
Lawrence Berkeley National Laboratory
Joint Genome Institute

Title
Bioboxes: standardised containers for interchangeable bioinformatics software

Permalink
https://escholarship.org/uc/item/6th267n7

Journal
GigaScience, 4(1)

ISSN
2047-217X

Authors
Belmann, Peter
Dröge, Johannes
Bremges, Andreas
et al.

Publication Date
2015-12-01

DOI
10.1186/s13742-015-0087-0

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6th267n7
https://escholarship.org/uc/item/6th267n7#author
https://escholarship.org
http://www.cdlib.org/

COMMENTARY Open Access

Bioboxes: standardised containers for
interchangeable bioinformatics software
Peter Belmann1, Johannes Dröge2, Andreas Bremges1,2, Alice C. McHardy2, Alexander Sczyrba1

and Michael D. Barton3*

Abstract

Software is now both central and essential to modern biology, yet lack of availability, difficult installations, and
complex user interfaces make software hard to obtain and use. Containerisation, as exemplified by the Docker
platform, has the potential to solve the problems associated with sharing software. We propose bioboxes:
containers with standardised interfaces to make bioinformatics software interchangeable.

Keywords: Bioinformatics, Software, Docker, Standards, Usability, Reproducibility

The increasing size of datasets in biology has demanded a
corresponding increase in the reliance on software to
automate tasks that have become impossible to do manu-
ally [1]. Improvements in technology have made creating
large biological datasets much easier, so that small facil-
ities can now feasibly do large-scale genomic sequencing
or proteomics. Biology in 2015 may require a researcher
to be using a pipette one day and running genome as-
sembly software the next. As the field changes to where
scientists are expected to regularly use bioinformatics
tools, the difficulties in sharing academic software are
becoming a hindrance to both research and publication.
Bioinformatics software is seen as research output and

published as journal articles. It then follows that a bio-
informatics software developer is measured by the same
metric as is often used for a biologist studying novel
protein mechanisms - the more articles the better. This
has lead to proliferation of bioinformatics software; for
example, the Wikipedia page for sequence aligners alone
lists 64 different implementations.
Perverse incentives have lead to a ‘fire-and-forget’ ap-

proach to software; publishing multiple software articles is
rewarded whereas there are no direct metrics for maintain-
ing existing software [2]. The status quo serves authors by
allowing them to generate long publication lists, and serves
publishers by generating revenue through article process-
ing fees. The intended audience, the biologists trying to do

research, are then left to wade through a corpus of buggy,
inconsistent, and confusing tools [3]. This commentary
addresses three prominent symptoms of this system: lack
of software availability, difficulty installing software, and
divergent formats and interfaces for common tasks.

Lack of software availability
A ridiculous situation in the publication system is that
publishing an article about software does not guarantee
that the tool is actually available for use. Unless the jour-
nal specifically mandates the use of a third party service to
host the software, the article may describe the tool as
being "available on request" - the reader has to contact the
author for access. If the author cannot (or does not want
to) be contacted, the software essentially ceases to exist.
Another common situation is that software is unavail-

able because the developer has moved on to a different
position, or because the research funding supporting
their position ends. This results in the developer no lon-
ger being able to maintain the software, the website de-
scribing the tool no longer existing, or both. A study
related to this effect showed that, in many cases, bio-
informatics web addresses are often not available 2-3
years after the article describing it was published [4].

Difficulty installing software
Differences between operating systems and hardware re-
quire effort in delivering software in a ready-to-use form.
One example is when software is written in a language
such as C/C++ that must be 'compiled' to generate
platform-specific executable files. Compiling, however, is

* Correspondence: mail@michaelbarton.me.uk
3DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
Full list of author information is available at the end of the article

© 2015 Belmann et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Belmann et al. GigaScience (2015) 4:47
DOI 10.1186/s13742-015-0087-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s13742-015-0087-0&domain=pdf
mailto:mail@michaelbarton.me.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

not a simple task, and it is even harder in biology be-
cause of the limited experience that biologists may be
expected to have with C++ build tools. Alternatively,
even if tools are written using 'platform-independent'
languages such as Java or Python, these often have third-
party dependencies that must also be downloaded and
installed, requiring additional time and effort.
As software delivery and maintenance plays no part in

the publication process, the biologist is usually left with
the work of compiling source code, manually installing
required software libraries and debugging platform-
incompatible code: for instance, having to decipher
obscure output such as the GNU make command
reporting a g++ error because the wrong version of
libboost-dev is installed.

Lack of standards
Every piece of bioinformatics software has a different
interface even when performing the same kind of oper-
ation. No two short read aligners may be expected to
use the same method to identify the input file for pro-
cessing in the command line options; for example, this
might be –input, –fastq or the position in the input ar-
guments. The output BAM file, a standard format for se-
quence alignment, generated by a short read aligner may
be created in different locations, or the output may not
be stored in BAM at all. Across all available short read
aligners this leads to a multitude of different ways of
doing the same task each time: take a list of sequence
reads and return a description of how they map to a ref-
erence genome.
This leads to the current situation, where researchers

spend much of their time shifting data between the in-
compatible interfaces of different tools and converting to
required data formats. Is there a good reason why short
read aligners, which all do the same task, should not be
standardised with the same interface? How about gen-
ome assemblers, FASTQ preprocessors or multiple se-
quence aligners? The tools for each of these tasks
essentially perform the same operation, but each has a
different interface. Again, the current situation does not
serve intended users that the software is written for: bi-
ologists and bioinformaticians.

Software containerisation and standardisation
The Docker platform [5] allows the creation of light-
weight containers in which developers can install their
software along with all required libraries and scripts.
These containers can then be easily shared through a
central repository, or as compressed files, and used in
the same way as if the software itself were installed. The
bioinformatics field has quickly recognised the oppor-
tunity provided by Docker [6, 7], in which containers do
not dictate a specific software framework or language

for implementing bioinformatics tools, and which allows
integration with existing software.
Containerisation further has the potential to solve the

problems of software availability and installation out-
lined above, where bundling all dependencies removes
the need for the user to compile and install anything
(except Docker itself). Software containers also provide
researchers with the option to reproduce existing pub-
lished results so as to replicate or expand on the work of
others. An example of this are nucleotid.es [8] and the
Critical Assessment of Metagenomic Interpretation
(CAMI) [9] projects, where the tools benchmarked are
containerised and available for download by users.
Even with these outlined advantages, without stand-

ardisation bioinformatics will continue to suffer from
mismatching interfaces between tools in software pipe-
lines. The time-consuming job of maintaining these
pipelines then falls to the bioinformatician, reducing
their role from computational researchers to the custo-
dians of gluing different tools together.
To this end we, developers involved in both CAMI

and nucleotid.es, have created the bioboxes project [10]
with the aim of specifying standardised bioinformatics
containers. A biobox is a software container with a stan-
dardised interface that describes what kind of input files
and parameters are accepted and which output files are
to be returned. An example is a short-read assembler
that takes an input paired-FASTQ file and returns a con-
tig FASTA file. Each developer creating a biobox should
make sure the container accepts these inputs and
returns the expected outputs.
Specifying the same interface for the same task allows

one tool to be swapped for another in a pipeline. This cre-
ates an interchangeable parts list for researchers, which,
combined with Docker containerisation, means that biolo-
gists and bioinformaticians have access to, and can imme-
diately use, a large body of bioinformatics software.
Figure 1 contrasts the existing state of bioinformatics
software with bioboxes standardised software con-
tainers. Box 1 shows a python command line interface
to bioboxes that allows the reader to test out a biobox.

Box 1: Example of bioboxes command line interface
This example requires that both python’s pip and
Docker are installed. General instructions for installing
pip are widely available online. Instructions for installing
Docker can be found on the Docker website [5].
pip install ––user biobox_cli
biobox run short_read_assembler bio-

boxes/velvet ––input reads.fq.gz ––output
contigs.fa
biobox run short_read_assembler bio-

boxes/megahit ––input reads.fq.gz ––out-
put contigs.fa

Belmann et al. GigaScience (2015) 4:47

2

We ask that developers try to follow the documentation
on the bioboxes website [10] and contribute biobox-
compatible Docker images of their software. Then, biolo-
gists and bioinformaticians, editors, and reviewers should
begin requesting that biobox versions of software are
available alongside publications. At the same time, the bio-
boxes project welcomes feedback from the community.
The website [10] contains links on how to get involved by
filing bug reports or asking questions in the chat room.

Conclusions
The current state of bioinformatics software works
against users by consuming time and effort, and against
reproducibility by the lack of methods to recreate the
work of others. The use of software containers with
standardised interfaces has the potential make the work
of biologists easier by creating simple to use, inter-
changeable tools. At the same time developers can make
their programs more easily available and usable by a
wider audience. Ultimately this drive for standardisation
and the ensuing benefits will be successful only if they
are both accepted and driven by the bioinformatics com-
munity itself.

Competing interests
Docker Inc paid for MDB's flight and accommodation allowing him to
present research at DockerCon Europe.

Authors’ contributions
PB, JD, AB, ACM, AS, and MDB jointly conceived the idea of bioboxes. PB, JD,
and MDB created bioboxes, implementing all code and creating
documentation. AB and AS supervised PB's master thesis on bioboxes,
directing the project and actively engaging in discussions. MDB wrote the
manuscript. PB, JD, AB, and AS revised the manuscript. All authors read and
approved the final manuscript.

Authors’ information
PB, JD, and AB are developers in the CAMI initiative to benchmark
bioinformatics tools for metagenomics. ACM and AS are CAMI organisers.
MDB created nucleotid.es, a project to benchmark genome assembly
software. Both of these projects use Docker containers to ensure that
benchmarking is reproducible.

Acknowledgements
The authors wish to thank Rutger Vos, Scott Edmunds, Yasset Perez-Riverol,
and Felipe Leprevost for proofreading the article. The authors also wish to
thank all members of the bioinformatics community who have provided
feedback through comments, issues and the bioboxes chatroom, in particular
Keith Bradnam for suggesting the name 'bioboxes'.

Author details
1Faculty of Technology and Center for Biotechnology, Bielefeld University,
33615 Bielefeld, Germany. 2Computational Biology of Infection Research,

Fig. 1 Comparison of the current software situation in bioinformatics (top) with using biobox Docker containers with standardised
interfaces (bottom)

Belmann et al. GigaScience (2015) 4:47

3

Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
3DOE Joint Genome Institute, Walnut Creek, CA 94598, USA.

Received: 10 August 2015 Accepted: 29 September 2015

References
1. Ouzounis CA. Rise and demise of bioinformatics? Promise and progress.

PLoS Comput Biol. 2012;8:e1002487. doi:10.1371/journal.pcbi.1002487.
2. Chang J. Core services: reward bioinformaticians. Nature. 2015;520:151–2.

doi:10.1038/520151a.
3. Stein L. Creating a bioinformatics nation. Nature. 2002;417:119–20.

doi:10.1038/417119a.
4. Klein M, Van de Sompel H, Sanderson R, Shankar H, Balakireva L, Zhou K, et

al. Scholarly context not found: one in five articles suffers from reference
rot. PLoS One. 2014;9:e115253. doi:10.1371/journal.pone.0115253.

5. Docker. https://www.docker.com. Accessed 11 August 2015.
6. Boettiger C. An introduction to Docker for reproducible research, with

examples from the R environment. ACM SIGOPS Operating Systems Review.
2014;49:71–9. doi:10.1145/2723872.2723882.

7. Di Tommaso P, Palumbo E, Chatzou M, Prieto P, Heuer ML, Notredame C.
The impact of Docker containers on the performance of genomic pipelines.
PeerJ PrePrints. 2015;3:e1428. doi:10.7287/peerj.preprints.1171v2.

8. nucleotid.es - an assembler catalogue. http://nucleotid.es. Accessed 11
August 2015.

9. CAMI - Critical Assessment of Metagenomic Interpretation. http://
www.cami-challenge.org. Accessed 11 August 2015.

10. Bioboxes. http://bioboxes.org. Accessed 11 August 2015.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Belmann et al. GigaScience (2015) 4:47

4

http://dx.doi.org/10.1371/journal.pcbi.1002487
http://dx.doi.org/10.1038/520151a
http://dx.doi.org/10.1038/417119a
http://dx.doi.org/10.1371/journal.pone.0115253
https://www.docker.com
http://dx.doi.org/10.1145/2723872.2723882
http://dx.doi.org/10.7287/peerj.preprints.1171v2
http://nucleotid.es
http://www.cami-challenge.org/
http://www.cami-challenge.org/
http://bioboxes.org

	Abstract
	Lack of software availability
	Difficulty installing software
	Lack of standards
	Software containerisation and standardisation
	Box 1: Example of bioboxes command line interface
	Conclusions
	Competing interests
	Authors’ contributions
	Authors’ information
	Acknowledgements
	Author details
	References

