismatch events) and supports the
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second statement of Hypothesis 5. Clearly, the subjects adjust their strategies to move

away from mismatches in continuous time more quickly than they do in discrete time.

Indeed, the minimum reaction time in discrete time is one period and the subjects can

respond much faster in continuous time by design. However, the curve shows that the

subjects use the advantages of the continuous time environment and do not remain at

mismatches for long. Figure C.5 in the Appendix further separates the two curves by

payoff matrices and shows the same trend.

Figure 3.7: CDF of the duration during which the subjects stay at mismatches.

Figures 3.6 and 3.7 show the relative advantage of the continuous time envi-

ronment discussed in the hypotheses in which the subjects can quickly change decisions

and move to Nash equilibria given the other player’s choices. Both time environments

appear to have advantages, and the two forces point in opposite directions, which could

explain the insignificance of the treatment effect in the continuous time environment.

However, undoubtedly, the subjects play differently in the two time environments. Hy-
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pothesis 5 is supported in this section, and the results can be summarized as follows.

Result 3 The continuous time environment has the following advantages:

(1) The subjects spend less time reaching their first pure Nash equilibrium in the su-

pergames under continuous time than those under discrete time.

(2) The subjects deviate faster from mismatches in continuous time than discrete time.

3.4.4 Transition Probability Matrix and Alternating Pattern

We observed that the two time environments are different in the difficulty

of alternation, within- and between-supergame learning, and response time. However,

what exactly is the dynamics pattern in continuous time? We focus on the following two

critical elements of the subjects’ interactions: the probability and direction of moving

from one action profile to another and the duration of time the subjects stay at pure

Nash equilibria.

Table 3.6 focuses on the first element and shows the transition probability ma-

trices in both the continuous and discrete time environments. The last column indicates

that the subjects are almost equally likely to switch from either pure Nash equilibria

RPNE and CPNE. Regarding mismatches, the players are more likely to switch from

Aggressive, where they hold their own preferred positions, than from Accommodating,

where they benefit the other player. In both tables, we can observe how the subjects

move into and move away from pure Nash equilibria from the lower left cells and upper

right cells as follows: the subjects are approximately four to five times more likely to

move away from pure Nash equilibria to Aggressive than to Accommodating. Consid-
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ering the large number of observations from Aggressive, the subjects are approximately

three to four times more likely to switch to any pure Nash equilibria from Aggressive

than from Accommodating. The transitions between the matrix cells appear to be

mainly motivated by the disadvantaged subjects, followed by the advantaged subjects,

especially in continuous time. Based on the findings, the disadvantaged-player dynamics

appear to be the most popular transitions among the three transition dynamics we raise

in our hypotheses section. As both dynamics require the subjects to frequently switch

between Accommodating and Nash equilibria, strategic teaching and advantaged-player

dynamics are unlikely to be applied in continuous time. In addition to the above find-

ings, panel B shows a clear pattern of turn-taking between RPNE and CPNE with a

conditional probability of approximately 80% in discrete time. Table C.1 in the Ap-

pendix reports the transition probability matrices with the diagonal terms, and we can

observe the probabilities of staying at each position. The result is similar to that found

in this section. Figure C.2 in the Appendix confirms the results at the pair level.

Table 3.6: Transition probability matrices. t′ represents t+500 milliseconds in continu-
ous time and t+1 period in discrete time.

Panel A: continuous time.

Aggressive at t′ Accommodating at t′ RPNE at t′ CPNE at t′ num of transitions

Aggressive at t - 0.02 0.46 0.51 1870
Accommodating at t 0.07 - 0.46 0.47 459

RPNE at t 0.79 0.19 - 0.02 1112
CPNE at t 0.82 0.15 0.03 - 1182

Panel B: discrete time.

Aggressive at t′ Accommodating at t′ RPNE at t′ CPNE at t′ num of transitions

Aggressive at t - 0.22 0.38 0.41 686
Accommodating at t 0.41 - 0.28 0.31 325

RPNE at t 0.17 0.04 - 0.78 1520
CPNE at t 0.17 0.05 0.79 - 1528

To remove the diagonal terms, where the pairs stay at the current profile, we consider only the

transitions in which the pairs choose different profiles at t and t′.
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However, the results above are only sufficient but not necessary to prove the

dynamics subjects play in the games. The central problem is that all the three types of

dynamics involve two correlated transitions among two or three cells of the matrix but

Table 3.6 only demonstrates independent transitions directly between two cells. Table

3.7 focuses on the correlated transitions by considering transitions between two Nash

equilibria. Subjects can transit directly between two Nash equilibria, or through either

Aggressive or Accommodating. It is also possible that they fail at transitioning be-

tween Nash equilibria and Table 3.7 reveals the probabilities of all circumstances. Each

correlated transition can be classified into four types: “Disadvantaged” and “Advan-

taged” refer to the transitions that can represent disadvantaged-player dynamics and

advantaged-player dynamics, where subjects move between Nash equilibria through ei-

ther Aggressive or Accommodating. “Direct” refers to the direct transitions between

two Nash equilibria and “Fail” refers to the transitions that start from one Nash but fail

to reach the other Nash. The results confirm what we have found: Disadvantaged-player

dynamics are much more popular than other dynamics in continuous time. In discrete

time, there are more direct transitions between two Nash equilibria. The comparison

of the probability of failure between the two time environments also verify difference in

their coordination rates.

Table 3.7: The probability of each type of transitional dynamics being played in the
two time environments.

Disadvantaged Advantaged Direct Fail

Continuous 0.61 0.14 0.00 0.25
Discrete 0.10 0.02 0.82 0.05
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Figure 3.8 focuses on the second element and shows the distribution of the

duration during which the subjects stay at the same Nash equilibrium. Here, we con-

tinue to use the “events” defined in Section 4.3 but focus on the events involving Nash

equilibria. Figure 3.8 shows the density of the duration during which the subjects stay

at the two pure Nash equilibria (length of Nash events). In discrete time, we observe a

peak at 1-period duration, providing strong evidence for 1-period alternating dynamics.

The density in continuous time is much flatter than that in discrete time, indicating that

the subjects do not have a clear dynamics pattern. Figure C.6 in the Appendix further

separates the two curves by payoff matrices and shows the same trend. Furthermore,

are the durations at Nash remain consistent over time? Figure 3.9 shows the average

durations at Nash over time in the supergames and the data reveal an obvious end-game

effect only in continuous time: the subjects are not willing to stay at their opponents’

preferred Nash equilibrium in the last 30 seconds of the supergame. As a comparison,

the durations at Nash in discrete time are quite consistent over time.

Figure 3.8: CDF of the duration during which the subjects stay at Nash equilibria.
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Figure 3.9: Average duration at Nash over time in the supergames.

Results 2-4 can be combined to produce some basic dynamics patterns in con-

tinuous time. The subjects interact and switch decisions much more frequently in con-

tinuous time than they do in discrete time due to the nature of the continuous time

interactions. However, because of the difficulty in learning both the order and the du-

ration of alternations, the subjects are less likely to follow alternating dynamics, and

their behavioral patterns are more diverse in continuous time than discrete time. More-

over, the players who earn less at Nash equilibria tend to switch to their preferred

positions first, and the dynamics are unlikely to be driven by a single player. The

disadvantaged-player dynamics are rarely observed in discrete time and we often ob-

serve direct transitions between two pure Nash equilibria. The dynamics also reveal the

motivation for turn taking from a new perspective as follows: the disadvantaged players

tend to move to their preferred actions, and the advantaged players predict this move

and follow simultaneously. Last but not least, the durations at Nash are squeezed out
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in the last 30 seconds of the supergames in continuous time, but not in discrete time.

Result 4 (1) Both the transition probability matrices and the distribution of the dura-

tion during which the subjects stay at Nash equilibria reveal a clear alternating pattern

in discrete time, but the alternating pattern is diverse and unstable in continuous time.

(2) The most frequent transitions are between Aggressive and the Nash equilibria, sup-

porting the disadvantaged-player dynamics, where the disadvantaged subjects move first

and the advantaged subjects follow.

(3) The low frequency of the transitions between Accommodating and the Nash equilibria

shows that the subjects are unlikely to play either strategic teaching or advantaged-player

dynamics.

(4) The durations at Nash are squeezed out in the last 30 seconds of the supergames in

continuous time, but not in discrete time.

3.5 Conclusions

Do continuous time interactions always improve social welfare and lead to a

Nash equilibrium? This paper discusses a scenario in which continuous time interactions

may harm social welfare by studying battle of the sexes games in continuous time. With

the development of Internet technology, people are facing coordination problems, such

as online teamwork, the allocation of online resources, and internet congestion. Whether

interacting in continuous time is efficiency-improving is empirically important and could

guide our behavior in the real world. From the previous literature and the nature of
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continuous time interactions, we know that it is more difficult to coordinate in battle of

the sexes games in continuous time than discrete time.

Our experimental results show that the subjects behave quite differently in the

two time environments as follows: the subjects are more likely to stay at one pure Nash

equilibrium and are less likely to play alternating strategies in continuous time than

discrete time. The difficulty in alternations also slows the learning process in continu-

ous time. However, the subjects reach Nash equilibrium and deviate from mismatches

more quickly in continuous time than discrete time, which is consistent with the ad-

vantages of continuous time interactions in the previous literature. The two forces lead

the game in opposite directions, offset each other, and eventually render the treatment

effect insignificant. In addition to the treatment effect, we find some patterns of how

the subjects interact in continuous time as follows: the disadvantaged players tend to

move to their preferred profiles first, and the advantaged players follow. The transi-

tion between the mismatch when both players choose their preferred actions and Nash

equilibria is the major force that motivates the dynamics.

As shown in the data, a good way to solve the coordination problem is to

search for the first equilibrium under continuous time and then switch to a discrete

time environment for turn taking; this approach fully uses the advantages of both time

environments. We can also expand our experimental findings to a general context as

follows: continuous time interactions may harm efficiency when the players must switch

between multiple Nash equilibria in the equilibrium path.

However, some questions remain unsolved. No theory explaining how the play-
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ers interact in continuous time games that require subjects to move between Nash equi-

libria exists, especially the disadvantaged-player dynamics observed in our experiment.

It is necessary to develop an approach that can explain such an equilibrium path; we

hope that our results shed light on this research topic. This study also leads to review-

ing other efficiency-improving treatments in continuous time battle of the sexes games.

Will preplay communication help people coordinate alternations in continuous time?

Will the continuous time environment become more efficient than the discrete time en-

vironment with the help of various tools? These questions could also be fruitful topics

for future research.
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Appendix A

Supplement to Chapter One

A.1 Computation of NE, Maximin and QRE for AMPa

games

In this section we use AMPa games as an example to show the computation

of NE, Maximin and QRE curve in Table 1.1 and Figure 1.1.

To calculate Nash equilibrium, recall from sign preserving dynamics that we

calculated DR(t) and DC(t), which show the payoff difference between pure strategies for

row and column players, respectively. By definition, the unique mixed Nash equilibrium

can be solved by

DR(t) = 1000b− 200 = 0 (A.1)

DC(t) = 200− 400a = 0 (A.2)

Hence (aNE , bNE) = (0.5, 0.2).
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The Maximin problem for row players is:

max
a

min{fR(a, 1), fR(a, 0)}, (A.3)

where fR(a, b) = 1000ab−200a−200b+200 from equation (1.1). Since fR(a, 1)

(resp. fR(a, 0) increases (resp. decreases) linearly in a, the max must occur where

fR(a, 1) = fR(a, 0), yielding aMM = 0.2. The analogous problem for column players

yields bMM = 0.5.

To calculate the QRE(λ) curve for both players, recall that the logit payoff

function in AMPa games is implicitly defined by the fixed point equations

a =
exp(λfR(1, b))

exp(λfR(1, b)) + exp(λfR(0, b))
(A.4)

b =
exp(λfC(a, 1))

exp(λfC(a, 1)) + exp(λfC(a, 0))
. (A.5)

When λ → 0, we have (a, b) = (.5, .5). When λ → ∞, we have (a, b) =

(aNE , bNE) = (.5, .2). The arc curve between two extreme cases in shown in Figure 1.1.

A.2 Numerical proof of the limit cycle

Figure A.5 shows the limit cycle with a 3-d plot and provides a more vivid

image than Figure 1.5. In this section we numerically prove the limit cycle by collect-

ing distance between observation and Nash equilibrium over time when the trajectory

crosses the Poincaré section from the simulation data in Section 5.3.

Given strategy profile (at, bt), the Poincaré section we select is the isocline

(a = 0.5, b > 0.2). The trajectory (at, bt) at time t is considered to cross the isocline
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when bt > 0.2 and (at − 0.5)(at+1 − 0.5) ≤ 0 are satisfied. Whenever the trajectory

crosses the isocline, the distance between the observation and Nash Equilibrium (d =√
(at − 0.5)2 + (bt − 0.2)2) is recorded and graphed. Figure A.1 overlaps such distance

over time with 50 simulations and 3000 iterations in each simulation. The blue (red)

lines shows the distance over time when trajectory crosses the isocline and the initial

position is outside (inside) the limit cycle. As shown in the figure, both blue and red

lines converge to the limit cycle where the radius of the cycle is about 0.09, which proves

that instead of converging to the Nash equilibrium, the dynamics converge to a limit

cycle that is affected by the payoff matrices and the speed of adjustment. With 3000

iterations, the average number of cycles is around 60. The result is robust for other 3

isocline between Nash Equilibrium and the boundary of the action space.

Figure A.1: The figure shows the distance between observations and Nash equilibrium
over time with 50 simulations and 3000 iterations in each simulation.

The blue (red) lines shows the distance over time when trajectory crosses the isocline and the

initial position is outside (inside) the limit cycle.
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A.3 Results in details

Table A.1: Multinomial logistic regressions of cycle classifications on treatment dummy
variables.

Dependent CW Diagonal CCW CD

continuous -2.94*** -4.06*** -2.61*** -2.84***
(0.319) (0.381) (0.322) (0.385)

pure -2.16*** -2.21*** -2.40*** -22.28***
(0.307) (0.348) (0.329) (0.370)

AMPa -0.54 -0.60 -0.61 -0.20
(0.462) (0.496) (0.468) (0.534)

continuous pure 1.49*** 1.24** 0.09 2.27***
(0.384) (0.523) (0.425) (0.459)

continuous AMPa 0.89* 0.93 0.84 0.76
(0.506) (0.584) (0.511) (0.609)

pure AMPa 0.66 0.60 0.50 0.32
(0.497) (0.552) (0.531) (0.593)

continuous pure AMPa -0.39 -0.54 -0.15 -0.57
(0.587) (0.753) (0.646) (0.708)

second half -0.16** -0.06 -0.17** -0.16
(0.066) (0.083) (0.080) (0.103)

block 2 -0.58*** -0.57*** -0.62*** -0.75***
(0.150) (0.218) (0.156) (0.249)

Constant 3.04*** 2.37*** 1.99*** 0.76**
(0.301) (0.347) (0.307) (0.359)

Observations 37,920 37,920 37,920 37,920
Dependent variables are dummy variables of classified types of dynamics. “AMPb, mixed strat-

egy, discrete time” and type “Stay” are served as the baseline comparison group. Significance

level: *** 0.01, ** 0.05, * 0.1.
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Table A.2: Mean of the mean observations of pairs with mean Distance to predictions.

Mean of by-period Mean Summary Table

Treatments row median column median To NE p-value To Center p-value To MM Harmonic Disp Geometric Disp

Panel A: AMPb games
mm 0.371 0.632 0.157 0.011 0.224 0.000 0.398 0.187 0.376

rp 0.523 0.519 0.313 0.000 0.124 0.000 0.295 0.192 0.386
p-value 0.000 0.000 0.000 - 0.000 - 0.000 0.720 0.721

Mixed 0.461 0.558 0.242 0.000 0.135 0.000 0.339 0.140 0.284
Pure 0.472 0.565 0.268 0.006 0.188 0.000 0.328 0.240 0.480

p-value 0.705 0.813 0.433 - 0.009 - 0.674 0.000 0.000

Continuous 0.498 0.529 0.301 0.000 0.181 0.000 0.330 0.181 0.364
Discrete 0.434 0.593 0.208 0.001 0.142 0.000 0.337 0.200 0.400
p-value 0.027 0.034 0.005 - 0.052 - 0.763 0.148 0.155

Panel B: AMPa games
mm 0.605 0.289 0.150 0.000 0.255 0.000 0.463 0.189 0.380

rp 0.501 0.440 0.247 0.000 0.115 0.000 0.321 0.200 0.401
p-value 0.000 0.000 0.000 - 0.000 - 0.000 0.374 0.378

Mixed 0.512 0.396 0.211 0.057 0.159 0.000 0.352 0.152 0.305
Pure 0.568 0.371 0.210 0.121 0.176 0.000 0.397 0.240 0.481

p-value 0.014 0.380 0.953 - 0.460 - 0.069 0.000 0.000

Continuous 0.550 0.429 0.263 0.000 0.156 0.000 0.375 0.188 0.377
Discrete 0.531 0.337 0.159 0.259 0.179 0.000 0.374 0.204 0.409
p-value 0.429 0.001 0.000 - 0.314 - 0.988 0.161 0.170

Panel C: IDDS games
mm 0.083 0.804 0.219 0.000 0.521 0.000 0.219 0.112 0.240

rp 0.106 0.752 0.283 0.000 0.479 0.000 0.283 0.132 0.278
p-value 0.409 0.178 0.119 - 0.238 - 0.119 0.327 0.318

Mixed 0.078 0.782 0.241 0.000 0.517 0.000 0.241 0.084 0.188
Pure 0.116 0.761 0.277 0.000 0.472 0.000 0.277 0.165 0.340

p-value 0.187 0.577 0.351 - 0.167 - 0.351 0.000 0.000

Continuous 0.122 0.805 0.244 0.000 0.496 0.000 0.244 0.123 0.258
Discrete 0.073 0.738 0.274 0.000 0.494 0.000 0.274 0.126 0.270
p-value 0.084 0.072 0.429 - 0.950 - 0.429 0.888 0.747

Harmonic and geometric distances are calculated by standard deviation of both players. p-value

in column 5 and 7 shows p-value for t test of by-period mean data for given treatments between

distance to predictions.
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Table A.3: Median of the mean observations of pairs with median Distance to
predictions.

Median of by-period Mean Summary Table

Treatments row median column median To NE p-value To Center p-value To MM Harmonic Disp Geometric Disp

Panel A: AMPb games
mm 0.376 0.664 0.134 0.007 0.216 0.000 0.391 0.255 0.516

rp 0.516 0.529 0.302 0.000 0.107 0.000 0.314 0.261 0.540
p-value 0.000 0.000 0.000 - 0.000 - 0.000 0.579 0.530

Mixed 0.465 0.544 0.241 0.002 0.114 0.000 0.346 0.219 0.452
Pure 0.500 0.582 0.240 0.009 0.176 0.000 0.317 0.500 1.000

p-value 0.692 0.702 0.524 - 0.007 - 0.653 0.000 0.000

Continuous 0.529 0.544 0.341 0.001 0.198 0.000 0.352 0.219 0.456
Discrete 0.450 0.604 0.212 0.023 0.128 0.000 0.326 0.276 0.558
p-value 0.017 0.092 0.011 - 0.045 - 0.909 0.055 0.066

Panel B: AMPa games
mm 0.584 0.284 0.107 0.000 0.243 0.000 0.443 0.253 0.511

rp 0.500 0.432 0.238 0.000 0.110 0.000 0.320 0.440 0.881
p-value 0.000 0.000 0.000 - 0.000 - 0.000 0.111 0.101

Mixed 0.510 0.411 0.218 0.102 0.162 0.000 0.352 0.243 0.488
Pure 0.542 0.359 0.198 0.207 0.167 0.000 0.371 0.500 1.000

p-value 0.041 0.702 0.732 - 0.577 - 0.161 0.000 0.000

Continuous 0.521 0.431 0.265 0.002 0.138 0.000 0.352 0.276 0.573
Discrete 0.527 0.333 0.154 0.449 0.173 0.000 0.371 0.376 0.753
p-value 0.914 0.003 0.000 - 0.219 - 0.541 0.386 0.356

Panel C: IDDS games
mm 0.055 0.807 0.227 0.001 0.536 0.001 0.227 0.013 0.000

rp 0.084 0.737 0.278 0.000 0.487 0.000 0.278 0.002 0.000
p-value 0.360 0.155 0.116 - 0.224 - 0.116 0.423 0.983

Mixed 0.075 0.747 0.262 0.000 0.516 0.000 0.262 0.029 0.096
Pure 0.078 0.775 0.244 0.004 0.490 0.004 0.244 0.000 0.000

p-value 0.509 0.611 0.402 - 0.270 - 0.402 0.055 0.001

Continuous 0.102 0.799 0.230 0.002 0.500 0.002 0.230 0.007 0.000
Discrete 0.061 0.738 0.272 0.000 0.490 0.000 0.272 0.017 0.000
p-value 0.147 0.147 0.515 - 0.669 - 0.515 0.821 0.916

Harmonic and geometric distances are calculated by IQR of both players. p-value in column 5

and 7 shows p-value for Wilcoxon signed-rank test of by-period mean data for given treatments

between distance to predictions.
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Table A.4: Regressions of each classified cycle type on treatment dummies collapsed at
pair level.

Dependent CW CCW diagonal stay

continuous -0.16*** -0.01 -0.21*** 0.40***
(0.036) (0.018) (0.024) (0.041)

pure -0.07* -0.06*** -0.05* 0.22***
(0.040) (0.020) (0.027) (0.046)

AMPa -0.01 -0.01 -0.02 0.02
(0.038) (0.019) (0.025) (0.043)

continuous pure 0.01 -0.07*** 0.03 0.02
(0.056) (0.027) (0.037) (0.063)

continuous AMPa 0.06 0.02 0.03 -0.10*
(0.051) (0.025) (0.034) (0.058)

pure AMPa 0.04 -0.00 0.01 -0.03
(0.057) (0.028) (0.038) (0.065)

continuous pure AMPa 0.03 0.01 -0.01 -0.03
(0.079) (0.039) (0.052) (0.090)

Constant 0.49*** 0.17*** 0.26*** 0.04
(0.027) (0.013) (0.018) (0.030)

Observations 380 380 380 380
R-squared 0.125 0.234 0.359 0.475

Dependent variables count fraction of time pairs play each type of classified cycles. “AMPb,

mixed strategy, discrete time” is served as the baseline comparison group. Significance level:

*** 0.01, ** 0.05, * 0.1.
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Table A.5: BR learning regression for eq (1.3).

(1) (2) (3) (4)
Row Row Col Col

β1 0.05*** 0.45*** 0.05*** 0.40***
(0.007) (0.042) (0.006) (0.036)

pure 0.36*** 0.15*** 0.39*** 0.18***
(0.043) (0.053) (0.040) (0.050)

mm -0.01* -0.21*** -0.02*** -0.15***
(0.009) (0.060) (0.008) (0.055)

AMPa -0.01 -0.01 -0.01 -0.04
(0.009) (0.061) (0.008) (0.046)

IDDS 0.03 0.15 -0.04*** -0.03
(0.027) (0.119) (0.008) (0.100)

pure mm -0.14** 0.35*** -0.27*** 0.11
(0.056) (0.097) (0.050) (0.080)

pure AMPa 0.07 0.09 0.06 0.05
(0.059) (0.077) (0.053) (0.075)

pure IDDS -0.23*** 0.27 -0.32*** 0.11
(0.067) (0.166) (0.046) (0.136)

mm AMPa 0.01 -0.06 0.00 0.08
(0.011) (0.089) (0.011) (0.075)

mm IDDS 0.07 0.08 0.03*** 0.10
(0.043) (0.160) (0.010) (0.122)

pure mm AMPa -0.16** -0.09 -0.03 -0.08
(0.072) (0.127) (0.067) (0.123)

pure mm IDDS 0.39*** -0.15 0.35*** 0.07
(0.148) (0.209) (0.066) (0.187)

Observations 79,145 4,995 79,145 4,995
R-squared 0.263 0.371 0.262 0.274
Number of Pairs 415 345 415 345

Columns (1)(3) use continuous time data and columns (2)(4) use discrete time data. Significance

level flags are *** 0.01, ** 0.05, * 0.1.

112



Table A.6: Pure directional learning regression for eq (1.4).

(1) (2) (3) (4)
Row Row Col Col

β1 0.03*** 0.20*** 0.03*** 0.16***
(0.004) (0.025) (0.004) (0.026)

pure 0.39*** 0.40*** 0.42*** 0.43***
(0.042) (0.041) (0.040) (0.044)

mm -0.01 -0.10*** -0.01*** -0.05
(0.005) (0.034) (0.005) (0.038)

AMPa -0.01 0.03 -0.00 -0.00
(0.005) (0.043) (0.005) (0.033)

IDDS -0.00 -0.01 -0.03*** -0.13*
(0.007) (0.059) (0.005) (0.077)

pure mm -0.15*** 0.23*** -0.28*** 0.00
(0.055) (0.083) (0.050) (0.069)

pure AMPa 0.07 0.05 0.06 0.01
(0.058) (0.063) (0.052) (0.068)

pure IDDS -0.20*** 0.43*** -0.33*** 0.21*
(0.062) (0.129) (0.045) (0.120)

mm AMPa 0.00 -0.09* 0.00 0.02
(0.006) (0.053) (0.006) (0.047)

mm IDDS -0.01 0.03 0.02*** 0.14
(0.008) (0.071) (0.006) (0.099)

pure mm AMPa -0.16** -0.07 -0.03 -0.03
(0.071) (0.105) (0.067) (0.109)

pure mm IDDS 0.47*** -0.10 0.36*** 0.04
(0.142) (0.152) (0.065) (0.173)

Observations 79,145 4,995 79,145 4,995
R-squared 0.263 0.339 0.262 0.240
Number of Pairs 415 345 415 345

Column (1)(3) use continuous time data and column (2)(4) use discrete time data. Significance

level flags are *** 0.01, ** 0.05, * 0.1.
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Table A.7: Directional learning for eq (1.5) with discrete regret classified into discrete
values.

(1) (2) (3) (4)
Row Row Col Col

β1 0.02*** 0.19*** 0.03*** 0.14***
(0.004) (0.020) (0.004) (0.022)

pure 0.15*** 0.10*** 0.19*** 0.15***
(0.019) (0.027) (0.020) (0.028)

mm -0.00 -0.09*** -0.01*** -0.02
(0.004) (0.030) (0.004) (0.034)

AMPa -0.01 0.00 -0.01** -0.03
(0.004) (0.031) (0.005) (0.025)

IDDS 0.00 0.02 -0.03*** 0.01
(0.007) (0.052) (0.004) (0.062)

pure mm 0.05 0.26*** -0.11*** 0.08
(0.035) (0.063) (0.029) (0.051)

pure AMPa 0.05** 0.03 -0.04* -0.06*
(0.027) (0.039) (0.023) (0.034)

pure IDDS -0.07** 0.20*** -0.13*** 0.11
(0.029) (0.078) (0.025) (0.076)

mm AMPa 0.00 -0.06 0.01 0.04
(0.006) (0.043) (0.006) (0.040)

mm IDDS -0.02** 0.01 0.02*** -0.01
(0.008) (0.064) (0.005) (0.087)

pure mm AMPa -0.15*** -0.00 0.02 -0.08
(0.043) (0.075) (0.034) (0.063)

pure mm IDDS 0.12* -0.15 0.14*** -0.03
(0.074) (0.102) (0.040) (0.114)

Observations 79,145 4,995 79,145 4,995
R-squared 0.231 0.337 0.259 0.247
Number of Pairs 415 345 415 345

Values: 1 (Rit ≤ 0.33), 2 (Rit ∈ (0.33, 0.67)) and 3 (Rit ≥ 0.67). Column (1)(3) use continuous

time data and column (2)(4) use discrete time data. Significance level flags are *** 0.01, **

0.05, * 0.1.

114



Table A.8: Directional learning for eq (1.2) with 5 lagged regret terms.

(1) (2) (3) (4)
Row Row Col Col

β1 1.16*** 0.62*** 0.78*** 0.50***
(0.046) (0.032) (0.048) (0.029)

β1 L1 0.08* 0.01 -0.04 -0.02
(0.042) (0.022) (0.036) (0.020)

β1 L2 0.08* -0.18*** 0.07* -0.12***
(0.046) (0.026) (0.043) (0.017)

β1 L3 0.17*** -0.08*** 0.10** -0.01
(0.046) (0.027) (0.042) (0.020)

β1 L4 0.13*** 0.01 -0.01 -0.01
(0.043) (0.016) (0.041) (0.015)

β1 L5 0.24*** -0.06*** 0.09** -0.04***
(0.044) (0.019) (0.036) (0.013)

Observations 3,270 77,070 3,270 77,070
R-squared 0.284 0.220 0.187 0.231
Number of Pairs 345 415 345 415

Column (2)(4) use continuous time data and column (1)(3) use discrete time data. Significance

level flags are *** 0.01, ** 0.05, * 0.1.

Table A.9: Directional learning for eq (1.2) with 1 lagged regret term.

(1) (2) (3) (4)
Row Row Col Col

β1 1.12*** 0.61*** 0.74*** 0.51***
(0.038) (0.032) (0.037) (0.030)

β1 L1 0.01 -0.12*** -0.08*** -0.11***
(0.033) (0.023) (0.025) (0.024)

Observations 4,650 78,730 4,650 78,730
R-squared 0.308 0.190 0.199 0.218
Number of Pairs 345 415 345 415

Column (2)(4) use continuous time data and column (1)(3) use discrete time data. Significance

level flags are *** 0.01, ** 0.05, * 0.1.
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Figure A.2: Time average profiles.

Treatments are p=pure, m=mixed strategy choice; c=continuous, d=discrete time; rp=random

pairwise, mm=mean matching protocol. Dots inidcate mean of the time averages by treatment,

and rectangles enclose Row x Column mean +/- standard deviation. The figure suggests that

maximin is seldom the best predictor of central tendency, while NE predicts well in some cases.

More often Center seems best, especially in treatment combinations that have large boxes,

indicating considerable heterogeneity across instances. The IDDS data under all treatments

cluster much closer to the NE=MM point (0,1) than to the Center point (.5, .5).
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Figure A.3: Data summary of population time averages in 3 games colored by
treatments.

p=pure, m=mixed strategy choice; c=continuous, d=discrete time; rp=random pairwise,

mm=mean matching protocol. Dots are median of the time averages by treatments. Rect-

angles are shaped by median and 1st/3rd quantiles.
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Figure A.4: The fraction of time pairs play each cycle classifications sorted by the
fraction of time each pair plays clockwise cycles.
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Figure A.5: Simulation result in AMPa games mixed strategy treatments.

Simulation under random pairwise matching is on the left and simulation under mean matching

is on the right.
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Appendix B

Supplement to Chapter Two

B.1 Survey Data

At the end of the session, subjects are asked to complete a post-experimental-

open-ended survey to explain their behavioral pattern and the reason that they choose

those strategies. Several important key words are extracted from subjects’ answers and

the frequency of each key word is counted in Table B.1.

In SH, 30 out of 42 subjects claim to realize the efficiency of payoff-dominant

strategy. 5 subjects mention strategic teaching and 19 discussed adaptive learning. It

shows that most subjects behavioral thinking is consistent with previous findings and

learning theories.

In BOS, 28 out of 38 subjects mentioned alternating between two pure Nash

equilibrium. 9 of them discuss equalizing the payoff and a few others mention retaliation

and adjusting strategy. There also exist some selfish subjects. The answers here indicate

120



that subjects realize the necessity of alternation. Although it might be difficult to

alternate between Nash equilibria under some treatments, the problem should be the

way they alternate, not whether they realize it or not.

Table B.1: Results for the post experimental survey.

Survey data results

Panel A: stag hunt sessions
payoff dominant 30 follower 2
PD educator 5 selfish 3
PD adapter 19 unclear 7

Panel B: battle of the sexes sessions
alternate 28 adjust 3
equalizer 9 selfish 4
retaliate 6 unclear 2
betrayal 1 random 1

Numbers show the frequency of each type of answers about how subjects play the game.

B.2 Further Investigation of Dynamics in BOS

B.2.1 Transition Probabilities Between Corner Profiles

As can be observed from previous literature and results so far, the coordination

problem in stag hunt games follows a straightforward comparison between payoff dom-

inant and risk dominant equilibrium, while the dynamics in battle of the sexes games

is complicated. Though the experimental data shows some dynamics patterns, the re-

sults are harmed by the large fraction of mismatch and the question requires further

investigation.

Table B.2 studies the cases when subjects move from mismatch to any pure

Nash equilibria and move away from Nash equilibrium to any mismatches. Equilibrium
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plays that last for at least 1 second in continuous time and 1 subperiod in discrete time

are recorded. The total number of equilibrium plays in each treatment is listed in the

last column of Table B.2. The first 3 columns (“before 10”, “before 01”, “before mis”)

represent number of cases when subjects move to an equilibrium status from selfish

mismatch, ohenry mismatch and other mismatches, respectively. Column 4 to 6 (“af-

ter 10”, “after 01”, “after mis”) represent number of cases when subjects move away

from equilibrium status to selfish mismatch, ohenry mismatch and other mismatches,

respectively.

As can be learned from previous result sections, people are more likely to

coordinate in the continuous time treatments and pure action sets treatments, which

is reflected as those treatments have higher numbers of equilibrium plays than their

counterparts. More importantly, if we compare column 1 to column 2, we can find that

subjects are more likely to walk into the equilibrium from selfish mismatch than from

ohenry mismatch. Similarly, column 4 and 5 show that subjects are more likely to leave

the equilibrium for selfish reasons than altruistic reasons.

Another fact comes from the transition probability matrices shown in Table

B.3-B.6. Data in discrete time treatments is recorded by subperiods and is recorded

twice every second in continuous time. Given the nature of continuous time interaction,

subjects in continuous time treatments have a higher probability of staying at the pre-

vious position compared to the probability in discrete time. Except for the difference

between time treatments, some other results can be drawn from the tables. First, pairs

have similar transition probabilities from mismatch to either (A,A) or (B,B) in most of
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Table B.2: Number of times pairs move into and move out of any pure Nash equilibria.
before 10 before 01 before mis after 10 after 01 after mis # of equilibrium

BOSla,PD 35 11 0 30 14 0 90
BOSla,PC 139 41 0 152 34 0 366
BOSla,MD 12 4 18 14 5 12 65
BOSla,MC 37 9 32 39 10 30 157
BOSma,PD 47 13 0 49 11 0 120
BOSma,PC 149 36 0 167 25 0 377
BOSma,MD 16 1 21 17 1 17 73
BOSma,MC 50 17 32 47 18 29 193
BOSha,PD 47 10 0 46 10 0 113
BOSha,PC 176 31 0 194 23 0 424
BOSha,MD 15 1 10 10 2 13 51
BOSha,MC 29 8 44 37 8 30 156

The first 3 columns (“before 10”, “before 01”, “before mis”) represent number of cases when

subjects move to an equilibrium status from selfish mismatch, ohenry mismatch and other

mismatches, respectively. Column 4 to 6 (“after 10”, “after 01”, “after mis”) represent number

of cases when subjects move away from equilibrium status to selfish mismatch, ohenry mismatch

and other mismatches, respectively.

the treatments. Second, pairs are more likely to move away from (A,A) or (B,B) to self-

ish mismatch than ohenry mismatch. Third, it is obviously easier for subjects to move

between two pure Nash equilibria in discrete time than in continuous time. Last but not

least, mismatches in mixed action sets treatments are more serious than mismatches in

pure action sets treatments, mostly driven by mismatch outside the corners.

Table B.2-B.6 show some important stylized facts in battle of the sexes games

that might indicate some behavior pattern of subjects. From the tables, it seems that

selfish motivation is the major force of switching into and away from equilibrium status

in battle of the sexes games. Although few pairs reach alternating dynamics in battle

of the sexes games as shown in Section 6, the switching between equilibria, and be-

tween equilibria and mismatches are quite frequent. The data also indicates a potential
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Table B.3: Transition probability matrix of BOS pure continuous treatments.

selfish at t+1 ohenry at t+1 AA at t+1 BB at t+1 observations

selfish at t 0.75 0.01 0.11 0.14 2176
ohenry at t 0.03 0.57 0.18 0.22 326
AA at t 0.06 0.02 0.92 0.01 3870
BB at t 0.07 0.01 0.00 0.91 4458

Table B.4: Transition probability matrix of BOS pure discrete treatments.

selfish at t+1 ohenry at t+1 AA at t+1 BB at t+1 observations

selfish at t 0.41 0.10 0.18 0.32 262
ohenry at t 0.38 0.18 0.27 0.17 77
AA at t 0.27 0.07 0.37 0.30 220
BB at t 0.28 0.08 0.30 0.34 239

Table B.5: Transition probability matrix of BOS mixed continuous treatments.

selfish at t+1 ohenry at t+1 AA at t+1 BB at t+1 mis at t+1 observations

selfish at t 0.84 0.00 0.04 0.04 0.08 1477
ohenry at t 0.01 0.62 0.11 0.19 0.07 115
AA at t 0.03 0.01 0.94 0.00 0.02 2324
BB at t 0.02 0.01 0.00 0.94 0.02 2473
mis at t 0.03 0.00 0.01 0.02 0.95 4361

Table B.6: Transition probability matrix of BOS mixed discrete treatments.

selfish at t+1 ohenry at t+1 AA at t+1 BB at t+1 mis at t+1 observations

selfish at t 0.21 0.02 0.16 0.23 0.39 111
ohenry at t 0.23 0.00 0.08 0.15 0.54 26
AA at t 0.19 0.06 0.47 0.11 0.18 102
BB at t 0.23 0.02 0.11 0.39 0.25 96
mis at t 0.11 0.02 0.06 0.05 0.76 447

pattern of alternating dynamics in continuous time: disadvantageous player switches

to her preferred position and advantageous player follows. Both players maintain the

equilibrium for a period of time and repeat the switching, which causes a short period

of natural mismatch between equilibrium plays.
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B.2.2 Length of Equilibrium Play and Corner Mismatches in BOS

Another comparison between two time treatments in battle of the sexes games

is the length of time subjects stay at each action profile. Three profiles are interesting

to us: the pure Nash equilibria, the selfish mismatch, and the ohenry mismatch. Table

B.7 shows the average time and its standard deviation pairs stay at either pure Nash

equilibria, the selfish mismatch and the ohenry mismatch in battle of the sexes games.

The length of stay in continuous time is normalized to be consistent with “subperiod”

in discrete time (data is divided by 12 as 12 time ticks in continuous time equal to 1

subperiod in discrete time). For instance, Column 1 Row 4 shows that pairs on average

stay at pure Nash equilibria for about 1.43 subperiods (approximately 8.58 seconds) in

“BOSla, Mixed Continuous” treatments.

Table B.7: Average length of equilibrium plays and two corner mismatches in all BOS
treatments.

NE mean NE sd selfish mean selfish sd ohenry mean ohenry sd

BOSla,PD 1.68 1.18 1.63 1.18 1.20 1.18
BOSla,PC 1.00 1.01 0.25 1.01 0.18 1.01
BOSla,MD 1.93 1.48 1.15 1.48 1.00 1.48
BOSla,MC 1.43 1.06 0.55 1.06 0.24 1.06
BOSma,PD 1.35 0.81 1.36 0.81 1.19 0.81
BOSma,PC 0.90 1.08 0.32 1.08 0.16 1.08
BOSma,MD 1.47 0.90 1.23 0.90 1.00 0.90
BOSma,MC 1.20 1.01 0.44 1.01 0.21 1.01
BOSha,PD 1.34 0.79 1.72 0.79 1.23 0.79
BOSha,PC 0.78 0.71 0.38 0.71 0.25 0.71
BOSha,MD 1.24 0.50 1.27 0.50 1.00 0.50
BOSha,MC 1.05 1.07 0.51 1.07 0.26 1.07

Though turn taking can be considered as a social norm in discrete time, the

fact that the average time of subjects stays on either pure Nash equilibria is higher than

1 results from the noise in the data. Caused by the same reason, the average also comes
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with a higher standard deviation. Still, we can draw some results from the table. On

one hand, the average length of stay at either pure Nash equilibria in continuous time

treatments is similar to the length in discrete time with a shorter average and a similar

standard deviation. The result indicates how subjects might choose the frequency of

switching when they perform alternating dynamics: the average switching frequency is

about 5-8 seconds which is close to a “one period” alternation in discrete time. On

the other hand, the average length of stay at both mismatches in continuous time is

much shorter than the length in discrete time, showing the benefit of fast response in

the continuous time environment. The fast response and quick adjustment indicate one

possible reason that explains the efficiency increase in the learning stage by continuous

time treatments. Furthermore, subjects switch faster at ohenry mismatch than at selfish

mismatch, which is consistent with the inequality between two mismatches discussed

multiple times in the paper. The slow switch at selfish mismatch indicates a potential

competitive framework in battle of the sexes games where both subjects prefer to stay

at their advantageous positions and wait for the other subject to switch.

B.3 Explaining the Treatment Effects

B.3.1 Continuous vs Discrete Time

In section 3, some possible mechanisms that cause the differences in subjects’

behavior between continuous time and discrete time treatments are discussed. In stag

hunt games, as subjects can respond quickly and switch actions freely, they have a high
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probability to try to play payoff-dominant action at the start of the game. They are

also more likely to accelerate the convergence process and shorten the “learning stage”.

In battle of the sexes games, subjects are more likely to play altruistic behavior at the

beginning and speed convergence. Table B.8 and B.9 show some findings that support

this idea.

Table B.8 compares two time treatments in starting strategy, convergence

speed and after-convergence efficiency (defined by compare subjects’ payoff to the op-

timal payoff they can get e.g. In SH, subjects’ efficiency equal to 1 when they are at

payoff-dominant equilibrium) in stag hunt games. “row start” and “col start” denote

the fraction of row and column subjects that start with payoff-dominant strategy. As

can be observed from the table, subjects have a higher probability of choosing payoff-

dominant strategy in continuous time than in discrete time. However, the difference is

not significant. “Converge AA” and “Converge NE” denote the average timing when

pairs stabilize at payoff-dominant equilibrium or either pure Nash equilibria, respec-

tively. Stabilization is defined when the cumulative probability (from current time tick

to the end of the period) of pairs playing a certain equilibrium is higher than 90%. The

timing can also be considered as the length of “learning stage”. Timing in continuous

time treatment is compressed into subperiods as that in discrete time. Pairs that do not

converge are numbered as 10 (total number of subperiods). Both columns show that

pairs spend less time converging to payoff dominant equilibrium or either pure Nash

equilibria in continuous time than in discrete time. “convergence efficiency” shows the

average efficiency when pairs successfully converge. There should be little difference
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between two time treatments in this column and the results meet the expectation.

Table B.8: Continuous vs Discrete in starting strategy, convergence speed and efficiency
after convergence in SH.

Treatments row start col start converge AA converge NE convergence efficiency

SH0.6R,PD 0.74 0.76 5.76 4.86 0.81
SH0.6R,PC 0.79 0.81 4.32 3.83 0.90

SH0.6R,MD 0.52 0.55 7.40 6.90 0.77
SH0.6R,MC 0.67 0.69 4.35 3.12 0.82

SH1R,PD 0.64 0.69 6.67 5.43 0.80
SH1R,PC 0.81 0.74 3.88 1.89 0.87

SH1R,MD 0.50 0.67 7.05 6.00 0.74
SH1R,MC 0.62 0.60 4.91 3.28 0.83

SH2R,PD 0.52 0.48 6.57 3.69 0.94
SH2R,PC 0.67 0.67 5.18 3.17 0.94

SH2R,MD 0.40 0.48 7.33 5.71 0.94
SH2R,MC 0.64 0.62 4.98 2.82 0.94

“row start” and “col start” denote the fraction of row and column subjects that start with

payoff-dominant strategy. “Converge AA” and “Converge NE” denote the average time tick

when pairs stabilize at payoff-dominant equilibrium or either pure Nash equilibrium, respectively.

Pairs which do not converge are numbered as 10 (total number of subperiods). “convergence

efficiency” shows the average efficiency when pairs successfully converge.

Table B.9 compares two time treatments in starting strategy, convergence

speed, alternations and after-convergence efficiency in battle of the sexes games. “row

start” and “col start” denote the fraction of row and column subjects that start with

altruistic strategy. Column 1 of Table B.9 does not show a consistent pattern, although

subjects behave more altruistically at the beginning in continuous time than in dis-

crete time in “BOSla,Pure” and “BOSha, Pure” treatments. “Converge NE” denotes

the average time tick when pairs stabilize at pure Nash equilibria. As there are too

many mismatches, pairs which do not converge are numbered as “NA” and are removed

when computing the mean (As a comparison, the number in the parentheses shows the
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averages when no-convergence is numbered as 10). Column 3 shows that pairs spend

less time on learning to coordinate in continuous time than in discrete time. The dif-

ference seems larger when the level of payoff asymmetry is higher. “alternate index”

denotes the average difference between the frequency of pairs playing two pure Nash

equilibria when successfully converging. Pairs seem to alternate worse when the level of

payoff asymmetry is low but overall speaking they seem to alternate pretty well if they

successfully converge. “convergence efficiency” shows the average efficiency when pairs

successfully converge. In continuous time, pairs suffer from switching cost because of

inertia, as one subject follows the other subject from one pure NE to the other pure

NE with a reaction delay. So the efficiency is expected to be a bit lower in continuous

time than the efficiency in discrete time. The last column of Table B.9 confirms the

expectation.

B.3.2 Mixed vs Pure Action Sets

There should be no difference between pure action sets and mixed action sets

as two treatments in fact use the similar payoff matrices and the same pure Nash

equilibria. However, there are significant treatment effects from action sets treatments.

In this subsection, one potential mechanism that is inferred from the data by taking a

deeper look at the mismatches is discussed.

Table B.10 and B.11 show the main findings. Two reference lines in the fol-

lowing tables, 0.1 and 0.9, as well as the definition of “mismatch”, are directly from the

classification of observations in section 5.2. Table B.10 shows the frequency of each type
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Table B.9: Continuous vs Discrete in starting strategy, convergence speed, alternations
and efficiency after convergence in BOS.

Treatments row start col start converge NE alternate index convergence efficiency

BOSla,PD 0.37 0.39 6.68(8.34) 2.58 0.99
BOSla,PC 0.53 0.50 4.84(7.28) 1.74 0.93

BOSla,MD 0.21 0.34 7.00(9.21) 3.50 0.98
BOSla,MC 0.16 0.45 6.29(8.63) 2.04 0.95

BOSma,PD 0.53 0.34 7.00(9.05) 1.58 0.99
BOSma,PC 0.45 0.42 4.01(7.32) 1.91 0.93

BOSma,MD 0.16 0.34 7.22(9.34) 1.78 0.97
BOSma,MC 0.21 0.29 5.36(8.66) 1.99 0.92

BOSha,PD 0.29 0.47 5.64(8.74) 1.73 1.00
BOSha,PC 0.45 0.55 2.72(8.28) 1.05 0.93

BOSha,MD 0.24 0.18 8.00(9.84) 1.67 0.99
BOSha,MC 0.21 0.21 4.06(8.59) 2.15 0.94

“row start” and “col start” denote the fraction of row and column subjects that start with

altruistic strategy. “Converge NE” denotes the average time tick when pairs stabilize at pure

Nash equilibria. Pairs which do not converge are numbered as NA and are removed from com-

putation (the number in the parentheses shows the averages when no-convergence is numbered

as 10). “alternate index” and “convergence efficiency” denote the average difference between

the frequency of pairs playing two pure Nash equilibria and the average efficiency after pairs

successfully converge, respectively.

of mismatches in stag hunt games. Mismatches are further classified into four types:

“corner” denotes mismatches when either subject’s mixture is above 0.9 and the other’s

below 0.1. “one at payoff(risk)” denotes the case when one subject stay at payoff(risk)-

dominant strategy (mixture greater than or equal to 0.9 for payoff dominant strategy

and lower than or equal to 0.1 for risk dominant strategy) while the other subject’s

mixture is between 0.1 and 0.9. “middle” represents the rest of the mismatches while

p, q are between 0.1 and 0.9. Rows of pure action sets treatments are less interesting

since there is only one possibility of mismatches. As discussed in previous sections,
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there are more mismatches in mixed action sets treatments than in pure action sets

treatments. Those additional mismatches are mostly from three types: “corner”, “one

at risk” and “one at payoff”, which contribute to about 80% of the total mismatches

in mixed action sets treatments. All types indicate insufficient strategic teaching or

insufficient following in the experiment, describing the situation when one subject sends

out some insufficient signals to the other subject who plays risk-dominant strategy or

the situation when one subject wanders in the middle while the other subject has al-

ready reached payoff-dominant strategy. Both situations come with low efficiency and

are mainly the result from the fact that subjects can freely try out the “middle” mix-

tures so they are less likely to directly go to the corner equilibria, which is in fact less

efficient compared to corner equilibria. Furthermore, less pairs mismatch at corners in

mixed action sets treatments as expected and there is a consistent but small fraction of

mismatches in the middle of the action space.

Table B.11 shows the frequency of each type of mismatches in battle of the sexes

games. Similarly, mismatches are classified into five types: “ohenry(selfish) corner” is

defined as p(q) ≤ 0.1, q(p) ≥ 0.9. “one at ohenry(selfish)” denotes the case when one

subject play altruistically(selfishly) (mixture within 10% range of the other’s (own)

preferred strategy) and the other subject’s mixture is between 0.1 and 0.9. “middle”

represents the rest of the mismatches while p, q are between 0.1 and 0.9. Despite the

large difference in the number of mismatches, it seems that subjects behave consistently

in pure and mixed action sets treatments: most of the mismatches come from selfish

behavior from one (“one at selfish type”) or both (“selfish corner” type) sides, which
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Table B.10: Distributional frequencies of mismatches in each treatment of SH.

Treatments corner one at risk one at payoff middle # of mismatch

SH0.6R,PD 52 0 0 0 52
SH0.6R,MD 33 36 31 28 128

SH0.6R,PC 315 0 0 0 315
SH0.6R,MC 78 134 321 164 697

SH1R,PD 54 0 0 0 54
SH1R,MD 26 33 27 34 120

SH1R,PC 185 0 0 0 185
SH1R,MC 96 255 213 157 721

SH2R,PD 34 0 0 0 34
SH2R,MD 23 38 19 0 108

SH2R,PC 225 0 0 28 225
SH2R,MC 58 268 116 70 512

“corner” denotes mismatches when either p, q ≥ 0.9 and the other ≤ 0.1. “one at payoff(risk)”

denotes the case when one subject stay at payoff(risk)-dominant equilibrium while the other

subject’s mixture is between 0.1 and 0.9. “middle” represents the rest of the mismatches while

p, q are between 0.1 and 0.9.

describes the situations when either both subjects play selfishly at their preferred actions

or one of them play selfishly but the other subject send out insufficient coordinative

signal at the middle. This description also works for the “ohenry” type that describes

the situation when both subjects altruistically mismatch or when one subject plays

altruistically but the other subject does not sufficiently follow. Similar to SH, less

pairs mismatch at corners in the mixed action sets treatments and the small fraction of

mismatches in the middle is still consistent.

The difference between subjects’ behavior in two action sets treatments can

be described as a problem of insufficient signalling and insufficient coordination. With

large action sets, subjects are more likely to try out the “middle” mixtures to insuffi-
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ciently lead or follow their counterpart. However, the middle mixtures tend to lower

the efficiency compared to corner equilibria. In SH, choosing the middle mixtures can

neither switch subjects’ best response from risk-dominant to payoff-dominant nor help

the “payoff-dominant” leaders to stay at payoff-dominant strategy. In BOS, middle

mixtures cannot attract the subjects who play selfish strategies to altruistic strategies

and are also insufficient as a follower strategy.

Table B.11: Distributional frequencies of mismatches in each treatment of BOS.

Treatments ohenry corner one at ohenry selfish corner one at selfish middle # of mismatch

BOSla,PD 32 0 91 0 0 123
BOSla,MD 13 43 32 86 39 213

BOSla,PC 126 0 537 0 0 663
BOSla,MC 33 274 479 694 415 1895

BOSma,PD 27 0 95 0 0 122
BOSma,MD 7 25 45 88 43 208

BOSma,PC 91 0 698 0 0 789
BOSma,MC 57 247 502 681 323 1810

BOSha,PD 29 0 114 0 0 143
BOSha,MD 7 40 54 94 54 249

BOSha,PC 111 0 976 0 0 1087
BOSha,MC 25 200 518 1070 505 2318

“ohenry(selfish) corner” is defined as p(q) ≤ 0.1, q(p) ≥ 0.9. “one at ohenry(selfish)” denotes the

case when one subject play altruistically(selfishly) and the other subject’s mixture is between

0.1 and 0.9. “middle” represents the rest of the mismatches while p, q are between 0.1 and 0.9.
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Appendix C

Supplement to Chapter Three

C.1 Payoff Inequality

If subjects prefer staying at one Nash equilibrium to alternating between Nash

equilibria, the payoff between subjects could become less equal and it raises fairness

concern. Figure C.1 supports this idea. We observe large payoff differences between the

two time environments. Notably, we use the average cumulative payoff of the subjects

in each supergame rather than their payoff at any time. The payoff difference could

result from the fact that the subjects are more likely to prefer to stay at one Nash

equilibrium to alternating between two Nash equilibria in continuous time and discrete

time. “Equal payoff” is considered an important normative motivation for players to

take turns in the literature. According to our experimental results, the subjects do not

manage payoff equality well in continuous time. Thus, equal payoff is unlikely to be the

major motivation guiding the subjects’ interactions in our experiments.
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Figure C.1: Difference in the cumulative payoff between two players within supergames.

The two time environments are represented by colors, and the three payoff matrices are repre-

sented by line types.

C.2 Transition Probability Matrices with Diagonal Cells

Table C.1 reports the transition probability matrices with the diagonal terms;

thus, we can observe the probability of the pairs staying at each action profile. Despite

the high probability of staying at the current position in continuous time, the results

are similar to those shown in Table 3.6. Given that pairs are more likely to choose

Aggressive than Accommodating, they are actually more likely to switch to a pure

Nash equilibrium from Accommodating than from Aggressive. We can also confirm

the one-period turn-taking pattern in discrete time. Furthermore, competition exists

in discrete time as follows: the subjects are very likely to stay at Aggressive, with a

conditional probability of 41%.
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Table C.1: Transition probability matrices with diagonal terms.

Panel A: continuous time.

Aggressive at t′ Accommodating at t′ RPNE at t′ CPNE at t′ num of transitions

Aggressive at t 0.89 0.00 0.05 0.05 17697
Accommodating at t 0.02 0.71 0.13 0.14 1583

RPNE at t 0.05 0.01 0.94 0.00 18338
CPNE at t 0.05 0.01 0.00 0.94 18782

Panel B: discrete time.

Aggressive at t′ Accommodating at t′ RPNE at t′ CPNE at t′ num of transitions

Aggressive at t 0.41 0.13 0.22 0.24 1167
Accommodating at t 0.36 0.12 0.24 0.27 371

RPNE at t 0.15 0.04 0.15 0.67 1779
CPNE at t 0.15 0.04 0.71 0.10 1699

t′ represents t+500 milliseconds in continuous time and t+1 period in discrete time.

C.3 Logistic Regressions for Statistical Significance

Table C.2 uses a logistic regression to assess the significance of all tables in

the paper. In all five regressions, the dependent variables are coordination indicators

or type indicators, and the independent variables are treatment dummy variables. Col-

umn (1) shows the treatment effects and the order effect with a random effect model.

Columns (2)-(5) show the difference in playing “Alternating” and “One NE” among the

treatments as follows: columns (2) and (3) use the second half of each supergame, and

columns (4) and (5) use the full dataset. The results support the observations reported

in the paper.
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Table C.2: Logistic regression used to assess significance under a robust environment.

(1) (2) (3) (4) (5)
Dependent Coordinate Alternating One NE Alternating One NE

continuous 0.233 -1.106*** 1.306** -0.813** 1.808***
(0.337) (0.338) (0.509) (0.347) (0.671)

BoS1.4 0.041 0.138 -0.000 0.235 -0.420
(0.250) (0.303) (0.601) (0.307) (0.926)

BoS10 -0.087 0.277 -0.735 0.328 -1.127
(0.252) (0.302) (0.722) (0.304) (1.165)

continuous*BoS1.4 0.031 -0.206 0.218 0.027 0.420
(0.370) (0.480) (0.715) (0.478) (1.021)

continuous*BoS10 -0.040 -0.417 0.883 -0.328 1.127
(0.362) (0.482) (0.816) (0.485) (1.239)

sequence2 -0.025 0.069 -0.492* -0.054 -0.406
(0.202) (0.193) (0.275) (0.192) (0.325)

sequence2*continuous -0.114
(0.300)

block2 0.609*** 0.406** -0.687** 0.529*** -0.933***
(0.204) (0.194) (0.274) (0.193) (0.337)

block2*continuous -0.852***
(0.300)

Constant 0.944*** -0.237 -2.101*** -0.612** -2.792***
(0.238) (0.251) (0.454) (0.257) (0.623)

Observations 61,920 504 504 504 504

Subscripted asterisks indicate p-values of .10(*), .05(**) and .01(***) in two-sided t-tests as-

suming unequal variance between adjacent columns. The regression in column (1) is clustered

at the supergame level.

C.4 Transition Probabilities at the Pair Level

The transition probability matrices in Section 4.4 support the disadvantaged-

player dynamics at the aggregate level, but does this result holds at the pair level? In this

section we look into the transitions for each pair of subjects. To reduce the dimensions

of comparison, we reduce the transitions to three types: transitions directly between

Nash equilibria, transitions between Nash and Aggressive, and transitions between Nash

and Accommodating. Figure C.2 shows the scatter plot where pairs are located on the

map by the conditional probabilities of the transitions. If a pair of subjects is located on
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the top left of the graph, the transitions between Nash and other profiles are likely to be

between Nash and Accommodating, which supports the advantaged-player dynamics.

If a pair is located near the bottom right of the graph, they are more likely to be

motivated by the disadvantaged-player dynamics. If a pair is close to the 45 degree line,

it can be either strategic teaching or a hybrid of advantaged-player and disadvantaged-

player dynamics. As is shown in the figure, for the majority of the pairs, the transitions

between Nash and Aggressive occur more often than the transitions between Nash and

Accommodating.

Figure C.2: Scatter plot showing the probabilities of transitioning between Nash and
Aggressive and between Nash and Accommodating colored by the time environments.

The size of the points indicates the number of supergames overlapping at the coordinate.
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C.5 Figures with All Combinations of Treatments

Figure C.3: Coordination rate within supergames.

The two time environments are represented by colors, and the three payoff matrices are repre-

sented by line types.
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Figure C.4: The empirical cumulative distribution function of the timing at which the
pairs first reach a pure Nash equilibrium.

The two time environments are represented by colors, and the three payoff matrices are repre-

sented by line types. All pairs but one reach a Nash equilibrium before period 10.

Figure C.5: The empirical cumulative distribution function of the duration during which
the subjects stay at mismatches.

The two time environments are represented by colors, and the three payoff matrices are repre-

sented by line types. The curves are flat and close to 1 when the duration is greater than 10

periods.
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Figure C.6: The empirical cumulative distribution function of the duration during which
the subjects stay at Nash equilibria.

The two time environments are represented by colors, and the three payoff matrices are repre-

sented by line types. The curves are flat and close to 1 when the duration is greater than 10

periods.
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