
UCLA
UCLA Previously Published Works

Title
Evolving neural network optimization of cholesteryl ester separation by reversed-phase 
HPLC

Permalink
https://escholarship.org/uc/item/6th6x86v

Journal
Analytical and Bioanalytical Chemistry, 397(6)

ISSN
1618-2650

Authors
Jansen, Michael A.
Kiwata, Jacqueline
Arceo, Jennifer
et al.

Publication Date
2010-07-01

DOI
10.1007/s00216-010-3778-5
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6th6x86v
https://escholarship.org/uc/item/6th6x86v#author
https://escholarship.org
http://www.cdlib.org/


ORIGINAL PAPER

Evolving neural network optimization of cholesteryl ester
separation by reversed-phase HPLC

Michael A. Jansen & Jacqueline Kiwata &

Jennifer Arceo & Kym F. Faull & Grady Hanrahan &

Edith Porter

Received: 28 February 2010 /Revised: 11 April 2010 /Accepted: 22 April 2010 /Published online: 21 May 2010
# The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Cholesteryl esters have antimicrobial activity and
likely contribute to the innate immunity system. Improved
separation techniques are needed to characterize these
compounds. In this study, optimization of the reversed-
phase high-performance liquid chromatography separation
of six analyte standards (four cholesteryl esters plus
cholesterol and tri-palmitin) was accomplished by modeling
with an artificial neural network–genetic algorithm (ANN-
GA) approach. A fractional factorial design was employed
to examine the significance of four experimental factors:
organic component in the mobile phase (ethanol and
methanol), column temperature, and flow rate. Three
separation parameters were then merged into geometric

means using Derringer’s desirability function and used as
input sources for model training and testing. The use of
genetic operators proved valuable for the determination of
an effective neural network structure. Implementation of the
optimized method resulted in complete separation of all six
analytes, including the resolution of two previously co-
eluting peaks. Model validation was performed with exper-
imental responses in good agreement with model-predicted
responses. Improved separation was also realized in a
complex biological fluid, human milk. Thus, the first known
use of ANN-GA modeling for improving the chromatograph-
ic separation of cholesteryl esters in biological fluids is
presented and will likely prove valuable for future inves-
tigators involved in studying complex biological samples.

Keywords Lipids . Cholesteryl linoleate . Innate immunity .

Biological fluids . Artificial neural networks .

Genetic algorithms

Introduction

All internal body surfaces are bathed with fluids that
contain a variety of molecules, some of which are
involved in innate immunity defense. Innate immunity
forms the first line of defense against microbial invasion,
and well-established mediators of this system include
antimicrobial peptides [1]. Lipids are also ubiquitously
present in body fluids [2], and there is increasing evidence
that selected lipids have antimicrobial activity [3, 4] and
form a lipid-mediated arm of the innate immunity
response. We have shown that cholesteryl esters have
antimicrobial properties and contribute to the innate
immunity of secretions of the airway mucosa [5, 6].
Developing an optimized separation method in order to
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characterize the role of individual lipids in innate
immunity would be a significant advance to this field.
Methods requiring minimal sample handling with high
recovery for subsequent functional assays are essential.
Current methods for cholesteryl ester analysis include
HPTLC [7], TLC-GC [8], and ES-MS/MS [9, 10]. A high-
performance liquid chromatography (HPLC) protocol for
cholesteryl ester analysis has been described by Cullen et
al. [11]. However, this protocol is suboptimal because
triglycerides are first removed, preventing complete lipid
analysis and thus adding additional steps. To meet our
interest in characterizing antimicrobial lipids, we devel-
oped a reversed-phase HPLC (rpHPLC) one-step protocol
for total lipid extracts that is suitable for both analytical
and preparative scale work, but in this method, cholesteryl
esters were incompletely resolved [5]. Because of the
evidence of an antimicrobial role for cholesteryl esters [5,
6], optimization of the analytical protocol became of
paramount importance.

The use of information processing techniques, in
particular artificial neural networks (ANN), has proved
valuable for a variety of separation methods [12–14]. When
combined with experimental design techniques, ANN
quickly optimizes the separation conditions and shortens
analysis time, and does so without knowledge of the
physical or chemical properties of the analytes [15]. In
terms of applications, a limited number of studies have
utilized ANN for optimizing HPLC experimental condi-
tions [15–17]. Others have used a hybrid artificial neural
network–genetic algorithm (ANN-GA) approach to im-
prove separation methods for isolated compounds [18] and
for routine pesticide analysis [19]. However, the incorpo-
ration of ANN-based methods for investigating the separa-
tion of complex human biological fluids is lagging,
particularly with regards to lipids. Herein, we describe the
first use of an ANN-GA approach for characterizing
cholesteryl esters in human body secretions.

Experimental

Chemicals and reagents

HPLC grade acetonitrile, reagent grade alcohol, water, and
chloroform were obtained from Fisher Scientific (New
Jersey, USA). HPLC grade dichloromethane was obtained
from EMD Chemicals Inc. (Darmstadt, Germany). Choles-
terol, cholesteryl arachidonate, cholesteryl linoleate, cho-
lesteryl palmitate, tri-palmitin (a highly hydrophobic
triglyceride with similar elution times as cholesteryl esters
in rpHPLC), cholesteryl stearate, and heptadecanoic acid
(internal standard for milk lipid extraction) were obtained
from Sigma-Aldrich (Missouri, USA).

Lipid standards

A mixture of cholesterol, cholesteryl arachidonate, choles-
teryl linoleate, cholesteryl palmitate, tri-palmitin, and
cholesteryl stearate, each at 1 mg/mL, was prepared in
dichloromethane.

Lipid extraction from human milk

Human milk from three different donors was purchased
from Mother’s Milk Bank, Denver, CO. Lipids were
extracted according to Bligh and Dyer [20] using 10 µL
aliquots for rpHPLC analysis and 20 µL aliquots for
ESI/MS/MS.

Chromatography

Under the control of Chromeleon® software (version 6.60
SP2), solutions of standards and extracts re-dissolved in
dichloromethane were manually injected (1–3 μL/injection,
20 μL injection loop) onto a reversed-phase column
(Dionex Acclaim PolarAdvantage II, a silica-based column
with a proprietary amide-embedded ligand, 150 mm×
2.1 mm ID, 3 μm particle size) preceded by a guard
column (Dionex Acclaim PolarAdvantage II, 2.1×10 mm,
5-μm particle size) in a temperature-controlled compart-
ment (Dionex model TCC-100 column oven). The column
had been previously equilibrated in the selected eluant and
was eluted (Dionex P680 low-pressure quaternary pump
with degasser) at specified flow rates. The eluant was
passed through an evaporative light-scattering detector
(ELSD, Alltech model 800). For fraction collection, the
ELSD was bypassed and collected fractions were dried in a
stream of nitrogen and stored at −20 °C for further analysis.

Mass spectral analysis

Cholesteryl esters in collected fractions were identified by
ES/MS and MS/MS according to Duffin et al. [9] and as
previously reported [5].

Experimental design

The influence of flow rate, ethanol and methanol content in
the mobile phase (acetonitrile), and column temperature on
cholesteryl ester separation was investigated with a frac-
tional factorial design where the number of experiments of
a full factorial design is reduced by a number p according to
2k − p. The choice of mobile phase components and column
temperature were based on preliminary observations.
Moreover, the selection of flow rate was based on studies
showing its effect on peak shape [21] and resolution [22].
The eight randomized experiments (run in triplicate for a

2368 M.A. Jansen et al.



total of 24 runs) and acquired data are highlighted in
Table 1. Data were analyzed in JMP (SAS Institute, USA)
statistical software.

Derringer’s desirability function

Cholesteryl ester separation was evaluated for the total
number of peaks, the retention time of the last eluting peak,
and the sum of all peak resolutions, as described in
Novotna et al. [15]. Each parameter was transformed into
a desirability variable (d) using Derringer’s two-sided
transformation [23]:

di ¼

Yi�Yi»
ci�Yi»

h is
Yi» � Yi � ci

Yi�Y
»

i

ci�Y
»

i

� �t
ci < Yi � Y

»
i

0 Yi < Yi» or Yi > Y
»
i

8>>><
>>>:

ð1Þ

where Yi is the measured response, Yi* the minimum
acceptable value, Yi

* the maximum acceptable value, and ci
is the target value of the measured response. Values of di
range from 0 to 1, with 1 being the most desirable. A
measured response below the minimum acceptable value or
above the maximum acceptable value produces the unac-
ceptable result di=0. Furthermore, the exponents s and t
adjust the importance of the target value relative to the
minimum and maximum values, respectively.

For the transformation of the total number of peaks, the
target value was set at 6 to match the number of analytes in
the standard mixture. The minimum acceptable value was
set at 1, while the maximum acceptable value was set at
8 to accommodate lipid oxidation or degradation that might
result in additional peaks. The exponents s and t were both
set at 3 to assign more weight to values closer to the target
value of 6. For the transformation of the retention time of
the last eluting peak, a target value of 25 min was chosen to

accommodate future studies of biological fluids and high
throughput analysis. The maximum value was set at
100 min, and s was set to 1 and t to 3 to match the
preference for a shorter run.

Before the sum of all peak resolutions was transformed
into a desirability value, resolution between consecutive
peaks was first calculated as:

R ¼ 2 t2 � t1ð Þ
w1 þ w2

ð2Þ

where t and w indicate the retention time and associated
baseline peak widths of the consecutive peaks,
respectively. To arrive at a target value, resolutions
between consecutive peaks were evaluated to allow for
the adequate spacing of additional cholesteryl esters or
other non-polar compounds like triglycerides [11]. The
resolution between the first and second peaks, cholesterol
and cholesteryl arachidonate, was set at 9 to avoid
interference from diglycerides and phospholipids, which
may elute in the same region [5]. The resolution between
each of the remaining consecutive peaks was set at 4. All
peak resolutions were summed, resulting in an overall
target value of 25. The minimum acceptable value was set
at 1, the maximum acceptable value was set at 28, s was
set at 1, and t was set at 3 so that the desirability would
increase moderately toward 25, but decline more rapidly
thereafter. The individual desirabilities of the three
parameters were subsequently merged into one single
numeric value D (response) as follows:

D ¼ dp � dt � dr
� �1=3 ð3Þ

where dp is the transformation of number of peaks, dt the
transformation of the retention time of the last peak, and dr
the transformation of the sum of all peak resolutions.

Table 1 Summary of factors and responses for screening runs

Experiment Factorsa Response (D)

Column T (°C) Ethanol (%) Methanol (%) Flow rate (mL/min) Run A Run B Run C Means ± SD Relative SD (%)

1 −1 (25°C) −1 (25) −1 (0) −1 (0.15) 0.418 0.503 0.203 0.375±0.154 41.2

2 +1 (35°C) −1 (25) −1 (0) +1 (0.45) 0.866 0.837 0.817 0.840±0.025 3.0

3 −1 (25°C) +1 (75) −1 (0) +1 (0.45) 0.148 0.156 0.150 0.151±0.004 2.8

4 +1 (35°C) +1 (75) −1 (0) −1 (0.15) 0.232 0.211 0.208 0.217±0.013 5.9

5 −1 (25°C) −1 (25) +1 (20) +1 (0.45) 0.908 0.922 0.924 0.918±0.009 0.9

6 +1 (35°C) −1 (25) +1 (20) −1 (0.15) 0.585 0.544 0.685 0.605±0.072 11.9

7 −1 (25°C) +1 (75) +1 (20) −1 (0.15) 0.247 0.260 0.237 0.248±0.011 4.6

8 +1 (35°C) +1 (75) +1 (20) +1 (0.45) 0.127 0.111 0.122 0.120±0.008 6.6

The response values from the individual runs (24 total) were used for ANN-GA analysis
a −1 and +1 indicate low and high value for the respective factors

Optimization of cholesteryl ester separation by ANN-GA and rpHPLC 2369



Artificial neural network–genetic algorithm approach

Figure 1 shows the ANN-GA strategy employing Leven-
berg–Marquardt backpropagation with a sigmoid transfer
function. ANNs are computational modeling tools defined
by structures comprising interconnected adaptive process-
ing elements that perform parallel computations for data
processing and interpretation [24]. A collection of process-
ing units communicates by activation of neurons over a
number of weighted connections [25]:

xlj ¼
XNl�1

i¼1

wl
ijx

l�1
i ð4Þ

where xj is the net effect and wl
ij is a connection weight. In a

given layer l, a standard neuron, j, integrates the signals, xj,
impinging upon it and producing the net effect. Input and
output layers are present and symbolize data inputs into the
neural network and response of the network to the inputs,
respectively.

Genetic optimization has proven beneficial in the determi-
nation of efficient neural network structure through a
population of individuals, which evolves toward optimum
solutions through defined genetic operators (selection, cross-
over, and mutation) [26, 27]. The GA used here operated
according to a general two-step process: (1) initialization of
the population and evaluation of each member of the initial
population and (2) reproduction until a stopping condition
was met. A population of random binary strings, each of

which represented a specific network architecture and set of
training parameters, were defined. The fitness of each trained
network was calculated according to:

Fitness ¼ W1 fe beð Þ þW2 ft btð Þ ð5Þ
where fe(ê) is the error between real output and ANN output,
ft( bt ) is the training time of ANN, and W1 and W2 are
appropriate values of weight. According to the observed
fitness, the GA method selected a new group of strings,
ostensibly representing the parents of the next generation
with an assigned probability of reproduction.

For this study, a two-point crossover approach (one that
calls for two points to be selected on the parent organism
string) was employed. Mutation ensured that the probability
of searching regions in the experimental space was never
zero and prevented loss of genetic material through
reproduction and crossover. The above process was
repeated until the best string that gave the maximum fitness
or minimum mean square error (MSE) was chosen. The
MSE was calculated as:

MSE ¼ SSE

n
ð6Þ

where SSE is the sum of squares error given by:

SSE ¼ Sum i¼1 to nð Þ wi yi�fið Þ2f g ð7Þ

and yi is the observed data value, fi the predicted value from
the fit, and wi the weighting applied to each data point,

Fig. 1 Schematic of the hybrid
artificial neural network–genetic
algorithm (ANN-GA) method
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usually wi=1. For objective appreciation, synaptic weights
and bias were set at 0.01 and 0.1, respectively. GA
configuration values included a maximum generation of
100, a crossover probability of 0.5, and a mutation
probability of 0.01. All data were cross-checked to ensure
accuracy and validity and analyzed via JMP (SAS Institute,
USA) and MATLAB 7.8 (The Math Works, USA).

Results and discussion

Experimental design

From the experimental design matrix (Table 1), eight
experiments (performed in triplicate) were analyzed in
randomized order with the mean response and standard
error reported. Factorial ANOVA results confirmed good
agreement between measured and predicted values, with the
summary of fit reported at r2=0.96. The general ANOVA
calculations for the linear model are presented in Table 2.
Prob > F represents the significance probability for the F
ratio, which states that if the null hypothesis is true, a larger
F statistic would only occur due to random error.
Significance probabilities of ≤0.05 are evidence of at least
one significant regression factor in the model. Close
examination of Prob > F revealed that percent ethanol has
the greatest significant single effect (<0.001) on the model
response, D. Ethanol also exhibited a significant interactive
effect when combined with flow rate (<0.001).

ANN-GA prediction and validation

Transformed data obtained from the fractional factorial
design was used as the study data set for ANN-GA
modeling. This data set was randomly divided with a 90%
split between the training (70%) and test sets (30%), and
the additional 10% set aside for validation. The training
data set was used for model fitting in computing the
gradient and updating network weights and biases. The
optimal ANN architecture (Fig. 2), realized in 18 gener-
ations, included three hidden neurons and a MSE of 0.112.
Typically, the smaller the MSE value, the smaller is the
difference between the predicted results and the actual data,
and thus the better the prediction performance was realized

for the neural model. At this point, the network had the best
generalization ability. The test set was then employed to
check and verify the trained neural network. A plot of
experimental responses versus peak responses predicted by
ANN-GA for training and verification of the optimum
architecture, which exhibited excellent model fitting (r2=
0.97, n=10) is presented in Fig. 3. Poor agreement would
be indicative of overlearning. However, the level of
correlation exhibited in this study confirms that the optimal
neural network selected adequately modeled the response
(D) for the six analyte standards.

From the data patterned by the ANN-GA model, a
response surface was generated for the two interactive factors
(percent ethanol and flow rate), with the largest value on the
response surface corresponding to the greatest distribution of
associated peaks. Software-generated ANN simulation runs
were obtained as a result of examining the response surface,
with five validation conditions that resulted in maximum
predicted response values chosen for experimental verifica-
tion. A summary of the modeled factors and responses are
presented in Table 3. As shown, successful validation was
achieved, with experimental responses in good agreement

Fig. 2 Schematic of the optimized ANN architecture realized in this
study

Table 2 ANOVA calculations for the linear model

Source df Sum of squares Mean square F ratio

Model 7 2.082 0.2974 60.94

Error 16 0.078 0.0048 Prob>F

C. Total 23 2.160 <0.0001

df degrees of freedom, C.Total corrected total
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Fig. 3 Plot of experimental response versus the response predicted by
the ANN-GA model for training and verification
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(<6.2% discrepancy difference) with model-predicted
responses. Modeled conditions from validation run 1 were
used to compare peak separation before and after ANN-GA
optimization as shown in the representative chromatographs
presented in Fig. 4a, b, respectively. In Fig. 4b, six
discernible and fully resolved peaks are noticeable, including
the two previously co-eluting peaks, cholesteryl palmitate
and tripalmitin. The average retention time of the last peak
for this separation was 38.0 min. As this criteria was
considered less critical, the trade-off between retention time
and peak resolution was deemed acceptable.

Considering that a satisfactory peak separation was
achieved with a limited number of HPLC runs, this study
confirms the suitability of the ANN-GA model in method

optimization for rpHPLC. In contrast, manipulation of
parameters via trial and error did not lead to a substantially
improved separation of cholesteryl esters after more than 50
runs, and hence, this approach was abandoned (data not
shown). Previously, ANN has been used successfully to
separate structurally similar compounds, namely, indinavir
and lactone, using HPLC [28], and complex mixtures of
neuropeptides [15].

To assess whether the improved method (validation run
1) would be applicable to complex biological fluids, we
subjected extracted human milk lipids to rpHPLC using the
same experimental conditions dictated by the ANN-GA
model. Choosing a lipid-rich fluid provided a robust test of
the ANN-GA model. Since fatty acids and other lipids in
human milk may interfere with cholesteryl ester separation
[29], we included a water gradient (15% to 0% H2O, 16.5%
to 19.4% reagent alcohol with acetonitrile in the first 5 min
of the separation) before the isocratic gradient used for
validation run 1. This water gradient had previously been
successful in separating free fatty acids in our laboratory
(unpublished data).

Figure 5 shows representative chromatograms of three
different lipid analyses from human milk before (Fig. 5a,
isocratic gradient with 50% alcohol/50% acetonitrile) and
after method optimization (Fig. 5b, gradient according to
validation run 1). The numbers in the chromatogram
indicate fractions that were collected in a subsequent run
for further ESI/MS and MS/MS analysis. Even with this
lipid-rich complex fluid, the optimized method designed for
cholesteryl ester analysis produced an improved separation
of non-polar lipids as reflected in peak shape and baseline
separation. Specifically, 14 discernible peaks in the region
of less polar and non-polar lipids of which only two
returned to the baseline were recorded using the pre-
optimization method, while 17 distinct peaks in this region
of which seven returned to the baseline were recorded after
ANN-GA optimization.
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Fig. 4 Reversed-phase HPLC chromatograms of cholesteryl ester
analysis before (a) and after (b) ANN-GA optimization employing
validation run 1. Three micrograms each of cholesterol (C),
cholesteryl arachidonate (Ca), cholesteryl linoleate (Cl), cholesteryl
palmitate (Cp), tri-palmitin (Tp), and cholesteryl stearate (Cs) were
injected

Table 3 Summary of factors and responses for validation runs

Experiment Factorsa Response (D)

Column T (°C) Ethanol (%) Methanol (%) Flow rate (mL/min) Mean ± SD (n=3) Relative SD (%) Predicted Deviationb (%)

1 25.7 19.1 7.1 0.59 0.924±0.025 2.7 0.948 −2.4
2 31.7 19.0 17.1 0.45 0.889±0.036 4.1 0.947 −6.2
3 27.3 22.0 12.9 0.43 0.879±0.012 1.4 0.920 −4.4
4 30.2 22.2 18.0 0.42 0.912±0.020 2.1 0.908 0.4

5 29.9 23.9 2.0 0.56 0.915±0.030 3.3 0.901 1.5

6 30.0 20.0 10.0 0.55 0.896±0.007 0.8 0.937 −4.4

a −1 and +1 indicate low and high value for the respective factors
b [(measured response value − predicted response value)/predicted response value] × 100
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ESI/MS and MS/MS analysis of the collected fractions
revealed an overall improved separation of the four
cholesteryl esters that had been employed for modeling
(Table 4). A complete listing of masses and cholesteryl
esters found in the collected fraction is given in Electronic
supplementary materials (ESM) Table S1. The complexity
of the identified cholesteryl esters is in agreement with
previous reports on cholesteryl ester content in human milk
[30], though we were able to identify additional cholesteryl
esters not previously described, possibly due to our one-
step separation approach. The former study employed
preparative TLC prior to methylation and gas liquid
chromatography to identify the constituent fatty acids of

milk cholesteryl esters. Carroll and Rudel [31] established
an HPLC method in which cholesterol and ten cholesteryl
esters were separated, of which seven lipids were partially
and four were fully resolved. However, this method
required two identical columns connected in series [32].
This effectively increased peak resolution by increasing
column length. Further peak separation of complex biolog-
ical fluids with our current one protocol would be also
expected with increasing the column length. Others have
achieved a combination of partial and complete separation
of up to 14 cholesteryl esters and cholesterol, but pre-
purification to remove triglycerides by hydrolysis or silica
gel-60 column chromatography was required to remove
interfering components [11, 33]. In contrast, here, we have
shown an rpHPLC method that improves separation of
cholesteryl esters in a complex biological fluid without a
pre-purification step on a single column, which will
accelerate studies on the biological role of individual
cholesteryl esters in mucosal secretions.

Conclusion

This study provides guidance for the development and
application of experimental design methodology and ANN-
GA modeling tools for rapid optimization of the HPLC
method used to separate cholesteryl esters. This approach
optimally determined a set of conditions in which choles-
teryl esters were fully separated in standard mixtures and
better resolved in a complex biological fluid in a timely
fashion. This method improvement will facilitate studies to
unveil the biological function of cholesteryl esters in innate
immunity. Moreover, as a general-purpose optimization
approach, ANN-GA modeling will likely prove useful for a
wide range of method optimizations concerning complex
biological samples.

Cholesteryl ester Before ANN-GA After ANN-GA

Fraction Relative intensity (%) Fraction Relative intensity (%)

Cholesteryl palmitate 2 1.7 2 1.25

4 5.4 4 7.3

8 12 7 5

9 10 8 15

11 12

Cholesteryl stearate 9 12 9 11
10 9

Cholesteryl linoleate 7 100 2 1.4

6 100

10 1.2

Cholesteryl arachidonate 6 12.5 6 20

7 10

Table 4 Elution profile of se-
lected cholesteryl esters
extracted from human milk in
rpHPLC before and after ANN-
GA modeling

Individual fractions collected as
indicated in Fig. 5 were subjected
to ESI/MS and MS/MS analysis
and the masses determined for
NH4

+ adducts were compared with
reported masses for cholesteryl
esters. Reported are the fraction(s)
in which cholesteryl esters used for
ANN-GA modeling eluted and
their relative intensity among all
masses found in this fraction. See
ESM Table S1 data file for full
cholesteryl ester profile

a

1 2

4
3

6

7

8

9
10

11
5

1213

b

4

3

6

7

8

9 10

5

1 2

0         5        10       15       20       25       30       35      40        45     

3,000

2,000

1,000

0

-500

2,000

1,500

1,000

500

0

Retention Time (min)

P
ea

k 
H

ei
gh

t (
m

V
)

Fig. 5 Reversed-phase HPLC chromatograms of lipid extract from
human milk before (a) and after (b) ANN-GA optimization employing
validation run 1. Lipid extract from 10 μL of human milk, spiked with
40 μg heptadecanoic acid as internal standard, was injected. Fraction
numbers that were further analyzed by ES/MS and MS/MS are
indicated (see Table 4 and ESM Table S1)

Optimization of cholesteryl ester separation by ANN-GA and rpHPLC 2373



Acknowledgments This research was funded by 1 P20 MD001824
(EP) from the National Institutes of Health. GH acknowledges support
from the John Stauffer Charitable Trust and the Swenson Summer
Research Internship Program. The authors also acknowledge Katina
Landon and Christine Markowitz for their help with initial model
development exercises.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

1. Mookherjee N, Rehaume LM, Hancock RE (2007) Cathelicidins
and functional analogues as antisepsis molecules. Expert Opin
Ther Targets 11:993–1004

2. Strandvik B (2004) Fatty acid metabolism in cystic fibrosis. N
Engl J Med 350:605–607

3. Georgel P, Crozat K, Lauth X, Makrantonaki E, Seltmann H, Sovath
S, Hoebe K, Du X, Rutschmann S, Jiang Z, Bigby T, Nizet V,
Zouboulis CC, Beutler B (2005) A Toll-like receptor 2-responsive
lipid effector pathway protects mammals against skin infections with
Gram-positive bacteria. Infect Immun 73:4512–4521

4. Tollin M, Bergsson G, Kai-Larsen Y, Lengqvist J, Sjovall J,
Griffiths W, Skuladottir GV, Haraldsson A, Jornvall H, Gud-
mundsson GH, Agerberth B (2005) Vernix caseosa as a multi-
component defence system based on polypeptides, lipids and their
interactions. Cell Mol Life Sci 62:2390–2399

5. Do TQ, Moshkani S, Castillo P, Anunta S, Pogosyan A, Cheung
A, Marbois B, Faull KF, Ernst W, Chiang SM, Fujii G, Clarke CF,
Foster K, Porter E (2008) Lipids including cholesteryl linoleate
and cholesteryl arachidonate contribute to the inherent antibacte-
rial activity of human nasal fluid. J Immunol 181:4177–4187

6. Lee JT, Jansen MA, Yilma AN, Nguyen A, Desharnais R, Porter E
(2010) Antimicrobial lipids: novel innate defense molecules are
elevated in sinus secretions of patients with chronic rhinosinusitis.
Am J Rhinol Allergy 24:99–104

7. Stahl J, Niedorf F, Kietzmann M (2009) Characterisation of
epidermal lipid composition and skin morphology of animal skin
ex vivo. Eur J Pharm Biopharm 72:310–316

8. Sattler W, Reicher H, Ramos P, Panzenboeck U, Hayn M,
Esterbauer H, Malle E, Kostner GM (1996) Preparation of fatty
acid methyl esters from lipoprotein and macrophage lipid
subclasses on thin-layer plates. Lipids 31:1302–1310

9. Duffin K, Obukowicz M, Raz A, Shieh JJ (2000) Electrospray/
tandem mass spectrometry for quantitative analysis of lipid
remodeling in essential fatty acid deficient mice. Anal Biochem
279:179–188

10. Liebisch G, Binder M, Schifferer R, Langmann T, Schulz B, Schmitz
G (2006) High throughput quantification of cholesterol and
cholesteryl ester by electrospray ionization tandem mass spectrom-
etry (ESI-MS/MS). Biochim Biophys Acta 1761:121–128

11. Cullen P, FobkerM, TegelkampK,MeyerK,Kannenberg F, Cignarella
A, Benninghoven A, Assmann G (1997) An improved method for
quantification of cholesterol and cholesteryl esters in humanmonocyte-
derivedmacrophages by high performance liquid chromatographywith
identification of unassigned cholesteryl ester species by means of
secondary ion mass spectrometry. J Lipid Res 38:401–409

12. Jurado JM, Ballesteros O, Alcazar A, Pablos F, Martin MJ,
Vilchez JL, Navalon A (2008) Differentiation of certified brands
of origins of Spanish white wines by HS-SPME-GC and chemo-
metrics. Anal Bioanal Chem 390:961–970

13. Jinno K, Quiming NS, Denola NL, Saito Y (2009) Modeling of
retention of adrenoreceptor agonists and antagonists on polar
stationary phases in hydrophilic interaction chromatography: a
review. Anal Bioanal Chem 393:137–153

14. Riveros TA, Porcasi L, Muliadi S, Hanrahan G, Gomez FA (2009)
Application of artificial neural networks in the prediction of
product distribution in electrophoretically mediated microanalysis.
Electrophoresis 30:2385–2389

15. Novotna K, Havlis J, Havel J (2005) Optimisation of high
performance liquid chromatography separation of neuroprotective
peptides. Fractional experimental designs combined with artificial
neural networks. J Chromatogr A 1096:50–57

16. Webb R, Doble P, Dawson M (2009) Optimisation of HPLC
gradient separations using artificial neural networks (ANNs):
application to benzodiazepines in post-mortem samples. J Chro-
matogr B Analyt Technol Biomed Life Sci 877:615– 620

17. Petritis K, Kangas LJ, Yan B, Monroe ME, Strittmatter EF, Qian
WJ, Adkins JN, Moore RJ, Xu Y, Lipton MS, Camp DG, Smith
RD (2006) Improved peptide elution time prediction for reversed-
phase liquid chromatography–MS by incorporating peptide
sequence information. Anal Chem 78:5026–5039

18. Tham SY, gatonovic-Kustrin S (2002) Application of the artificial
neural network in quantitative structure–gradient elution retention
relationship of phenylthiocarbamyl amino acids derivatives. J
Pharm Biomed Anal 28:581–590

19. Carneiro RL, Braga JW, Bottoli CB, Poppi RJ (2007) Application
of genetic algorithm for selection of variables for the BLLS
method applied to determination of pesticides and metabolites in
wine. Anal Chim Acta 595:51–58

20. Bligh EG, Dyer WJ (1959) A rapid method of total lipid
extraction and purification. Can J Biochem Physiol 37:911–917

21. McCalley DV (2000) Effect of temperature and flow-rate on analysis
of basic compounds in high-performance liquid chromatography
using a reversed-phase column. J Chromatogr A 902:311–321

22. Aboul-Enein HY, Ali I (2002) Optimization strategies for HPLC
enantioseparation of racemic drugs using polysaccharides and
macrocyclic glycopeptide antibiotic chiral stationary phases.
Farmaco 57:513–529

23. Derringer G, Suich R (1980) Simultaneous optimization of several
response variables. J Qual Techn 12:214–219

24. Massart DL Despagne F (1998) Neural networks in multivariate
calibration. Analyst 123:157R–178R

25. Basheer IA Hajmeer M (2000) Artificial neural networks: fundamen-
tals, computing, design, and application. J Microbiol Methods 43:3–31

26. Mitchell M (1999) An introduction to genetic algorithms. MIT
Press, Cambridge

27. Jalali-Heravi M, Kyani A (2007) Application of genetic
algorithm-kernel partial least square as a novel nonlinear feature
selection method: activity of carbonic anhydrase II inhibitors. Eur
J Med Chem 42:649–659

28. Jancic-Stojanovic B, Ivanovic D, Malenovic A, Medenica M
(2009) Artificial neural networks in analysis of indinavir and its
degradation products retention. Talanta 78:107–112

29. Isaacs CE (2005) Human milk inactivates pathogens individually,
additively, and synergistically. J Nutr 135:1286–1288

30. Bitman J, Wood DL, Mehta NR, Hamosh P, Hamosh M (1986)
Comparison of the cholesteryl ester composition of human milk from
preterm and term mothers. J Pediatr Gastroenterol Nutr 5:780–786

31. Carroll RM, Rudel LL (1981) Evaluation of a high-performance
liquid chromatography method for isolation and quantitation of
cholesterol and cholesteryl esters. J Lipid Res 22:359–363

32. Dong MW (2006) Modern HPLC for practicing scientists. Wiley,
Hoboken

33. Cheng B, Kowal J (1994) Analysis of adrenal cholesteryl esters by
reversed phase high performance liquid chromatography. J Lipid
Res 35:1115–1121

2374 M.A. Jansen et al.


	Evolving neural network optimization of cholesteryl ester separation by reversed-phase HPLC
	Abstract
	Introduction
	Experimental
	Chemicals and reagents
	Lipid standards
	Lipid extraction from human milk
	Chromatography
	Mass spectral analysis
	Experimental design
	Derringer’s desirability function
	Artificial neural network–genetic algorithm approach

	Results and discussion
	Experimental design
	ANN-GA prediction and validation

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




