
UC Berkeley
UC Berkeley Previously Published Works

Title
Satisfiability and Synthesis Modulo Oracles

Permalink
https://escholarship.org/uc/item/6tj4r9bk

Authors
Polgreen, Elizabeth
Reynolds, Andrew
Seshia, Sanjit A

Publication Date
2022

DOI
10.1007/978-3-030-94583-1_13

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6tj4r9bk
https://escholarship.org
http://www.cdlib.org/

Satisfiability and Synthesis Modulo Oracles

Elizabeth Polgreen1,2 and Andrew Reynolds3 and Sanjit A. Seshia1

1 University of California, Berkeley
2 University of Edinburgh

3 University of Iowa

Abstract. In classic program synthesis algorithms, such as counterexample-
guided inductive synthesis (CEGIS), the algorithms alternate between a
synthesis phase and an oracle (verification) phase. Many synthesis al-
gorithms use a white-box oracle based on satisfiability modulo theory
(SMT) solvers to provide counterexamples. But what if a white-box
oracle is either not available or not easy to work with? We present a
framework for solving a general class of oracle-guided synthesis problems
which we term synthesis modulo oracles (SyMO). In this setting, oracles
are black boxes with a query-response interface defined by the synthesis
problem. As a necessary component of this framework, we also formalize
the problem of satisfiability modulo theories and oracles (SMTO), and
present an algorithm for solving this problem. We implement a proto-
type solver for satisfiability and synthesis modulo oracles and demon-
strate that, by using oracles that execute functions not easily modeled in
SMT-constraints, such as recursive functions or oracles that incorporate
compilation and execution of code, SMTO and SyMO can solve problems
beyond the abilities of standard SMT and synthesis solvers.

1 Introduction

A common formulation of program synthesis is to find a program, from a specified
class of programs, that meets some correctness specification [4]. Classically, this

is encoded as the 2nd-order logic formula ∃~f.∀~x. φ, where ~f is a set of target
functions to be synthesized, ~x is a set of 0-ary symbols, and φ is a quantifier-free
formula in a logical theory (or combination of theories) T . A tuple of functions
~f∗ satisfies the semantic restrictions if the formula ∀~x φ is valid in T when the
tuple is substituted for ~f in φ. Many problems are specified in this form, and
the SyGuS-IF format [24] is one way of specifying such syntax-guided synthesis
(SyGuS) problems.

Whilst powerful, this format is restrictive in one key way: it requires the cor-
rectness condition to be specified with static constraints, as satisfiability modulo
theories (SMT) [8] formulas, before the solving process begins. This limits the
problems that can be specified, as well as the oracles that can be used to guide
the search. For example, if one wants to synthesize (parts of) a protocol whose
correctness needs to be checked by a temporal logic model checker (e.g. [30]),
such a model-checking oracle cannot be directly invoked within a general-purpose
SyGuS solver and instead requires creating a custom solver.

Similarly, SMT solvers, used widely in verification and synthesis, require
their input to be encoded as a logical formula prior to the initiation of solving.
Whilst the language of SMT-LIB is powerful and expressive, many formulas
are challenging for current SMT solvers to reason about; e.g., as in Figure 1,
finding a prime factorization of a given number. Here it would be desirable to
abstract this reasoning to an external oracle that can be treated as a black-box
by the SMT solver, rather than rely on the SMT solver’s ability to reason about
recursive functions.

(de f ine −fun−r e c isPrimeRec ((a Int) (b Int)) Bool
(i t e (> b (div a 2)) t rue

(i t e (= (mod a b) 0)
f a l s e
(isPrimeRec a (+ b 1)))))

(de f ine −fun isPr ime ((a Int)) Bool
(i t e (<= a 1)

f a l s e
(isPrimeRec a 2)))

(a s s e r t (and (isPr ime f1) (i sPr ime f2) (i sPr ime f3)))
(a s s e r t (= (∗ f 1 f 2 f 3) 76))

Fig. 1: SMT problem fragment: find prime factors of 76. Unsolved by CVC5 v1.0.
Solved by SMTO using isPrime oracle in < 1s.

This motivates our introduction of oracles to synthesis and SMT solving. Or-
acles are black-box implementations that can be queried based on a pre-defined
interface of query and response types. We call these “black-box” because the
SMT solver does not view the internal implementation of the oracle, and instead
queries the oracle via the interface. Examples of oracles could be components of
systems that are too large and complex to analyze or model with logical formulas
(but which can be treated as black boxes and executed on inputs) or external
verification engines solving verification queries beyond SMT solving.

Prior work has set out a theoretical framework expressing synthesis algo-
rithms as oracle-guided inductive synthesis [21], where a learner interacts with an
oracle via a pre-defined oracle interface. However, that work does not give a gen-
eral algorithmic approach to solve oracle-guided synthesis problems or demon-
strate the framework on practical applications. An important contribution we
make in this work is to give a unified algorithmic approach to solving oracle-
guided synthesis problems, termed SyMO. The SyMO approach is based on a
key insight: that query and response types can be associated with two types of
logical formulas: verification assumptions and synthesis constraints. The former
provides a way to encode semantic restrictions on black-box oracle behavior into

2

an SMT formula, whereas the latter provides a way for oracles to guide the
search of the synthesizer.

(a) Original image (b) Target image

Fig. 2: Image manipulation: given two images, SyMO synthesizes the pixel-by-
pixel transformation in < 1 sec.

To explain the use-case for assumptions, let us first introduce oracle function
symbols and Satisfiability Modulo Theories and Oracles (SMTO). Oracle func-
tion symbols are n-ary symbols whose behavior is associated with some oracle.
Intuitively we use these to model parts of the system that are challenging for the
SMT solver, e.g., the problem of checking if a number is prime is shown modeled
using an oracle in Example 1(Section 2.1). Here the oracle symbol is θP .

In general, consider a quantifier-free formula ρ which contains an oracle func-
tion symbol θ. SMTO looks for a satisfying assignment to the formula based on
initially assuming θ is a universally quantified uninterpreted function (i.e., we
look for a satisfying assignment that would work for any possible implementa-
tion of the oracle): ∀θ.ρ. As we make calls to the oracle, we begin to learn more
about its behavior, and we encode this behavior as assumptions α, such that the
formula becomes ∀θ.α⇒ ρ. Specifically, for the example in Example 1, we must
call the oracle on a specific value to generate an assumption that constrains the
behavior of θP to return true on that input value. This is the primary use case
for assumptions generated by oracles, they are used to constrain the behavior of
oracle function symbols.

In SyMO, we can use these oracles to model external verification modules.
Thus determining the correctness of a candidate function is an SMTO problem,
and assumptions generated by oracles are used in the SMTO solving process.
We also use oracles to generate additional constraints that further constrain the
search space of the synthesis.

As an exemplar of an existing oracle-guided synthesis algorithm, consider
ICE-learning [19] for invariant synthesis. ICE-learning uses three oracles: an
oracle to provide positive examples (examples which should be contained within
the invariant); an oracle to provide negative examples (examples which should
not be contained within the invariant); and an oracle to provide implication
examples (an example pair where if the first element is contained within the
invariant, both must be contained). Whilst it is possible to build some of these

3

oracles using an SMT solver, it is often more effective to construct these oracles
in other ways, for instance, the positive example oracle can simply execute the
loop or system for which an invariant is being discovered and return the output.
These oracles gradually constrain the search space of the synthesis until a correct
invariant is found.

We implement SyMO in a prototype solver Delphi, and hint at its broad
utility by demonstrating several applications including programming by exam-
ple, synthesis of controllers for LTI systems, synthesizing image transformations
(e.g., Figure 2), and satisfiability problems that reason about primes (e.g., Fig-
ure 1). This illustrates the power of being able to incorporate oracles into SyMO
that are too complex to be modeled or for SMT solvers to reason about.

To summarize, the main contributions of this paper are:

• A formalization of the problem of satisfiability and synthesis modulo oracles
(Sec. 2);

• A unifying algorithmic approach for solving these problems (Sec. 3 and Sec. 4);

• Demonstration of how this approach can capture popular synthesis strategies
from the literature (Sec. 5), and

• A prototype solver Delphi, and an experimental demonstration of the broad
applicability of this framework (Sec. 6).

Related work Almost all synthesis algorithms can be framed as some form
of oracle-guided synthesis. Counterexample-guided inductive synthesis (CEGIS)
is the original synthesis strategy used for Syntax-Guided Synthesis [29], and
uses a correctness oracle that returns counterexamples. Further developments
in synthesis typically fall into one of two categories. The first comprises in-
novative search algorithms to search the space more efficiently; for instance,
genetic algorithms [16], reinforcement learning [28], or partitioning the syntac-
tic search space in creative ways [5]. It is worth noting that the framework we
present uses constraints to guide the search of the synthesis solver but these
constraints are restricted to semantic and not syntactic constraints. The sec-
ond category comprises extensions to the communication paradigm permitted
between the synthesis and the verification phase. For instance, CEGIS modulo
theories [3], CEGIS(T), extends the oracle interface over standard CEGIS to
permit responses in the form of a restricted set of constraints over constants in
the candidate program. Other work leverages the ability to classify counterex-
amples as positive or negative examples [23]. There are also notable algorithms
in invariant synthesis based on innovative use of different query types [23, 19].
Our work has one key stand-out difference over these: in all of these algorithms,
the correctness criteria must be specified as a logical formula, whereas in our
framework we enable specification of the correctness criteria as a combination of
a logical formula and calls to external oracles which may be opaque to the solver.
Synthesis with distinguishing inputs [20] is an exception to this pattern and uses
a specific set of three interacting black-box oracles, to solve the very specific
problem of synthesis of loop-free programs from components. Our work differs
from this and the previously-mentioned algorithms in that they are customized

4

to use certain specific types of oracle queries, whereas, we give a “meta-solver”
allowing any type of oracle query that can be formulated as either generating a
constraint or an assumption in the form of a logical formula.

The idea of satisfiability with black-boxes has been tackled before in work on
abstracting functional components as uninterpreted/partially-interpreted func-
tions (see, e.g., [6, 13, 12]), which use counterexample-guided abstraction refine-
ment [14]. Here, components of a system are abstracted and then refined based
on whether the abstraction is sufficiently detailed to prove a property. However,
to do this, the full system must be provided as a white-box. The key contribu-
tion our work makes in this area is a framework allowing the use of black-box
components that obey certain query-response interface constraints, where the
refinement is dictated by these constraints and the black-box oracle interaction.
A related problem is synthesising summaries of black-boxes, where existing tech-
niques use only input-output examples [15].

2 Oracles

In this section, we introduce basic definitions and terminology for the rest of the
paper. We begin with some preliminaries about SMT and synthesis.

2.1 Preliminaries and Notation

We use the following basic notations throughout the paper. If e is an expression
and x is free in e, let e·{x→ t} be the formula obtained from the formula e by
proper substitution of the variable x by the variable t.

Satisfiability Modulo Theories (SMT) The input to an SMT problem is a
first-order logical formula ρ. We use ≈ to denote the (infix) equality predicate.
The task is to determine whether ρ is T -satisfiable or T -unsatisfiable, that is,
satisfied by a model which restricts the interpretation of symbols in ρ based on
a background theory T . If ρ is satisfiable, a solver will usually return a model
of T that makes ρ true, which will include assignments to all free variables in ρ.
We additionally say that a formula is T -valid if it is satisfied by all models of T .

Syntax-Guided Synthesis In syntax-guided synthesis, we are given a set of
functions ~f to be synthesized, associated languages of expressions ~L = L1, . . . , Lm

(typically generated by grammars), and we seek to solve a formula of the form

∃~f ∈ ~L.∀~x. φ

where ~x = x1 . . . xn is a set of 0-ary symbols and φ is a quantifier-free formula in
a background theory T . In some cases, the languages Li include all well-formed
expressions in T of the same sort as fi, and thus Li can be dropped from the
problem. A tuple of candidate functions ~f∗ satisfies the semantic restrictions for
functions-to-synthesize ~f in conjecture ∃~f.∀~x. φ in background theory T if ∀~xφ
is valid in T when ~f are defined to be terms whose semantics are given by the
functions (~f∗) [4, 24].

5

2.2 Basic Definitions

We use the term oracle to refer to a component that can be queried in a pre-
defined way by the solver. An oracle interface defines how an oracle can be
queried. Apart from queries made via the oracle interface, the oracle is treated
by the solver as a black-box. This concept is borrowed from [21]. We extend the
definition of oracle interfaces to also provide the solver with information on the
meaning of the response, in the form of expressions that generate assumptions
or constraints.

Definition 1 (Oracle Interface). An oracle interface I is a tuple (~y, ~z, αgen, βgen)
where:

– ~y is a list of sorted variables, which we call the query domain of the oracle
interface;

– ~z is a list of sorted variables, which we call its response co-domain;
– αgen is a formula whose free variables are a subset of ~y, ~z, which we call its

assumption generator; and
– βgen is a formula whose free variables are a subset of ~y, ~z, which we call its

constraint generator.

2

Notice that αgen and βgen may contain any symbols of the background theory,
as well as user-defined function symbols, which in particular will include oracle
function symbols, as we introduce later in this section. We assume that all oracle
interfaces have an associated oracle that implements their prescribed interface for
values of the input sort, and generates concrete values as output. In particular,
an oracle for an oracle interface of the above form accepts a tuple of values
with sorts matching ~y, and returns a tuple of values with sorts matching ~z. It
is important to note that the notion of a value is specific to a sort, which we
intentionally do not specify here. In practice, we assume e.g. the standard values
for the integer sort; we assume all closed lambda terms are values for higher-order
sorts, and so on.

An oracle interface defines how assumptions and constraints can be given to
a solver via calls to black-box oracles, as given by the following definition.

Definition 2 (Assumptions and Constraints Generated by an Oracle
Interface). Assume I is an oracle interface of form (~y, ~z, αgen, βgen). We say

formula αgen·{~y → ~c, ~z → ~d} is an assumption generated by I if calling its

associated oracle for input ~c results in output ~d. In this case, we also say that
βgen·{~y → ~c, ~z → ~d} is a constraint generated by I. 2

We are now ready to define the main problems introduced by this paper.
In the following definition, we distinguish two kinds of function symbols: oracle
function symbols, which are given special semantics in the following definition;
all others we call ordinary function symbols. As we describe in more detail in
Section 3, oracle function symbols allow us to incorporate function symbols that
correspond directly to oracles in specifications and assertions.

6

Definition 3 (Satisfiability Modulo Theories and Oracles). A satisfiabil-

ity modulo theories and oracles (SMTO) problem is a tuple (~f, ~θ, ρ, ~I), where ~f

is a set of ordinary function symbols, ~θ is a set of oracle function symbols, ρ is
a formula in a background theory T whose free function symbols are ~f] ~θ, and
~I is a set of oracle interfaces. We say this input is:

– unsatisfiable if ∃~f.∃~θ.A ∧ ρ ∧B is T -unsatisfiable,
– satisfiable if ∃~f.∀~θ.A⇒ (ρ ∧B) is T -satisfiable,

where, in each case, A (resp. B) is a conjunction of assumptions (resp. con-

straints) generated by ~I. 2

According to the above semantics, constraints are simply formulas that we
conjoin together with the input formula. Assumptions play a different role. In
particular, they restrict the possible interpretations of ~θ that are relevant. As
they appear in the antecedent in our satisfiability criteria, values of ~θ that do
not satisfy our assumptions need not be considered when determining whether
an SMTO input is satisfiable. As a consequence of the quantification of ~θ, by
convention we will say a model M for an SMTO problem contains interpretations
for function symbols in ~f only; the values for ~θ need not be given.

It is important to note the role of the quantification for oracle symbols ~θ in
the above definition. An SMTO problem is unsatisfiable if the conjunction of
assumptions, input formula, and constraints are unsatisfiable when treating ~θ
existentially, i.e. as uninterpreted functions. Conversely, an SMTO problem is
satisfiable only if there exists a model satisfying (ρ ∧ B) for all interpretations

of ~θ for which our assumptions A hold. An example satisfiable SMTO problem
is shown in Example 1.

Example 1: SMTO problem, searching for prime factors:

(~f = {f1, f2}, ~θ = {θp}, θP (f1) ∧ θP (f2) ∧ f1 ∗ f2 ≈ 91, ~J = {JP })

where JP is defined as follows:

JP = ((x : Int), (z : Bool), θP (x) ≈ z, >)

This problem is satisfiable, and a satisfying assignment is f1 ≈ 7, f2 ≈ 13, when
the following assumptions are generated A = {θP (7) ≈ true, θP (13) ≈ true}.

In the absence of restrictions on oracle interfaces ~I, an SMTO problem can be
both satisfiable and unsatisfiable, depending on the constraints and assumptions
generated. For instance, when A becomes equivalent to false, the input is trivially
both unsatisfiable and satisfiable. However, in practice, we define a restricted
fragment of SMTO, for which this is not the case, and we present a dedicated

7

procedure for this fragment in Section 3. To define this fragment, we introduce
the following definition.

Definition 4 (Oracle Interface Defines Oracle Function Symbol). An
oracle interface J defines an oracle function symbol θ if it is of the form ((y1, . . . yj), (z), θ(y1, . . . yj) ≈
z, ∅), and its associated oracle O is functional. In other words, calling the oracle
interface generates an equality assumption of the form θ(y1, . . . yj) ≈ z only. 2

From here on, as a convention, we use J to refer to an oracle interface that
specifically defines an oracle function symbol, and I to refer to a free oracle
interface, i.e., an oracle interface that may not define an oracle function symbol.

Definition 5 (Definitional Fragment of SMTO). An SMTO problem (~f, ~θ, ρ, ~J)

is in the Definitional Fragment of SMTO if and only if ~θ = (θ1, . . . , θn), ~J =
(J1, . . . ,Jn), and Ji is an oracle interface that defines θi for i = 1, . . . , n. 2

Note that each oracle function symbol is defined by one and only one oracle
interface. Example 1 is in the definitional SMTO fragment.

We are also interested in the problem of synthesis in the presence of oracle
function symbols, which we give in the following definition.

Definition 6 (Synthesis Modulo Oracles). A synthesis modulo oracles (SyMO)

problem is a tuple (~f, ~θ,∀~x. φ, ~I), where ~f is a tuple of functions (which we refer

to as the functions to synthesize), ~θ is a tuple of oracle function symbols, ∀~x. φ is

a formula is some background theory T where φ is quantifier-free, and ~I is a set
of oracle interfaces. A tuple of functions ~f∗ is a solution for synthesis conjecture
if (~x, ~θ,¬φ·{~f → ~f∗}, ~I) is unsatisfiable modulo theories and oracles. 2

An example SyMO problem is shown in Example 2. Although not mentioned
in the above definition, the synthesis modulo oracles problem may be combined
with paradigms for synthesis that give additional constraints for ~f that are not
captured by the specification, such as syntactic constraints in syntax-guided
synthesis. In Section 4, we present an algorithm for a restricted form of SyMO
problems where the verification of candidate solutions ~f∗ reduces to Definitional
SMTO.

Example 2: SyMO problem, searching for a digital controller:

(~f = {k1, k2}, ~θ = {θstable}, ∀~x.θstable(k1, k2) ∧ S, ~J = {Jstable})

where S is a logical formula representing a safe unrolling of the system and where
Jstable is defined as follows:

Jstable = ((y1 : BV, y2 : BV), (z : Bool), θstable(y1, y2) ≈ z,>)

This formula is satisfied when controllers k1, k2 are found such that θstable(k1, k2)
returns true, and the formula S is true for all ~x.

8

3 Satisfiability Modulo Theories and Oracles

In this section, we describe our approach to solving inputs in the definition frag-
ment of SMTO, according to Definition 5. First, we note a subtlety with respect
to satisfiability of SMTO problems in the definition fragment vs. the general
problem. Namely that a problem must be either satisfiable and unsatisfiable and
not both, and once a result is obtained for Definitional SMTO, the result will
not change regardless of subsequent calls to the oracles. This is not true for the
general SMTO problem. In particular, note the following scenarios:

Conflicting Results Assume that ∃~f.∃~θ.Ai ∧ ρ ∧Bi is T -unsatisfiable, where Ai

(resp. Bi be the conjunction of assumptions (resp. constraints) obtained after
i calls to the oracles. In unrestricted SMTO, it is possible that Ai alone is T -
unsatisfiable, thus ∀~θAi ⇒ (ρ ∧ Bi) is T -satisfiable and the problem is both
satisfiable and unsatisfiable. However, in Definitional SMTO, it is impossible
for Ai alone to be unsatisfiable, since all oracle interfaces defining oracle func-
tion symbols, which generate assumptions only of the form θ(~y) ≈ z and the
associated oracles are functional.

Vacuous Results In general, it is possible for an SMTO problem to be neither
satisfiable and unsatisfiable. As a simple example, consider the case where the
assumption and constraint generators are both >. Let ρ be a formula such that
∃~f.∃~θ.ρ is T -satisfiable, and ∃~f.∀~θ.ρ is T -unsatisfiable. In other words, ρ holds
for some but not all functions ~θ. In this case, the SMTO problem is neither
satisfiable and unsatisfiable. In contrast, in Definitional SMTO, in the limit, Ai

corresponds to complete definitions for all oracle functions in ~θ, at which point
∃~f.∃~θ.Ai ∧ ρ is equivalent to ∃~f.∀~θ.Ai ⇒ ρ. Hence any Definitional SMTO is
either satisfiable or unsatisfiable.

Non-fixed Results Assume that ∃~f.∀~θ.Ai ⇒ (ρ ∧ Bi) is T -satisfiable, where Ai

(resp. Bi) is the conjunction of assumptions (resp. constraints) obtained after i
calls to the oracles. Thus, by Definition 3, our input is satisfiable. In unrestricted
SMTO, it is possible for an oracle to later generate an additional constraint β
such that ∀~θAi ⇒ (ρ ∧Bi ∧ β) is T -unsatisfiable, thus invalidating our previous
result of “satisfiable”. However, in Definitional SMTO, this cannot occur, since
oracles that generate non-trivial constraints are not permitted. It is trivial that
once any SMTO is unsatisfiable, it remains unsatisfiable. Thus the satisfiability
results for Definitional SMTO, once obtained, are fixed.

3.1 Algorithm for Definitional SMTO

Our algorithm for Definitional SMTO is illustrated in Figure 3 and given as
Algorithm 1. The algorithm maintains a dynamic set of assumptions A generated
by oracles. In its main loop, we invoke an off-the-shelf SMT solver (which we
denote SMT) on the conjunction of ρ and our current assumptions A. If this
returns UNSAT, then we return UNSAT along with the set of assumptions A we

9

SMT Solver

Oracle Consistency
Checker

UNSAT

SAT

O1 O2 O3

oracles

model assumptions α

Fig. 3: Satisfiability Modulo Oracle Solver

have collected. Otherwise, we obtain the model M generated by the SMT solver
from the previous call.

The rest of the algorithm (lines 8 to 20) invokes what we call the oracle
consistency checker. Intuitively, this part of the algorithm checks whether our
assumptions A about ~θ are consistent with the external implementation the
oracle function symbols are associated with.

We use the following notation: we write e[t] to denote an expression e having a
subterm t, and e[s] to denote replacing that subterm with s. We write t↓ to denote
the result of partially evaluating term t. For example, (θ(1 + 1) + 1)↓ = θ(2)+1.

In the oracle consistency checker, we first construct the formula µ which
replaces in ρ all occurrences of ordinary function symbols f with their value in the
model M , and partially evaluate the result. Thus, initially, µ is a formula whose
free symbols are ~θ only. The inner loop (lines 9 to 17) incrementally simplifies
this formula by calling external oracles to evaluate (concrete) applications of

functions from ~θ. In particular, while µ contains at least one application of a
function from ~θ, that is, it is of the form µ[θi(~c)] where ~c is a vector of values. We
know that such a term exists by induction, noting that an innermost application
of a function from ~θ must be applied to values. We replace this term with the
output d obtained from the appropriate oracle. The call to the oracle for input
values ~c may already exist in A; otherwise, we call the oracle Ji for this input and
add this assumption to A. After replacing the application with d, we partially
evaluate the result and proceed. In the end, if our formula µ is the formula true,
the consistency check succeeds and we return SAT, along with the current set of
assumptions and the model M . We restrict the returned model so that it contains
only interpretations for ~f and not ~θ, which we denote M |~f . This process repeats
until a model is found that is consistent with the oracles, or until the problem
is shown to be unsatisfiable.

We will now show that this intuitive approach is consistent with the previ-
ously defined semantics for SMTO.

10

Algorithm 1: Satisfiability Modulo Theories and Oracles (SMTO)

input : (~f, ~θ, ρ, ~J)
output: UNSAT/SAT + assumptions A + (model M)?

1 Algorithm SMTO
2 A← true
3 while true do
4 if SMT(ρ ∧A)=UNSAT then
5 return UNSAT, A
6 else
7 Let M be model for ρ ∧A from SMT

8 Let µ be (ρ·{~f → ~fM})↓
9 while µ is of the form µ[θi(~c)] do

10 if (θi(~c) ≈ d) ∈ A for some d then
11 µ← µ[d]↓
12 else
13 Let d = call oracle(Ji,~c)
14 A← A ∪ (θi(~c) ≈ d)
15 µ← µ[d]↓
16 end

17 end
18 if µ is true then
19 return SAT, A, M |~f
20 end

21 end

22 end

Theorem 1 (Correctness of SMTO algorithm). Algorithm 1 returns UN-

SAT (resp. SAT) only if the SMTO problem (~f, ~θ, ρ, ~J) is unsatisfiable (resp.
satisfiable) according to Definition 3.

Proof. UNSAT case: By definition, an SMTO problem is unsatisfiable if ∃~f.∃~θ.A∧
ρ is T -unsatisfiable, noting that for the definitional fragment of SMTO, B is
empty. Algorithm 1 returns UNSAT when the underlying SMT solver returns
UNSAT on the formula ρ∧A0 for some A0. Since A0 is generated by oracles ~J ,
it follows that our input is unsatisfiable.

SAT case: By definition, an SMTO problem is SAT iff ∃~f.∀~θ.A ⇒ ρ is T -
satisfiable for some A. Algorithm 1 returns SAT when ρ∧A0 is SAT with model
M for some A0, and when the oracle consistency check subsequently succeeds.
Assume that the inner loop (lines 9 to 17) for this check ran n times and that
a superset An of A0 is returned as the set of assumptions on line 19. We claim
that M |~f is a model for ∀~θ.An ⇒ ρ. Let M ′ be an arbitrary extension of

M |~f that satisfies An. Note that such an extension exists, since, by definition of
Definitional SMTO, An is a conjunction of equalities over distinct applications of
~θ. Let µ0, µ1, . . . , µn be the sequence of formulas such that µi corresponds to the
value of µ after i iterations of the loop on lines 9 to 17. We show by induction on i,

11

thatM ′ satisfies each µi. When i = n, µi is true and the statement holds trivially.
For each 0 ≤ i < n, we have that µi is the result of replacing an occurrence of
θ(~c) with d in µi−1 and partially evaluating the result, where θ(~c) ≈ d ∈ An.
Since M ′ satisfies θ(~c) ≈ d ∈ An and by the induction hypothesis satisfies µi,

it satisfies µi−1 as well. Thus, M ′ satisfies µ0, which is (ρ·{~f → ~fM})↓. Thus,
since M ′ is an arbitrary extension of M |~f satisfying An, we have that M |~f
satisfies ∀~θ.An ⇒ ρ and thus the input is indeed satisfiable.

Theorem 2 (Completeness for Decidable T and Finite Oracle Domains).
Let background theory T be decidable, and let the domain of all oracle function
symbols be finite. In this case, Algorithm 1 terminates.

Proof sketch: Since T is decidable, the calls to satisfiability within the algorithm
terminate. On any given iteration of the loop in which the algorithm does not
terminate, we have that M is a model for ρ ∧ A. It must be the case that at
least one new constraint is added to A on line 14, or otherwise µ would simplify
to true since M satisfies A. Since the domains of oracle functions are finite by
assumption, all input-output pairs for each oracle will be added as constraints
to A, and the algorithm terminates.

Termination is not guaranteed in all background theories since it may be
possible to write formulas where the number of input valuations to the oracle
function symbols that must be enumerated is infinite, for example, if an oracle
function symbol has integer arguments.

4 Synthesis Modulo Oracles

A SyMO problem consists of: a tuple of functions to synthesize ~f ; a tuple of oracle
function symbols ~θ; a specification in the form ∀~x. φ, where φ is a quantifier-free
formula in some background theory T , and a set of oracle interfaces ~I] ~J . We
present an algorithm for a fragment of SyMO, where the verification condition
reduces to a Definitional SMTO problem. To that end, we require that ~J is a
set of oracle interfaces that define ~θ, and ~I is a set of oracle interfaces that only
generate constraints, i.e., αgen is empty. We will show that these restrictions
permit us to use the algorithm for Definitional SMTO to check the correctness
of a tuple of candidate functions in Theorem 3.

4.1 Algorithm for Synthesis with Oracles

We now proceed to describe an algorithm for solving synthesis problems using
oracles, illustrated in Figure 4. Within each iteration of the main loop, the
algorithm is broken down into two phases: a synthesis phase and an oracle phase.
The former takes as input a synthesis formula S which is incrementally updated
over the course of the algorithm and returns a (tuple of) candidate solutions
~f∗. The latter makes a call to an underlying SMTO solver for the verification
formula V , which is a conjunction of the current set of assumptions A we have
accumulated via calls to oracles, and the negated conjecture ¬φ. In detail:

12

Algorithm 2: Synthesis Modulo Oracles

input : (~f, ~θ,∀~xφ, ~J] ~I)

output: solution ~f∗ or no solution
1 A← true ; // conjunction of assumptions
2 S ← true ; // synthesis formula
3 while true do

4 ~f∗ ←Synthesize(∃~f .S ∧A) ;

5 if ~f∗ = ∅ then
6 return no solution;
7 else
8 V ← A ∧ ¬φ ; // verification formula

9 (r, α,M) ← SMTO(~x, ~θ, V ·{~f → ~f∗}, ~J) ;
10 if r=UNSAT then

11 return ~f∗

12 else

13 β ← call additional oracles(~I, φ,M) ;
14 A← A ∪ α ;

15 S ← S ∪ φ·{~x→ ~xM} ∪ β;

16 end

17 end

18 end

– Synthesis Phase: The algorithm first determines if there exists a set of
candidate functions ~f∗ that satisfy the current synthesis formula S. If so,
the candidate functions are passed to the oracle phase.

– Oracle Phase I: The oracle phase calls the SMTO solver as described
in section 3 on the following Definitional SMTO problem: (~x, ~θ, V ·{~f →
~f∗}, ~J). If the SMTO solver returns UNSAT, then ~f∗ is a solution to the
synthesis problem. Otherwise, the SMTO solver returns SAT, along with
a set of assumptions α and a model M . The assumptions α are appended
to the set of overall assumptions A. Furthermore, an additional constraint
φ·{~x→ ~xM} is added to the current synthesis formula S. This formula can be
seen as a counterexample-guided refinement, i.e. future candidate solutions
must satisfy the overall specification for the values of x in the model M
returned by the SMTO solver.

– Oracle Phase II: As an additional step in the oracle phase, the solver may
call any further oracles ~I and the constraints β are passed to the synthesis
formula. Note the oracles in ~I generate constraints only and not assumptions.

Theorem 3 (Soundness). If Algorithm 2 returns ~f∗, then ~f∗ is a valid solu-

tion for the SyMO problem (~f, ~θ,∀~xφ, ~J] ~I).

Proof. According to Definition 6, a solution ~f∗ is valid for our synthesis problem
iff (~x, ~θ,¬φ·{~f → ~f∗}, ~J] ~I) is unsatisfiable modulo theories and oracles, i.e.

13

Synthesize
∃~f.β1 ∧ . . . ∧ βi ∧

φ{~x→ ~xM1} ∧ . . . ∧ φ{~x→ ~xMi}

SMTO solver
∃~x.(α1 ∧ . . . ∧ αi) ∧ ¬φ

no solution

solution ~f∗

O1 O2 O3

oracles

constraints
βi+1

model
Mi+1

candidates ~f∗

Fig. 4: SyMO Algorithm Illustration

when ∃~θ.A ∧ (¬φ·{~f → ~f∗} ∧ B) is T -unsatisfiable for assumptions A and con-

straints B generated by oracle interfaces ~J]~I. By definition, Algorithm 2 returns
a solution if the underlying SMTO solver finds that (~x, ~θ,A ∧ ¬φ·{~f → ~f∗}, ~J)

is unsatisfiable modulo theories and oracles, i.e. ∃~θ.A ∧ (¬φ·{~f → ~f∗}) is T -
unsatisfiable, which trivially implies that the above statement holds. Thus, and
since the SMTO solver is correct for UNSAT responses due to Theorem 1, any
solution returned by Alg. 2 is a valid solution.

Inferring inputs for additional oracles: Although not described in detail in Al-
gorithm 2, we remark that an implementation may infer additional calls to or-
acles based on occurrences of terms in constraints from ~I and ground terms in
φ under the current counterexample from M . For example, if f(7) appears in
φ·{~x → ~xM}, and there exists an oracle interface with a single input z and the
generator βgen : f(z) ≈ y, we call that oracle with the value 7. Inferring such
inputs amounts to matching terms from constraint generators to concrete terms
from φ·{~x→ ~xM}. Our implementation in Section 6 follows this principle.

5 Instances of Synthesis Modulo Oracles

A number of different queries are categorized in work by Jha and Seshia [21].
Briefly, these query types are

– membership queries: the oracle returns true iff a given input-output pair is
permitted by the specification

– input-output queries: the oracle returns the correct output for a given input
– positive/negative witness queries: the oracle returns a correct/incorrect input-

output pair
– implication queries: given a candidate function which the specification de-

mands is inductive, the oracle returns a counterexample-to-induction [11,
19].

14

Query Type Oracle Interface Example algorithms

Constraint generating oracles

Membership Imem({y1, y2, y}, zb,>, zb ⇔ f(y1, y2) ≈ y) Angluin’s L∗ [7]
Input-Output Iio({y1, y2}, z,>, z ≈ f(y1, y2)) Classic PBE
Negative witness Ineg(∅, {z1, z2, z},>, f(z1, z2) 6≈ z) ICE-learning [19]
Positive witness Ipos(∅, {z1, z2, z},>, f(z1, z2) ≈ z) ICE-learning [19]
Implication Iimp(f∗, {z1, z2, z′1, z′2},>, f(z1, z2)⇒ f(z′1, z

′
2) ICE-learning [19]

Counterexample Icex(f∗, ~z,>, φ{~x→ ~z}) Synthesis with val-
idators [23]

Distinguishing-input Idi(f∗, {z1, z2, z},>, f(z1, z2) ≈ z) Synthesis with
distinguishing in-
puts [20]

Constraint and assumption generating oracles

Correctness Jcorr(f∗, zb, θ(f
∗) ≈ zb,>) ICE-learning [19]

Correctness with cex Jccex(f∗, zb, ~z, θ(f
∗) ≈ zb, φ{~x→ ~z}) classic CEGIS [29]

Table 1: Common oracle interfaces, illustrated for synthesizing a single function
which takes two inputs f(x1, x2). y indicates query variables, except where they
are the candidate function, in which case we use f∗, and z indicates response
variables, where zb is a Boolean.

– Counterexample queries: given a candidate function, the oracle returns an
input on which the function behaves incorrectly if it is able to find one

– Correctness queries: the oracle returns true iff the candidate is correct
– Correctness with counterexample: the oracle returns true iff the candidate

is correct and a counterexample otherwise
– Distinguishing inputs: given a candidate function, the oracle checks if there

exists another function that behaves the same on the set of inputs seen so
far, but differently on a new input. If one exists, it returns the new input
and its correct output.

All of these query types can be encapsulated within the framework we present,
and we show the oracle interfaces for each of the classic query types in Table 1.
Thus, the SyMO framework is a flexible and general framework for program syn-
thesis that can implement any inductive synthesis algorithm, i.e., any synthesis
algorithm where the synthesis phase of the algorithm iteratively increases the
semantic constraints over the synthesis function.

In Table 1, we give example synthesis algorithms next to the corresponding
oracle interfaces. To illustrate these equivalences, we describe in more detail
two exemplars: how CEGIS [29] is SyMO with a single counterexample-with-
correctness interface Jccex; and how SyMO implements ICE-learning [19] using
interfaces Jcorr, Iimp, Ipos, Ineg.

Exemplar 1: CounterExample Guided Inductive Synthesis in SyMO: Suppose
we are solving a synthesis formula with a single variable x and a single synthesis

15

function f , where f : σ → σ′. CEGIS consists of two phases, a synthesis phase
that solves the formula S = ∃f.∀x. ∈ Xcex.φ, where Xcex is a subset of all pos-
sible values of x, and a verification phase which solves the formula V = ∃x.¬φ.
There are two ways of implementing CEGIS in our framework. The first is sim-
ply to pass the full SMT-formula φ to the algorithm as is, without providing
external oracles. The second method is to replace the specification given to the
oracle guided synthesis algorithm with ∃f.∀θ .θ(f) and use an external correct-
ness oracle with counterexamples, illustrated here for a task of synthesizing a
function f , and receiving a candidate synthesis function y : σ → σ′:

Icorr = ((y : (σ → σ′)), (z1 : σ, z2 : bool), θ(y) = z2, φ(x→ z1))

By inspecting the formula solved by the synthesis phase at each iteration, we
can see that, after the first iteration, the synthesis formula are equisatisfiable if
the sequence of counterexamples obtained is the same for both algorithms. Thus
CEGIS can be implemented as a specific instance of the SyMO framework.

iter. CEGIS SyMO with correctness oracle

1 Xcex = ∅
∃f.∃x.φ ∃f.true

2 Xcex = c1 β1 = φ(x→ k1)
. ∃f.∀x ∈ Xcex .φ(x) ∃f.β1

3 Xcex = c1, c2 β2 = φ(x→ k2)
. ∃f.∀x ∈ Xcex .φ(x) ∃f.β1 ∧ β2

.

Table 2: Comparison of the synthesis formula at each iteration, showing that,
if the same sequence of counterexamples is obtained, the synthesis formulas are
equisatisfiable at each step, i.e., CEGIS reduces to SyMO.

Exemplar 2: ICE learning ICE learning [19] is an algorithm for learning in-
variants based on using examples, counterexamples and implications. Recall the
classic invariant synthesis problem is to find an invariant inv such that:

∀x, x′ ∈ X.(init(x)⇒ inv(x)) ∧ (inv(x) ∧ trans(x, x′)⇒ inv(x′))

∧ (inv(x′)⇒ φ)

where init defines some initial conditions, trans defines a transition relation and
φ is some property that should hold. Given a candidate inv∗, if the candidate
is incorrect (i.e., violates the constraints listed above) the oracle can provide:
positive examples E ⊆ X, which are values for x where inv(x) should be true;
negative examples C ⊆ X, which are values for x where inv(x) should be false;
and implications I ⊆ X ×X, which are values for x and x′ such that inv(x)⇒
inv(x′). The learner then finds a candidate inv, using a symbolic encoding, such

16

that

(∀x ∈ E.inv(x)) ∧ (∀x ∈ C.¬inv(x)) ∧ (∀(x, x′) ∈ I.inv(x)⇒ inv(x′)).

The SyMO algorithm described in this work will implement ICE learning
when given a correctly defined set of oracles and oracle interface and a constraint
θcorr(inv) = true. Interfaces for these oracles are shown in Table 1.

6 Delphi: a Satisfiability and Synthesis Modulo Oracles
Solver

We implement the algorithms described above in a prototype solver Delphi4.
Delphi can use any SMT-lib compliant SMT solver as the sub-solver in the SMTO
algorithm, or bitblast to MiniSAT version 2.2 [17], and it can use any SyGuS-IF
compliant synthesis solver in the synthesis phase of the SyMO algorithm, or a
symbolic synthesis encoding based on bitblasting. In the evaluation we report
results using CVC5 [10] v1.0 pre-release in the synthesis phase and as the sub-
solver for the SMTO algorithm. The input format accepted by the solver is an
extension of SMT-lib [9] and SyGuS-IF [24].

6.1 Case Studies

We aim to answer the following research questions: RQ1 – when implementing
a logical specification as an oracle executable, what is the overhead added com-
pared to the oracle-free encoding? RQ2 – can SMTO solve satisfiability problems
beyond state-of-the-art SMT solvers? RQ3 – can SyMO solve synthesis problems
beyond state-of-the-art SyGuS solvers? To that end, we evaluate Delphi on the
following case studies.

Reasoning about primes (Math): We convert a set of 12 educational mathe-
matics problems [22] that reason about prime numbers, square numbers, and
triangle numbers into SMT and SMTO problems. These benchmarks are taken
from Edexcel mathematics questions. The questions require the SMT solver to
find numbers that are (some combination of) factors, prime-factors, square and
triangle numbers. The encodings without oracles used recursive functions to de-
termine whether a number is a prime or a triangle number. We note the oracle
used alongside the benchmark number in Table 3. We enable the techniques de-
scribed by Reynolds et. al. [26] when running CVC5 on problems using recursive
functions. We demonstrate that using an oracle to determine whether a number
is a prime, a square or a triangle number is more efficient than the pure SMT
encoding.

4
link: https:://github.com/polgreen/delphi

17

Delphi Delphi CVC5
benchmark (oracles) (no oracles) (no oracles)

1b-square <0.2s <0.2s –
1d-prime <0.2s – <0.2s
1f-prime 3.1s – <0.2s
1h-triangle <0.2s – <0.2s
1j-square,prime <0.2s – –
1l-triangle <0.2s – <0.2s
1m-triangle <0.2s – <0.2s
ex7-prime 2.3s – –
ex8-prime – – –
ex9-prime 3.2s – –
ex10-prime – – –
ex11-prime <0.2s – –

Table 3: Solving times for Delphi and CVC5 on math examples using oracle and
recursive function encodings. “ – ” indicates the timeout of 600s was exceeded.

Image Processing (Images): Given two images, we encode a synthesis problem
to synthesize a pixel-by-pixel transformation between the two. Figure 2 shows an
example transformation. The SyMO problem uses an oracle, shown in Figure 5,
which loads two JPEG images of up to 256 × 256 pixels: the original image,
and the target image. Given a candidate transformation function, it translates
the function into C code, executes the compiled code on the original image and
compares the result with the target image, and returns “true” if the two are iden-
tical. If the transformation is not correct, it selects a range of the incorrect pixels
and returns constraints to the synthesizer that give the correct input-output be-
havior on those pixels. The goal of the synthesis engine is to generalize from
few examples to the full image. The oracle-free encoding consists of an equality
constraint per pixel. This is a simplification of the problem which assumes the
image is given as a raw matrix and omits the JPEG file format decoder.

SyGuS to C
translator

Compiler Execute

Image Processing
Library

Original
image

Target
image

SAT/UNSAT
constraint: f(i1) = o1 ∧ f(i2) = o2 ∧ . . .

f∗

Fig. 5: Oracle for image transformations

18

Delphi Delphi CVC5
(oracles) (no oracles) (no oracles)

Problem class Benchmarks (#) # t # t # t

SyMO Images(10) 9 21.6s 0 – 0 –
SMTO Math(12) 9 <0.5s 1 <0.2s 5 2.2s
SyMO Control-stability(112) 104 29.3s – – 16 19.4s
SyMO Control-safety(112) 31 59.9s 0 – 0 –
SMTO PBE(150) 148 0.5s 150 1.6s 150 <0.2s

Table 4: Comparison of Delphi and CVC5. # is the number of benchmarks solved
within the 600s timeout, and t is the average run-time for solved benchmarks.
The first column shows results on SyMO and SMTO problems, the second two
columns show results on the equivalent oracle-free encodings.

Digital Controller Synthesis: These benchmarks, fully described in [2], synthe-
size single- and double-point precision floating-point controllers that guarantee
stability and bounded safety for Linear Time Invariant systems. We use a state-
space representation, which is discretized in time with 6 different constant sam-
pling intervals Ts, generating 6 benchmarks per system: ẋt+1 = A~xt+B~ut, where
~x ∈ Rn, ~u ∈ Rp is the input to the system, calculated as K~x where K is the
controller to be synthesized, A ∈ Rn×n is the system matrix, B ∈ Rn×p is the
input matrix, and subscript t indicates the discrete time step.

For stability benchmarks, we aim to find a stabilizing controller, such that
absolute values of the (potentially complex) eigenvalues of the closed-loop matrix
A − BK are less than one. For bounded safety benchmarks, we aim to find
a controller that is both stable, as before, and guarantees the states remain
within a safe region of the state space up to a given number of time steps.
The SyMO encoding uses an oracle to determine the stability of the closed-loop
matrix. The encoding without oracles requires the SMT solver to find roots of
the characteristic polynomial. The results are summarized in Table 4.

Programming by example: We encode PBE [1] benchmarks as SyMO problems
using oracles that demonstrate the desired behavior of the function to be syn-
thesized. These examples show that PBE benchmarks have a simple encoding in
our framework. The results are summarized in Table 4.

6.2 Observations

We report a summary of the results for these case-studies in Table 4 and make
the following observations:

RQ1 The overhead incurred by using oracles is small: performance on PBE prob-
lems encoded with oracles is similar to PBE problems encoded without oracles,
with a small overhead incurred by calling external binaries. Given this low over-
head, SyMO would be amenable to integration with many more sophisticated
synthesis search approaches [18, 25, 5].

19

RQ2 Delphi solves more educational mathematics questions than CVC5, demon-
strating that SMTO does enable SMT solvers to solve problems beyond the
state-of-the-art by delegating challenging reasoning to an external oracle.

RQ3 Delphi solves control synthesis problems and image transformation prob-
lems that cannot be easily expressed as SyGuS and elude CVC5, demonstrating
that SyMO can solve synthesis problems beyond state-of-the-art solvers. When
tackling the image transformation problems, SyMO dynamically generates small
numbers of informative constraints, rather than handling the full image at once.

We also note that in many cases the encodings for SyMO and SMTO prob-
lems are more compact and (we believe) easier to write in comparison to pure
SMT/SyGuS encodings. For instance, Figure 1 reduces to two assertions and a
declaration of a single oracle function symbol.

Future work: We see a lot of scope for future work on SyMO. In particu-
lar, we plan to embed SMTO solving into software verification tools such as
UCLID5 [27]; allowing the user to replace functions that are tricky to model
with oracle function symbols. The key algorithmic developments we plan to ex-
plore in future work include developing more sophisticated synthesis strategies
that decide when to call oracles based on the learned utility and cost of the
oracles, and lifting the requirement for the verification problem to be in defini-
tional SMTO. An interesting part of future work will be to explore interfaces
to oracles that provide syntactic constraints, such as those used in [3, 18], which
will require the use of context-sensitive grammars in the synthesis phase.

7 Conclusion

We have presented a unifying framework for synthesis modulo oracles, identifying
two key types of oracle query-response patterns: those that return constraints
that can guide the synthesis phase and those that assert correctness. We proposed
an algorithm for a meta-solver for solving synthesis modulo oracles, and, as a
necessary part of this framework, we have formalized the problem of satisfiability
modulo oracles. Our case studies demonstrate the flexibility of a reasoning engine
that can incorporate oracles based on complex systems, which enables SMTO
and SyMO to tackle problems beyond the abilities of state-of-the-art SMT and
Synthesis solvers, and allows users to specify complex problems without building
custom reasoning engines.

Acknowledgments: We thank Susmit Jha, Michael O’Boyle, Federico Mora,
Adwait Godbole, Yatin Manerkar and Sebastian Junges for their feedback on
earlier versions of this paper. This work was supported in part by NSF grants
CNS-1739816 and CCF-1837132, by the DARPA LOGiCS project under contract
FA8750-20-C-0156, by the iCyPhy center, and by gifts from Intel, Amazon, and
Microsoft.

20

References

1. Sygus competition. https://sygus.org/. Accessed: 2021-05-19.

2. Alessandro Abate, Iury Bessa, Lucas C. Cordeiro, Cristina David, Pascal Kesseli,
Daniel Kroening, and Elizabeth Polgreen. Automated formal synthesis of provably
safe digital controllers for continuous plants. Acta Informatica, 57(1-2):223–244,
2020.

3. Alessandro Abate, Cristina David, Pascal Kesseli, Daniel Kroening, and Elizabeth
Polgreen. Counterexample guided inductive synthesis modulo theories. In In-
ternational Conference on Computer Aided Verification, pages 270–288. Springer,
2018.

4. Rajeev Alur, Rastislav Bod́ık, Eric Dallal, Dana Fisman, Pranav Garg, Garvit
Juniwal, Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Martin, Mukund
Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-guided synthesis. In
Dependable Software Systems Engineering, volume 40 of NATO Science for Peace
and Security Series, D: Information and Communication Security, pages 1–25. IOS
Press, 2015.

5. Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling enumerative
program synthesis via divide and conquer. In TACAS (1), volume 10205 of Lecture
Notes in Computer Science, pages 319–336, 2017.

6. Zaher S. Andraus and Karem A. Sakallah. Automatic abstraction and verification
of Verilog models. In Proceedings of the 41th Design Automation Conference, DAC
2004, San Diego, CA, USA, June 7-11, 2004, pages 218–223. ACM, 2004.

7. Dana Angluin. Learning regular sets from queries and counterexamples. Inf.
Comput., 75(2):87–106, 1987.

8. Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiabil-
ity modulo theories. In Armin Biere, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, chapter 26, pages 825–885. IOS Press, 2009.

9. Clark Barrett, Cesare Tinelli, et al. The SMT-LIB standard: Version 2.0.

10. Clark W. Barrett, Haniel Barbosa, Martin Brain, Duligur Ibeling, Tim King, Paul
Meng, Aina Niemetz, Andres Nötzli, Mathias Preiner, Andrew Reynolds, and Ce-
sare Tinelli. CVC4 at the SMT competition 2018. CoRR, abs/1806.08775, 2018.

11. Aaron R. Bradley. SAT-based model checking without unrolling. In VMCAI,
volume 6538 of Lecture Notes in Computer Science, pages 70–87. Springer, 2011.

12. Bryan A. Brady, Randal E. Bryant, and Sanjit A. Seshia. Learning conditional
abstractions. In FMCAD, pages 116–124. FMCAD Inc., 2011.

13. Bryan A. Brady, Randal E. Bryant, Sanjit A. Seshia, and John W. O’Leary. AT-
LAS: automatic term-level abstraction of RTL designs. In Proceedings of the Eighth
ACM/IEEE International Conference on Formal Methods and Models for Codesign
(MEMOCODE), pages 31–40, July 2010.

14. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In CAV, volume 1855 of Lecture
Notes in Computer Science, pages 154–169. Springer, 2000.

15. Bruce Collie, Jackson Woodruff, and Michael F. P. O’Boyle. Modeling black-box
components with probabilistic synthesis. In GPCE, pages 1–14. ACM, 2020.

16. Cristina David, Pascal Kesseli, Daniel Kroening, and Matt Lewis. Program syn-
thesis for program analysis. ACM Trans. Program. Lang. Syst., 40(2):5:1–5:45,
2018.

21

17. Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In SAT, volume 2919
of Lecture Notes in Computer Science, pages 502–518. Springer, 2003.

18. Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. Program synthesis using
conflict-driven learning. In PLDI, pages 420–435. ACM, 2018.

19. Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. ICE: A ro-
bust framework for learning invariants. In CAV, volume 8559 of Lecture Notes in
Computer Science, pages 69–87. Springer, 2014.

20. Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-guided
component-based program synthesis. In International Conference on Software En-
gineering (ICSE), pages 215–224. ACM, 2010.

21. Susmit Jha and Sanjit A. Seshia. A theory of formal synthesis via inductive learn-
ing. Acta Informatica, 54(7):693–726, 2017.

22. Michael Kent. Gcse maths edexcel higher student book. Harpercollins Publishers,
2015.

23. Anders Miltner, Saswat Padhi, Todd D. Millstein, and David Walker. Data-driven
inference of representation invariants. In PLDI, pages 1–15. ACM, 2020.

24. Abhishek Udupa Mukund Raghothaman, Andrew Reynolds. The SyGuS language
standard version 2.0. https://sygus.org/language/, 2019.

25. Andrew Reynolds, Haniel Barbosa, Andres Nötzli, Clark W. Barrett, and Cesare
Tinelli. cvc4sy: Smart and fast term enumeration for syntax-guided synthesis.
In CAV (2), volume 11562 of Lecture Notes in Computer Science, pages 74–83.
Springer, 2019.

26. Andrew Reynolds, Jasmin Christian Blanchette, Simon Cruanes, and Cesare
Tinelli. Model finding for recursive functions in SMT. In IJCAR, volume 9706
of Lecture Notes in Computer Science, pages 133–151. Springer, 2016.

27. Sanjit A. Seshia and Pramod Subramanyan. UCLID5: integrating modeling, veri-
fication, synthesis and learning. In MEMOCODE, pages 1–10. IEEE, 2018.

28. Xujie Si, Yuan Yang, Hanjun Dai, Mayur Naik, and Le Song. Learning a meta-
solver for syntax-guided program synthesis. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

29. Armando Solar-Lezama, Liviu Tancau, Rastislav Bod́ık, Sanjit A. Seshia, and Vi-
jay A. Saraswat. Combinatorial sketching for finite programs. In ASPLOS, pages
404–415. ACM, 2006.

30. Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim,
Milo M. K. Martin, and Rajeev Alur. TRANSIT: specifying protocols with concolic
snippets. In Hans-Juergen Boehm and Cormac Flanagan, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages
287–296. ACM, 2013.

22

