
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Enhancing Automated Network Management

Permalink
https://escholarship.org/uc/item/6tj688ch

Author
Wang, Huazhe

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6tj688ch
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

ENHANCING AUTOMATED NETWORK MANAGEMENT

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Huazhe Wang

December 2019

The Dissertation of Huazhe Wang
is approved:

Chen Qian , Chair

J.J. Garcia-Luna-Aceves

Ying Zhang

Quentin Williams
Acting Vice Provost and Dean of Graduate Studies

Copyright © by

Huazhe Wang

2019

Table of Contents

List of Figures vi

List of Tables ix

Abstract x

Dedication xii

Acknowledgments xiii

1 Introduction 1
1.1 Overview of Dissertation . 8

2 Practical Network-wide Packet Behavior Identification by AP Classifier 13
2.1 Model and Background . 13
2.2 Design Framework of AP Classifier 16

2.2.1 AP Tree . 16
2.2.2 Computing packet behaviors 18

2.3 AP Tree Optimization . 19
2.3.1 Query throughput versus average depth 20
2.3.2 Quick-Ordering algorithm . 21
2.3.3 Optimized AP Tree construction 22
2.3.4 Optimization for packet distribution 28
2.3.5 Dealing with packet header changes. 29

2.4 AP Tree update and reconstruction . 31
2.4.1 Real-time update of an AP Tree 32
2.4.2 Parallel reconstruction of an AP Tree 33

2.5 Experimental Evaluation . 35
2.5.1 Depths of leaf nodes . 36
2.5.2 Memory Usage . 37
2.5.3 AP Tree construction time . 39
2.5.4 Query throughput for static networks 39

iii

2.5.5 Dynamic Networks . 40
2.5.6 Impact of packet distribution 43
2.5.7 Dealing with packet header changes 43

2.6 Related Work . 45

3 SICS: Secure and Dynamic Middlebox Outsourcing 48
3.1 Overview . 48

3.1.1 The SICS Outsourcing Architecture 48
3.1.2 Security Model . 50
3.1.3 Middlebox with Label Matching 51
3.1.4 Design Framework . 52

3.2 Enterprise Modules of SICS . 54
3.2.1 Rule Composition . 54
3.2.2 Header Space Mapping . 58
3.2.3 Example . 59
3.2.4 Packet Classification . 60

3.3 In-Cloud Modules of SICS . 62
3.3.1 Stateful Middlebox . 62
3.3.2 Header Transformer . 64
3.3.3 Case Studies . 65

3.4 Update operations . 67
3.5 Security Analysis . 69
3.6 Implementation . 72
3.7 Evaluation . 73

3.7.1 Enterprise-side performance 74
3.7.2 In-cloud Middleboxes . 79

3.8 Related Work . 80

4 Epinoia: Intent Checker for Stateful Networks 82
4.1 Epinoia Design and Architecture . 82
4.2 Intent and Network Models . 86

4.2.1 Network Intent Specification 86
4.2.2 Network Models . 87

4.3 Intent Decomposer . 93
4.3.1 Atomic Address Object . 93
4.3.2 Path Segmentation . 96

4.4 Continuous verification . 97
4.4.1 Causality Graph . 98
4.4.2 Running Intent Checking Queries 101

4.5 Evaluation . 102
4.5.1 Real-world evaluation . 102
4.5.2 Scalability . 104

iv

4.5.3 Runtime performance . 107
4.6 Related Work . 108

5 AutoInfer: Automated Network Intent Inference 109
5.1 Motivation . 109
5.2 Overview . 111
5.3 From Configurations to Individual Intents 116
5.4 Adaptive monitoring refinement . 117

5.4.1 Calculating a minimum cycle 118
5.4.2 Calculating a maximum filling 120

5.5 Evaluation . 124
5.5.1 Methodology . 124
5.5.2 Intent Aggregation . 125
5.5.3 Scheduling Performance . 127
5.5.4 Testbed Evaluation . 131

5.6 Related work . 133

6 Conclusion 135

Bibliography 137

v

List of Figures

2.1 (a) Three predicates. (b) The packet header space and five atomic pred-

icates. (c) A sample network including the three predicates. 14

2.2 AP Tree of predicates in Fig. 2.1(b). (a) Original AP Tree. (b) Pruned

AP Tree. (c) Optimized AP Tree. 15

2.3 Computing forwarding path for a packet in a4 19

2.4 Query throughput versus average depth of leaves 20

2.5 Additional example. (a) Five predicates. (b) Pruned AP Tree. (c) Opti-

mized AP Tree. 22

2.6 Relationships of two predicates. (a) Neither Pi ∧ Pj nor ¬Pi ∧ ¬Pj is

false. (b) Pi ∧ Pj is false. (c) ¬Pi ∧ Pj is false. (d) Pi ∧ ¬Pj is false. . 25

2.7 Computing forwarding path with header modifications 31

2.8 Real-time update and query processing 33

2.9 Average depth of leaves . 35

2.10 Cumulative distribution of the depths of leaf nodes in AP Trees 36

2.11 Overall construction time cost of AP Classifier 37

2.12 Query throughput for static networks 38

2.13 Cumulative distributions of time cost for adding a predicate. 38

2.14 Query throughput for dynamic networks. The number of updates per

second is 100 in (a) (b) and 200 in (c) (d) 41

2.15 Query throughput of AP Classifier for different packet distributions . . . 42

3.1 The architecture of SICS . 49

3.2 The system model of SICS . 53

vi

3.3 (a) An abstract function network. (b) Service function chain require-

ments. (c) Original forwarding table. (d) Merged forwarding table. . . . 57

3.4 Header space divided by predicates 58

3.5 An example Abstract Function Network 61

3.6 SICS software architecture . 72

3.7 Box plot of update cost. 76

3.8 Throughput as the number of rules increases. 77

3.9 Lookup throughput of Middleboxes. 78

3.10 Response time in the case of a middlebox failure and traffic overload. . 79

4.1 Example NF configuration snippets. 84

4.2 Epinoia workflow . 85

4.3 Example network intents . 87

4.4 A network graph . 90

4.5 Path segmentation from marketing to Web 90

4.6 Calculating the set of atomic address object for three address objects

p1, p2 and p3 . 94

4.7 The causality graph for the reachability between m1 and Web. 97

4.8 The causality graph under a rule insertion and a link up. 99

4.9 Number of atomic address object as number of rules increases. 102

4.10 Number of atomic address objects and IP addresses for name groups. . . 103

4.11 .9513.6Time taken to check a reachability query as # of rules increases. 104

4.12 .9513.6Time taken to check a reachability query as # of NFs increases. 104

4.13 .9513.6Time taken to check all intents . 105

4.14 Time taken to recheck affected intents per network change. 106

5.1 Example of endpoints migration. Endpoint group IT1 migrates to IT2.

The original intent between IT1 and Mktg no longer exists. 110

5.2 Example of rule aggregation. The aggregated route for both Web1 and

Web2 is still valid when Web1 goes down for emergency maintenance.

Web1 cannot be accessed. 110

vii

5.3 Example of equal-cost paths. Though the upper (traverses a byte counter

and a load balancer) and lower (traverses an Intrusion Detection Sys-

tem(IDS) and a byte counter) paths between Guest network and the

Web service have the same cost, only one path is active at a time. 111

5.4 Workflow of AutoInfer . 112

5.5 A running example of AutoInfer . 113

5.6 Example of an intent relationship graph 121

5.7 Time cost of intent aggregation . 125

5.8 CDF of growth rate of number of intents 126

5.9 Time cost to identify the minimum cycle 127

5.10 Time cost to compute a monitoring schedule 128

5.11 CCDF of increased slots allocation . 129

5.12 Resource utilization with different penalty weight 130

5.13 Performance of heuristic algorithm to reduce spot changes 131

5.14 Inference accuracy . 132

viii

List of Tables

1.1 Comparison of existing secure middlebox outsourcing schemes. 8

1.2 Epinoia vs. other network verification tools (#unsupported G#partial

support support) . 12

2.1 Statistics of the two real networks . 34

2.2 Throughput with packet header changes 44

3.1 Construction time of the gateway. 75

5.1 Symbols and notions. 118

5.2 Functions and notions. 119

5.3 Optimality gap between the approximated heuristic and optimized al-

gorithm. 128

ix

Abstract

Enhancing Automated Network Management

by

Huazhe Wang

Network management benefits from automated tools. With the recent advent of software-

defined principles, automated tools have been proposed from both industry and academia

to fulfill function components in the network management control loop. While automa-

tion aims to accommodate the ever increasing network diversity and dynamics with

improved reliability and management efficiency, it also brings new concerns as it’s be-

coming more difficult to understand the control of the network and operators cannot

rely on traditional troubleshooting tools. Meanwhile, how to effectively integrate new

automation tools with existing legacy networks remains a question. This dissertation

presents efficient methods to address key functionalities within the control loop in the

adaption of automated network management.

Identifying the network-wide forwarding behaviors of a packet is essential for many

network management tasks, including policy enforcement, rule verification, and fault

localization. We start by presenting AP Classifier. AP Classifier was developed based

on the concept of atomic predicates which can be used to characterize the forwarding

behaviors of packets. There is an increasing trend that enterprises outsource their Net-

work Function (NF) processing to a cloud to lower cost and ease management. To avoid

threats to the enterprise’s private information, we propose SICS based on AP Classifier,

a secure and dynamic NF outsourcing framework. Stateful NFs have become essential

parts of modern networks, increasing the complexity in network management. A ma-

jor step in network automation is to automatically translate high level network intents

into low level configurations. To ensure those configurations and the states generated

x

by automation match intents, we present Epinoia, a network intent checker for state-

ful networks. While the concept of auto-translation sounds promising, operators may

not know what intents should be. To close the control loop, we present AutoInfer to

automatically infer intents of running networks, which helps operators understand the

network runtime states.

xi

To my parents and friends.

xii

Acknowledgments

This dissertation was a wonderful journey of about five years, with many ups and

downs. It would not have existed without all the amazing people who helped, sup-

ported and trusted in me during this journey, many of whom I list below.

I would like to first thank my advisor, Chen Qian. Chen was the one who introduced

me to networking. I can still remember our very first overseas phone call when he

patiently described to me what is his research about and what kind of topics we can

work on. Beside research, Chen has also been a source of wisdom about things that

are both related to work (how to tell stories, how to write/present) and life. I am also

grateful for his support of my projects outside school, such as my internships at Hewlett

Packard Labs and my job searching after graduation.

I would also like to thank my dissertation reading committee members, J. J. Garcia-

Luna-Aceves and Ying Zhang, for their constructive feedback and the fruitful discus-

sions on my defense.

I was very lucky to collaborate with very bright and nice people. I would like to

express my gratitude to Simon S. Lam and Hongkun Yang. Simon is the PhD advisor

of Hongkun and Chen at UT Austin. Simon and Hongkun worked with me on my

first project and I would like to thank them for their trust, for all the knowledge they

shared with me and for their constructive feedback. My gratitude also goes to Puneet

Sharma and Joon-Myung Kang for having me interning at Hewlett Packard Labs in

Palo Alto for two productive summers in 2017 and 2018. They have been mentors

and collaborators throughout my last few PhD years. They taught me how to combine

research with reality and have tirelessly helped me improve both my delivery and the

focus of my presentations.

The life in Santa Cruz would not have been the same without many friends. I would

like to express my gratitude to Christina Parsa and her family. Chris has been a teacher,

xiii

a close friend, a partner in getting lunch during workdays. She always made time to

help read my papers, teach me how to write correct and meaningful English without

ever asking for anything in return. Since we met, Chris has invited me over to many

family dinners especially on holidays, which makes me regard them as my second

family in the US. I was lucky to share most of my PhD journey with Ye Yu and Xin

Li. We have become close friends since the beginning. We shared endless discussions,

spring festival dumplings, camping trips, paper rejections and acceptances, and many

other good and bad moments. They both graduated one year earlier than me. I hope

our paths cross often. The culture of the lab became more active when many new

members joined in the last two years. I would like to thank Minmei Wang, Haofan Cai,

Shouqian Shi, Junjie Xie, Ge Wang, Xiaofeng Shi and Minghao Xie for your support

and invaluable discussions which helped shape this research. I will miss the friendly

environment in the lab and countless good times we had at every Saturday game night.

Finally, I would like to express my love and gratitude to my parents. Without their

support, I probably would not have done a PhD. Starting from an early age, my parents

always valued my education. My father introduced me to science and engineering and

motivated me to study computer engineering. I would like to thank my mother for

standing by me, taking care of me even through our great distance. While, I often

disagree with them on issues, everything I do is influenced by them. I feel very lucy to

have such nice and supportive parents.

xiv

Chapter 1

Introduction

Managing a large packet network is a complex task. The procedure of processing

packets is prone to faults from configuration errors and unexpected network dynam-

ics. The complexity also comes from the rapid growth in size and diversity of modern

networks, which include cloud (e.g., Amazon Web Service [3], Azure [15], Google

Cloud [8]), software-defined networks [24], mobile devices, Internet of Things as well

as traditional physical topologies. Network Functions (NFs) are a vital part of modern

networks. Compared with switches and routers, NFs implement more diverse func-

tions and their packet processing behavior may depend on the packet history previously

encountered. Examples of such stateful packet processing include firewalls that allow

inbound packets if they belong to established connections and web proxies that cache

popular content etc. NFs are becoming increasingly prevalent in today’s network, com-

plicating the problems encountered in network management [102]. Furthermore, net-

work configurations need to be continuously updated to serve the ever evolving business

goals to address both security and performance requirements. According to a study,

70% of network failures occurred during changing network configurations [69].

The increasing complexity of business rules and policies coupled with the increas-

ing size of modern networks has made the tasks of network operators extremely dif-

1

ficult. With the advent of software-defined principles, automated platforms and tools

are proposed from both industry and academia to fullfil each function component in

the network management control loop. For instance, to translate diverse policies auto-

matically, [4,5,30,36,37,105] designed languages and specifications that can synthesis

network control/data plane configurations (e.g., BGP configurations). Towards more

reliable networks, [35,49,62,63,65,118,126] proposed formal analysis methods to ver-

ify essential network properties (e.g., The network has no routing loop for all packets.).

To gain awareness of the state of devices network wide, [39,83,107,108,120] proposed

runtime monitoring schemes to automatically collect network telemetry data. While

network automation eases tasks for operators, there are still many challenges to make

those automated tools both efficient and reliable. In this dissertation, we identify some

of key functionalities that are missing in existing automated platforms.

Network-wide packet behavior identification. Let a flow be an equivalence class

of packets defined on a subset of fields in the packet header, e.g., the 5-tuple consisting

of source address, destination address, source port, destination port, and protocol type.

All packets of a flow have the same forwarding behaviors in a network (also referred to

as the flow’s behaviors) when there is no update. Network-wide packet behavior iden-

tification is a function that discovers the actual forwarding behaviors of the packets in a

flow (or a set of flows) including their forwarding paths, where they stop or are dropped,

and which boxes they traverse, by analyzing network state [59]. Packet behavior iden-

tification is essential for network management tasks such policy enforcement [96,125],

verification of flow properties [34, 73] and network fault localization [123, 127]. A

practical packet behavior identification method must satisfy three requirements. First,

it provides a high throughput in responding to packet behavior queries. According

to recent measurement results [38, 61], a large data center network may see hundreds

of thousands of new flows per second. SDNs should support hundreds of data plane

2

updates per second [60] and each update may need to query multiple flows to verify

correctness. Hence a desired throughput should exceed one million packet queries per

second (1 Mqps). Second, the query structure should fit into a small and fast memory

such as cache. Third, the query structure can be updated in real time under data plane

changes to ensure that query results reflect the current network state.

Unfortunately, none of the existing solutions can meet all of the requirements stated

above. A straightforward approach is to maintain copies of the flow tables for all boxes

in the controller. However even for a medium-scale network used in [63], tens of GBs

are required to store all rules [59]. Due to slow search speed among flow tables and

disk I/Os, the resulting query throughput is very low. Very recently, [59] propose to use

a multi-valued decision diagram (MDD) to classify flows to different sets of network-

wide behaviors. However, one limitation is that an MDD cannot be updated in real

time.1

Secure and dynamic middlebox outsourcing. While traditionally, middleboxes

a.k.a network functions, have been deployed as dedicated hardware devices inside an

enterprise, the introduction of the Network Functions Virtualization (NFV) technol-

ogy [57] and the cloud services has opened a new opportunity to outsource middleboxes

to third-party clouds. An initial effort [102] indicates that middlebox outsourcing can

be achieved without significantly impacting performance. Recently, there are also some

industrial companies and communities working on providing in-cloud traffic process-

ing capabilities [20, 28, 29]. However, it brings up an obvious concern about privacy,

because in the new model, both the cloud provider and the middlebox provider may see

the user’s traffic and the middlebox rules, which may contain sensitive user informa-

tion. For example, rules of a firewall contain sensitive information such as what traffic

1The paper [59] claims that if a data plane update does not change the existing packet behaviors,
MDD update can be finished in tens of milliseconds. However from examining update traces of the
Route Views Project [26], it is unlikely that a data plane update does not change the existing packet
behaviors.

3

is not welcome, and its leakage could expose a severe security hole. How to perform

generic computing in the cloud while keeping the privacy of data has been studied ex-

tensively. The introduction of the hardware enclaves (e.g., Intel SGX [81]) provides

a way to perform generic private computation; it can verify the binary before running

it and can encrypt data before storing the data to enclave memory. However, this ap-

proach assumes one knows the hash of a correct binary [90] and thus cannot prevent a

curious middlebox provider from leaving a backdoor in the middlebox. Moreover, cur-

rent implementations of enclaves still suffer from side channel attacks [116]. In another

approach, the user can encrypt packets before sending them to the cloud/middleboxes,

and previous works have studied how middleboxes can perform computation over en-

crypted data. These solutions are usually not generic, but it turns out that most middle-

box functionalities only need a limited number of operations. For example, keyword

matching, which is widely used for intrusion detection, can be performed efficiently

over encrypted data [104, 122].

One key challenge of the cryptographic approaches is how to handle packet head-

ers. Headers are involved in both middlebox processing and traffic steering [96, 125]

(e.g., route all HTTP traffic through firewall-IDS-proxy), which need to detect whether

or not an address lies within a range of values (e.g., if a header belongs to a prefix).

With traditional IP addresses, one can implement such a rule matching efficiently by

aggregating IPs from the same subnet because they share the same prefix. When head-

ers are encrypted, however, such prefix property is lost, and building a lookup table

using keyword matching, though possible, will create a memory explosion. More-

over, because of the dynamic nature of the network, the matching rules may change

at runtime, and an ideal solution should not incur high overhead when the network

configuration is changed. In summary, an ideal mechanism to handle packet headers

should achieve three properties. First, the cloud and middlebox should be able to fulfill

4

its functionalities without learning the user’s packet headers. Second, the mechanism

should incur low processing overhead at both the enterprise side and the middlebox

side, so that they can process packets at high speed. The mechanism should not con-

sume much extra bandwidth because cloud providers usually charge traffic redirected

to the cloud by volume. Third, allow operators to frequently modify network config-

urations (e.g., rerouting traffic to backup middlebox instances; changing the Access

Control Lists (ACLs) of a firewall) to perform tasks, ranging from traffic engineering

to patching security vulnerabilities [98]. SDN/NFV provides the ability to update a

middlebox instance or launch a new one and reroute traffic to the new instance in a

matter of milliseconds [79]. To support frequent rule updates, an ideal secure middle-

box outsourcing mechanism should be able to update incrementally, i.e. the overhead of

performing such an update should be proportional to the number of rules to be changed.

So far, none of the existing mechanisms can achieve all of the properties listed.

Checking network intents for stateful networks. Intent-Based Networking (IBN) [13]

is the new advent in network automation. IBN aims to make networks more reliable

and efficient by automatically converting network-wide objectives, called intents (e.g.,

all critical services in the data center are available to remote sites) into detailed network

configurations that implement those intents. While IBN eases the configuration task

for network administrators, it faces several challenges. The first challenge is handling

undetected bugs and inaccuracies in the automation logic itself given that the need to

dealing with the diversity of network devices and services effectively is hard. The sec-

ond challenge is the subjective nature of intents, which cannot be completely fulfilled

by automation and might need human intervention to provide input or make changes

that are not supported by the automation framework.

Stateful networks refer to the networks that contain stateful NFs. According to a

survey in [91], 43% of network intent violations involve NFs, and between 4% and

5

15% of them are the result of NF misconfiguration. However, recent work on network

verification either only ensures correct NF traversal assuming all instances of each type

of NFs are equally and correctly configured [35, 52, 63], or only checks NF configura-

tions in a restricted scope that may lose end-to-end expressiveness and accuracy [88].

We have identified three key requirements of an intent checking system for stateful

networks: First, vendor-agnostic model specifications to support diverse NFs and their

configurations from different vendors. Second, completeness to support end-to-end in-

tent checking, to handle packet header modifications by NFs and routing dynamics,

and Third, Incremental checking to efficiently check correctness to avoid performing

full checking for every change. Existing network verification work consists of two ap-

proaches: The customized approaches, such as HSA [63] and its real-time version,

NetPlumber [62], identify the set of packets affected by the network changes and uti-

lize customized path-based algorithms to calculate their new forwarding paths. This

approach is unable to model extra packet sequences from other parts of the network

and thus cannot be used for stateful networks. The solver-based approaches, such

as Minesweeper [35] and VMN [88], encode all possible packet behavior within the

network using first-order logic. To achieve scalability with modern solvers, such as

SAT [78] and SMT (Satisfiability Modulo Theories) [44], they rely on optimizations to

identify logically independent network slices. However, there is no guarantee that these

slices will always have moderate size or even exist, especially when there are NFs that

modify packet headers. Further, both Minesweeper and VMN solve all constraints as a

whole, and cannot reuse previous checking results when the network changes.

Automated network intent inference. While the above intent statements appear

promising and straightforward, creating or updating intents may be challenging for mul-

tiple reasons. Firstly, the operator may not be aware of what the intent is or to which

endpoints the labels in an intent refer (e.g., where is the “secure zone”, “conferenc-

6

ing application”, etc?) because the operator may be a novice, or because the original

architects of the network are no longer available and the documentation is poor. This

covers a common scenario in the upgrade procedure of legacy networks to IBN since

those networks were originally built without having formally defined intents stored in

the system. Recently, some advanced platforms provide centralized interfaces for oper-

ators to ease the management of network-wide configurations [4, 5], but they still lack

visibility of existing running intents implemented in underlying networks. Even if the

operator knows what the intent should be, the network may be very large and have

many goals, so it would take significant time to describe all intents, which may number

in the hundreds or thousands.

Recent advances in network verification are able to formally verify network control

and data plane to efficiently check for unwanted behavior efficiently. Therefore, an in-

tuitive approach to infer intents is to look at those configurations as they are supposed

to implement the original network intents. However, configurations may not reflect the

network runtime states. Indeed, configurations are usually installed by multiple opera-

tors to address different business goals on a long time scale. In practice, configurations

often contain a large amount of outdated snippets and mixed residues of obsolete poli-

cies [16]. Therefore, inferring network intents solely based on configurations may incur

inaccurate and misleading results. To help operators learn the high level insights of run-

time states, [39] proposed to run a sophisticated heuristic over the whole network-wide

packet forwarding records to extract a summary of the network runtime state. This

method may require a large storage capacity to store all forwarding behavior and is not

suitable for online use. A more commonly adopted approach to understand runtime

states by network operators is random packet sampling. By design, random sampling

provides no guarantee on which traffic flows will be sampled, by which router and at

what time. Except for a few heavy-hitters [124], even minutes-long collections of ran-

7

Throughput
Minimum Overhead

(per packet)
Incremental

Update
Function

Chain Security Guarantee

Melis et al. [82] very low 119 Bytes 7 7 high

Embark [71] high 20 Bytes 7 3
Possible leakage of

packet headers and rules

Splitbox [33] medium > 2× traffic 7 7
Possible leakage of

packet headers and rules
SafeBricks [90] < Embark - 7 3 Side-channel attack

SICS > Embark 4 Bytes 3 3 high

Table 1.1: Comparison of existing secure middlebox outsourcing schemes.

dom samples typically provide coarse-grained and inaccurate bandwidth estimations

for the large majority of flows.

1.1 Overview of Dissertation

This dissertation presents methods to address the above challenges and missing

functionalities. The dissertation is comprised of four parts:

• We present a network-wide packet behavior identification tool called AP Classi-

fier, where AP stands for Atomic Predicates, a concept developed in [118]. Each

atomic predicate specifies a set of packets that have the same forwarding behav-

ior in the network. The motivation of using atomic predicates is stated as follows.

Existing solutions of packet behavior identification that use forwarding table sim-

ulation or BDD-like structures [42] are slow in processing queries and memory-

inefficient because every bit of the packet header is considered. The concept of

atomic predicates [118] provides a way to compress ACLs and forwarding rules

to a small set of equivalence classes that can be specified efficiently. We hence

develop a novel data structure, called AP Tree, to classify packets into atomic

predicates which allows us to eliminate the primary cause of inefficiency by us-

ing a BDD-like structure to analyze packet flow behavior. The packet behavior

can then be easily computed using the atomic predicate. To further increase the

8

performance, AP Classifier employs optimized construction algorithms, so that

the constructed AP Tree achieves higher query throughput. To deal with network

dynamics, AP Classifier utilizes a real-time update to maintain query correctness

and an AP Tree reconstruction method that periodically rebuilds the tree to opti-

mize its performance. We evaluated the performance of AP Classifier using the

data plane network state, including forwarding tables and ACLs, from two real

networks: Internet2 [14] and a Stanford campus network [63]. Our results show

that AP Classifier, running on a general-purpose desktop computer, uses only a

few MBs memory and supports more than two millions of queries per second. In

addition it can be updated in real time (< 4 ms for 95% updates in Internet2 and

< 1 ms for 95% updates in Stanford).

• We present a middlebox outsourcing scheme SICS, short for Secure In-Cloud

Service chaining. SICS protects the private information of packet headers and

rules by only allowing packets with encrypted headers into the cloud. However,

encrypted headers cannot be used for forwarding and middlebox rule matching.

Inspired by the concept of forwarding equivalence classes in packet forwarding

networks [112, 118], SICS assigns a label to each encrypted packet. Each label

uniquely identifies the forwarding and rule-matching behavior of the packet. To

apply forwarding equivalence classes for middlebox outsourcing, there are key

domain-specific challenges. First, middlebox policies typically require a set of

packets to go through a sequence of middleboxes, which is called a service func-

tion chain [23]. Those independently specified polices should be efficiently com-

bined for packets that are subject to multiple requirements. Second, most middle-

boxes employ stateful processing and may modify packet headers (e.g., a source

NAT converts internal addresses to external ones). However, forwarding equiva-

lence classes can only analyze forwarding behavior of static networks [112] and

9

cannot be directly used to handle the complexity and dynamics in middlebox

chaining. To address these challenges, we first logically group packets with the

same middlebox processing chain and actions into policy equivalence classes and

thus we eliminate the need to assign a unique label to every single flow. Second,

building on configurations for header transformation, we propose a label-to-label

replacement scheme. The new labels correspond to the new modified headers

and are used for subsequent processing. Table 1.1 summarizes results from eval-

uations and compares SICS with the four recent secure middlebox outsourcing

schemes in five desired properties: throughput, bandwidth overhead, incremen-

tal update, service function chaining, and security guarantee. SICS achieves all

of the desired properties, while every other design contains several weaknesses.

Note that SICS focuses on how to handle packet headers securely. Similar to

previous work [71], SICS is compatible to existing secure Deep Packet Inspec-

tion (DPI) over encrypted traffic and can be perfectly combined with existing

methods [104, 122] to handle the whole packet securely.

• We present Epinoia, an intent checker for stateful networks. Table 1.2 shows a

comparison of Epinoia with other related work in terms of support for the key

requirements described above. To the best of our knowledge, Epinoia is the only

system that can fully support all the key requirements. Epinoia includes a novel

configuration model for NF function units represented as vendor-agnostic exten-

sions of OpenConfig YANG models [84] that can be combined to represent con-

figurations of commercial advanced NFs [87]. We propose new techniques lever-

aging causality precedence relationships [97] between packet I/Os and NF states

to represent stateful NF operating logic. Efficiency is achieved by the design of a

scalable yet correct approach for intent checking based on intent decomposition

and incremental checking using a novel causality graph memoization technique

10

for all checked results. We have conducted a comprehensive evaluation of Epin-

ioa using a real-world dataset and topologies. Epinioa can perform incremental

checking within a few seconds per network and/or intent update which reduces

the time cost by up to a factor of 100x compared to an exhaustive checking for

all intents.

• We present AutoInfer, a tool that infers intents of a running network automati-

cally, and serves as a starting point for operators to update existing or create new

network intents. AutoInfer exploits the possibility to augment state of the art con-

figuration analysis techniques with runtime monitoring, by enabling fine-grained

measurement of potential intents obtained from configurations. AutoInfer coor-

dinates intent monitoring among switches and schedules small monitoring tasks

for selected intents, within hundreds of milliseconds. This enables AutoInfer to

efficiently capture accurate runtime intents. Endpoints sharing the same intents

are grouped together, suggesting operators can create new labels and reorganize

their networks. With AutoInfer intents are displayed in intent graphs following an

existing intent specification called the Policy Graph Abstraction (PGA) [92]. The

choice is motivated by the intuitive graph representation of network intents, sup-

port of network function boxes, and the fact that PGA ideas have been included in

the OpenDaylight (ODL) Network Intent Composition (NIC) project [18]. Even

with a reduced scope after analyzing configurations, determining which intent

to monitor, where and when, is still challenging. Biased strategies can lead to

poor coverage and inaccurate results (e.g., if all resources are used to monitor

intents with popular destinations). Conversely, strategies for strict fairness can

lead to wasted resources and slow answers (e.g., if many intents are inactive).

These are the challenges AutoInfer tackles on behalf of operators. Given the in-

tents obtained from configurations, it derives a set of aggregated intents and adds

11

Table 1.2: Epinoia vs. other network verification tools
(#unsupported G#partial support support)

Vendor-agnostic
NF models

Header
transformation

Incremental
checking

HSA/NetPlumber [63] [62] #
Minesweeper [35] G# # #

VMN [88] G# #
Epinoia

them to the potential intents for monitoring. Then, it utilizes an adaptive monitor-

ing refinement scheme following three key ideas. First, AutoInfer decides what

(which intent) and where to monitor all potential intents, with objectives to max-

imize both intent coverage and switch resource utilization. Second, AutoInfer

adaptively refines the monitoring plan based on previous monitored results and

quickly narrows the monitoring tasks down to only active intents at the moment.

Third, for each monitoring plan change, AutoInfer runs a greedy heuristic that

utilizes intent information to minimize the number of monitoring spot changes,

reducing the communication overhead and time delay to reset monitoring tasks

on switches. Our evaluation results based on an AutoInfer prototype show that

AutoInfer quickly captures all active intents and increases monitoring efficiency

by at least 3.7x compared with a fixed schedule. We also show that AutoInfer

computes monitoring schedules for large networks, with hundreds of nodes in

tens of milliseconds and is therefore suitable for online use.

12

Chapter 2

Practical Network-wide Packet

Behavior Identification by AP

Classifier

2.1 Model and Background

We model a network as a directed graph of boxes, each of which has a forwarding

table as well as input and output ports guarded by access control lists (ACLs). Each

packet has a fixed-size header, including all fields that are evaluated by forwarding

tables and ACLs in the network. A flow is then a sequence of packets that have the

same values in the evaluated header fields.

Following the concepts in [118], forwarding tables and ACLs are all packet filters.

Each ACL can be specified by a predicate. The set of packets that are allowed by the

ACL are evaluated to true by the predicate. Similarly, by analyzing a forwarding table,

each output port can be specified by a forwarding predicate. The set of packets that

13

(b) (a)

p2 p3

p1
a1

a2

a3

a4

a5

(c)

p1

p2 p3

b1

b2

h1

h2

Figure 2.1: (a) Three predicates. (b) The packet header space and five atomic predi-
cates. (c) A sample network including the three predicates.

can be forwarded to the port are evaluated to true by the predicate.1 Forwarding tables

and ACLs can be converted to predicates using the algorithms in [118]. A predicate

P specifies the set of packets for which P evaluates to true. Hence if a packet can

travel through a sequence of packet filters, it is evaluated to true by the conjunction of

predicates corresponding to the packet filters.

Given a set of predicates, we can compute a set of atomic predicates. Due to space

limitation, we do not repeat the formal definition of atomic predicates, which can be

found in [118]. A proved property of the set of atomic predicates is that they specify

the minimum set of equivalence classes in the set of all packets. The packets that are

evaluated to true by the same atomic predicate have identical behaviors at all boxes.

For a set of predicates P = {p1, p2, ..., pk}, each atomic predicate ai is in the form

1All predicates are represented by binary decision diagrams (BDDs) [42] in our implementation of
AP Classifier.

14

𝑝1 ¬𝑝1

𝑝2 ¬𝑝2

𝑝3 ¬𝑝3𝑝3

𝑝2 ¬𝑝2

¬𝑝3𝑝3 ¬𝑝3𝑝3¬𝑝3

𝑎2

𝑎2

𝑎2 𝑎4 𝑎3 𝑎1𝑎5

(a)

𝑝1 ¬𝑝1

𝑝2 ¬𝑝2

¬𝑝3𝑝3 ¬𝑝3𝑝3

𝑎2

𝑎4 𝑎3 𝑎1𝑎5

(b)

𝑝2 ¬𝑝2

𝑝3 ¬𝑝3 𝑝3 ¬𝑝3

¬𝑝1𝑝1

𝑎3

𝑎1𝑎2

𝑎4 𝑎5

(c)

Figure 2.2: AP Tree of predicates in Fig. 2.1(b). (a) Original AP Tree. (b) Pruned AP
Tree. (c) Optimized AP Tree.

ai = q1 ∧ q2 ∧ ... ∧ qk, where qj ∈ {pj,¬pj}. (Note that ai in the previous sentence is

an atomic predicate only if it is not false.) Every predicate is equal to the disjunction

of a subset of atomic predicates. Every packet is evaluated to true by one and only one

atomic predicate.

As an illustration, Fig. 2.1(a) shows three predicates p1 (triangle), p2 (square), and

p3 (circle), each of which represents a set of packets that are evaluated to true by a

predicate. Each predicate specifies a set of packets that can pass the corresponding

packet filter. Fig. 2.1(b) shows the three predicates in the packet header space. All

packets in this example can be classified into five equivalence classes specified by five

atomic predicates, a1 to a5. Each predicate is equal to the disjunction of a subset of

atomic predicates. For example, p2 = a3 ∨ a4. Also, a4 = ¬p1 ∧ p2 ∧ p3. All packets

evaluated to true by a4 have identical behaviors: they can pass the filters of p2 and p3

but cannot pass p1.

In the network shown in Fig. 2.1(c), Let p1 specify the set of packets that can be

forwarded at box b1 to its output port to host h1, p2 specify the set of packets that can

be forwarded at box b1 to its output port to box b2, and p3 specify the set of packets

that can be forwarded at box b2 to its output port to host h2. A packet specified by

a4 = ¬p1 ∧ p2 ∧ p3 is forwarded at b1 by the path b1− > b2− > h2. A packet specified

15

by a5 = ¬p1 ∧¬p2 ∧ p3 is forwarded to h2 if it is at b2, but will be dropped if it is at b1.

An atomic predicate characterizes the behaviors of all packets it evaluates to true.

2.2 Design Framework of AP Classifier

AP Classifier is a program designed for a SDN controller. It computes the network-

wide behaviors for an input packet (or flow). AP Classifier performs two-stage process-

ing for a packet. First, using the AP Tree, it classifies the packet to the atomic predicate

that evaluates to true for the packet. Second, AP Classifier determines all forwarding

paths for the packet by using the atomic predicate, network information, and ingress

box of the packet.

2.2.1 AP Tree

Using the algorithms presented in [118], the controller first converts each ACL to a

predicate and the forwarding table of each box to m predicates, where m is the number

of output ports of the box. Let P = {p1, p2, ..., pk} be the set of predicates of all boxes

in the network. The controller constructs an AP Tree which is a binary tree. The root is

labeled by p1. At level i, the 2i internal nodes are each labeled by pi. Starting from the

root, at each internal node, the input packet is evaluated by the predicate in the label.

If the result is true, the packet continues to be evaluated in the left sub-tree. Otherwise

it goes to the right sub-tree. An AP Tree with (k + 1) levels can be constructed from

evaluating each of the k predicates at each level of internal nodes. A leaf node is then

labeled by q1 ∧ q2 ∧ ... ∧ qk, qi ∈ {pi,¬pi}, which specifies the set of packets reaching

the leaf. Fig. 2.2(a) shows the AP Tree of the three predicates in Fig. 2.1(b). Shaded

circles indicate leaf labels that are false. We will show that two sub-trees in an AP tree

do not necessarily have a same predicate order in Section 5.3.

16

To classify a packet to an atomic predicate, AP Classifier simply searches the AP

Tree by evaluating the packet until the leaf labeled by the atomic predicate is found.

At each node, the packet is evaluated by checking the BDD of the predicate. Since

predicates on sibling nodes are disjoint, for a given packet, the path from the root to the

leaf is exclusive and determinate.

In the worst case, there could be 2k atomic predicates and finding a leaf needs to

evaluate all k predicates. However, it is found that the number of atomic predicates is

surprisingly small for real networks [118]. Hence many leaves specify empty sets of

packets. For example, in Fig. 2.2(a), p1 ∧ p2 ∧ p3, p1 ∧ p2 ∧ ¬p3, and p1 ∧ ¬p2 ∧ p3

are all false according to the relationships in Fig. 2.1(b). Hence no packet can reach

any of these three leaves. We use the following rule to “prune” the AP Tree: If no

packet reaches a sub-tree, i.e., all leaves in the subtree are labeled by false predicates,

the sub-tree is removed from the AP Tree. If an internal node has only one child, it

is removed from the AP Tree as there is no need to check the predicate. We define

the depth of a leaf to be the number of predicates evaluated to reach the leaf. After

pruning, the average depth of all leaves in the AP Tree can be reduced and each node

has either 0 or 2 children. Fig. 2.2(b) shows the pruned AP Tree has average depth

(1 + 3 + 3 + 3 + 3)/5 = 2.6.

An important observation is the following: If predicates are placed at the levels in

a different order, the average depth of the AP Tree may be different. In Fig. 2.2(c),

the predicates are placed at three levels in the order of p2, p3, p1. The average depth of

all leaves in the pruned AP Tree is 2.4. An important contribution of this work is an

algorithm to find an order of predicates that substantially reduces the average depth of

an AP Tree.

For examples, each of the Internet2 and Stanford networks includes hundreds of

thousands of forwarding rules, which can be converted to 161 (Internet2) or 507 (Stan-

17

ford) predicates. Using our AP Tree construction algorithm, the average depth of the

AP Tree is only 10.6 (Internet2) or 16.8 (Stanford). In an unpruned AP Tree, a packet

needs to be evaluated by 161 or 507 predicates. AP Classifier only requires it to be

evaluated by 10.6 or 16.8 predicates, on average, thus improving the query through-

put by more than an order of magnitude. The detailed algorithm design of AP Tree

construction is presented in Section 2.3.

2.2.2 Computing packet behaviors

The second stage of AP Classifier determines the network-wide behaviors of the

queried packet from the network information, the ingress box, and the atomic predicate

determined in the first stage.

Since the atomic predicate is in the form q1 ∧ q2 ∧ ... ∧ qk, qi ∈ {pi,¬pi}, for any

predicate pj , AP Classifier can easily check whether the predicate evaluates to true or

false for the packet. Recall that pj represents a packet filter of an ACL or output port.

Hence AP Classifier can determine at any box whether the packet is dropped and which

port it is forwarded to. Starting from the ingress box, i.e., the box that sees the packet

first in the network, AP Classifier finds the output port to which the packet is forwarded

and then determines the next-hop box. If the packet is a multicast packet, it may be

forwarded to multiple ports. AP Classifier continues to find the forwarding ports on the

next-visited boxes until the packet reaches the destination or is dropped. The packet

behaviors are thus obtained.

Fig. 2.3 shows an example to illustrate how to compute network-wide forwarding

paths for a given packet. Consider a packet which arrives at the ingress box b1 and

it is classified to atomic predicate a4 by searching the AP Tree. The representation,

¬p1 ∧ p2 ∧ p3, of a4 shows that the packet is forwarded to b2 because p1 is false and p2

is true for the packet. Similarly at b2, the packet is forwarded to h2 because p3 is true

18

p1

p2

p3

b1

b2

h1

h2

4 1 2 3a p p p

Forwarding path of a packet specified

by a4 at ingress box b1

Figure 2.3: Computing forwarding path for a packet in a4

for the packet.

We ran experiments to evaluate the speed of the above approach on a general-

purpose desktop computer. We found that, for the Internet2 and Stanford datasets,

the throughput is greater than 15M and 10M packets per second, respectively. Note

that this throughput is much higher than the throughput in the first stage. Therefore, the

main effort of this work is to optimize the construction, search, and update of the AP

Tree.

2.3 AP Tree Optimization

The most challenging problem in designing AP Classifier is to construct an AP Tree

with minimized average depth, which can support dynamic updates.

19

Average depth of leaf nodes

10 20 30 40 50

T
h

ro
u

g
h

p
u

t
[M

q
p

s]
0

1

2

3

4

(a) Internet2

Average depth of leaf nodes

0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
[M

q
p

s]

0

0.5

1

1.5

2

(b) Stanford

Figure 2.4: Query throughput versus average depth of leaves

2.3.1 Query throughput versus average depth

To reduce the query time and improve the query throughput, the optimization goal

of AP Tree construction is to reduce the average depth of leaves. We conduct a set of

experiments to justify the correlation of reducing the average depth and improving the

throughput. We use the Internet2 network containing 161 predicates and the Stanford

network containing 507 predicates. In each experiment, we randomly order the k pred-

icates for placement at levels of the AP Tree. Then we query the generated tree using

sample packets and measure the query throughput. In Fig. 2.4, we show the relation-

ship between query throughput and average depth for 100 random generated AP Trees

20

for each network. After pruning, the average depth of the AP Tree of Internet2 varies

from 15.9 to 44.2, and the average depth of the AP Tree of Stanford varies from 39.1 to

92.5. From the two sub-figures in Fig. 2.4, it is obvious that an AP Tree with smaller

average depth provides higher query throughput. The star in each figure represents the

performance of the AP Tree constructed by AP Classifier. The query throughput of AP

Classifier is 3.35 Mqps (Internet2) and 1.82 Mqps (Stanford), substantially higher than

any random construction.

2.3.2 Quick-Ordering algorithm

The number of atomic predicates for a network is determinate if there is no update.

That is, for a network, its AP Tree has a fixed number of leaves. A more balanced binary

tree results in smaller average leaf depth. Compare the two AP Trees in Fig. 2.2(b) and

(c) whose average depths are 2.6 and 2.4, respectively. The one in Fig. 2.2(c) is more

balanced and hence has less average depth. The reason for the imbalance in Fig. 2.2(b)

is that p1 is placed at a higher level of the tree. According to properties of atomic

predicates, every predicate is equal to the disjunction of a subset of atomic predicates.

The number varies from one to the number of all atomic predicates. In this example,

p1 is a predicate that is equal to a single atomic predicate. Hence the left child of the

node labeled as p1 must be a leaf representing the atomic predicate. However, the right

sub-tree may include more levels, causing the imbalance.

In fact, an analysis of the two real network data planes shows that many predicates

are equal to a single atomic predicate. One fast yet effective ordering of predicates is

to place those predicates at lower levels. For example, in Fig. 2.2(c), p1 is placed at the

lowest level.

Notation. Let R(p) denote the subset of atomic predicates whose disjunction is p.

|R(p)| denotes the cardinality of R(p).

21

In the Quick-Ordering algorithm, |R(pi)| is counted for each predicate pi. Then the

AP Tree is constructed by placing all predicates onto the tree in descending order of

|R(pi)|.

2.3.3 Optimized AP Tree construction

a6

a1

a2

a3

a4

a5

(a)

𝑝2 ¬𝑝2

𝑝3 ¬𝑝3 𝑝3 ¬𝑝3

¬𝑝1𝑝1

𝑎3

𝑎1

𝑎4 𝑎5

¬𝑝4𝑝4
𝑎6 𝑎2

(b)

𝑝2 ¬𝑝2

𝑝3 ¬𝑝3 𝑝1 ¬𝑝1

¬𝑝3𝑝3

𝑎3

𝑎1𝑎5

𝑎4
¬𝑝4𝑝4

𝑎2𝑎6

(c)

Figure 2.5: Additional example. (a) Five predicates. (b) Pruned AP Tree. (c) Opti-
mized AP Tree.

To develop a more sophisticated ordering method, one important observation is

that, for two sub-trees whose roots are siblings, their predicate orders can be different.

In the example of Fig. 2.5(a), we now have four predicates p1 (triangle), p2 (square),

p3 (circle), and p4 (ellipse), which determine six atomic predicates, a1 to a6. If the

22

predicates are added in the order p2, p3, p1, p4, the pruned AP Tree is shown in Fig.

2.5(b). However, for the sub-tree rooted at the right child of the root, its subtree is more

balanced if the predicate order is p1, p3, p4, as shown in Fig. 2.5(c).

For a given set of predicates P = {p1, p2, ..., pk}, the atomic predicates A =

{a1, a2, ..., an} is determined. The number of leaves of the AP Tree is n, because each

leaf corresponds to an atomic predicate. We define F (Q,S) as the minimal sum of leaf

depths of the subtree (which is a part of the AP Tree) whose nodes include the set of

predicatesQ and leaves are the set of atomic predicates S. In the example of Fig. 2.5(c),

let Q = {p1, p3, p4} and S = {a1, a2, a5, a6}, F (Q,S) = 8. F (Q,S) can be calculated

recursively using the following equations. Let H(Q,S, p) be the minimal sum of leaf

depths if the root of the sub-tree is p. If S∩R(p) 6= ∅ and S∩R(¬p) 6= ∅, H(Q,S, p)

is the sum of three components: F (Q − {p}, S ∩ R(p)) and F (Q − {p}, S ∩ R(¬p))

are recursive computing for the left and right sub-trees and extra |S| needs to be added

because the depth of every leaf increments by 1. We have

H(Q,S, p) = F (Q− {p}, S ∩R(p)) + F (Q− {p}, S ∩R(¬p)) + |S|

If S∩R(p) = ∅, the left sub-tree will be pruned. The internal node with only one child

is also removed and the leaf depths do not increase. Hence,

H(Q,S, p) = F (Q− {p}, S ∩R(¬p))

Similarly, if S ∩R(¬p) = ∅, we have,

H(Q,S, p) = F (Q− {p}, S ∩R(p))

23

In addition, we have the following recursive equation.

F (Q,S) =

0 if |S|= 1

minpi∈QH(Q,S, pi) otherwise
(2.1)

When |S|= 1, it is easy to see that the sub-tree contains only one leaf, hence F (Q,S) =

0. Otherwise, the predicate pi ∈ Q is selected as the root of the sub-tree such that pi

minimizes H(Q,S, pi).

Using the above formula, it is possible to compute F (P,A). By recording the se-

lection of pi at each recursion, the optimized AP Tree can also be constructed.

However, the time complexity of solving this recursion is as high as O((2k) ∗ k!),

where k is the cardinality of P . We need to propose an efficient heuristic algorithm

to simplify the recursion. At a level of recursion, we need to find the predicate pi that

minimizes H(Q,S, pi). Instead of trying all predicates, we propose an easier way to

decide which predicate to select.

We define a pair-wise relation between two predicates that implies which one is

better to select. If H(Q,S, pi) < H(Q,S, pj), we say that pi is superior to pj and pj is

inferior to pi, denoted as pi
S→ pj . If H(Q,S, pi) = H(Q,S, pj), we say pi and pj are

in the same order, denoted as pi
S∼ pj .

We compare two predicates in four cases based on their logical relationships, as

shown in Fig. 2.6. Here, pi and pj refer to predicates which are equal to union of

atomic predicates in S ∩ R(pi) and S ∩ R(pj) respectively. H(Q,S, p) is calculated

based on the first three equations of section 2.3.3 for all four cases as follows:

1) Packets specified by pi intersect with those of pj (Fig. 2.6(a)). If we place pi to

the root and pj to the children of the root, we get a full sub-tree since R(pi) ∩ R(pj),

R(pi) ∩ R(¬pj), R(¬pi) ∩ R(pj) and R(¬pi) ∩ R(¬pj) are all non-empty. Hence, we

have

24

(a) (b)

(c) (d)

pjpi pi pj

pi pjpjpi

Figure 2.6: Relationships of two predicates. (a) Neither Pi∧Pj nor ¬Pi∧¬Pj is false.
(b) Pi ∧ Pj is false. (c) ¬Pi ∧ Pj is false. (d) Pi ∧ ¬Pj is false.

H(Q,S, pi) = |S|+F (Q− {pi}, S ∩R(pi))

+ F (Q− {pi}, S ∩R(¬pi))

= |S|+F (Q− {pi, pj}, S ∩R(pi) ∩R(pj))

+ F (Q− {pi, pj}, S ∩R(pi) ∩R(¬pj))

+ |S ∩R(pi)|

+ F (Q− {pi, pj}, S ∩R(¬pi) ∩R(pj))

+ F (Q− {pi, pj}, S ∩R(¬pi) ∩R(¬pj))

+ |S ∩R(¬pi)|

If we place pj to the root and pi to the children, we can get H(Q,S, pj) similarly. Since

|S∩R(pi)|+|S∩R(¬pi)|= |S∩R(pj)|+|S∩R(¬pj)|= |S|,H(Q,S, pi) = H(Q,S, pj).

We have pi
S∼ pj .

2) Packets specified by pi disjoint with those of pj (Fig. 2.6(b)). pi ∧ pj is false.

If we place pi to the root and pj to the children of the root, the sub-tree representing

R(pi) ∩ R(pj) will be pruned. The child representing R(pi) ∩ R(¬pj) will replace

25

its parent node and leaf depths do not increase. However, the sub-tree representing

R(¬pi) ∩ R(pj) and R(¬pi) ∩ R(¬pj) are both non-empty, so the total leaf depths

increase by |S ∩R(¬pi)|. Hence

H(Q,S, pi) = |S|+F (Q− {pi, pj}, S ∩R(pi) ∩R(¬pj))

+ F (Q− {pi, pj}, S ∩R(¬pi) ∩R(pj))

+ F (Q− {pi, pj}, S ∩R(¬pi) ∩R(¬pj))

+ |S ∩R(¬pi)|

Similarly, if we place pj to the root and pi to the children,

H(Q,S, pj) = |S|+F (Q− {pi, pj}, S ∩R(pj) ∩R(¬pi)))

+ F (Q− {pi, pj}, S ∩R(¬pj) ∩R(pi))

+ F (Q− {pi, pj}, S ∩R(¬pj) ∩R(¬pi))

+ |S ∩R(¬pj)|

Despite of the same terms, if |S ∩R(¬pi)|< |S ∩R(¬pj)|, pi S→ pj . If |S ∩R(¬pi)|=

|S ∩R(¬pj)|, pi S∼ pj . Otherwise pj
S→ pi.

3) Packets specified by pj are a subset of those of pi (Fig. 2.6(c)). ¬pi ∧ pj is false.

If we place pi to the root and pj to the children of the root, the sub-tree representing

R(¬pi)∩R(pj) will be pruned. The child representingR(¬pi)∩R(¬pj) will replace its

parent node and leaf depths do not increase. The sub-tree representing R(pi) ∩ R(pj)

and R(pi) ∩ R(¬pj) are non-empty, so the total leaf depths increase by |S ∩ R(pi)|.

26

Hence

H(Q,S, pi) = |S|+F (Q− {pi, pj}, S ∩R(pi) ∩R(pj))

+ F (Q− {pi, pj}, S ∩R(pi) ∩R(¬pj))

+ F (Q− {pi, pj}, S ∩R(¬pi) ∩R(¬pj))

+ |S ∩R(pi)|

If we place pj to the root and pi to the children of the root, the sub-tree representing

R(pj) ∩R(¬pi) will be pruned.

H(Q,S, pj) = |S|+F (Q− {pi, pj}, S ∩R(pj) ∩R(pi)))

+ F (Q− {pi, pj}, S ∩R(¬pj) ∩R(pi))

+ F (Q− {pi, pj}, S ∩R(¬pj) ∩R(¬pi))

+ |S ∩R(¬pj)|

Therefore if |S∩R(pi)|< |S∩R(¬pj)|, pi S→ pj . If |S∩R(pi)|= |S∩R(¬pj)|, pi S∼ pj .

Otherwise pj
S→ pi.

4) Packets specified by pi are a subset of those of pj (Fig. 2.6(d)). Similar to the

above cases, we can get if |S ∩ R(¬pi)|< |S ∩ R(pj)|, pi S→ pj . If |S ∩ R(¬pi)|=

|S ∩R(pj)|, pi S∼ pj . Otherwise pj
S→ pi.

We then design the key criterion of predicate selection for each level of recursion,

namely: We select a predicate that is not inferior to any other predicate. The algorithm

is presented as follows: For each level of recursion, a predicate ps is maintained, ini-

tially being p1. A linear scan is performed from p2 to pk. For a predicate pi, if pi
S→ ps,

then ps is set to pi. At the end, ps is selected as the root node of the subtree for this

level of recursion.

To prove the correctness of the above algorithm, we need to show that ps is indeed

27

not inferior to any other predicate. A sufficient condition is that the superior/inferior

relation is acyclic, i.e., there are no three predicates pa, pb, pc such that pa
S→ pb, pb

S→

pc, and pc
S→ pa. We have proved the acyclic property by exhaustion. Our proof is not

shown herein due to space limitation.

Time efficiency of AP Tree construction. In the AP Tree construction algorithm

presented above, we avoid the time-intensive operation of computing the conjunction of

two predicates represented as BDDs. Instead, our algorithm computes the intersection

of two sets of integers that are identifiers of atomic predicates, as suggested in [118].

Intersections of integer sets can be computed much more quickly than conjunctions of

BDDs. Each predicate is represented as a set of integers, so the time complexity of

determining relationship between two predicates is O(n), where n is the number of

atomic predicates. For each level of recursion, a linear scan needs O(k′n) time, where

k′ is the number of predicates in the current level. The overall complexity of building

an AP Tree depends on the number of levels as well as the balance of the tree. Here we

only provide the complexity analysis for a balanced AP Tree. For a balanced AP Tree,

there are 2l nodes at level l. For each node, k′ ≤ (k − l). Hence at level l, the time

complexity is at most 2l(k − l)n. Since l ≤ log2 n, 2l(k − l)n < kn2. Since there are

dlog2 ne levels, the overall time complexity is upper-bounded by O(kn2 log n).

2.3.4 Optimization for packet distribution

In the proposed algorithms, we assume that, for a packet query, leaf nodes (atomic

predicates) have equal probability to be visited. Therefore minimizing the average

depth of leaf nodes maximizes the query throughput. However, practical network flows

may not be distributed uniformly with respect to the set of atomic predicates. For

example, if many queried packets may eventually visit a leaf in a very deep position

and leaves close to the root are rarely visited, the throughput decreases. To improve the

28

query throughput for uneven packet distribution, we assign weights to atomic predicates

such that leaf nodes that are visited frequently will be placed relatively close to the root.

To estimate the packet distribution, AP Classifier maintains a counter for each leaf

node (atomic predicate), which records the number of visits by queries in a past period

of time. The value of a counter is then converted to the weight of the corresponding

atomic predicate after reduction of a fraction. When using the optimized algorithm pre-

sented in Section 2.3.3, every occurrence of |R(pi)| is replaced by the sum of weights

of all atomic predicates in R(pi), rather than its cardinality.

For example, suppose AP Classifier is choosing the root of a subtree by comparing

two predicates pi and pj whose relationship is as shown in Figure 2.6(c). If the atomic

predicates in setR(pj) have been queried by many packets, we prefer to place pj before

pi in order to get smaller depths for the leaf nodes labeled by the atomic predicates in

R(pj). Higher weights help to get H(Q,S, pj) < H(Q,S, pi) and make pj superior to

pi.

2.3.5 Dealing with packet header changes.

Today’s networks rely on a wide range of middleboxes (e.g., firewalls, intrusion

detection and prevention systems, and proxies) which achieve performance and se-

curity benefits. Some middleboxes may modify packet headers of incoming traffic.

When middleboxes modify packet headers, the forwarding behaviors of these pack-

ets on downstream boxes must be determined by the new header fields. For example,

when a Network Address Translation (NAT) middlebox translates an external address

to an internal one, AP Classifier must be aware of such translation and compute the

remaining packet behaviors using the internal address.

We consider three types of packet header changes by middleboxes, namely 1) de-

terministic based on packet headers, 2) deterministic based on packet payload, and 3)

29

probabilistic.

For Type 1 changes, a change is completely determined by the header of an incom-

ing packet. In AP Classifier, we model these middlebox operations as a flow table. Each

packet that enters a middlebox passes through a flow table. A flow table contains entries

consisting of three components: match fields, instructions, and a new atomic predicate.

Match Fields are used to select packets that match the predicates in the fields. Instruc-

tions specify new packet headers if a match occurs. The atomic predicate fields store

atomic predicates calculated for new packet headers.

For Type 1 changes, given the packet header before a change, the atomic predicate

after the change can be easily determined based on the flow table. Therefore when

AP Classifier finds that a packet passes a middlebox, at the behavior computing stage

(second stage of AP Classifier), it checks the flow table whether the packet header has

been modified based on the middlebox policies. If the packet has a new header, AP

Classifier will read a new atomic predicate and compute forwarding behaviors for the

new header based on the new atomic predicate. Such process may repeat multiple times

until the packet is dropped or the forwarding path ends at the packet’s destination.

To see how this works, we use an extensional version of the example from 2.2.2 in

Fig. 2.7. The topology in the figure is a part of the whole network. Packets passing box

b1 are firstly processed by the flow table at middleboxMB1 and then by b1’s forwarding

table. The flow table of MB1 contains three entries that modify packet headers and one

default entry. Consider a packet enters box b1 and matches the third entry of the flow

table at MB1. Its corresponding packet header fields are changed to 172.16.146.2 and

its atomic predicate is changed to a4. The yellow line, in Fig. 2.7, shows that the packet

is forwarded to box b2 and then host h1 after header modification.

For Type 2 changes, the packet header after a change can be determined only after

the packet payload is known. Hence it is not possible to pre-compute a flow table that

30

Forwarding path of a packet matched

by the third entry of MB1 at b1

Match fields Instructions New atomic predicates

10.10.50.0/24 172.16.178.230 𝑎2 = 𝑝1 ∧¬𝑝2 ∧¬𝑝3

10.10.60.0/24 172.16.158.49 𝑎3 = ¬𝑝1 ∧𝑝2 ∧¬𝑝3

10.10.70.0/24 172.16.146.2 𝑎4 = ¬𝑝1 ∧𝑝2 ∧𝑝3

Others None Unchanged

p1

p2

p3

b1

b2

h1

h2

MB1

The flow table at MB1

Figure 2.7: Computing forwarding path with header modifications

stores the atomic predicate after packet header changes. AP Classifier needs to search

the AP Tree again using the new header to find a new atomic predicate. This process

may repeat multiple times. Probabilistic changes (Type 3) can be treated similarly.

However, AP Classifier may output multiple possible network-wide behaviors for a

given packet.

2.4 AP Tree update and reconstruction

An important requirement of practical packet behavior identification is to support

dynamic network changes, including link and rule changes, both of which require ad-

dition and deletion of predicates. We design fast AP Tree update methods for adding a

predicate and deleting a predicate while maintaining tree correctness. However, after a

large number of updates, an AP Tree will experience performance degradation. Hence

31

we also design an AP Tree reconstruction method that periodically rebuilds the tree to

optimize its performance while performing packet query processing at the same time.

In this section, we assume that each atomic predicate is equally weighted.

2.4.1 Real-time update of an AP Tree

The SDN data plane of a network is frequently updated by rule installation and

deletion. When a rule is inserted into or removed from a forwarding table or an ACL,

it may change one or more predicates. The set of atomic predicates may change as

well. We use the method presented in [117] to convert a rule insertion or deletion to

predicate change. If there is no predicate change after a rule update, AP Classifier

does not need to update the AP Tree. Otherwise, AP Classifier performs the methods

presented below to remove the old predicate and add the updated predicate in the AP

Tree. These methods are also used after addition/deletion of a network link which

requires addition/deletion of predicates.

Add a predicate. When a new predicate p is added, for each leaf node representing

an atomic predicate a in the current AP Tree, AP Classifier computes a∧ p and a∧¬p.

If none of them is false, two children are added to the leaf node, representing a∧ p and

a ∧ ¬p respectively. If one and only one of the two conjunctions is false, the label of

the leaf node is replaced by the other conjunction. If both conjunctions are false, AP

Classifier does nothing to this leaf node.

Delete a predicate. To delete an existing predicate p from the AP Tree, AP Classi-

fier does not remove all internal nodes labeled by p. This is because after the removal

of a node, merging the two sub-trees rooted at its children is very difficult. Instead,

we still keep p in the AP Tree, but mark it as “deleted” in the list of all predicates.

A query packet is still processed by the AP Tree to find its leaf node representing its

atomic predicate. It is still evaluated by the deleted predicates to determine which sub-

32

1 2 3 4 5 6 7

7

Query

process

Reconstructi

on process

AP tree

querying

Fast

update

AP Tree

reconstruction

3

Transmit

new tree

Transmit

new tree

8

82

Figure 2.8: Real-time update and query processing

tree to visit next. However, in the second stage of AP Classifier, i.e., computing packet

behaviors, AP Classifier just ignores all predicates that have been deleted.

2.4.2 Parallel reconstruction of an AP Tree

Although, the AP Tree updates in AP Classifier are fast and maintain correctness

of packet behavior identification, the AP Tree is no longer optimized and the query

throughput will degrade over time. Hence AP Classifier also reconstructs the AP Tree

to optimize it from time to time. To enable query processing at the same time as tree re-

construction, AP Classifier runs two processes in parallel, called the query process and

reconstruction process, executing on two different cores. The start of a reconstruction

is triggered by an event, e.g., query throughput is lower than a threshold or the number

of updates on the current AP Tree is higher than a threshold. During reconstruction, the

query process still maintains the old AP Tree by performing updates, and responds to

queries. After the reconstruction process has built a new tree, the new tree needs to be

updated for data plane changes that have occurred during the reconstruction period, if

any. The updated new tree is then transmitted to the query process to replace the old

tree.

Fig. 3.7 shows an example of the parallel reconstruction of an AP Tree. The query

process performs AP Tree search to respond to queries as well as updates when data

33

Table 2.1: Statistics of the two real networks

Stanford Internet2

No. of rules
Forwarding ACL Forwarding

757170 1584 126017
No. of predicates 507 71 161

No. of atomic predicates 494 21 216

plane changes happen. In this example, the first reconstruction starts shortly after the

change that requires update 1, which is included in the construction of a new tree.

However, when the new tree is finished, two changes that require updates 2 and 3 have

occurred during the reconstruction period. The new tree does not reflect these two

updates. Thus the reconstruction process also applies these two updates to the new

tree. Then the updated new tree is sent to the query process to replace the old AP Tree.

Similarly the second reconstruction begins after changes that require updates 4, 5, and

6. The new tree constructed needs to be updated for changes (that require updates 7

and 8) which occur during the reconstruction period, before it can be sent to the query

process. Note that if there is no data plane change during a reconstruction period, the

new AP Tree is optimized.

If network dynamics change weights of atomic predicates, current AP Tree con-

structed using previous configurations should be rearranged to provide the best perfor-

mance. It is hard to adjust AP Tree in the real time update process which should be

finished very quickly. However, rearranging AP Tree needs to compare relationships of

several predicates which may cost beyond the time scale of milliseconds. To regain the

optimized performance of AP Tree, AP Classifier reconstructs AP Tree with the new

weights of atomic predicates periodically.

34

2.5 Experimental Evaluation

We have implemented and evaluated AP Classifier on a general purpose desktop

computer with quadcore@3.2G and 16GB memory. Our implementation and evalua-

tion include all functional components for packet behavior identification from scratch,

including computing atomic predicates, classifying packets using the AP Tree, and

computing packet behaviors. (In comparison, prior work on this problem only im-

plements and evaluates a single function, namely: classifying packets to equivalence

classes [59].) For our experimental evaluation, we use forwarding tables and ACLs

from two real networks: Internet2 [14] and Stanford network [63]. As shown in Ta-

ble 2.1, Internet2 includes 126,017 forwarding rules and the Stanford network includes

757,170 forwarding rules and 1,584 ACL rules. The predicates and atomic predicates

are computed using the method in [118]. We compare AP Classifier with possible so-

lutions by utilizing two state-of-art tools, namely Header Space Analysis (HSA) [63]

and AP Verifier [118]. We do not compare AP Classifier with MDD [59] because it

relies on a special method for MDD construction and the source code is not publicly

available. Furthermore, its method does not support dynamic updates.

Internet2 Stanford
0

10

20

30

40

A
v
er

ag
e

d
ep

th
 o

f
le

av
es

Best from Random

Quick−Ordering

OAPT

Figure 2.9: Average depth of leaves

35

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Depth of a leaf node

C
u

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

OAPT

Quick−Ordering

Best from Random

(a) Internet2

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Depth of a leaf node

C
u

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

OAPT

Quick−Ordering

Best from Random

(b) Stanford

Figure 2.10: Cumulative distribution of the depths of leaf nodes in AP Trees

2.5.1 Depths of leaf nodes

In this set of experiments, we show the depths of leaf nodes in an AP Tree, which

can demonstrate effectiveness of the proposed tree construction algorithms. We eval-

uate and compare three methods, Best from Random, Quick-Ordering, and Optimized

AP Tree construction (OAPT), for both Internet2 and Stanford networks. The Best from

Random method generates a random order of predicates for placement on levels of an

AP tree and performs pruning. It constructs 100 AP trees and chooses the tree with the

minimal average depth of leaf nodes. Quick-Ordering is presented in Section 2.3.2 and

OAPT is presented in Section 2.3.3.

Fig. 2.9 shows the average depth of of leaf nodes in an AP tree. For Internet2, the

average depth of Best from Random is 16.0, worse than those of Quick-Ordering (13.0)

and OAPT (10.6). OAPT reduces the average depth by 34% compared to Best from

Random and 19% compared to Quick-Ordering. For the Stanford network, Best from

Random also has the highest average depth (39.0), followed by Quick-Ordering (24.2)

and OAPT (16.9). OAPT shows significant improvement: It reduces the average depth

by 57% compared to Best from Random and by 30% compared to Quick-Ordering.

Fig. 2.10 shows the cumulative distribution of depths of leaf nodes in an AP Tree.

For Internet2, the leaf depths of Quick-Ordering are clearly smaller than Best from

36

Internet2 Stanford

T
im

e
co

st
 [

s]

0

0.1

0.2

0.3

0.4

Random

Quick-Ordering

OAPT

Figure 2.11: Overall construction time cost of AP Classifier

Random. However for the Stanford network such improvement is not very significant.

OAPT has clearly smaller depths for all percentiles compared to the other two methods.

For Internet2 80% of the leaf nodes in the OAPT tree have a depth less than 11 and for

Stanford this number is 21. The maximum depths are 24 and 46 for Internet2 and

Stanford, respectively.

2.5.2 Memory Usage

After construction, AP Classifier only stores one copy of all predicates and atomic

predicates as BDDs and also, for each predicate, a set of integer identifiers of atomic

predicates. In the AP Tree a node only stores a pointer to the labeled predicate or

atomic predicate. Since pointers use very little memory, the memory costs of different

methods are very close. Hence we only show the memory cost of AP Classifier using

OAPT. In our implementation, we use JDD library [111] to construct BDDs and their

logical operations. Each node in a BDD has a fixed size. The memory consumption of

a BDD is determined by the number of nodes in the BDD. It is interesting to observe

that more rules in a network do not always mean more BDD nodes. When there exist

much more similarities among rules of a network, a BDD of the network is more likely

37

to be simple with a smaller number of nodes. The memory cost for the network is prone

to be lower.

The total memory cost of AP Classifier for Internet2 is 4.79 MB and that for Stan-

ford is 2.15 MB. Although Internet2 has fewer predicates than Stanford, it requires

more memory because BDDs of the Internet2 predicates are more complex than those

of Stanford. Unlike the results of [59] that only show memory cost of the search struc-

ture, our memory costs account for all components for packet behavior identification,

including the network topology, predicates, atomic predicates, and AP Tree. We found

that AP Classifier uses very small memory and can be stored in cache.

Internet2 Stanford
0

1

2

3

4

T
h

ro
u

g
h

p
u

t
[M

q
p

s]

Hassel−C
0.006

Hassel−C
0.0047

Hassel−C

AP Verifier

Forwarding Simulation

Best from Random

Quick−Ordering

OAPT

Figure 2.12: Query throughput for static networks

Time cost of updates [ms]

0 2 4 6 8

C
u

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

0

0.2

0.4

0.6

0.8

1

Initial size=40

Initial size=80

Initial size=120

(a) Internet2

Time cost of updates [ms]

0 0.5 1 1.5

C
u

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

0

0.2

0.4

0.6

0.8

1

Initial size=100

Initial size=250

Initial size=400

(b) Stanford

Figure 2.13: Cumulative distributions of time cost for adding a predicate.

38

2.5.3 AP Tree construction time

Fig. 2.11 shows times to construct AP Trees using the three methods for the two

networks. Note that the time cost is the overall construction time that includes the times

for computing atomic predicates as well as for AP Tree construction. The Random

method costs the least time but it is only for one random construction. To find the

best AP Tree from a large number of random constructions takes substantially longer

time. Quick-Ordering and OAPT have similar time costs, 201.36 ms and 204.39 ms,

for Internet2. For the Stanford network, OAPT requires 342.77 ms for Stanford, a little

longer compared to Quick-Ordering (293.36 ms).

2.5.4 Query throughput for static networks

In this set of experiments, we measure the throughput of AP Classifier to process

packet queries, in number of queries per second (qps). Packet headers used for queries

in the experiments are generated randomly with respect to the atomic predicates. The

throughput results for static networks are shown in Fig. 3.8. For Internet2, AP Classifier

using OAPT can achieve 3.4 Mqps, higher than Best from Random by 102% and Quick-

Ordering by 52%. For Stanford network, AP Classifier using OAPT can achieve 1.8

Mqps, higher than Best from Random by 46% and Quick-Ordering by 34%. For both

networks, the throughput of AP Classifier is much higher than 1 Mqps, which is enough

to satisfy most application requirements in SDN.

For static networks, we can use the open-source tool Hassel-C [11] that implements

HSA [63] to perform packet behavior identification for a specific packet. By providing

the input port and a specific query packet, Hassel-C computes the reachability tree

of the query packet. (For a unicast packet, the reachability tree is a forward path to

the packet’s destination.) The query throughputs of using Hassel-C to perform packet

behavior identification are 6 Kqps and 4.7 Kqps for Internet2 and Stanford, respectively,

39

which are about 1000 times slower than the query throughputs of AP Classifier. They

are also plotted in Fig. 3.8 but they are very small and barely visible. We also compare

AP Classifier with AP Verifier [118]. We first use AP Verifier to compute all atomic

predicates, and perform a linear search of all atomic predicates for the query packet

until the packet matches an atomic predicate. Results in Fig. 3.8 show that AP Verifier

is also much slower, though its throughput is improved a lot compared to Hassel-C.

In addition we use a method of Forwarding Simulation, i.e., determining the for-

warding behavior of the packet at a box, then checking the forwarding behavior on the

next-hop box, until the packet stops. At each box, a packet is checked using the pred-

icates at the box linearly until a match occurs. In our experiments using Forwarding

Simulation, the average number of predicates checked is 96.8 and 232 for Internet2 and

Stanford, respectively. The corresponding throughput is 0.2 Mqps and 0.16 Mqps as

shown in Fig. 3.8. In contrast, only 10.6 and 16.8 predicates are needed to be checked

on average using AP Classifier.

2.5.5 Dynamic Networks

In this set of experiments, we first construct the AP Tree using a number of predi-

cates and then keep adding new predicates. We measure the time cost to add each new

predicate and update the AP Tree. Fig. 2.13 (a) shows the cumulative distribution of

time cost for adding a predicate in the Internet2 network. The initial number of predi-

cates is set to 40, 80, and 120 for three different experiments. From the figure we find

that about 80% of the predicate additions are finished in 2 ms. It may take 5-6 ms in

worst cases. We do not observe obvious differences when the initial numbers of predi-

cates are different. Fig. 2.13 (b) shows the results of similar experiments for Stanford.

The initial number of predicates is set to 100, 250, and 400 for three different experi-

ments. Over 90% of the predicate additions are finished in 1 ms. Deleting a predicate

40

Time [s]

0 0.4 0.8 1.2 1.6

R
u
n
ti

m
e

th
ro

u
g
h
p

u
t

[M
q
p

s]

0

2

4

6

8

AP Classifier

APLinear

PScan

(a) Internet2, 100 updates/s

Time [s]

0 0.4 0.8 1.2 1.6

R
u
n
ti

m
e

th
ro

u
g
h
p

u
t

[M
q
p

s]

0

1

2

3

4

AP Classifier

APLinear

PScan

(b) Stanford, 100 updates/s

Time [s]

0 0.4 0.8 1.2 1.6

R
u
n

ti
m

e
th

ro
u

g
h
p
u
t

[M
q
p
s]

0

2

4

6

8

AP Classifier

APLinear

PScan

(c) Internet2, 200 updates/s

Time [s]

0 0.4 0.8 1.2 1.6
R

u
n

ti
m

e
th

ro
u

g
h
p
u
t

[M
q
p
s]

0

1

2

3

4

AP Classifier

APLinear

PScan

(d) Stanford, 200 updates/s

Figure 2.14: Query throughput for dynamic networks. The number of updates per
second is 100 in (a) (b) and 200 in (c) (d)

does not require extra computation, hence there is no result for deletions.

Query throughput for dynamic networks. We also evaluate the throughput of

AP Classifier in practical environments where additions and deletions of rules and pred-

icates happen over time. At the beginning of each experiment, a number of predicates

are chosen randomly from the set of predicates of a network to construct the initial

AP Tree. Starting from time 0, the arrivals of change events requiring the addition or

deletion of predicates are modeled by a Poisson process. Each update operation can

be adding a new predicate or deleting an existing predicate. In all experiments, equal

numbers of additions and deletions are inserted to the event queue. A reconstruction is

triggered every 0.4 s. During every reconstruction, AP Classifier answers queries and

performs updates as explained in Section 2.4.2. We compare AP Classifier with two

possible methods, APLinear and PScan, APLinear utilizes AP Verifier [118] to com-

41

Trace

1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g

h
p
u
t

[M
q
p
s]

0

2

4

6

8
AP Classifier, distribution-aware

AP Classifier, distribution-unaware

(a) Internet2

Trace

1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g

h
p
u
t

[M
q
p
s]

0

1

2

3

4

5
AP Classifier, distribution-aware

AP Classifier, distribution-unaware

(b) Stanford

Figure 2.15: Query throughput of AP Classifier for different packet distributions

pute atomic predicates and performs a linear search for the query packet until the packet

matches an atomic predicate. Note that BDDs of atomic predicates are more complex

than those of predicates. Hence APLinear is not efficient. PScan performs a scan on

all predicates using the query packet and decides whether the packet is filtered by the

predicate. Both methods can be used to identify packet behaviors.

Fig. 2.14 shows the throughputs of AP Classifier, APLinear, and PScan in dynamic

networks. The x-axis is time and the y-axis is throughput measured in Mqps. We con-

duct two sets of experiments whose update rates are 100 updates/s and 200 updates/s.

From all subfigures in Fig. 2.14, we find that AP Classifier is faster than the other two

methods by an order of magnitude. Note that starting from time 0, the throughput of

AP Classifier slowly decreases as an increasing number of updates make the AP Tree

less optimized. The first reconstruction starts at time 0.4 s and finishes at about 0.6 s in

Fig. 2.14(a) and (c), and 0.7s in Fig. 2.14(b) and (d). When a reconstruction finishes,

the throughput immediately goes back to a high value (4 Mqps in (a) and (c), and 2

Mqps in (b) and (d)). Furthermore, the throughput does not degrade in the long-term

view. Comparing results of the two different update rates, we find that the average

throughput of AP Classifier does not drop much even after the update rate is doubled.

Hence AP Classifier is fast and robust for practical dynamic networks.

42

2.5.6 Impact of packet distribution

To evaluate the performance of AP Classifier under various packet distributions,

we generate new sets of test traces which are unevenly distributed with respect to the

atomic predicates. The number of packets corresponding to the atomic predicates are

chosen by sampling from a Pareto distribution. The probability density function for the

Pareto distribution can be expressed as:

fX(x) =

αxmα

xα+1 x ≥ xm

0 x < xm

(2.2)

Where xm is the minimum possible value ofX , and α is a positive parameter, which

is known as the tail index. In our experiments, we chose xm = 1, α = 1. About half of

atomic predicates have 1,000 packets, but some have more than 20,000 packets.

We generated 10 sets of traces for each network. If we still use the AP Trees con-

structed without the consideration of packet distributions (distribution-unaware), the

average depth of all queries is 10.65 for Internet2 and 16.2 for Stanford network. Then

we construct new distribution-aware AP Trees using the method described in Section

2.3.4. The average depth of all queries is reduced to 8.09 (Internet2) and 11.3 (Stan-

ford). The corresponding values of throughput are shown in Fig. 2.15. We can see

that, if AP Classifier measures the packet distribution and assigns different weights to

atomic predicates, the throughputs in all cases have notable improvements compared

to the distribution-unaware method. The average query throughput increases from 4.2

Mqps to 5.2 Mqps for Internet2 and from 2.4 Mqps to 3.2 Mqps for Stanford.

2.5.7 Dealing with packet header changes

In this set of experiments, we evaluate the throughput of computing packet behav-

iors when there exist middleboxes modifying packet headers. We use the topologies

43

of Internet2 and Stanford networks. In each experiment, one to three of switches are

chosen as boxes connecting to middleboxes that may change packet headers. Due to

lack of available middlebox policy data, we create ten entries for each flow tables of

middleboxes. Match fields of flow tables are produced by dividing the packet header

space into ten disjointed sets. We obtain match fields by grouping all atomic predicates

into ten predicates. So every incoming packet can match an entry. When incoming

packets match these entries, AP Classifier computes the remaining forwarding behav-

iors of packets using new atomic predicates. However for some packets, the new packet

headers cannot be determined in advance. AP Classifier needs to search the AP Tree

for the second time to find an atomic predicate for the new header. The process of

computing packet behaviors ends until the packet is dropped or reaches the destination.

We measure the throughput of packet behavior computation under these circum-

stances. Packets used in the experiments are generated randomly with respect to atomic

predicates.

Table 2.2: Throughput with packet header changes

Throughput(Mpps)
No. of middleboxes One Two Three

Internet2 13 10.2 9.8
Stanford 10 8.6 7.4

(a) Deterministic ratio = 0.9.

Throughput(Mpps)
No. of middleboxes One Two Three

Internet2 11.2 9.8 8.5
Stanford 8.9 7.9 7

(b) Deterministic ratio = 0.5.

Throughput(Mpps)
No. of middleboxes One Two Three

Internet2 8.7 6.9 3.2
Stanford 7.1 4.9 2.1

(c) Deterministic ratio = 0.

44

Table. 2.2 illustrates throughput of computing packet behaviors for Internet2 and

Stanford datasets in different scenarios. We define the deterministic ratio as the por-

tion of middlebox rules that can determine the atomic predicates of packets after packet

header changes. When the deterministic ratio is 0.9, the throughput does not downgrade

much as number of middleboxes increases since most packets have new atomic pred-

icates stored in the flow tables, as shown in Table. 2.2 (a). Compared with Table. 2.2

(a), the corresponding throughput values in Table. 2.2 (b) and (c) are lower since more

packets passing through a middlebox require searching the AP Tree for a second time.

In the worst case, the throughput of computing packet behaviors is still 3.2 M and 2.1

M packets per second respectively, which is much higher than using other methods.

2.6 Related Work

Network-wide packet behavior identification is equivalent to reachability compu-

tation for a specific packet. This problem is related to, but different from, network

reachability analysis which has been studied for over a decade. Xie et al. [115] present

a model for static reachability analysis of data plane network state. Quarnet [64] rep-

resents ACLs as firewall decision diagrams to compute network reachability. Header

Space Analysis (HSA) [63] is custom-designed method to check network invariants but

not in real time.

For real-time applications, NetPlumber [62] makes use of HSA to detect network

invariant violations. Veriflow [65] stores all data plane rules in a multi-dimensional

prefix tree (trie) and determines the Equivalence Classes (ECs) of packets. An EC

is defined to be a set of packets that have identical forwarding actions in all boxes.

Veriflow then checks network invariants by analyzing reachability graphs of ECs.

Binary Decision Diagram (BDD) [42] is an efficient structure that were used to

model network properties. ConfigChecker [32] is general verification tool based on

45

symbolic model checking. It uses a BDD to represent a set of state transitions (also

flowchecker [31] by the same first author). If n header bits are used for filtering, each

BDD of ConfigChecker uses 2n state variables which is less efficient than BDDs used

in our design and [118] (In our design and AP Verifier, each BDD represents a set

of packets and requires the use of n bit variables only). Anteater [76] uses boolean

formulas to represent policies for packets traveling over edges in a network graph.

McGeer [80] models network verification as Boolean satisfiability problems. They

both use a SAT solver to check network properties. All of these general-purposes tools

are slow and operate on time scales of seconds to hours [65].

All of the above methods focus on analyzing network-wide invariants (e.g., reach-

ability, loop-freedom) but were not designed to identify the reachability of a specific

packet. For example, they can determine whether it is possible to reach box B from

box A but cannot tell whether a given packet can reach B. AP Verifier [118] can check

whether all packets entering a port in the network pass through a waypoint (e.g., a

firewall) but cannot tell whether a specific packet traverses a given waypoint.

One possible solution to packet behavior identification problem is checking the

packet against the set of atomic predicates calculated by AP Verifier linearly [118]

which is impractically slow. Another solution is to obtain all related data plane rules

of the packet by searching the trie created in Veriflow and then compute the forward-

ing path based on the rules. However storing all rules requires non-trivial memory

cost (tens of GBs for the Stanford network) which could cause disk I/Os during query

processing. As a result, using the Veriflow trie for packet behavior identification was

shown to be very slow by Inoue et al. [59] who proposed a tool that can quickly clas-

sify a packet to an EC. Its main drawback is that their MDD structure cannot correctly

represent the current network state because its does not support real-time updates, espe-

cially for SDNs where data plane updates are frequent [70]. Prefix DAG [99] employs

46

a data structure similar to MDDs, but it focused on a simple classification problem with

a single header field.

Recently, Network Optimized Datalog is proposed as a general specification lan-

guage to model high-level abstraction of network beliefs and dynamism [75]. A new

approach to derive data plane from network configurations is in [49].

47

Chapter 3

SICS: Secure and Dynamic Middlebox

Outsourcing

3.1 Overview

In modern networks, most middleboxes choose the appropriate processing actions

based on headers of incoming packets. When a middlebox processes a packet, it finds

a rule that matches the packet header and follows the action of the rule. Hence, rule

information specifies the packet processing policies of the middleboxes. Both packet

headers and rules contain private information belonging to the enterprise network. To

facilitate middlebox outsourcing without compromising privacy, we design and imple-

ment SICS, a Secure In-Cloud Service function chaining framework.

3.1.1 The SICS Outsourcing Architecture

As shown in Fig. 3.1, SICS contains three parties: an enterprise (middlebox user),

middlebox providers, and a third party cloud that holds in-cloud middlebox processing.

The middlebox providers set up middleboxes per request. The enterprise configures

48

Cloud

…

External Sites

Middlebox

providers

Internal

Network
Gateway

Enterprise
Traffic

Configure/Update

Figure 3.1: The architecture of SICS

and updates rules in these middleboxes. The enterprise has a gateway that connects the

internal and the external network. All incoming packets to the enterprise will be for-

warded to the gateway. The gateway encrypts the packet headers and payload and sends

the packets to the cloud for middlebox processing. The encryption can use symmetric-

key algorithms, such as the Advanced Encryption Standard (AES), which can be per-

formed in near line speed for 10Gbps links [71]. The encryption key is only known by

the enterprise. The in-cloud middleboxes process packets following the service func-

tion chains and then the cloud transmits the packets back to the enterprise. The gateway

decrypts the packets and sends them to the internal network.

The key challenge in this architecture is how the in-cloud middleboxes correctly

match packets to rules given that the packet headers are encrypted. To enable correct

rule-matching, SICS assigns each packet a label. The label represents all behavior of

the packet in the cloud, including to which middleboxes the packet should be forwarded

and in which order, as well as which rules the packet should match at a middlebox.

The operations on outgoing packets from the enterprise to an external site are sim-

ilar: before being transmitted over the Internet, outgoing packets are encrypted at a

gateway, redirected to the cloud, and sent back to the gateway.

Note the SICS gateway does not encrypt the checksum or TTL and instead adds a

49

new checksum based on ciphertexts. Middleboxes can recompute checksums as usual.

An optimization that saves on bandwidth and latency can be adopted when commu-

nications are between two networks belonging to a same enterprise or two enterprises

that have established a secure channel. After in-cloud processing, the traffic can di-

rectly go to the destination site without sending back since the same encryption key is

shared by the two networks.

3.1.2 Security Model

In our security model, we assume the cloud and middlebox providers to be “honest

but curious” [56]. They are honest to perform their services correctly. However, they

might be curious to learn the user-configured processing policies at middleboxes or

peek at the traffic received. This security model is practical and reflects the following

real situations. First, the cloud or middlebox providers will not interrupt the normal

cloud services because such an interruption will be detected [48] [121]. However, it is

possible that the customer data might be gathered and sold by disgruntled employees [6]

[22]. Additionally, hackers may try to steal the customer traffic and policy data [7]. [1].

SICS aims to protect the enterprise network privacy from all these attacks. We do not

consider “active” attackers which manipulate costumers’ traffic maliciously.

SICS provides two security properties of middlebox outsourcing: (1) For an en-

crypted packet, the cloud and middlebox providers should not be able to infer its packet

headers based on its in-cloud behavior. (2) The cloud and middlebox providers should

not be able to learn the plaintext of header spaces specified by the enterprise’s process-

ing rules.

In SICS, label assignment of packet headers does NOT need to be collision-resistant.

Distinct packets can be assigned with the same label if they have identical behavior in

the cloud. Distinct flows can still be differentiated based on their encrypted header

50

fields if needed.

3.1.3 Middlebox with Label Matching

Label matching (known as label switching in layer 3 routing) is a technique of net-

work relaying that is much faster than traditional IP-header switching. Each packet is

assigned a label and the switching takes place after examination of the label assigned

to each packet. SICS applies label matching to middlebox outsourcing which provides

two promising advantages: it can simultaneously achieve privacy protection and effi-

cient packet processing.

Privacy protection of packet headers and rules. We name the service function

chain and middlebox rule matching behavior of a packet as its cloud-wide behavior.

A set of packets that have the same cloud-wide behavior form an policy equivalence

class. In SICS, we assign the same label to all packets belonging to the same policy

equivalence class, even if their packet headers are different. Given an encrypted packet

with a label, SICS prevents an attacker from obtaining its original packet header. For

example, h specifies a set of packet headers, and packets whose headers fall in h share

the same cloud-wide behaviors. At the gateway, a packet is assigned a label (A label is

represented as a binary string, e.g, “10110110”, whose value has no relationship to the

packet header) if its header belongs to h. The length of a label is determined by the total

number of policy equivalence class. A label only includes two types of information: 1)

which middlebox the packet should visit in the cloud, and 2) which action a middlebox

should apply to this packet. The rule tables at the in-cloud middleboxes consist of

label-matching entries as opposed to header-matching entries. In this way, neither the

cloud nor middlebox providers can learn the original middlebox processing policies

with respect to the packet headers.

Note that label-matching does not protect packet behavior, such as forwarding and

51

middlebox actions. These are known to the cloud no matter what type of protection is

used.

Efficient table lookup. Label matching can achieve better performance compared

to the traditional header based matching (e.g., IPv4 header), especially in software

middlexboxes running on general-purpose servers: (1) A label corresponds to a pol-

icy equivalence class and may cover multiple header ranges, the number of entries in a

label matching table could be much smaller than that in a header matching table. In our

experiment, a rule set with approximately 100K header matching rules of a function

network is converted to less than 250 labels. (2) With a properly designed hash table,

label matching can achieve O(1) lookup time, without the use of specialized hardware

such as TCAM. 3) Label matching adds little per-packet bandwidth overhead. In our

experiments, a 16-bit long label is sufficient to represent cloud-wide behavior in a net-

work with nearly one million rules. The label can be placed in the options field in IPv4

protocol header.

While the use of label matching is not new in a general networking, our specific

contributions lie in the design of header space mapping in the context of secure mid-

dlebox outsourcing.

3.1.4 Design Framework

Fig. 3.2 shows the system model of SICS. Those modules run on a controller in

the enterprise network. At runtime, the enterprise network administrator decides mid-

dlebox processing rules and the service function chaining requirements based on the

business objective of the enterprise. The rule preprocessing module takes these rules

and specifications as input and converts them into label-based rules. A SICS gateway is

constructed which assigns labels to packets based on the header space mapping relation-

ship. To simplify in-cloud deployment, the controller then creates an abstract function

52

An Abstract

Function Network

In Port Label Out Port

Label ActionLabel Action

MB1

MB2

MB3
…

Ingress Egress

 Middlebox Processing Rules

 Service Function Chain

Specifications

Admin

Switch

Configurations for In-cloud

Middlebox Processing

Rule Composition

Header Space Mapping

Gateway Construction

Cloud

Rule Preprocessing

Figure 3.2: The system model of SICS

network which includes configurations for all middleboxes and an abstract switch that

is connected to all middleboxes. For each middlebox, there is a rule table identifying

the action applied to each packet based on the label. The abstract switch is equipped

with a forwarding table. Besides label and output port entry, the forwarding table has

an extra entry classifying packets based on their input ports. The input ports are used

to identify the segment in the service function chain that the packet is currently in. The

abstract switch determines the next hop of a packet based on its label and input port.

The abstract function network can be easily mapped to the configurations of a prac-

tical deployment in the cloud that ensures packets are processed by required middle-

boxes in a specified sequence. Configurations are sent to the cloud from the enterprise

using a VPN tunnel. When there exist processing policy or rule changes, this procedure

is called repeatedly to update both the enterprise gateway and the middleboxes running

in the cloud.

53

3.2 Enterprise Modules of SICS

To enable secure middlebox outsourcing, SICS dynamically maps the header spaces

specified by the middlebox processing policies to labels at the enterprise gateway. To

keep the complexity low and maintain scalability, the gateway performs only inexpen-

sive per-packet operations, which are parallelizable. In this section, we present the

design of three key modules at the SICS enterprise side.

3.2.1 Rule Composition

The rule composition module takes the service function chain requirements and the

middlebox processing rules as its input and implement its functionality in two steps.

It first combines different service function chain requirements and determines the

overall service function chains for each set of packets. A service function chain requires

that a class of packets must be processed by a number of middleboxes in a designated

sequence. For example, all HTTP packets should go through IDS → Proxy. Packets

from an internal site should be processed by NAT→ Firewall. A service function chain

is formulated with respect to a set of packets, specified by their packet headers, repre-

sented as a predicate P . P specifies the set of packets X for which P (x) is true for

a packet x ∈ X . A packet may relate to multiple service function chain requirements

and needs to be processed by all the middleboxes included in those chains. Consider

m service function chain requirements: (Pi, ci, ri), for i = 1, ...,m. For the i-th re-

quirement, let Pi be the predicate specifying the set of packets, ci be the sequence of

middleboxes, and ri be the priority which is provided by administrators to determine

the order of middlebox processing when two chains are combined. Requirements are

listed in descending order of priorities. To ensure that packets are processed by all re-

quired middleboxes, SICS uses Algorithm 1 to calculate a set of middlebox chaining

equivalence class, each of which specifies a set of packets with an identical service

54

Algorithm 1: Compute equivalence classes for middlebox chaining require-
ments.

Input : Predicates of service function chain requirements (Pi for
i = 1, ...,m).

Output: A list of predicates F = {f1, f2, ...fn}.
1 T1 = ∅, T2 = ∅, T1.add(P1), T1.add(¬P1)
2 for i = 2 to m do
3 for each f ∈ T1 do
4 if f ∧ Pi 6= false then
5 T2.add(f ∧ Pi)
6 end
7 if f ∧ ¬Pi 6=false then
8 T2.add(f ∧ ¬Pi)
9 end

10 end
11 T1 = T2, T2 = ∅
12 end
13 F = T1
14 Return F

chain.

The output of Algorithm 1 is a list of predicate F = {f1, f2, ...fn}. The conjunction

of any two predicates in F is false (referring to an empty set). Therefore packet sets

specified by any two predicates have no intersection. Each predicate fi corresponds

to a service function chain, which can be obtained by concatenating ci of Pi, if the

conjunction of fi and Pi is not false. The order is determined by their corresponding

priorities.

Based on the composed service chain requirements, the rule composition module

generates the forwarding table at the abstract switch to steer traffic along the required

middleboxes in a sequence. Based on the input port field, we can partition the forward-

ing table into sub-tables. In each sub-table, we calculate one predicate for each output

port by combining corresponding packet header prefixes or ranges. In our implemen-

tation, by representing packet sets as predicates, the merge operation can be performed

55

efficiently using graph-based algorithms with Binary Decision Diagrams (BDDs) [42].

With predicate compositions, there exists at most one predicate per output port in each

sub-table. We use the example shown in Fig. 3.3 to illustrate this process. Fig. 3.3(a) is

an abstract function network with three middleboxes. All middleboxes are connected

by an abstract switch with five ports. Port b,c and d are used to link the middleboxes

and port a and e are ingress and egress ports. Fig. 3.3(b) shows three sample service

function chains. The set of packets in each chain is specified by an integer range. 1

Fig. 3.3(c) is the original forwarding table at the virtual switch that steers traffic across

the middleboxes according to the service chains in Fig. 3.3(b). From Fig. 3.3(c), we see

that many items in each sub-table share the same output port. This allows us to reduce

the size of each table by merging ranges which have the same output port. The resulting

forwarding table is shown in Fig. 3.3(d). We reduce the total items in the forwarding

table from 14 to 9.

The second step of the rule composition module is combining user-configured mid-

dleboxes processing rules which are created locally either by the network administrator

or middlebox providers. We define the middlebox rules with the 3-tuple: (Pi, bi, ri),

where Pi denotes the predicate from the i-th rule, bi is the action performed on packets

matching this rule and ri is the priority. We sort all rules at a middlebox in descend-

ing order with respect to priorities. When a packet is checked against the rules at a

middlebox, it is matched by the first rule whose predicate evaluates to true. We use Al-

gorithm 2 to convert the rules of a middlebox to a list of predicates F = {f1, f2, ...fn},

each of which specifies the packets sharing the same behavior at the middlebox, where

n is the total number of distinct behavior. For example, a firewall may have a predi-

cate specifying packets allowed by the ACLs and another predicate specifying the ones

denied.
1In our implementation, all packet sets are converted to predicates and represented by binary decision

diagrams (BDDs) [42]. Here we use integer ranges for simplicity.

56

Header

space

Output

port

[1,3] c

(3,7] b

(7,10] b

other e

Header

space

Output

Port

[1,3] e

(3,7] d

(7,10] d

other e

Header

space

Output

Port

[1,3] b

- -

(7,10] e

other e

Header

space

Output

port

- -

(3,7] e

(7,10] c

other e

(a)

Ingress a e Egress

FW

b c

Proxy

d

Header

space

Output

port

[1,3] c

(3,10] b

other e

Header

space

Output

Port

(3,10] d

other e

- -

Header

space

Output

Port

[1,3] b

other e

- -

Header

space

Output

port

(7,10] c

other e

- -

Input a Input b Input c Input d

(c)

(d)

NAT [1,3] :

(3,7] :

(7,10] :

(b)

Figure 3.3: (a) An abstract function network. (b) Service function chain requirements.
(c) Original forwarding table. (d) Merged forwarding table.

57

Algorithm 2: Compute a predicate for each action.
Input : Sorted processing rules at a middlebox (Pi for i = 1, ...,m)
Output: A list of predicates F = {f1, f2, ...fn}

1 for j = 1 to n do
2 fj ← false
3 end
4 valid← false
5 for i = 1 to m do
6 if Pi shares the same action as fj then
7 fj ← fj ∨ (Pi ∧ ¬valid)
8 valid← valid ∨ Pi
9 end

10 end
11 Return F

Field1

Field2

P2

P3

Field1

Field2

P4 P5

Field1

Field2

a1

a2

a6a3

a4

a5

⊕ =
P1

Figure 3.4: Header space divided by predicates

3.2.2 Header Space Mapping

After rule composition is performed, we obtain a list of predicates for each mid-

dlebox and the abstract switch. Predicates from a box can be seen as a partition which

divides the packet header space into several disjoint sub-spaces, each with the same

action. If we place predicates from all of the boxes together, the partition of the header

space will become combinatorically finer due to the intersection of predicates from

different boxes.

Fig. 3.4 shows an example illustrating the process of placing predicates from two

boxes into a single header space. Each predicate is associated with two header fields2.

2In practice, a predicate may be defined over multiple fields, e.g., 5-tuple in TCP/IP packets. Here,
we use two dimension headers as an example.

58

Five predicates P1 ∼ P5 from the two boxes are placed together in one packet header

space. Then, the header space is partitioned into 15 blocks. Each block represents a

set of headers belonging to the same set of predicates. The packet headers within one

block will match the same set of predicates and exhibit identical behavior at all boxes.

Therefore, they have the same cloud-wide behavior and hence belong to the same policy

equivalence class. Note that a policy equivalence class is not necessarily a single block.

Blocks that are specified by the same set of predicates belong to the same equivalence

class. As shown in Fig. 3.4, the original predicate P1 is divided into three segments.

The right and left segments are only covered by P1 and form an equivalence class a1.

The segment in the middle is covered by both P1 and P5 and forms an equivalence

class a4. In total, the partition of 15 blocks forms 6 equivalence classes represented by

a1 ∼ a6.

To obtain the policy equivalence classes, SICS reuses Algorithm 1 given a list of

predicates. At this time, the input is the set of predicates from all middleboxes and the

abstract switch. The set of policy equivalence classes has two key properties: (1) Pack-

ets within the same class have identical cloud-wide behavior. That is, these packets will

traverse the same sequence of middleboxes and have same behaviors at each middlebox

in the network. (2) Each input predicate is equal to the disjunction of a subset of policy

equivalence classes, shown in Fig. 3.4 where P1 = a1 ∨ a4 and P5 = a3 ∨ a4 ∨ a5.

SICS maps packet headers within an policy equivalence class to one label. In the

rule tables of the in-cloud boxes, predicate P is represented as a set of labels, which

are determined by the subset of policy equivalence classes whose disjunction is P .

3.2.3 Example

We show an example abstract function network configured with labels in Fig. 3.5.

The abstract switch is divided into four separate switch instances with each connecting

59

to a single middlebox. We have two flows h1 and h2. Flow h1 is required to go through

a firewall, a NAT and a load balancer, while flow h2 should go through a proxy. For

simplicity, we assume the sets of predicates for all middleboxes and switches in Fig. 3.5

have a similar partition of the packet header space as in Fig. 3.4. For example, switch

S1 has two predicates that specify the same partition as P4 and P5. P5 specifies the

set of packets that are forwarded to the firewall and other packets specified by P4 are

forwarded to S3. The NAT has three predicates which specify the same partition as

P1 ∼ P3. Packets matching P1 are translated to packets specified by P2. P3 represents

a default drop predicate. The set of policy equivalence classes are still a1 ∼ a6 as in

Fig. 3.4. h1 and h2 belong to the packet sets specified by a4 and a1, respectively. Rel-

evant entries for the two flows are shown in the label-matching tables of middleboxes.

The two forwarding tables are for switch S1 and S4. From the figure, we can see packets

in h1 (red arrows) will be forwarded to and allowed by the firewall. After that, the label

is changed to a5 and then a2 by the NAT and the load balancer sequentially based on

label replacement actions. Details on label replacement are presented in §3.3.2. Finally

the packets are forwarded to the egress by S4 with the label a2. Similarly, packets in

h2 (greed dotted arrows) are processed by the proxy before they are sent back to the

gateway. Note the input port field at a switch is necessary when incoming and outgoing

packets share the same label.

3.2.4 Packet Classification

To assign labels to packets, the gateway determines to which policy equivalence

class a given packet belongs. Policy equivalence classes can be represented as the

conjunction of input predicates. An intuitive approach is to test the packet against these

predicates linearly. However, this approach is obliviously too slow.

SICS uses all predicates obtained from the rule composition module to build a

60

S1

S3

S2

S4

FW

NAT

LB

Proxy

Input Label Action

In a4 FW

FW a4 S2

- a1 S3

Label Action

a4 Allow

Label Action

a4 a4 → a5

Label Action

a5 a5 → a2

Input Label Action

- a5 LB

- a2 Out

Label Action

a1 a1 → a2

Figure 3.5: An example Abstract Function Network

packet classifier, using the algorithms in [112]. The proposed classifier includes a bi-

nary tree whose root has a predicate p1. At level i, the 2i internal nodes each has a

predicate pi. Starting from the root, at each internal node, the input packet header is

evaluated by the predicate of the node. If the result is true, the packet continues to be

evaluated in the left sub-tree. Otherwise, it goes to the right sub-tree. A leaf node rep-

resents an policy equivalence class and the set of packets that can reach this leaf belong

to the policy equivalence class. In practice, for a tree constructed by k predicates, its

height is considerably lower than k and the number of leaves is significantly smaller

than 2k. The reason behind this observation is that conjunctions of a large number of

predicates are are false and specify empty sets of packets, no new node will be created.

More importantly, using the methods in [112], the classifier supports incremental up-

dates when there exist policy changes. For example, new predicates can be added at the

bottom of the tree with little overhead.

The gateway classifies packets into one of the policy equivalence classes, with each

has a unique cloud-wide behavior. This corresponds to the provable coarsest refinement

of packet header space and thus can be used to provide best computation time and space

61

performance of the gateway.

3.3 In-Cloud Modules of SICS

SICS supports the core functionality of a wide range of middleboxes. For those

middleboxes that examine packet headers (e.g., firewall, NAT, L3/L4 load balancer),

SICS can be directly applied using the label-matching method. For middleboxes that

also check payload (e.g., web proxy, IDSes), SICS can be combined with recent works

of secure DPI [104, 122].

Note that for very simple middleboxes, such as a stateless firewall blocking certain

IPs, the gateway can fulfill its task when computing the label, packets that only traverse

these middleboxes are processed locally and do not need to be redirected to the middle-

boxes running in the cloud. However, we observe many middleboxes involve expensive

operations and for this reason enterprises tend to outsource them.

3.3.1 Stateful Middlebox

Unlike switches or routers, common middleboxes conduct stateful functionalities

(e.g., bidirectional firewall and address translation [89, 95] , stateful load balancing

[10,45]) and use advanced statistical techniques to detect and prevent potential security

threats (e.g., flood protection [20,50]). Packet behavior at middleboxes may depend on

the history of packets the middleboxes have observed. Such functions can be resource-

consuming since they need to maintain a separate state for every single connection.

For example, a stateful firewall will permit an inbound packet filtered by the ACLs if

it belongs to an established connection. Such functions reply on per-connection states,

in-cloud middleboxes should be able to recognize packets of the same connection based

on encrypted packet headers.

62

In SICS, all header fields are encrypted as a whole to provide high security guar-

antee and thus cannot be used to identify packets of the same connection. To support

per-connection states, SICS adds a 32-bit connection identifier to each packet based on

a pseudorandom function [55] , seeded in a given seed s:

Ic = prf s((IP src‖portsrc) ∗ (IP dst‖portdst))

Using the equation above, the inbound and outbound packets of the same connection

will have the same identifier. By conducting experiments using a real dataset [12],

we observe that the probability that two packets from different connections having the

same identifier is negligible. Note adding an identifier to recognize packets of the same

connection is a general approach that can be applied to other middlebox outsourcing

work, such as Embark [71] and Splitbox [33].

Algorithm 3: Compute equivalence classes after adding header transformers.
Input : A list of predicates P and a set of packet transformers T
Output: A list of predicates F = {f1, f2...fn}

1 F ← EC(P), P ← F
2 for T ∈ T and fi ∈ F that can be transformed by T do
3 P ← P ⋃

T (fi)
4 end
5 F ← EC(P), P ← F
6 for each deterministic T ∈ T and fi ∈ F do
7 Compute the set B = {b1, b2, ...bl} ⊆ F whose disjunction is T (fi)
8 R← {T−1(bj)| for each bj ∈ B}
9 P ← P ⋃R

10 end
11 F ← EC(P)
12 Return F

63

3.3.2 Header Transformer

In SICS, a single label is sufficient to guide all rule matching behavior of a packet

if it does not traverse middleboxes that modify packet headers. As shown in Fig. 3.5,

header transformers such as NAT, load balancer may modify packet headers. When a

packet goes through a header transformer, the behavior of the packet at downstream

boxes is determined by its new header. With label-matching, the subsequent packet be-

havior must be determined by the new label corresponding to the new header. Hence,

middleboxes must be able to assign new labels to packets they have just modified with-

out ever learning their headers.

To address the above problem, we design a label-to-label replacement scheme. A

packet transformer maps an input packet set to an output packet set. For a packet trans-

former T and a predicate P specifying its input packet set, T (P) denotes the trans-

formed predicate specifying the output packet set. More specifically, given a predicate

P , T (P) can be calculated by replacing constraints on corresponding header bits. For

example, a transformer for a four-bit prefix 11 ? ? modifies the second bit from 1 to 0.

This operation can be modeled by applying existential quantification and conjunction

of the new constraints to the second bit. The transformed predicate represents prefix

10 ? ?. Similarly, T−1 can be calculated using the inverse process. SICS supports both

deterministic (e.g., one to one mapping from a prefix to another) or non-deterministic

(e.g., randomly choose a new address from a given prefix) packet transformers.

Header transformers may produce new policy equivalence classes. Given a list of

predicates P , we extend Algorithm 1 to calculate the new set of policy equivalence

classes, denoted as EC(P), when header transformers exist. As shown in Algorithm 3,

a new set of policy equivalence classes is calculated after a set of transformed pred-

icates are added (line 5). For a transformer T , the transformed predicate T (fi) for a

policy equivalence class fi is equal to the disjunction of a subset of equivalence classes

64

B = {b1, b2, ...bl}. If T is non-deterministic, a packet in the packet set specified by fi

is randomly transformed into a packet that belongs to either one of equivalence classes

within B. However, if T performs a one-to-one mapping, a transformed packet must

belong to a deterministic policy equivalence class. To decide into which equivalence

class a packet should be transformed, lines 6-11 of Algorithm 3 calculate the inverse

predicate for each bi ∈ B and update the set of equivalence classes. Then, each deter-

ministic transformer has a one-to-one mapping for all policy equivalence classes. With

the refined set of policy equivalence classes, SICS can easily build a label replacement

table for each header transformer. Upon receiving a packet with a label that can be

processed by the transformer, a non-deterministic header transformer randomly modi-

fies the label to one of the multiple labels, whereas a deterministic header transformer

always conducts a unique label replacement action. Example label replacement tables

are shown in Fig. 3.5 for a NAT and a load balancer.

In addition to replacing labels, the middlebox also assigns an index corresponding

to the modified header, e.g., an index for an IP in a prefix stored at the gateway. When

the gateway receives a packet with such an index, it restores the modified header fields.

To keep the connection identity, a header transformer maintains a mapping from the

newly assigned header/index to the original connection identifier. For reverse packets,

the gateway does not encrypt assigned header fields (e.g., random port number ranges

assigned by a NAT). Upon receiving packets with the same assigned header fields, the

transformer restores the connection identifier. So the same processing policy is applied

in subsequent middleboxes.

3.3.3 Case Studies

Next, we use a proxy and a Palo Alto firewall [20] as examples to discuss how SICS

combines the two techniques above to support more complex real-world middleboxes.

65

Proxy. An HTTP proxy accepts a TCP connection from a client, extracts the URI,

and looks it up in its cache. This results in one of two cases: hit or miss. (a) Hit: The

proxy extracts the encrypted header of the packet and creates a new reply packet with

the header and the requested contents which it then sends to the client. The proxy also

adds a label to each reply packet which directs the packet for subsequent processing.

When the gateway receives the HTTP reply packet, it decrypts the packet header and

restores the source and destination addresses of the packet. (b) Miss. The proxy creates

a new HTTP connection and forwards the same encrypted request to the Web server.

The proxy also adds its own encrypted address and a label for further processing. When

the packet bounces back to the gateway, the gateway decrypts the packet header and

replaces the source address with the proxy’s address. In the reverse direction, reply

packets from the Web server are encrypted and received by the proxy. The proxy caches

the replied content and sends the content back, as in case (a). During this process,

packets are forwarded and processed by the proxy in the cloud without exposing the

headers.

Palo Alto firewall. Palo Alto firewall is a commercial network gateway which per-

forms firewall, NAT, and/or IDS functions organized in a chain. Here, we consider a

firewall-NAT chain that examines packets headers. The NAT function can be divided

into two categories: source NAT and destination NAT. A source NAT translates the

headers of connections initiated within internal networks, while a destination NAT ap-

plies to connections started from outside networks.

For a packet initiated within the inside network, the firewall first applies its label-

based ACLs and stores the connection identifier if the packet is allowed. Then, the

NAT adds an index for a reserved external IP, a random port number and assigns a

new label to the packet based on the label replacement table. Note header transformers

may break the connection identity between outbound and inbound packets. To make

66

the connection reversible, the NAT maintains a mapping from the newly assigned port

number to the packet’s original encrypted headers as well as the connection identifier.

Before packets are sent out to external networks, the gateway decrypts and restores the

header fields assigned by the source NAT. For a reverse packet, if the destination port

belongs to the range of random port numbers assigned by the source NAT, the gateway

encrypts the packet and places the port number in the options field of the packet. Us-

ing the port number, the NAT restores reverse packets with the corresponding original

encrypted headers and the connection identifier. So the same processing policy is ap-

plied to reverse packets at the firewall. Packets initiated from outside networks have

similar processing schemes, except that a destination NAT maintains a deterministic

one-to-one mapping from a public address to a private address.

3.4 Update operations

Overload is a common cause of middlebox failures [54]. Traffic should be steered

across different middlbox instances dynamically. Service function chain requirements

and middlebox processing rules are also changing constantly to meet the new cos-

tumers’ needs or reduce security threats. All changes in traffic processing result in rule

updates at the enterprise and on the cloud sides. To keep the correctness and perfor-

mance of in-cloud processing, it is necessary for a middlebox outsourcing framework

to support incremental rule updates with low latencies. A rule insertion or deletion can

be converted to predicate changes [118]. If there are predicate changes after the rule

updates, SICS performs the following methods to update both the enterprise side and

the in-cloud boxes.

Update at the enterprise side. SICS starts by updating the packet classifier at the

gateway. When a new predicate is added, SICS adds the new predicate to the bottom

of the packet classifier. If the update produces new equivalence classes, the packet

67

classifier starts to classify packets to the new set of equivalence classes. When exist-

ing predicates are deleted, SICS updates the set of equivalence classes by merging the

equivalence classes if they identify the same cloud-wide behavior. Updates to the clas-

sifier can be executed very fast. In our experiments, the average cost of adding/deleting

a predicate is less than 0.5 ms.

To figure out the update schemes of in-cloud boxes, the enterprise controller main-

tains a representation list for each predicate. This list includes all equivalence classes

whose disjunction is equal to the predicate. In the example shown in Fig. 3.4, the rep-

resentation list of P5 is {a3, a4, a5} and for P2 it is {a2, a5}. Representation lists of

predicates are maintained dynamically, so when the list of a predicate is modified, the

controller sends update instructions to the in-cloud box which produces the predicate.

Update in the Cloud. In SICS, a rule update in the cloud consists of the updating of

the rule tables (hash tables) at each middlebox and the abstract switch. The forwarding

table of the abstract switch is partitioned into several sub-tables which are updated

independently. When a new equivalence class is added into the representation list of

a predicate, its label-action pair is inserted into the rule table of the in-cloud box that

produced the predicate. Here, the key is the label which corresponds to the policy

equivalence class and the value is the action of the predicate. In contrast, a label-action

pair is removed from the rule table when the corresponding equivalence class is deleted

from the representation list of the predicate.

The connection states maintained in the stateful middleboxes will not be disrupted

during an update since states are identified by encrypted packet headers or connection

IDs.

Maintaining Processing Consistency. Rule updates need to be treated carefully.

Any inconsistency in state between the gateway and the boxes in the cloud may lead to

incorrect middlebox processing. To maintain per-packet consistency, the controller first

68

calculates the incremental rule update schemes for the enterprise gateway and boxes

involved in the cloud. During this time, the gateway and in-cloud middleboxes continue

to encrypt and process traffic according to the old rules. Once the update schemes

are determined, the gateway buffers incoming packets until all in-cloud packets finish

processing in the cloud (The buffering time is bounded by the packet processing time,

which is typically hundreds of milliseconds [102]). Then, the gateway and in-cloud

boxes install updates and start processing new packets. To maintain flow consistency,

ongoing flows should continue traversing the original sequence of middleboxes while

they are updating. SICS employs the migration avoidance mechanism in [86]. New

flows are steered to new middlebox instances while existing flows are still processed by

old ones.

3.5 Security Analysis

SICS converts IP prefixes and other header spaces from middlebox processing rules

to a list of predicates. Each predicate is represented as a set of labels that are used

as matching fields to enable in-cloud functionalities. Labels do not leak size, order or

borders of header spaces specified in the rules. The cloud is unable to learn to which

field of the packet header a match corresponds. Labels at in-cloud middleboxes are

updated independently and the information about header spaces represented by these

labels cannot be inferred from updates. A gateway encrypts packet headers and assigns

a label to each packet in order to identify its in-cloud processing. In this case, given

an encrypted packet with a label, its original packet header cannot be reversed from

the label. For any two packets that are assigned the same label, the cloud is limited to

learning that the two packets have the same cloud-wide behavior, but prevented from

determining any other information about their orders or values.

Information leakage. From an information-theoretic point of view, information

69

leakage of a communication system is at least log2N bits, where N is the number of

observable equivalence classes [77]. In the context of SICS, each equivalence class

identifies a cloud-wide behavior, which is represented by one label. The label instructs

the in-cloud boxes to process the packet as configured. With a less number of cloud-

wide behaviors, the cloud may not be able to correctly perform its functionalities. In

this sense, SICS achieves minimal information leakage. On the other hand, Embark

employs a field-by-field encoding to convey the information about how packets should

be processed in the cloud. The set of cloud-wide equivalence classes are the Carte-

sian product of per-field equivalence classes. Consequently, Embark exposes a larger

number of observable equivalence classes and hence more information leakage.

Next, we demonstrate that the security of SICS is stronger than the PrefixMatch in

Embark [71] under two attacks.

Chosen Plaintext Attack. A chosen plaintext attack allows an attacker to deter-

mine which plaintext message is encrypted into an input ciphertext message. We as-

sume that an attacker (e.g., the cloud itself or a hacker) selectively sends sample pack-

ets to the gateway and observes their cloud-wide behavior, attempting to figure out

the plaintext of the rules at a middlebox. PrefixMatch adopts a per-field encryption

scheme where prefixes or ranges for each header field are encrypted separately. For an

encrypted prefix or range, the attacker knows to which field of the packet header the

prefix or range corresponds. The plaintext of the encrypted prefix or range can then be

obtained by traversing the entire search space of that field.

An example of such attack is the following: for the destination port field in the IPv4

header, PrefixMatch encrypts a port number interval [s, e] to a random interval [S,E].

All port numbers falling in [s, e] are encrypted to values in [S,E]. Knowing the interval

[S,E], it takes an attacker at most 216 queries (e.g., sample packets with a destination

port traversing from 0 to 216) to find all port numbers in [s, e], where 16 is the length

70

of the port field. Now the attacker has successfully deciphered the encrypted interval

[S,E] in the cloud. In addition, when a future packet matches the interval [S,E], the

attacker learns that the original destination port of the packet falls in [s, e]. Similarly,

the attacker could learn mapping relationships for other fields. Since a chosen packet

header can test each header field simultaneously, the number of required queries to

decipher all header fields is determined by the length of the longest header field. For a

5-tuple, the longest header field is 32 bits. So it takes at most 232 queries to decipher a

5-tuple based ruleset which is encrypted using PrefixMatch.

As described in §3.2.2, SICS encrypts packet header fields as a whole. This means

all packet header fields are involved in the header space mapping process, i.e., the label

of a packet is determined by all of the bits in its header. When considering the same

attack just described, we clearly see the benefit of SICS which require 2104 queries to

decipher, a significant improvement over PrefixMatch’s 232. PrefixMatch cannot be

modified to encrypt all fields as a whole since the encryption in PrefixMatch is based

on comparing per-field values of packets and the endpoints of rules.

Frequency Analysis Attack. Frequency analysis is a classic inference attack that

has been historically used to recover plaintexts from substitution-based ciphertexts, and

is known to be useful for breaking deterministic encryption. In frequency analysis, an

adversary acquires knowledge of the frequency distribution of plaintext messages (e.g.,

via unintended data release or data breaches), counts the frequency of ciphertext mes-

sages and maps each ciphertext to the plaintext in the same frequency rank. To conduct

frequency analysis, we assume the cloud is able to obtain the plaintext enterprise traffic

from a previous time period and tries to infer the current encrypted traffic using the pre-

vious frequency distribution. To prevent frequency analysis, SICS adds randomness to

the encryption of the original packet headers and the connection identifiers by changing

the seed for symmetric key generation and the pseudorandom function after a certain

71

Encrypted Packets
Plaintext

packets

Processing

Requirements

Admin

Control

Layer

Click

Adapter

Tunnel

Layer

Ingress

Egress

Set up and Update

Enterprise Cloud

Amazon VPC

Figure 3.6: SICS software architecture

time period. In SICS, it is not useful to add randomness to the labels of packets. For

example, if a new label is assigned to a packet when the behavior of the packet does

not change, the cloud can easily determine the new label is equivalent to the old label

because they specify the same cloud-wide behavior. However, frequency analysis only

achieves low inference accuracy in SICS. One reason is that because a label in SICS

covers a range of packet headers, the cloud cannot infer the frequency of each single

packet header using the frequency of the label. Another reason is that the frequency

analysis is sensitive to label updates that occur during middlebox load balancing and

the changes in processing policy over time. An update to a label can change the fre-

quency rank of multiple labels, including the label itself as well as other labels with

similar frequencies. In contrast, PrefixMatch uses a one-to-one deterministic header

mapping which is less secure in terms of frequency analysis.

3.6 Implementation

We have built a SICS prototype in our laboratory using middleboxes running in the

Amazon Virtual Private Cloud (VPC) [2] and a gateway running on a general purpose

72

desktop computer with quadore@3.2G and 6GB memory. The gateway redirects traffic

from another machine using the same model.

Fig. 3.6 shows the software architecture of SICS. The enterprise side consists of two

layers: a control layer and a tunnel layer. The control layer takes the service function

chain requirements and processing rules of the middleboxes as its input to calculate an

abstract function network. When there are changes, the control layer updates the packet

classifier in the tunnel layer and calculates the necessary updates in the cloud. Then, it

sends batched update instructions to the middlebox instances running in the cloud. The

tunnel layer, acting as a gateway, performs packet manipulation, header encryption and

VPN tunnels connecting remote instances in the cloud.

On the cloud side, the abstract function network can be easily converted into a

practical deployment within the Amazon VPC. SICS supports all header-related mid-

dleboxes. We implemented middleboxes using Click [68] and rule tables using the

Cuckoo hash table [46, 85]. To enable in-cloud middlebox chaining, SICS adds an

adapter layer which holds a sub-forwarding table from the abstract switch at each mid-

dlebox instance. Based on their labels, the adapter decapsulates incoming packets for

current processing and encapsulates outgoing packets with the address of the next mid-

dlebox.

A possible limitation of SICS is that SICS employs label matching which requires

modifications to the existing header matching based middlebox implementations. How-

ever, we believe this issue will be fully relieved with the emergence of new and promis-

ing modularized network function frameworks such as OpenBox [41].

3.7 Evaluation

We now investigate the performance of SICS at both the enterprise side and in-cloud

middleboxes.

73

3.7.1 Enterprise-side performance

Gateway

We first evaluate the performance of the SICS gateway. For most experiments, we

use a synthetic workload generated by the Pktgen traffic generator powered by Intel’s

DPDK [21]. We create an abstract function network using Stanford dataset [12] with

three types of middleboxes: firewalls, source NATs and destination NATs. A destina-

tion NAT is used to implement a L4 load balancer. The Stanford dataset has 16 routers

(2 backbone routers connected to 14 zone routers) with 757170 IPv4 forwarding rules

and 1584 ACL rules. Firewalls can be placed on any router. For each firewall, we ran-

domly select ACLs from the ruleset and shuffle the order to achieve different security

policies. NATs are added to the dataset connecting zone routers to private subnets. For

each NAT added, we use a different public IP address for the newly created port of the

zone routers and a different private prefix for the subnet. A subset of forwarding rules

are used to steer traffic along middlebox chains. We vary the number of middleboxes

from 0 to 16 with the total number of rules increasing from 100K to 800K to show

how the performance of SICS is affected by the network size. We compare the SICS

gateway with PrefixMatch in Embark [71] since PrefixMatch is the only existing cryp-

tographic approach that supports service function chaining. We report the median of

10 iterations for each experiment.

Construction time. Table 3.1 shows the construction time of the gateway with

respect to the network size. For SICS, rule composition accounts for the most of the

overhead while computing equivalence classes and constructing the packet classifier

can be finished in tens of milliseconds. In Embark, the time cost is the time to construct

the data structure for PrefixMatch. The PrefixMatch structure in Embark works only

on one header field, so PrefixMatch needs to be run for every header field, one after

another. In Table 3.1, we see that the time cost of PrefixMatch in Embark is at least

74

No. of
Rules (K)

Rule
Composition (s)

Computing
ECs (ms)

Packet
Classifier (ms)

Embark
(s)

100 0.3 14.9 53.4 7.2
200 1.1 15.2 83.2 12.6
400 2.9 22.4 129.0 18.8
600 7.1 25.2 148.2 50.3
800 9.4 30.5 249.8 76.43

Table 3.1: Construction time of the gateway.

5 times larger than SICS for all six network sizes. The reason is that the total number

of sub-intervals for each header field in PrefixMatch is much larger than the number

of policy equivalence classes in SICS. For example, the test network with 100K rules

produces approximately 200 equivalence classes; whereas the number of sub-intervals

calculated using PrefixMatch is over 9000. This highlights the efficiency of the SICS

approach compared with the process used by PrefixMatch when it finds the intervals

pertaining to the same set of prefixes, especially when the size of the network is large.

As shown in Table 3.1, the construction of the gateway in SICS only uses 368.3ms for

the network with 100K rules and it is still less than 10s when the size of the network

increases to 800K.

Incremental rule update cost. In this set of experiments, we first construct the

packet classifier using a subset of predicates and then keep adding new or deleting

existing predicates. In Fig. 3.7, we measure the time cost to update each predicate.

We find that the medium time cost for updating a predicate does not have a distinct

difference when the network size increases. The medium time cost for updating a

predicate is less than 0.5 ms for all networks.

PrefixMatch in Embark may need to be reconstructed when a rule changes and the

reconstruction process costs nearly 100s. PrefixMatch can still process packets using

old configurations during the reconstruction; however, the long update delay may incur

packet losses and harm the accuracy of middlebox processing. The situation worsens

75

100 200 400 600 800

0

1

2

3

U
p
d
at

in
g
 a

 P
re

d
ic

at
e

(m
s)

Number of rules (K)

Figure 3.7: Box plot of update cost.

when updates happen frequently.

Throughput. We measure the throughput of the gateway in SICS by the number

of queries per second (qps). Packets used in the experiments are generated uniformly

with respect to equivalence classes and results for various network sizes are shown in

Fig. 3.8. From the figure, we find that the gateway in SICS can achieve 3.92 Mpps for

the network with 100K rules. For the largest network with 800K rules, the throughput

is 2.2 Mpps. For all networks, the throughput of the gateway in SICS is higher than

Embark by approximately 20%.

Memory usage. The gateway of SICS only stores predicates, calculated by the rule

composition module, instead of rules. Predicates are represented as BDDs in our imple-

mentation. For each predicate, the controller maintains a representation list recording a

subset of equivalence classes and their corresponding labels whose disjunction is equal

to the predicate. Each equivalence class is represented as a set of pointers to predicates

which contain the equivalence class. With Embark, the memory cost of the data struc-

ture for PrefixMatch is also calculated. For all network sizes, the gateway of SICS uses

less memory than Embark. The memory cost is 0.267MB for SICS and 0.274MB for

76

100 200 400 600 800

Number of rules (K)

1

2

3

4

Q
u
er

y
 T

h
ro

u
g
h
p
u
t

(M
q
p
s)

 SICS Embark

Figure 3.8: Throughput as the number of rules increases.

Embark when the network size is 100K. For the largest network with 800K rules, SICS

and Embark uses 0.349MB and 1.345MB respectively. Neither the gateway in SICS

nor Embark consumes appreciable memory since they only store the classifier and not

the rules.

Scalability of the gateway. As shown in previous results, the performance of Em-

bark degrades sharply as the total number of rules increases. Compared with Embark,

the performance of SICS mainly depends on the number of equivalence classes calcu-

lated from these rules, which is a much smaller value than the number of rules. Given

processing rules and service chaining requirements, the number of equivalence classes

is determined by the number of various possible actions at the middleboxes and the

service function chains, not by the total number of rules. For example, a firewall with

10K ACL rules produces only two equivalence classes, with each one corresponding to

the action deny and allow, respectively.

77

FW NAT

10
2

10
3

10
5

T
h
ro

u
g
h
p
u
t

(k
p
p
s) Raw-Click

 SICS-Click

Figure 3.9: Lookup throughput of Middleboxes.

Bandwidth Overhead

We evaluate the extra bandwidth overhead between the enterprise and the cloud.

Embark introduces a 20-byte overhead per IPv4 packet because it converts them to

IPv6. SICS only inserts a 16-bit label into the options field of IPv4 packets which

encodes up to 65536 equivalence classes (cloud-wide behavior). For middleboxes that

modify packet headers, SICS uses another 16 bits as the identifier to represent rewritten

header fields. For stateful middelboxes, SICS adds a 32-bit connection ID. Hence, the

total per-packet bandwidth overhead introduced by SICS is 64 bits or 8 bytes. This is

placed in the options field of IPv4 protocol header.

Processing Delay

SICS employs a similar middlebox outsourcing architecture as Embark which in-

volves encryption and redirection overhead. Compared with local processing, de-

ploying SICS in the Amazon VPC incurs hundreds of milliseconds processing delay;

whereas an ISP based deployment with a larger footprint with respect to the Amazon

VPC can reduce the delay to tens of milliseconds [71].

78

100 200 400 600 800

Number of rule (K)

0

1

2

3

4

T
im

e
 C

o
st

 (
m

s)

Failover

Overload

Figure 3.10: Response time in the case of a middlebox failure and traffic overload.

3.7.2 In-cloud Middleboxes

In this section, we evaluate the performance of label-matching based in-cloud mid-

dleboxes. We develop middleboxes using Click [68] and lookup tables using (2,4)-

Cuckoo hash tables [46], with each uses 64 KB memory.

Throughput of in-cloud middleboxes. For comparison, we also implement a Click

firewall and a Click NAT that examine packet header based rule tables. Each middlebox

has 1000 IPv4 5-tuple rules. Fig. 3.9 shows the throughput in thousand of packets

per second (kpps, log scale) for the two middleboxes. We see that the throughput

of label-matching based firewall and NAT in SICS is about 8000 kpps, which shows

an improvement of two orders of magnitude over their header based pattern matching

counterparts.

Reacting to middlebox failures and overload. We consider two dynamic scenar-

ios: (1) a middlebox fails and (2) traffic overload at a middlebox. We measure the

reaction time of SICS for each scenario and the results are shown in Fig. 3.10. When a

middlebox fails, we need to migrate the state of the failed middlebox to a new instance

and configure the network to reroute packets with certain labels to the new instance.

79

To prevent traffic overload at a middlebox, in addition to middlebox state migration,

we need to add new predicates to split a portion of traffic on the current middlebox

to another middlebox. This requires additional updating of the packet classifier at the

gateway and representation lists at the controller. From Fig. 3.10, we see that the over-

all time to react to middlebox failure and traffic overload is low (several milliseconds)

and in fact the overhead is negligible.

3.8 Related Work

APLOMB [102] and Jingling [53] are the pioneer of middlebox outsourcing. APLOMB

demonstrates that the latency inflation due to outsourcing is negligible. As a parallel

work to APLOMB, Jingling focuses on the interfaces and inter-operations between the

cloud and customers. Neither of them takes privacy issues into consideration. Blind-

box [104] enables equality based operations on encrypted payload of packets for a

specific class of middleboxes, DPI; However, it cannot examine packet headers and/or

perform range queries. Melis et al. [82] model the behavior of common middleboxes

and proposed a privacy preserving middlebox outsourcing scheme based on fully ho-

momorphic encryption [40], which has very poor performance. Embark [71] presents

the method PrefixMatch to hide the packet header and rule information from the cloud.

PrefixMatch uses the set of processing rules to divide each header field into multiple

intervals and then it assigns a random IPv6 prefix to each interval. At a local gateway,

every header field of a packet is mapped to a pseudorandom value of an IPv6 field sep-

arately and the entire IP packet header is mapped to a new IPv6 header. PrefixMatch

does not support incremental rule updates and updating one rule requires all rules to be

reconstructed, which may take as long as 100s. Before that, packets are still routed and

processed as the old configuration which may incur unexpected packet loss and inac-

curate processing. From a security perspective, such a field-by-field encryption scheme

80

is vulnerable to certain types of attack, such as chosen plaintext attack. More details

will be analyzed in §3.5. Splitbox [33] distributes a rule to several virtual machines

(VMs), which reside on multiple clouds assuming an adversary cannot corrupt all VMs

simultaneously. Computation results from all VMs are collected by a local middlebox

and the final actions of the packets are calculated at the local middlebox. It is difficult

for Splitbox to support service function chaining. Meanwhile, Splitbox increases band-

width overhead several-fold as it needs to send multiple copies of a packet to different

VMs for the same network function.

SafeBricks [90] and Shieldbox [109] are state of the art enclave-based middlebox

outsourcing solutions. Besides the potential security threats from curious middlebox

providers and side channel attacks, they impact performance by around 15% across

different in-cloud middleboxes due to the use of SGX enclaves [90] and do not sup-

port incremental update. Changing of service chains and provisions (e.g., number of

deployed middlebox instances) requires to rebuild the whole enclave which takes a few

minutes.

81

Chapter 4

Epinoia: Intent Checker for Stateful

Networks

4.1 Epinoia Design and Architecture

We first describe several motivating examples to illustrate some challenges for

checking network intents in stateful networks. Then, we provide insights behind the

design choices and an overview of our system, Epinoia.

Consider the network pictured in Figure 4.1 with an end host subnet S0 and a server

subnet S1. FW1 and FW2 are two stateful firewalls and PY is a forward proxy that

works as an intermediate agent between clients and servers. The operators intend to

block S0 from S1. That is, hosts in S0 should not be able to send any packet to servers in

S1. The bottom of Figure 4.1 shows configuration snippets that implement this intent.

Line 1 is a security rule at FW1 that denies all packets from S0 to S1. However, as

FW1 conducts stateful processing, those packets may still be allowed if they belong

to established connections initiated from S1. To prevent such connections, a similar

deny rule for packets from S1 to S0 (line 3) is added at FW2. Even with this simple

example, checking intent using existing tools could give inaccurate results and be time-

consuming.

82

Static vs. temporal modeling. Recent work on network control plane configura-

tion (e.g., BGP configuration) synthesis [51] and verification [35] have shown routing

messages between routers can be effectively modeled using static boolean variables.

Following this idea, as in Figure 4.1, the property that a packet P0 from S0 is able to

reach S1 through FW1 and FW2 can be represented using a Boolean variable r0. As

P0 is denied by the security rule at FW1, for r0 to be True, it implies that a earlier

reverse packet P1 was relayed by FW1 from S1 to S0, denoted as r1, where r0 ⇒ r1.

For P1 to reach FW1, it must first be allowed by FW2. Likewise, due to the deny rule

at FW2, it requires a reverse packet P0 to go through FW2 from S0 to S1, or denoted as

r1 ⇒ r0. Given the stateful network and the configurations, analyses solely based on

such static modeling techniques report a violation of the block intent when both r0 and

r1 are assigned to True. However, this turns out to be a false alarm. FW1 will allow

P0 only if it saw P1 before, which requires that P1 went through FW2 earlier. Thus, it

cannot rely on the state created by P0. This example shows the necessity of utilizing

temporal modeling instead of static modeling for stateful networks as packets may have

different behavior at stateful NFs when they arrive in different sequences.

Partial vs. complete path set. To scale with modern solvers, several optimization

techniques have been studied in solver-based approaches [35, 88]. The core idea is to

reduce the size of constraints given to the solver by restricting packet headers and their

forwarding paths based on destination addresses. That is, the checking is conducted

over a slice of the network (e.g., a single forwarding path). Though such simplifica-

tions could reduce the time cost, they may also lose completeness and lead to unsound

checking results, especially when there are NFs that modify packet headers. One such

example is shown in Figure 4.1. Line 6 of the configuration snippets indicates that

PY in the bottom will explicitly intercept request packets from S0 to S1 and forward

them with a new source S2 (line 7). Those packets are also allowed at FW2 (line 5).

83

// Configurations

P0

P0

P1

S1P1

P2

P3

P3

Security policy on FW1

1 service ANY address S0 S1 deny
2 service ANY address S1 S0 allow

Security policy on FW2

3 service ANY address S1 S0 deny
4 service ANY address S0 S1 allow
5 service ANY address S2 S1 allow

Proxy policy on PY
6 web-proxy explicit enable address S0 S1

7 outgoing-ip S2

S0 P1Stateful FW1

Stateful FW2
PY

Figure 4.1: Example NF configuration snippets.

Instead of sending packets directly to S1, a host in S0 could first send packets to PY ,

which then forwards the packets to S1. This indicates a potential violation of the block

intent between S0 and S1. In addition, networks are built with fault tolerance. Critical

services are multi-homed, and communication endpoints have redundant paths. The

dynamic nature of the underlying routing plane may assign different paths at different

time even for the same set of packets. The NF processing taken depends on the path

a packet actually traverses. Configurations of NFs must ensure that no potential path

violates network intents.

Host vs. group level querying. In existing intent-based systems, all intents are

specified with respect to end point groups (e.g., engineering department, a group of

servers) [4, 30, 93]. Recall the previous intent: S0 should not be able to reach S1.

Consider S0 as a guest network with 100 hosts and S1 to be a data center with 1000

servers. To check the block intent, the naive approach of exploding the query into

84

Users/AppsNetwork OS

Intent
Decomposer

Network Graph
Continuous
Verification

Results
Analysis

Vendor-neutral
configuration models

Epinoia

Network info, NF

configuration updates

Intent-based
policies

Intent
specification

Check
results

Figure 4.2: Epinoia workflow

100 thousand separate queries is too slow. A typical effective solution would convert

the original query and check whether its negation can be satisfied. However, due to the

stateful processing of NFs, this technique cannot be applied for stateful networks. More

details are discussed in Section 4.3.1. We observe that NF processing policy commonly

partitions end hosts into policy equivalence groups, i.e., into set of end hosts, to which

the same policy applies. In Epinoia, endpoints relating to the same set of intents are

represented as groups and queries for the same group are aggregated to achieve better

efficiency.

Epinoia Overview. Figure 4.2 illustrates an overview of the Epinoia workflow with

its key components. Epinoia allows users/applications to specify network intents based

on extended policy graph models (Section 4.2.1).

NFs from different vendors may support different configurations and features. We

break down the functionalities of advanced NFs into function units and propose vendor-

neutral configuration models for each function unit (Section 4.2.2). Such function units

85

can be combined and extended to support real-world NFs. To correlate configurations

of NFs and packet behavior in stateful networks, we formulate key causal precedence

relationships [97] among NF packet I/Os and states (Section 4.2.2). All constraints

are attached to a network graph, containing all potential paths needed to be checked

for each intent to ensure that NF configurations match intents under arbitrary routing

dynamics.

Along each path, an end to end intent is decomposed into sub checking tasks (Sec-

tion 4.3). Each smaller task can be efficiently checked using a SMT solver. The con-

tinuous verification module maintains a causality graph with all checked results (Sec-

tion 4.4). The goal is to enable the intent checker to check for network-wide intent

violations incrementally whenever there are changes to network and/or intent. Finally,

checking results are analyzed and all reported violations are returned to the network OS

or intent creators.

4.2 Intent and Network Models

4.2.1 Network Intent Specification

Network intents specify the desired outcome of the network. In this dissertation, we

look at two very basic intents: reachability and isolation, which can be used as building

blocks to implement other advanced intents.

Epinoia extends the intent specifications in PGA [93]. Our choice is motivated by

the intuitive graph representation of network intents, support of NF chaining. Figure 4.3

shows four example network intents in an enterprise network. Nodes are pre-defined

end point groups and directed edges indicate the communication intents between end-

points. Boxes along edges specify the required NF traversal for each communication.

In addition to the required ones, packets are allowed to go through other NFs by de-

86

Guest MktgFW LBRemote Web

LBMktg WebNAT Mktg RemoteNAT
{FW}

!{PY}

i ii

iii iv

Figure 4.3: Example network intents

fault. Constraints on possible optional NFs are annotated on each edge segment in

the form of {NF1...NFn}. Similarly, avoidance of NFs are specified using the form

! {NF1...NFn}. For an isolation intent, a double slash is added on the edge to indicate

that the communication must be blocked. The four intents in Figure 4.3 are: i) Market-

ing department should be able to access web services and the traffic must go through a

NAT and a load balancer. ii) The department should also be able to access remote sites

by going through a NAT and possibly one or more firewalls before the NAT. iii) Packets

from remote sites to web services must be inspected by a firewall and a load balancer.

No proxy is allowed before they are inspected by any firewall. iv) Packets from guest

networks to the marketing department must be blocked.

4.2.2 Network Models

NF Configuration Models

Recent work on NF modeling has shown that NFs of the same type from different

vendors have similar operating logic [88, 106, 114]. For example, the firewall func-

tion of iptables [94], pfSense [100] as well as Palo Alto Firewall [87] all start with

detecting whether a packet belongs or relates to an established connection. Then the

packet is matched against a list of ACLs. If one is found and it allows the packet,

then the packet is forwarded; otherwise it is dropped. Contrary to the similarity in the

operating logic, we observe that NFs differ greatly in the format or features they sup-

port in their configurations, which are the major input that operators provide and want

87

to check before they are installed into NFs. To mitigate the complexity brought by

vendor specificity, open source communities such as OpenConfig [84] as well as some

emerging IBN platforms in industry (e.g., Apstra AOS [4] and Google Zero Touch

Network [69]) have been working on designing vendor-neutral configuration models.

However, most of those models are for routers or routing related protocols and none

include NFs. Another observation is that advanced NFs usually consist of a chain of

basic functions. For example, a Palo Alto Firewall can be configured to implement a

firewall-NAT-Load balancer chain. Inspired by the observations above, in Epinoia, we

propose vendor-agnostic configuration models for common function units (e.g., address

objects, security rules, NAT rules) which are written as extensions of the OpenConfig

YANG models. Models for each function unit can be combined to form the configura-

tion model of more advanced NFs. Moreover, with off-the-shelf tools, configurations

written using the model can be easily converted into serialization formats (e.g., JSON)

for transmission or other third-party services (e.g., network intent verification). List-

ing 4.1 shows an example configuration instance of a real security rule in JSON. The

model is extensible to support additional features based on the actual functionalities of

NFs.

. . . " s e c u r i t y r u l e s " : {

" s e c u r i t y r u l e " : {

" 23 " : {

" i d " : " 23 " ,

" c o n f i g " : {

" s r c a d d r e s s " : " g u e s t " ,

" d s t a d d r e s s " : " m a r k e t i n g " ,

" s e r v i c e " : "ANY" ,

. . . " a c t i o n " : "DENY" ,

Listing 4.1: Snippets of a security rule in JSON

88

Network Graph

To obtain the complete path set that should be checked for intents, Epinoia models

a network as an undirected graph. Nodes in the graph are either endpoints or NFs while

edges represent possible packet exchanges between those nodes. Such a graph can be

extracted by traversing the network topology: if the current node is a switch or has been

visited, continue to examine the next node; otherwise, create a new node in the network

graph representing the corresponding NF or endpoints. Note that Epinoia does not aim

to check the correctness of stateless switching fabrics as there already exist plenty of

solutions [62, 63, 65, 118]. Meanwhile, by removing the switching fabric, the network

graphs result in much smaller sizes (degrade the size by at least 50% [103]) but are still

able to capture all potential paths.

Figure 4.4 shows a network graph of a typical enterprise network. Internal end-

points m1 and g1 belong to the marketing and guest networks, connected to remote

sites with two firewalls. A web service is hosted in a demilitarized zone, guarded by a

destination NAT and a load balancer. Epinoia leverages an off-line path generation step

to obtain all simple paths. For most scenarios, the set of paths is fairly static and can be

precomputed (e.g., regular hardware maintenance), we expect this step to be performed

infrequently.

Encoding NF packet processing

The functionality of a NF can be factored into two generic parts: i) a classifier that

searches for a matching over packet header fields or payload, and ii) a transfer function

that transforms incoming and outgoing packets. Upon receiving a packet, based on

configurations, a NF processes the packet with the actions corresponding to the rules or

states that the packet matches. Naturally, the input packet on which an output depends

must be received before the output is produced. In other words, there exists a causal

89

Web

NAT

LB

m1

g1

FW1 FW2

Rmt

Figure 4.4: A network graph

NAT

LB

m1

FW1 FW2

(S0, d1)

(S0, d1)

(S0, d1)

(S0, d0)

(S0, d0)

(S0, d1)

(S0, d2)

(S0, d2)

Web

Figure 4.5: Path segmentation from mar-
keting to Web

precedence relationship [97] between the input and output. We can generically express

this relationship as sendp2 ⇒ recvp1 , where [A]⇒ [B] denotes event A depends on B.

p1 and p2 correspond to the same packet before and after NF processing. Both p1 and p2

are subject to certain constraints determined by NF configurations, e.g., for a firewall,

p1 and p2 are exactly the same since firewalls do not modify packets; p1 must match

an established connection or be allowed by security rules. States at NFs correspond to

packet histories. For example, if a content c is cached at a proxy, the proxy must have

received a request packet for c and a response packet from the server that holds c before

it can be cached at the proxy. Written generically: states ⇒ recvP , where P represents

a sequence of packets required to establish state s. Such causality also exist between

one NF’s output and another NF’s input. For example, a packet must be sent out before

it is received. Written generically: recvp ⇒ sendp.

A rich set of causalities exists in NFs, e.g., a timeout must be reached before a state

expires; a configuration must be loaded before it can be applied to packets. However,

most of these causalities are orthogonal to our intents. We therefore only consider

packet processing causalities that affect how packets are forwarded or modified.

To encode the causal precedence relationship to a format that can be accepted by

a SMT solver, it is intuitive to model packet behavior at NFs using two Boolean val-

90

ued uninterpreted functions with universal/existential quantifiers. For example, we de-

fine send(n,i,p,t) as a sending event of packet p by NF n through interface i

at time t. Similarly, receiving a packet receive is denoted as recv(n,i,p,t). We

aggregate all interfaces of a NF into either the internal (i==0) or external (i==1) in-

terface as some NFs may apply different processing policies for inbound and outbound

packets. The send and receive functions return True when the input arguments corre-

spond to a valid event in the network; or they must return False.

We show how to capture causal precedence relationships using example SMT en-

codings for some common stateful NFs.

Stateful firewall. A stateful firewall (Listing 4.2) utilizes ACLs to determine whether

to allow or deny a packet from a new connection. ACLs can be modeled using a pred-

icate acl_func(a1, a2), where a1 and a2 correspond to the source and destination ad-

dress of a packet. Packets that belong to established connections are allowed by a

stateful firewall even if they are denied by ACLs. An established state indicates that the

firewall has received and allowed a reverse packet before.

F o r a l l [i0, p, t0] send(fw, i0, p, t0) I m p l i e s

E x i s t s [i1, t1] recv(fw, i1, p, t1) ∧ t1<t0 ∧ i0 6= i1

F o r a l l [i0, p0, t0]

send(fw, i0, p0, t0) ∧ ¬ acl_func(p0.src, p0.dst) I m p l i e s

E x i s t s [i1, p1, t1] recv(fw, i1, p1, t1) ∧ t1<t0 ∧ i0 6= i1 ∧

acl_func(p1.src, p1.dst) ∧ p1 == p0.reverse

Listing 4.2: Encoding of a stateful firewall

Load balancer. A load balancer (Listing 4.3) holds a shared address (share_addr(a))

for a back-end server pool (server_addr(a)). Requests sent to the load balancer are

randomly distributed to one of the servers and replies from servers look for a matched

request which is sent back by the load balancer.

91

F o r a l l [p0, t0] send(lb, 1, p0, t0) I m p l i e s

E x i s t s [p1, t1] recv(lb, 0, p1, t1) ∧ t1<t0 ∧ share_addr(p1.dst)

∧ p1.src == p0.src

F o r a l l [p0, t0] send(lb, 0, p0, t0) I m p l i e s

E x i s t s [p1, p2, t1, t2] recv(lb, 1, p1, t1) ∧ recv(lb, 0, p2, t2) ∧

t2<t1<t0 ∧ p2 == p0.reverse ∧

share_addr(p2.dst) ∧ server_addr(p1.src) ∧

p0.dst == p1.dst == p2.src

Listing 4.3: Encoding of a load balancer

NAT. NAT can either work as a source or a destination NAT. For outbound packets,

a source NAT (Listing 4.4) translates the private source IP to a public IP of the NAT,

modeled using a predicate pub_addr(a). If an inbound packet matches an established

state, the source NAT translates its destination IP back to the private IP. A destination

NAT maintains a one to one destination address mapping for connections initiated from

outside networks and has a similar encoding as a load balancer.

F o r a l l [p0, t0] send(nat, 1, p0, t0) I m p l i e s

E x i s t s [p1, t1] recv(nat, 0, p1, t1) ∧ t1 < t0 ∧ pub_addr(p0.src)

∧ p1.dst == p0.dst

F o r a l l [p0, t0] send(nat, 0, p0, t0) I m p l i e s

E x i s t s [p1, p2, t1, t2] recv(nat, 1, p1, t1) ∧ recv(nat, 0, p2, t2) ∧

t2 < t1 < t0 ∧ p2 == p0.reverse ∧

pub_addr(p1.dst) ∧ p0.src == p1.src

Listing 4.4: Encoding of a source NAT

Reverse proxy. A reverse proxy (Listing 4.5) is configured with ACLs specifying

which clients have access to content originating at certain servers. Upon receiving a

92

request that is allowed by ACLs, it initiate a new request to the corresponding server

if the contents have not been cached. When receiving responses from the server, it

forwards the response to the client who originally requested the content.

F o r a l l [p0, t0] send(py, 1, p0, t0) I m p l i e s

E x i s t s [p1, t1] recv(py, 0, p1, t1) ∧ t1<t0 ∧ p0.src == py ∧

acl_func(p1.src, p1.dst) ∧ p0.payload == p1.payload

F o r a l l [p0, t0] send(py, 0, p0, t0) I m p l i e s

E x i s t s [p1, p2t1, t2] recv(py, 1, p1, t1) ∧ recv(py, 0, p2, t2) ∧

t2<t1<t0 ∧ acl_func(p2.src, p2.dst) ∧ acl_func(p0.dst, p0.src)

p1.dst == py ∧ p0.src == p1.src == p2.dst ∧

p0.payload == p1.payload == p2.payload

Listing 4.5: Encoding of a reverse proxy

4.3 Intent Decomposer

Given a network intent, we can use a SMT solver to check whether the intent is

satisfied or not. However, even with the smallest network (18 nodes) we use in our

evaluation, the solver cannot return an answer in a reasonable time. To improve the

scalability, one key observation is that though a network intent specifies a high level

end to end objective, it is possible to decompose it into several sub-tasks, where each

task can be checked separately. In this section, we present how the intent decomposer

of Epinoia decomposes network intents in two dimensions.

4.3.1 Atomic Address Object

The concept of address objects (mostly referred as zones or aliases) are widely used

in network management ecosystems. Assume we are about to configure a set of security

93

p1

p2
p3

0...0 255…255
I1 I2 I3 I4 I5I0 I6

p3

Figure 4.6: Calculating the set of atomic address object for three address objects p1, p2
and p3

rules guarding the servers in a data center to allow traffic from hosts in the marketing

department while blocking mobile devices connected to the guest network. Instead of

spelling out each address explicitly when a rule is added, we can define address objects

as placeholders (e.g., data center, marketing department, guest network); each rule can

be applied directly to such address objects. We define the set of atomic address objects

which specifies the largest common refinement over the address space given the set

of address objects. As is shown in Figure 4.6, three address objects p1, p2 and p3 are

represented as ranges with all the endpoints laid out on an axis in increasing order. p3

has two ranges as it corresponds to two non-continuous subnets.

We consider all the non-overlapping intervals I0 ∼ I6 formed by each consecutive

pair of endpoints. The set of atomic address objects can be easily calculated by com-

bining intervals that belong to the same set of address objects. For example, I1 and

I4 are two separate atomic address objects. I0 ∪ I2 ∪ I6 and I3 ∪ I5 are the other two

atomic address objects. In addition, an address object can be represented as a union of

a subset of atomic address objects. For example, p2 = I3 ∪ I4 ∪ I5. We call packets

sent from one atomic address object to another atomic address object as a traffic class.

With the same network state, packets within the same traffic class are treated equally

at all NFs in the entire network as they match the same set of processing rules. An

endpoint group in an intent can be represented as a union of atomic address objects

whose intersection with the endpoint group is not empty. To check an intent between

two endpoint groups, instead of querying each pair of end hosts, we can instead simply

94

check the more compact traffic classes between the two endpoint groups. For example,

an intent from endpoint group e0 to e1 can be checked using two traffic classes (s0, d0)

and (s1, d0) if e0 ∩ s0,1 6= �, e0 ⊂ s0 ∪ s1, e1 ∩ d0 6= � and e1 ⊂ d0. The benefit is

two-fold:

Header matching elimination. Most NFs decide processing actions for incoming

packets by matching packet headers against processing rules. The natural way to rep-

resent a packet and a processing rule for this check is to use bit vectors and check for

equality using a bit mask. However, bit vectors are expensive and solvers typically con-

vert them to SAT. In Epinoia, the matching fields of processing rules are represented

as a set of integers. The integers are identifiers for atomic address objects. Header

matching at NFs are converted to integer membership checking which is more efficient

for solvers. For processing rules that modify packet headers (e.g., NAT rule), the mod-

ified addresses are also represented as one or more atomic address objects. Depending

on a deterministic (one to one mapping) or nondeterministic (one to multiple mapping)

modification, an atomic address object is mapped to a certain or random atomic address

object.

Adapting to temporal modeling. A solver usually returns a single solution when

the set of constraints are satisfiable. Sometimes, we need all solutions for a query, i.e.,

all hosts in the marketing department should be able to reach the web service. In static

modeling, this problem can be solved by testing the satisfiability of the negation of the

query, However, with the temporal modeling required by stateful NFs, the negation of

the query can be satisfied either with a packet that would be blocked in the network, or

a packet sequence that could not have existed because it violates the casual precedence

constraints. We need to differentiate between these, and find only true packet loss.

To do this, we can only check an intent directly, which could boil down to a large of

number of sub-queries corresponding to each pair of end hosts specified in the intent.

95

With atomic address objects, the number of necessary queries as well as the total time

cost is significantly reduced as the checking results can be applied to all end hosts that

belong to the same atomic address object.

4.3.2 Path Segmentation

Epinoia pre-calculates all paths for each intent and an intent is satisfied if there is no

violation along all potential paths. Along a path, checking an end to end intent can be

divided into several sub-tasks, each of which includes a single NF. The intuition is based

on two observations: i) Many NFs have concrete constraints on headers of incoming or

outgoing packets. For example, a source NAT translates private addresses to its public

addresses; A load balancer uniformly distributes packets heading to its shared address

to a set of servers. Such concrete constraints are specified in NF configurations and can

be propagated along the path, which helps remove redundant information that the SMT

solver might otherwise have to discover by itself. ii) State constraints refer to the local

packet processing history at a NF. To check if a state could be valid, only constraints

within the NF need to be included.

To illustrate the idea of path segmentation, we review the intent (i) in Figure 4.3

within the network graph shown in Figure 4.4. Two potential paths from m1 to Web

are shown in Figure 4.5. Address pairs annotated on each path segment specify the

concrete constraints on source and destination addresses of packets that can reach this

segment. s0 denotes the atomic address object corresponds to m1 while d0 represents

Web. For packets going through FW1, FW2 and LB, the source address of packets

are always s0 since no NF along the path modifies the source address. For the last hop,

the destination address must be d0. As a load balancer requires an incoming packet to

use its shared address as the destination address, denoted as d1, the first three segments

all have d1 as destination address. For packets going through FW1, NAT and LB, the

96

FW1

1, 4 1, 4

1, 6 1, 6

1, 5 1, 5

1, 5 1, 5

FW2

1, 4 1, 5

1, 5 1, 3

NAT

LB

m1

Web

t1

t1 t1 t1

t1

t12 t12

t2 t2

t2

t2

t2

Figure 4.7: The causality graph for the reachability between m1 and Web.

source address is always s0 while the destination address is modified from d2 to d1 and

d1 to d0 at NAT and LB respectively.

To check the reachability intent between m1 and Web, Epinoia starts with checking

whether those concrete and state constraints within a segment can be satisfied using a

solver. A path can be valid only if all segments are satisfiable; otherwise the path is not

valid.

4.4 Continuous verification

After checking each segment, Epinoia still needs to combine the results returned

by the solver to make sure they are consistent with each other. Meanwhile, upon a

network change, Epinoia should be able to identify the affected parts that may need

to be rechecked. To achieve these goals, Epinoia maintains a customized causality

graph that stores all checked results. Intent checking can be conducted incrementally

by traversing the causality graph.

97

4.4.1 Causality Graph

A node in a causality graph represents either a packet sending or receiving event.

Each node is tagged with a pair of atomic address objects specifying the set of source

and destination addresses of the packets. An arrow in the graph indicates a causal

precedence relationship among two events. The event on the front end depends on

and must happen after the event on the rear end. For a single NF, it is straightforward

to construct a causality graph of packet sending or receiving events required by the

satisfiability assignment from the solver. When there is more than one NF, receiving

a packet must be traced back along the selected path to a packet sending node. If

the corresponding packet sending node already exists, an arrow is added between the

sending and the receiving node. If not, the packet sending is checked within the upward

NF and other nodes or edges are added as needed. This procedure continues until the

packet receiving node is traced back to an endpoint.

Figure 4.7 shows an example causality graph for the two potential paths in Fig-

ure 4.5. Atomic address objects are represented as integers. 1 and 3 correspond to m1

and Web respectively; 5 is the shared address configured at the load balancer; the NAT

maintains two deterministic atomic address object mapping: from 4 to 5 and 6 to 7.

Consider the FW1 − NAT − LB path, possible packets received and forwarded by

FW1 are (1, 4) and (1, 6) since NAT only accepts packets heading to 4 and 6. We

assume both packets are allowed by FW1. Later, only packet (1, 4) goes through NAT

as the transformed packet must be (1, 5) to be processed by LB. At LB, packet (1, 5)

is changed to (1, 3) and finally sent to Web. Similarly, we add nodes and edges for path

FW1 − FW2 − LB. We add tag ti along each edge to identify path i. Based on the

causal relationship, it’s obvious that a path i is valid if the subgraph tagged by ti has no

loop, which indicates that there exists a valid time sequence for all packet sending and

receiving events to achieve the end to end intent. In this example, both paths 1 and 2 are

98

FW1

1, 4 1, 4

1, 6 1, 6

1, 5 1, 5

1, 5 1, 5

FW2

1, 5 1, 3

LB

Web

5, 1 5, 1

3, 1 5, 1

1, 4 1, 5

NAT

m1

t1

t1 t1 t1

t1

t123
t123

t23 t23

t2

t2

t2
t2

t2

t2
t2

t2
t2

t3

Figure 4.8: The causality graph under a rule insertion and a link up.

valid. To reuse the checked results, both satisfied and unsatisfied checking (not shown

for simplicity) results are stored in the graph. In Epinoia, only one causality graph

is maintained as the checked results can be shared among paths and intents. When

the graph is storing more results, the size of a sub-graph tagged by a path identifier is

independent of the complexity of the causality graph.

As events occur to the network, Epinoia identifies affected intents and incrementally

updates the causality graph. We handle the following six events.

Adding an address object. When a new address object is added, an existing atomic

address object may be divided into two new ones. Nodes and edges related to the atomic

address object should be duplicated to reflect the changes. However, an intent needs

rechecking only if a new rule using the new address object is inserted.

Deleting an existing address object. Similarly, when an address object is deleted,

two existing atomic address objects may specify the same atomic address object. Du-

plicated nodes and edges in the causality graph are removed. No intent needs to be

rechecked.

Inserting a rule. To identify the set of intents that may be affected by the new rule,

each node in causality graph maintains an attribute specifying the set of intents and

99

corresponding paths relying on the node. For example, the packet receiving node (1, 5)

in FW2 is created by intent (i) in Figure 4.3 along path FW1 − FW2 − LB. When

a new rule is inserted at a NF, Epinoia first identifies existing packet receiving nodes

that match the new rule and the set of intents in the attributes of those nodes must be

rechecked. Meanwhile, the behavior of some other packet receiving nodes may also

be affected by the new inserted rule indirectly, even though they do not match the rule.

Though the remaining satisfied checking results must not be affected (if they are, their

packet receiving nodes should have matched the rule), all other intents with unsatisfied

checking results within the NF should be rechecked.

We show how the causality graph is updated when a deny rule for packet (1, 5) is

added at FW2 in Figure 4.8. Now packet sending (1, 5) requires a previous sending of

(5, 1), which then is traced back to a sending (5, 1) at LB. At LB, the packet sending

(5, 1) relies on a previous sending of (1, 3), which is traced back to a receiving and

sending of (1, 5) at LB and FW2 respectively. After adding all necessary nodes and

edges, the subgraph tagged by t2 introduces a loop, so path 2 becomes invalid. Edges

only tagged by t2 are removed from the causality graph (dotted lines).

Deleting a rule. When a rule is deleted, intents relying on the packet receiving

matching the deleted rule need to be rechecked as they will be handled by lower priority

rules, and may result in different checking results.

Link up. A link up may lead to two cases where the graph needs to be updated.

For each intent, Epinoia first extracts new paths from the pre-calculated path set that

traverses the new link and checks if the paths are valid. Meanwhile, Epinoia checks

whether packet receiving previously cannot be traced back to endpoints at the two NFs

connected by the new link become valid. If so, the set of paths relying on those packet

receiving events may become valid. As shown in Figure 4.8, if a link is up between

FW1 and LB, a new path 3 is added by going through FW1 and LB.

100

Link down. When a link goes down, all the edges using that link are deleted, which

in turn removes all the paths going through those edges.

Complexity analysis. The rule insertion has the highest complexity of O(nd(V +

E)), where, n is the number of atomic address objects and d is the diameter of the net-

work. V and E denote the number of nodes and edges of a subgraph tagged by a path.

When a rule is inserted, Epinoia first checks the set of existing packet receiving events

that are affected by the new rule (There exist O(n) such packet receiving events). For

each affected events, Epinoia collects checked results along its path. Since the maxi-

mum path length is the diameter d, this is O(nd). If all path segments are satisfiable,

Epinoia extracts the sub-graph tagged by the path and uses a graph traversal algorithm

(e.g., depth first search) to detect if there is a loop. Thus, the overall runtime complexity

is O(nd(V + E)).

4.4.2 Running Intent Checking Queries

Given an intent, Epinoia divides the intent into sub checking tasks using the intent

decomposer. With the checking results maintained by the causality graph, Epinoia calls

a SMT solver only when a sub-task has not been checked before. For a reachability

intent, valid paths are collected for each traffic class. Each valid path corresponds to

a sequence of NFs in the network. Epinoia finds all valid paths that satisfy the NF

chaining requirement in an intent. The remaining valid paths correspond to the ones

that are reachable but violate the NF traversal requirements. For a block intent, any

valid path indicates a potential intent violation.

Once an intent is added, it is evaluated against all future snapshots of the network

graph if necessary, unless the intent is removed from the network. For all reported vio-

lations, Epinoia reports corresponding network elements or paths the violating traffic is

taking. Each piece of configuration is tagged with its intent. Given a reported violation,

101

0 5000 10000 15000
Number of rules

1000

3000

5000

Figure 4.9: Number of atomic address object as number of rules increases.

the tag helps trace back to the intent that generates the configuration.

4.5 Evaluation

We have developed a prototype of Epinoia in approximately 6K lines of Python. To

evaluate Epinoia, we first examine how it deals with a real-world enterprise ACL dataset

and then investigate the effectiveness of the intent decomposer. Finally we evaluate the

runtime performance of Epinoia. All our experiments were done on a machine with 4

cores, 2.93 GHz Intel Xeon Processor and 6 GB RAM. We report times taken when

the checking is performed using a single core. We use a SMT solver Z3 [43] for our

evaluations. SMT solvers rely on randomized search algorithms, and their performance

can vary widely across runs. The results reported are generated from 100 runs of each

experiment.

4.5.1 Real-world evaluation

We obtain an ACL dataset from a policy management system of a large enterprise

network. These policies are specified using 801 pre-defined address objects located at

137 compartments (groups of subsets). Each ACL rule permits or denies the commu-

nication between two address objects, each address object corresponds to one or more

102

Name groups
100

102

104

106

108
Atomic address objects IPs

Figure 4.10: Number of atomic address objects and IP addresses for name groups.

IP subnets (address objects may overlap with each other). Given a set of ACLs, we cal-

culate the number of atomic address objects based on the address objects used by those

ACLs. As shown in Figure 4.9, the number of atomic address objects increases with a

slope less than 1/3 with increased rule set size. This indicates the similarity between

rules with respect to their target address space. In total, there are over 19K ACL rules

and 4508 atomic address objects. While some atomic address objects contain large ad-

dress blocks, about half (2510) of them specify only a single IP. The size of the address

objects also varies widely, ranging from a single IP to over 600 non-contiguous subnets

(representing around 100 million IP addresses). In contrast, the variation in the number

of atomic address objects within an address object is much smaller. As shown in Fig-

ure 4.10, address objects are sorted by the number of IPs within the object. Over 90%

of address objects have less than 6 atomic address objects. With fewer atomic address

objects, it’s more likely for Epinoia to achieve better performance when checking group

level intents.

Next we use Epinoia to detect potential security breaches that may occur using the

ACL dataset. We assume all compartments are connected with a full mesh topology

and the ACL policies conduct stateful processing. We measure the time cost to check

the reachability for each traffic class between two compartments. The average cost

is 0.78 seconds with a maximum of 3.32 seconds. In total, we found 351 potential

breaches due to inconsistent deny rules. For example, a packet matches a deny rule

103

either at the local or the remote compartment, which indicates a block intent from the

administrator. However, the block intent may be violated if its reverse traffic is able to

pass the compartment.

4.5.2 Scalability

5 10 15 20 25

Number of rules

0

20

40

60

80

100

T
im

e
(s

)

BV-sat

BV-unsat

AA-sat

AA-unsat

Figure 4.11: Time taken to check a reachability query as # of rules increases.

5 10 15

Number of NFs

0

10

20

30

40

50

T
im

e
(s

)

Path-sat

Path-unsat

PS-sat

PS-unsat

Figure 4.12: Time taken to check a reachability query as # of NFs increases.

To evaluate the scalability of Epinoia, we quantify the effectiveness of the intent

decomposer by measuring the time cost of an end to end reachability query. We connect

104

50 100 150 200

Number of policies

0

200

400

600

800

1000

C
u
m

u
la

ti
v
e
 t
im

e
(s

) OTEGlobe(93)

Internode(66)

Cwix(36)

Ans(18)

Figure 4.13: Time taken to check all intents

two end hosts with a single firewall. Then we keep inserting ACL rules into the firewall

and measure the time cost to check the reachability between the two hosts.

First, we represent addresses as bit vectors (BV) in the SMT encoding and use it

as a baseline to show the effectiveness when atomic address objects (AA) are used.

As shown in Figure 4.11, the time cost of the query increases exponentially for bit-

vector based encoding while all queries cost less than one second when atomic address

objects are used. This speeds up the intent checking by 100x when there are 30 rules.

The reason is that bit vectors are expensive for SMT solvers and each rule inserted

introduces at least 32 extra variables. However, by aggregating addresses to atomic

address objects, symbolic variables representing IP prefixes are replaced with integers.

A satisfied query requires more time as it needs to calculate valid assignments for all

variables in the constraint set, while an unsatisfied query returns immediately when a

conflict is found.

To evaluate the benefit of path segmentation, we add additional firewalls between

the two hosts to create a firewall chain. We measure the time cost to check the reach-

ability between the two hosts when all the constraints along the path are solved as a

whole. This corresponds to a key optimization in VMN [88], where the checking is re-

105

Ans(18) Cwix(36) Internode(66)OTEGlobe(93)
10-1

100

101

102

T
im

e
 (

s)

Insert a rule

Delete a rule

Link up

Link down

Figure 4.14: Time taken to recheck affected intents per network change.

stricted to the forwarding path between end hosts. When the path segmentation (PS) is

applied, we check each firewall one by one and sum up the time cost. As shown in Fig-

ure 4.12, when the path is checked as a whole, the time cost increases significantly with

increased number of firewalls. The SMT solver Z3 we used in our experiments cannot

return before timeout when the number of firewalls is larger than 9 for satisfied queries

and 10 for unsatisfied query. With path segmentation, the time cost increases linearly

and the maximum cost for satisfied query is 7.73 seconds. For unsatisfied queries, the

cost does not necessarily go up with increased number of NFs as the checking process

terminates whenever one of the segments cannot be satisfied. The maximum time cost

is 0.26 seconds, which highlights the effectiveness of the intent decomposer in Epinoia

for large networks.

106

4.5.3 Runtime performance

In this set of experiments, we evaluate the runtime performance of Epinoia using

four topologies from Topology Zoo [67] with number of nodes ranging from 18 to 93.

In our experiments, we create 200 network intents, each of which contains 0 to 10 NFs

of different types and we randomly attach end hosts belonging to pre-defined address

objects to different nodes in the topology. We also randomly assign a NF instance to

each node in the topology. Epinoia executes a pre-computation procedure to enumerate

the paths for all the intents, which could be costly for large topologies. However, we

emphasize that this procedure only needs to be done once and this can be performed

off-line.

In the first experiment, we check each intent one after another, and all checked

results are stored in the causality graph. Figure 4.13 shows the cumulative time cost to

check all intents for the four networks. All time costs grow slightly as the number of

polices increases. The reason is that many intents share the same set of sub checking

tasks for different traffic classes. The checked results can be reused among intents when

there are no network changes.

With all the checked results, we next evaluate how Epinoia reacts to network dy-

namics. We randomly choose to insert/delete a rule or add/remove a link and measure

the time cost for Epinoia to identify and recheck the set of affected intents for each sce-

nario. As each network change may affect a different amount of intents, we report both

the average and maximum time cost to recheck the affected intents in each network.

As shown in Figure 4.14, the average cost of rechecking after a change is less than 10

seconds, with the maximum for inserting a rule in Internode being close to 20 seconds.

Without the incremental checking, a full check is required for all intents whenever there

is any change. The average speedup of Epinoia incremental checking is 34x, 79x, 94x

and 101x for each network respectively.

107

4.6 Related Work

To model stateful NFs, existing approaches either work on extracting models by

analyzing NF source code [106, 113, 114] or hand crafted models [88] based on expert

knowledge. We take a different approach, in which we have designed vendor-agnostic

NF configuration models and construct NF forwarding models using key causality rela-

tionships. There is a rich body of work for verifying forwarding behaviors in stateless

networks [62, 63, 65, 118]. While these work can efficiently check a number of poli-

cies such as reachability and loop freedom, it is nontrivial to extend these work to

support stateful data planes. There are several proposals on verifying network control

planes [35, 52], where the processing is stateful; however, all of those work rely on

a converged routing state and cannot be used for stateful NFs. To check stateful net-

works, Symnet [106] runs symbolic execution over an abstracted NF implementation

and SFC-Checker [110] extends the network graph in HSA [63] by adding nodes for

each NF state. Both of these approaches are path-based and cannot check state consis-

tency between different NFs. VMN [88] also uses a SMT solver and identifies an end

to end slice for each checking. However, VMN only supports block intents and cannot

scale to large networks with dynamic updates.

108

Chapter 5

AutoInfer: Automated Network Intent

Inference

5.1 Motivation

Consider an operator planning to write an intent to improve the resilience of a Web

service hosted in the enterprise data center. In order to decide the bandwidth require-

ment, the operator wants to learn what intents about the Web service have already been

deployed and how resilient is the current deployment. An intuitive approach is to run

start of the art network verification techniques over network configurations and collect-

ing all potential accesses related to the Web service. While the runtime network state

will be missing from this analysis, it may derive inaccurate network intents. We present

three examples which motivate our idea in AutoInfer to augment configuration analysis

with runtime monitoring.

Fig. 5.1 shows an example of endpoints migration, which could happen due to com-

pany reorganization or a department/team moving into a new office. While new con-

figurations are installed to support new intents related to the migration, the old ones

109

Mktg

IT1

IT2

Figure 5.1: Example of endpoints migration. Endpoint group IT1 migrates to IT2. The
original intent between IT1 and Mktg no longer exists.

may still exist in the configuration file [16]. As shown in Fig. 5.1, IT department moves

from IT1 to IT2. The original communication intent from IT1 to Marketing department

Mktg may still be inferred, but without any active traffic.

Web1

Mktg

Web2

Route

Figure 5.2: Example of rule aggregation. The aggregated route for both Web1 and
Web2 is still valid when Web1 goes down for emergency maintenance. Web1 cannot
be accessed.

To achieve high availability, services may migrate more often compared to end-

points. As shown in Fig. 5.2, there are two Web services Web1 and Web2. Both of

them advertise their routes from the left to the right side. The two routes are aggregated

into a single route on their way to the Marketing department Mktg since they share the

same prefix. WhenWeb1 experiences an emergency maintenance, existing connections

and states on Web1 are migrated to Web2. As Web2 is still alive, the original aggre-

110

gated route will stay valid [47]. However, the inferred intent from Mktg to Web1 does

no longer exist since Web1 cannot be accessed at the moment.

LBBC

IDS

WebGuest

BC

Figure 5.3: Example of equal-cost paths. Though the upper (traverses a byte counter
and a load balancer) and lower (traverses an Intrusion Detection System(IDS) and a
byte counter) paths between Guest network and the Web service have the same cost,
only one path is active at a time.

Finally, another misleading intent may be inferred from configurations when there

are multiple equal-cost paths between the source and destination endpoint groups. As

shown in Fig. 5.3, between the Guest network and the Web service, there are two paths

with the same hop count but different function boxes. While there seems to be a con-

flict between the two intents inferred along the two paths, this is an example of policy

routing [25], only one path/intent is active at a particular time .

5.2 Overview

Next, we provide an intuitive description of AutoInfer (see Fig. 5.4) using a running

example.

Input. AutoInfer relies on three input from operators or network OSes: labels,

dataplane rules and topologies. No other input is required during the intent inference

process. Labels refer to predefined names representing endpoint groups, which are

commonly used in existing network management tools and applications [5] [20]. La-

111

Dataplane

rules

Labels Topology

Minimizing monitoring cycle

Identifying potential intents

Individual intents

Monitoring schedules

Monitored traffic

N
ex

t
ti

m
e

sl
o

t

Intent graphs

Figure 5.4: Workflow of AutoInfer

bels are naturally organized in tree structures. More specifically, as shown in Fig. 5.5a,

the example network has seven predefined labels including three departments (IT, Mar-

keting, Guest) and two applications (Data Base, Web). Each label corresponds to a set

of IP addresses or prefixes. AutoInfer also accepts network topology and dataplane con-

figurations (e.g., forwarding/ACL rules) in order to compute potential intents. Fig. 5.5b

shows the topology of the example network consisting of six switches (s1 to s6) and

several function boxes.

From configurations to individual intents. Given network configurations, Au-

toInfer obtains potential intents by calculating network reachability between each pair

of edge ports along all simple paths. Intersected with the label definition, we can in-

112

In
p

u
t

Dpts

IT Mktg Guest

Apps

DB Web

Dpts: Departments

Mktg: Marketing

Apps: Applications

DB: Data Base

(a) Input label namespace hierar-
chy

web

it2 m2 g2

it1 s2

s3

s4

s5

s6

LB BC

IDS

BC

s1

m1

g1

dbit3 m3 g3

Network configs

(e.g., Fwd, ACL rules)

(b) Network configurations and topology

𝑖𝑡1 −𝑤 4, 6 , 𝑖𝑡1 −𝑚3 (1, 3)
𝑖𝑡2 − 𝑤 4, 6 , 𝑖𝑡2−𝑚3 2, 3 ∗
𝑖𝑡3 − 𝑤 4, 6 ∗
𝑔1 −𝑤 1,3,5,4,6 ∗
𝑔2 −𝑤 2,3,5,4,6 ∗
𝑔3 −𝑤 3,5,4,6 ∗
𝑚1 −𝑤 (4, 6)
𝑚2 −𝑤 (4, 6)
𝑚3 −𝑤 4, 6
𝑤 − 𝑤 6 ∗,𝑤 − 𝑑𝑏 6, 5 ∗

In
te

n
t

In
fe

re
n

ce

(c) From configurations
to potential individual in-
tents and available moni-
toring spots. (? indicates
the intent with active traf-
fic.)

𝑇" 1 2 3 4

𝑠$ 𝑖𝑡$ − 𝑚) 𝑔$ − 𝑤 𝑖𝑡$ − 𝑚) 𝑖𝑡$ − 𝑚)

𝑠, 𝑖𝑡, − 𝑚) 𝑔, − 𝑤 𝑖𝑡, − 𝑚) 𝑔, − 𝑤

𝑠) 𝑔) − 𝑤 𝑖𝑡$ − 𝑚) 𝑔$ − 𝑤 𝑔) − 𝑤

𝑠- 𝑚$ − 𝑤 𝑚, − 𝑤 𝑖𝑡$ − 𝑤 𝑖𝑡) − 𝑤

𝑠. 𝑤 − 𝑑𝑏 𝑔) − 𝑤 𝑤 − 𝑑𝑏 𝑔$ − 𝑤

𝑠1 𝑤 − 𝑤 𝑚) − 𝑤 𝑖𝑡, − 𝑤 𝑖𝑡$ − 𝑤

𝑇" 1 2 3 4

𝑠$ 𝑖𝑡$ − 𝑚) 𝑔$ − 𝑤 𝑔$ − 𝑤 𝑔$ − 𝑤

𝑠, 𝑖𝑡, − 𝑚) 𝑖𝑡, − 𝑚) 𝑔, − 𝑤 𝑔, − 𝑤

𝑠) 𝑔 − 𝑤 𝑔) − 𝑤 𝑔) − 𝑤 𝑔) − 𝑤

𝑠- 𝑚 − 𝑤 𝑖𝑡$ − 𝑤 𝑖𝑡) − 𝑤 𝑖𝑡) − 𝑤

𝑠. 𝑤 − 𝑑𝑏 𝑤 − 𝑑𝑏 𝑤 − 𝑑𝑏 𝑤 − 𝑑𝑏

𝑠1 𝑖𝑡 − 𝑤 𝑖𝑡, − 𝑤 𝑤 − 𝑤 𝑤 − 𝑤

A fixed monitoring schedule with only
individual intents.

An adaptive monitoring schedule with
aggregated intents.

(d) Process refining monitoring schedules. Intents with
monitored traffic are marked in darker colors.

O
u
tp

u
t

IT

𝑖𝑡2 𝑖𝑡3

Mktg

𝑚3

IT

𝑖𝑡2

Pub

𝑖𝑡3 𝑔1 𝑔2 𝑔3

Guest

𝑔1 𝑔2 𝑔3

Pri

𝑚3

(e) Refined label hierarchy

𝐼𝑇 ∩ 𝑃𝑢𝑏 LB

𝐺𝑢𝑒𝑠𝑡 ∩ 𝑃𝑢𝑏

𝐼𝑇 ∩ 𝑃𝑟𝑖 𝑀𝑘𝑔𝑡 ∩ 𝑃𝑟𝑖

𝑊𝑒𝑏 𝐷𝐵BC

IDS

(f) Inferred network intents

Figure 5.5: A running example of AutoInfer

113

fer locations of endpoints and their corresponding intents (see Fig. 5.5b). Note that an

endpoint group may partially belong to an intent. To represent sub-endpoint groups,

AutoInfer creates labels with subscripts. As shown in Fig. 5.5b, some endpoints in the

IT department may sit behind switch s1, denoted as it1, and are able to talk to Web.

This intent is represented as it1 − w. We call such potential intents individual intents.

Following this method, AutoInfer spells out all potential individual intents.

Fig. 5.5c shows the all individual intents calculated using the network configura-

tions. An individual intent can be monitored on the switches along its forwarding path

between the source and destination endpoints (Numbers in parentheses represent poten-

tial monitoring spots for corresponding intents). In order to show how AutoInfer works,

we assume a subset of individual intents has active traffic, marked with a star at the end

of an intent. Note that the function boxes which modify packet headers introduce addi-

tional constraints on which spot an intent can be monitored. For example, traffic for the

intent it1 − w(4, 6) goes through the path s1 → s2 → s4 → s6. However, since the

load balancer may modify destination addresses, only the downward switches (s4 and

s6) are valid monitoring spots for the intent.

Adaptive monitoring refinement. With the individual intents extracted from the

configurations, AutoInfer conducts monitoring to further infer network intents from the

runtime state. Since different intents could contend for more resources than available

in the network, it may not be possible to monitor all intent all the time. Monitoring

schedules in AutoInfer are made of one or more timeslots. While it is intuitive to spend

more resources measuring intents with active traffic, a current latent intent may become

active in seconds. To assure fairness, monitoring schedules are initialized periodically.

The length of the cycle is chosen to be the minimum number of timeslots to monitor

each individual intent for at least once. In the running example, we assume a switch can

monitor at most one intent at a time. Limited by the switch resource budget, it takes

114

at least four timeslots to schedule each individual intent at least once. As shown by

the timeslots surrounded by dotted lines in the fixed monitoring schedule of Fig. 5.5d,

switches s4 and s6 become bottlenecks for intents between IT, Marketing and Web ser-

vice. Other timeslots are filled accordingly and we call this a minimum fixed schedule.

After the schedule for a cycle is decided, all intents are continuously monitored by

repeating the minimum schedule.

Limitations of such fixed schedules are: 1) Some intents may experience long de-

lay before they are initially monitored (e.g., intent it3 − w isn’t monitored until the

fourth timeslot), which further delays any reaction operators may take by observing

such intents. 2) Some intents without active traffic are monitored repeatedly (e.g., in-

tent it1 −m3 is monitored four times while an active intent it3 − w is monitored only

once). Therefore, those slots are wasted and won’t contribute to the intent graphs.

An improvement is to aggregate individual intents to high level intents based on the

input label trees (e.g., Intents m1 − w, m2 − w and m3 − w are aggregated to m− w).

High level intents are scheduled with higher priority whereas a sub-intent is scheduled

only if its high level intent has active traffic. Otherwise, the sub-intents will not be

monitored within the same cycle. However, an overly aggregated scheme may lead

to resource underutilization. In an extreme case, all individual intents are aggregated

into a single high level intent and thus only one intent is available to schedule, leaving

other switch rearouses wasted. To address the problem, the monitoring schedule in

AutoInfer is refined adaptively with objectives to maximize intent coverage as well as

resource utilization (see the adaptive monitoring schedule in Fig. 5.5d).

Compared with the fixed monitoring schedule, the adaptive monitoring schedule

brings two benefits: 1) In addition to individual intents, it can also generates intent

graphs for aggregated intents which provide operators with a high level view of network

states in a timely manner. It’s especially useful when many intents exist. 2) On the other

115

hand, it improves the efficiency of the monitoring by giving up the inactive intents at

an early stage and only focuses on active intents. As shown in Fig. 5.5d, in the fixed

monitoring schedule, 10 out of 24 slots do not capture any traffic, the ratio is decreased

by x2.5 to 4/24 in the adaptive monitoring schedule.

Output. Labels are often defined over network structures or company organiza-

tions. New policy labels can be inferred based on obtained intent graphs to suggest

operators configure and reorganize their networks. As shown in Fig. 5.5e, it3 and g1 ∼ 3

are included in a public (pub) group since they all have accesses to the Web service

while it2 and m3 are forming a private (pri) group.

Using labels, intent graphs are displayed to operators and are continuously updated

based on the captured traffic. Fig. 5.5f shows intents graphs AutoInfer created for the

running example.

5.3 From Configurations to Individual Intents

Given input configurations, the first operation performed by AutoInfer is to identify

individual intents and their potential monitoring spots. We now detail how this happens.

Network Models. We follow existing work on network verification [63] [118] to

model a packet header as a flat sequence of ones and zeros. Formally, a header is a

point in the {0, 1}L space, where L is an upper bound on the header length. A wildcard

expression is a sequence of L bits where each bit can be either 0, 1 or x. The whole

header space is defined as a union of wildcard expressions.

We model the network as a set of boxes with external ports. A box is modeled using

a transfer function T :

T (h, p) : (h, p) → {(h1, p1), (h2, p2), ...} (5.1)

116

In general, the transfer function may depend on the input port to model input-port-

specific behavior and the output may be a set of header-port pairs to allow multicasting.

More precisely, transfer functions model their protocol dependent functions. For in-

stance, an IP lookup can be modeled by a masking AND while header updates can be

represented by a masking AND followed by a rewrite OR.

Computing Individual Intents. For each edge port, we consider the space of all

headers leaving the source, then track this space as it is transformed by each succes-

sive box along a simple path. This process terminates when either another edge port is

reached or no header space remains. If an edge port is reached, we trace the remain-

ing header space backwards (using the inverse function at each step) to find the set of

headers the source can send to reach the destination. For a simple path with reachable

source and destination addresses, we intersect them with the pre-defined labels to get an

individual intent. Switches along the path are potential monitoring spots for the intent.

If an intent contains a function box which modifies destination addresses, monitoring

spots are restricted to its downward switches where traffic can be captured with correct

destinations. Similarly, for a function box which modifies source addresses, the mon-

itoring spots can only be its upward switches. An alert is triggered when no available

monitoring spot is found.

5.4 Adaptive monitoring refinement

After analyzing configurations, we end up with a group of individual intents and

their potential monitoring spot. The next step performed by AutoInfer is to schedule

those monitoring tasks, creating network intent graphs. While it is intuitive to seek

high monitoring efficiency (e.g., to spend more resources on intents with active traffic),

AutoInfer also values the fairness among all intents (e.g., to monitor each intent as often

as possible). To achieve the goal, AutoInfer firstly identifies a minimum cycle in which

117

Type Symbol Meaning
C

on
st

an
t

T the set of all timeslots
Wi weight assigned to intent i based on importance
CAPs capacity of swtich s
α weight assigned to the second objective of maximizing switch utiliza-

tion
ρ weight of penalty for changing the spot for a continuous monitoring

task

V
ar

ia
bl

e Iit indicator variable set as 1 if intent i is scheduled at timeslot t
Pist indicator variable set as 1 if intent i is monitored at switch s at times-

lot t
Ut indicator variable set as 1 if any monitoring task is assigned at times-

lot t
δs slack variable for switch s
θis penalty to represent changing of monitoring spot assignment for in-

tent i

Table 5.1: Symbols and notions.

each individual intent can be scheduled for at least once. Monitoring schedules are

initialized at the beginning of each cycle. Within a cycle, AutoInfer adaptively refines

monitoring schedules to compute a maximum filling for each timeslot, hence increasing

inference accuracy.

Symbols and functions. Table 5.1 and Table 5.2 list the symbols and functions

used in our formulation, along with their meanings.

5.4.1 Calculating a minimum cycle

To identify the length of a minimum cycle, we need to schedule each individual

intent for exactly one timeslot, with the goal to minimize the total number of timeslots.

This problem can be reduced from a bin packing problem, and therefore it is NP-hard.

To improve time efficiency, AutoInfer first computes an upper bound on the size of

the minimal cycle, using a First-Fit heuristic which schedules all intents in increasing

118

Function Meaning

indivInts returns all individual intents
switches returns all switches
spots(i) returns available monitoring spots for intent i
ints returns all potential intents for the current timeslot
descInts(i) returns all descendants of intent i in the current intent pool
actInts returns all monitored intents having active traffic in the current timeslot
actSpot(i) returns the spot selected to monitor intent i in the current timeslot

Table 5.2: Functions and notions.

order with respect to the number of monitoring spots. The computed upper bound is

then exploited to compute a minimum cycle, using a Integer Linear Program (ILP)

formulation.

We use indicator variables, also known as binary variables, which can take the value

of 0 or 1. For example, Ut is an indicator variable for timeslot t ∈ T . It will take the

value 1 if any intent is scheduled to be monitored in timeslot t. The goal is to minimize

the length of a cycle.

Objective : min
∑
t∈T

Ut (5.2)

The objective should be achieved with the following constraints:

Every individual intent must be scheduled. ∀i ∈ indivInts:

∑
s∈spots(i)

∑
t∈T

Pist = 1 (5.3)

In any timeslot, monitoring tasks assigned to a switch must be equal or less than its

capacity. ∀ t ∈ T,∀ s ∈ switches:

∑
i∈indivInts

Pist ≤ Ut × CAPs (5.4)

119

A timeslot is used if any intent has been scheduled to be monitored in the timeslot.

∀ t ∈ T : ∑
i∈indivInts

∑
s∈ switches

Pist ≥ Ut (5.5)

Intent should be scheduled to timeslots in sequence. ∀ t, t′ ∈ T, t ≤ t′:

Ut ≥ Ut′ (5.6)

5.4.2 Calculating a maximum filling

Within a cycle, a maximum filling is calculated for each timeslot. The primary goal

is to maximize the intent coverage and its secondary goals are to maximize resource

utilization and minimize spot changes during the monitoring process. Before we show

the optimization problem and the heuristic algorithm to achieve our goals, we first

explain how to identify potential intents and how they can be adaptively refined across

different timeslots.

Identify potential intents. As shown in the running example in Fig. 5.5, aggregated

intents are helpful to quickly get rid of inactive intents, leaving more resources for

active intents. However, not every aggregated intent is useful and needless aggregation

may increase the number of potential intents, slowing down the scheduling process.

AutoInfer first creates an intent relationship graph and then prunes redundant intents.

The remaining intents in the graph are the set of potential intents to be monitored.

Fig. 5.6 shows an example intent relationship graph built using a subset of individ-

ual intents (on the right side) from our running example. We can see that an intent is

upgraded by either source or destination label each time. An arrow points from a father

intent to all its children intents. The pruning process starts from the left, removing all

intents which cover the same set of individual intents as their children. In the example,

only three aggregated intents are left, shown in green boxes.

120

𝑖𝑡1 − 𝐴𝑝𝑝𝑠

𝑖𝑡2 − 𝐴𝑝𝑝𝑠

𝑖𝑡3 − 𝐴𝑝𝑝𝑠

𝐼𝑇 − 𝑤

𝑖𝑡1 −𝑀𝑘𝑡𝑔

𝑖𝑡2 −𝑀𝑘𝑡𝑔

𝐼𝑇 −𝑚3

𝐴𝑝𝑝𝑠 − 𝑤

𝑤 − 𝐴𝑝𝑝𝑠

𝐴𝑝𝑝𝑠 − 𝑑𝑏

𝑖𝑡1 − 𝑤

𝑖𝑡2 −𝑤

𝑖𝑡3 −𝑤

𝑖𝑡1 −𝑚3

𝑖𝑡2 −𝑚3

𝑤 − 𝑤

𝑤 − 𝑑𝑏

𝐷𝑝𝑡𝑠 − 𝑤

𝐼𝑇 − 𝐴𝑝𝑝𝑠

𝐼𝑇 −𝑀𝑘𝑡𝑔

𝑖𝑡1 − 𝐷𝑝𝑡𝑠

𝑖𝑡2 − 𝐷𝑝𝑡𝑠

𝐷𝑝𝑡𝑠 − 𝑚3

𝐴𝑝𝑝𝑠 − 𝐴𝑝𝑝𝑠

𝐷𝑝𝑡𝑠 − 𝐴𝑝𝑝𝑠

𝐷𝑝𝑡𝑠 −𝑀𝑘𝑡𝑔

𝐼𝑇 − 𝐷𝑝𝑡𝑠

𝐷𝑝𝑡𝑠 − 𝐷𝑝𝑡𝑠

Figure 5.6: Example of an intent relationship graph

By computing the intersection of monitoring spots of individual intents, we can

obtain the monitoring spots for the corresponding aggregated intent. Note that the

potential intents only need to be calculated once and can be reused for all cycles.

Refining intent list. Across different timeslots within a cycle, the potential intent

list is refined adaptively based on what intents have been scheduled and their monitoring

results in previous timeslots. More specifically, AutoInfer follows three rules to update

the intent list:

1. Once an intent is scheduled, remove all its ancestors from the intent list.

2. If an intent is measured to be inactive, all its descendants including itself are

removed.

3. If an aggregated intent is active, just remove the intent itself. Its descendants will

stay in the intent list.

Ancestor and descendant intents can be obtained easily by traversing the intent re-

lationship graph. The intent list is reset to the original set when a new cycle starts.

Maximizing intent coverage. Monitoring scheduling depends on switch capacity.

For a timeslot, it may not possible to schedule all intents at once. The primary goal of

121

the scheduling is to maximize the intent coverage, defined as the weighted sum of all

potential intents. AutoInfer uses weight to represent the importance of an intent. The

weight of an aggregated intents is calculated as the sum of weights of all its individual

descendants.

Objective : max
∑
i∈ints

Wi Ii (5.7)

There are three constraints that need to be considered in formulating the optimiza-

tion problem. If intent i is scheduled, i.e., Ii = 1, exactly one monitoring spot should

be reserved.

∀i ∈ ints: ∑
s∈spots(i)

Pis = Ii (5.8)

The total number of intents scheduled to be monitored on a switch should be less

than the switch capacity.

∀s ∈ switches: ∑
i∈ ints

Pis ≤ CAPs (5.9)

To avoid double booking, an intent and its descendants should not be scheduled for

the same timeslot.

∀i ∈ ints, Ii = 1: ⋃
j∈ descInt(i)

Ij = 0 (5.10)

An ILP that considers all potential monitoring spots spots(i) of an intent may be-

come inefficient since the number of spots grows with the size of the network. AutoIn-

fer uses a heuristic algorithm [58] which uses a random subset of valid monitoring spot

as the candidate spots.

Maxmizing resource utilization. While scheduling more high level aggregated

122

intents improves intent coverage, there will be far less remaining intents that can be

scheduled, leaving the resource wasted. Slack variables are introduced for switches to

represent unused capacity.

∀s ∈ switches: ∑
i∈ ints

Pis = CAPs − δs (5.11)

We incorporate slack variables as penalty in the objective function and use variable

α to control the weight of the penalty associated with the total wasted capacity. By

increasing α, we can ensure maximum utilization is guaranteed.

Objective : max
∑
i∈ints

Wi Ii − α×
∑

s∈switches
δs (5.12)

Minimizing monitoring spot changes. For an intent which is scheduled for mul-

tiple continuous timeslots, changing its monitoring spot requires activating as well as

deactivating monitoring rules at switches and may lead to additional changes at other

switches. While obtaining an optimized schedule for all timeslots is hard, we use a

greedy approach, adding a secondary goal of minimizing monitoring spot changes from

the previous optimization solution. Indicator variables associated with switches can be

used as a signal to represent monitoring spot changes. The value of Pis for switch s

and intent i can change from 1 in the initial solution to 0 in the new solution in two

scenarios: 1) intent i is monitored at some other switch, and, 2) no switch is config-

ured to monitor intent i. Both require modifying monitoring rules. We minimize such

changes using a variables θis. As shown in Eqn. 5.13, for an active intent i ∈ actInts,

changing the value of Pis from 1 to 0 in the new solution will set θis to 1. These vari-

ables represent monitoring spot changes and are used to create the penalty function in

Eqn. 5.14.

123

∀i ∈ actInts, s = actSpot(i):

Pis = Ii − θis (5.13)

Similar to Eqn. 5.12, AutoInfer uses another variable ρ to control the penalty asso-

ciated with spot changes. The main objective is still maximizing intent coverage, which

can be achieved by assigning ρ a low value.

Objective : max
∑

i∈ ints
Wi Ii − ρ×

∑
i∈ actInts

θis (5.14)

5.5 Evaluation

We start by evaluating the algorithm pipeline of AutoInfer using synthetic bench-

marks over realistic topologies, to answer the questions: 1) Can AutoInfer improve the

accuracy of intent inference? 2) Does it scale to large networks and is suitable for on-

line use? Then, we validate the useability of AutoInfer using an emulated testbed on

Mininet [72].

5.5.1 Methodology

Benchmarks. We select fifteen topologies from Internet Topology Zoo [67] and

group them into three categories, namely Small, Medium and Large based on their

size. The Small networks have approximately thirty nodes while Medium and Large

networks have one hundred and two hundred nodes respectively. We create label trees

ranging from two to four levels. Each leaf label is further divided into five sub-labels.

To obtain endpoints, we randomly attach all leaf labels to different nodes in each net-

work. Potential individual intents and their corresponding monitoring spots are cal-

culated as shortest-paths based on the number of hops between endpoints. For each

124

100 200 300 400 500 600 700 800 9001000

Number of Input Intents

0.00

0.01

0.02

0.03

0.04

0.05

0.06

T
im

e
 (
s)

Small

Medium

Large

Figure 5.7: Time cost of intent aggregation

experiment, we randomly sample a number of individual intents as the input for the in-

tent aggregation process and gradually increase the input size to evaluate the scalability

of AutoInfer. Unless specified otherwise, the number of candidate monitoring spots for

each intent is limited to five. The capacity of a switch is set to one. That is, only one

monitoring task can be assigned to a switch at a time. The weight of each individual

intent is set to one and the weight of an aggregated intent is obtained by adding weights

of all its individual descendant intents.

We implemented an AutoInfer prototype using Python and Gurobi [9], a state of

the art ILP solver. We performed more than one hundred experiments for all topologies

and report the average for each algorithm. All our experiments were done on a machine

with eight cores, 3.40 GHz Intel Core i7-6700 Processor and 32 GB RAM.

5.5.2 Intent Aggregation

Given a set of individual intents, AutoInfer first performs the intent aggregation

process to obtain a list of potential intents for the monitoring phase. Fig. 5.7 shows the

execution time of intent aggregation for Small, Medium and Large networks. We can

125

1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6

Growth Rate

0.0

0.2

0.4

0.6

0.8

1.0

F
ra
ct
io
n
 o
f
E
xp
e
ri
m
e
n
ts

Small

Medium

Large

Figure 5.8: CDF of growth rate of number of intents

see that the time cost grows slightly with the size of input individual intents increasing

from one hundred to one thousand, which confirms that algorithms used in the intent

aggregation are linear in the size of input intents. The maximum cost is still less than

0.06 seconds. For most of experiments, networks of different size share similar time

costs. This is because the only difference in this phase between different networks is

calculating potential monitoring spots to determine if an intent should be pruned. Such

calculations are very efficient and do not incur notable delays for large networks.

While adding aggregated intents improves the monitoring efficiency, it also in-

creases the size of potential intent list, which may slow down the monitoring scheduling

process. Label trees with larger depth tend to introduce more aggregated intents. To

study how much the size of intent list increases, we calculate the growth rate as the

number of intents after aggregation divided by the number of input individual intents

for each experiment and show the Cumulative Distribution Function (CDF) in Fig. 5.8.

From the figure, we can see that growth rates of all networks fall between 1.8 and 2.6.

The intent size of 80% of networks increases less than 2.4x.

Note that the intent aggregation only need to be performed once and the result intent

126

Small Medium Large
10-4

10-3

10-2

10-1

100

101

102

T
im

e
 (
s)

App.-200

Opt.-200

App.-600

Opt.-600

App.-1000

Opt.-1000

Figure 5.9: Time cost to identify the minimum cycle

list remains the same for further cycles if the network does not change. The speed of

intent aggregation affects AutoInfer’s ability to recompute the intent list online. A

smaller execution time enables AutoInfer to quickly react to changes (e.g., link failures

and routing changes), hence improves the accuracy of inferred intents.

5.5.3 Scheduling Performance

Calculating the minimum cycle. In AutoInfer, monitoring schedules are orga-

nized in minimum cycles. We first evaluate the time cost to identify the length of the

minimum cycle using the approximated heuristic (App.) and the optimized (Opt.) algo-

rithm discussed in Sec. 5.4.1. Fig. 5.9 shows the time cost for different networks when

the number of input individual intents is equal to two hundred, six hundred and one

thousand. We find that the approximated method is extremely fast and the largest cost

among all experiments is less than 10 ms. In contrast, the cost of the optimized method

grows exponentially with respect to the number of input intents. For all networks, the

costs can be up to tens of seconds when there are one thousand individual intents.

We remind that identifying the minimum cycle is also a one-time calculation and

127

Topology Optimality Gap (%)
200

intents
400

intents
600

intents
800

intents
1000

intents

Small 4.3 4.9 3.6 3.9 3.9
Medium 13.3 0 7.9 1.6 4.4

Large 20.8 15.4 7.7 10.6 8.4

Table 5.3: Optimality gap between the approximated heuristic and optimized algo-
rithm.

100 200 300 400 500 600 700 800 9001000

Number of Input Intents

10-2

10-1

100

101

T
im

e
 (
s)

Small(I)

Small(R)

Medium(I)

Medium(R)

Large(I)

Large(R)

Figure 5.10: Time cost to compute a monitoring schedule

can be done offline. Though the optimized method costs more time, it achieves a

smaller cycle length in most of experiments. Table 5.3 shows the optimality gap (lenApp−lenOpt
lenOpt

)

between minimum cycles obtained by the approximated and the optimized method. In

most cases, the optimality gap is smaller than 10%. The largest gap is 20.8% for Large

networks with two hundred input intents.

Calculating a maximum filling. Within a cycle, AutoInfer refines the monitor-

ing schedule across each timeslot adaptively. LP solvers like Gurobi use “warm start”,

which allow them to start from the existing solution. For minor changes in constraints

or objective functions, “warm start” can be significantly faster [9]. AutoInfer takes ad-

vantage of “warm start” and avoids an exhausted calculation by adaptively updating the

128

2 3 4 5 6 7

Optimization Gain

0.0

0.2

0.4

0.6

0.8

1.0

F
ra
ct
io
n
 o
f
E
xp
e
ri
m
e
n
ts

Small

Medium

Large

Figure 5.11: CCDF of increased slots allocation

potential intent list for each time slot. Fig. 5.10 shows the execution time to compute

the initial and the rest of monitoring schedules (denoted as (I) and (R)). As shown in

the figure, the average cost to compute a monitoring schedule with “warm start” in-

creases slightly with the number of input intents. Compared with the initial calculation,

it reduces the time cost by at least an order of magnitude for Medium and Large net-

works. In AutoInfer, after an initial monitoring schedule is obtained, it is reused at the

beginning of each cycle and refined adaptively within a cycle. Therefore, the maximum

cost to compute a monitoring schedule is less than 0.15 seconds, which highlights that

AutoInfer is suitable for online use.

Optimization gain. We evaluate the optimization gain of AutoInfer over a fixed

monitoring schedule, in which a cycle filled with a fixed monitoring plan of individual

intents is repeated continuously. The optimization gain is calculated as the average

number of time slots assigned to each active intent using AutoInfer divided by the

corresponding number using the fixed schedules. Fig.5.11 shows the Complementary

Cumulative Distribution Function (CCDF) of the optimization gain. We can see that

60% of experiments for Medium and Large networks have increased the slots allocation

129

0 1 2 3 4 5 6 7 8

Underutilization Penalty Weight

0.5

0.6

0.7

0.8

0.9

1.0

R
e
so
u
rc
e
 U
ti
li
za
ti
o
n

Small

Medium

Large

Figure 5.12: Resource utilization with different penalty weight

by at least 3.7x. For Small networks, that value goes up to 5.4x.

Resource utilization. Here we show that having a high penalty weight (α) asso-

ciated with the unused switch capacity allows us to schedule more intents, and hence

higher resource utilization rate. Resource utilization in this experiment is calculated

as the ratio of the number of intents scheduled to the total capacity of switches. We

vary the penalty weight (α) from zero to eight. As shown in Fig. 5.12, the resource uti-

lization rate is directly proportional to α. Note that increasing the utilization requires

more low level intents to be scheduled which may decrease the intent coverage as the

primary goal. Setting α to 3.0 allows AutoInfer provides a decent intent coverage while

still enabling it to keep wasted resources as low as 10%.

Reducing monitoring spot changes. Here we evaluate the performance of our

greedy algorithm to reduce monitoring spot changes. We increase ρ in Eqn. 5.14 from

0 to 1. For intents that are scheduled for two consecutive time slots, we measure the

percentage of the intents with the same monitoring spots for all networks. As shown

in Fig. 5.13, with ρ equals to 0, about 40% of intents are monitored at the same spots

for Small networks. For Medium and Large networks,only less than 30% of intents are

130

Small Medium Large
0

20

40

60

80

100

A
vo
id
in
g
 S
p
o
t
C
h
a
n
g
e
s(
%
)

ρ=0

ρ=0.2

ρ=0.6

ρ=1

Figure 5.13: Performance of heuristic algorithm to reduce spot changes

assigned with the same spots. When ρ increases, the corresponding percentage quickly

goes up to at least 70% for all networks. In AutoInfer, we set ρ to 0.2 since all larger

values of ρ achieve similar performance and a lower ρ should be selected to maximize

the primary goal.

5.5.4 Testbed Evaluation

To evaluate the practicality of AutoInfer, we integrate our prototype into Mininet

running Open vSwitch v2.5.8 [17].

Intent monitoring. Most commercial routers and software switches (e.g., Open

vSwitch, P4 switches [19]) support counting packets/bytes that matches a rule (e.g., an

IPv4 five-tuple, a VLAN tag) using a counter. To monitor intents, AutoInfer installs

rules on switches to passively collect those counters. Due to resource constraints, most

routers or switches only support a limited amount of counters [126] [108], so as limited

counted criteria, which prevents AutoInfer from capturing practical intents consisting

of a large number of flows. To overcome this limitation, AutoInfer triggers intent mon-

itoring using dynamic ACLs. More specifically, counters on switches are configured to

131

0 3 6 9 12 15 18

Time (s)

0

0.5

1

In
fe
re
n
ce

 A
cc

u
ra
cy

AutoInfer

Fixed

Random

Figure 5.14: Inference accuracy

match a specific tag. AutoInfer then dynamically update ACLs to add that tag to only

the packets belonging to the intent to be monitored. Monitoring rules are activated by

executing a pre-loaded script on each switch. The script specifies a list of flows for an

intent and an active duration.

Choice of timeslot duration. AutoInfer schedules small monitoring tasks lasting

for one timeslot. The length of a timeslot should be selected based on the used mon-

itoring technology. To test how short a timeslot can be in our testbed, we create two

end hosts connected with a single switch, with one host sending packets to the other at

full speed. We write a script to periodically query the packet/byte count correspond-

ing to the rule which forwards packets between two hosts. An observation is that the

counter in Open vSwitch is not updated in real-time, which determines the minimum

timeslot we can have in AutoInfer. We gradually increase the time interval between two

queries util the counter reflects the real-time traffic volume correctly. In the following

experiment, we conservatively set the timeslot length to 500 ms.

Intent inference accuracy. To show the practicality of AutoInfer, we measure the

intent inference accuracy in Mininet using the network from our running example (see

132

Fig.5.5). Besides the individual intents shown in the example, we add more potential

intents from IT to Data Base, IT to Marketing and Guest to Marketing, making the

total number of 32 individual intents. By applying the calculation in Section 5.4.1,

the length of the minimum cycle is set to 6 timeslots. For each cycle, endpoints in

the network generate traffic for each individual intent with a probability of of 40%.

The inference accuracy is defined as the percentage of active intents the monitoring

algorithm has captured for the current cycle. To show the improvement of AutoInfer,

we also evaluate the performance of the fixed scheduling and random sampling. The

fixed scheduling calculates a fixed monitoring plan for all individual intents ensuring

that each intent is monitored at least once. The plan is repeated for all the cycles. The

random sampling randomly decides which intent to monitor at a spot for each timeslot.

The length of a timelsot is set to 500 ms. Fig. 5.14 shows the inference accuracy of the

three methods. From the figure, we see that both AutoInfer and the fixed scheduling are

able to capture all active intents before the end of each cycle while the random sampling

cannot provide guarantee on accuracy. For most of cycles, AutoInfer captures all active

intents within two timeslots which is 2x faster than the fixed scheduling. This result

is consistent with the optimization gain of AutoInfer since more timeslots will be only

allocated to active intents.

5.6 Related work

Recent work on network policy management [30,66,92,105] have enabled network

operators to create different types of network intents more expressively and conve-

niently. Their work mostly focus on the techniques that operators can use to specify

their intents and how the intents are converted into each details of practical deploy-

ment. However, in many cases, knowing what intent to create is hard and our work

complements existing policy specifications to assist operators to understand the run-

133

time network state. Considerable work have been done on network monitoring and

they can be broadly divided into two categories. Some example work [74, 101, 119]

designed various sketch-based structures to support different monitoring applications.

Some other work [83, 107] discussed monitoring frameworks that cooperate switches

and end hosts. Our monitoring algorithm is similar to [108]. While it focuses on moni-

toring pre-defined flows, our work tries to extract such popular flows from all potential

flows and keeps adapting to the runtime network state. A recent work [39] proposed

a tool to assist network operators in reasoning network forwarding behaviors. It used

a heuristic algorithm to summarize the traffic forwarding records. Our work aims to

assist operators to create or refine network intents for a running network and does not

rely on any pre-knowledge of the runtime network state. Companies [4,27] working on

IBN have also included features on automated intent inference. Most of those functions

are based on best practice of network management. While such functions can provide

generic advices, our work is compatible with them and can be combined to provide a

comprehensive network intent inference functionality.

134

Chapter 6

Conclusion

Managing a large packet network is a complex task. Network management benefits

from automated tools to fulfill each functionality in its control loop. This dissertation

presents efficient methods to improve the reliability and useability of network automa-

tion.

We propose AP Classifier for network-wide packet behavior identification that can

be utilized by many important network management applications. We design algo-

rithms to construct the AP Tree for a network, which can be used to quickly classify

a packet to an atomic predicate. Each atomic predicate represents the network-wide

forwarding behaviors of a set of packets. Experimental results using the datasets of two

real networks show that the proposed AP Tree construction algorithm can optimize the

average depth of leaf nodes. AP Classifier can process millions of packet queries per

second. The speed is faster than existing tools by at least an order of magnitude. Fur-

thermore, it uses only a few MBs memory. It can be updated in real time and is robust

under dynamic data plane changes.

As an application of AP Classifier, we present SICS, a middlebox outsourcing

framework that protects the private information of packet headers and middlebox rules.

Compared with existing methods, SICS has several unique advantages including a

135

stronger security guarantee, high-throughput processing, and support for quick updates.

SICS assigns each packet a label identifying its matching behavior in a service chain

and all middlebox processing in the cloud is based on labels. We use a prototype imple-

mentation and evaluation on VPC and local computers to demonstrate the feasibility,

high performance, and efficiency of SICS.

We present our intent checking solution, Epinoia. Epinoia efficiently supports state-

ful networks with a variety of network functions. Epinoia includes vendor-agnostic net-

work function modeling combined with capturing causality precedence relationships

for incremental intent checking. A comprehensive evaluation shows that Epinoia can

check network intents in under 10 seconds per network update and reduce checking

time by a factor of up to 100x compared with a full checking for all intents.

Creating or updating network intents is an essential component in Intent Based Net-

working. We present AutoInfer, our automated network intent inference tool for run-

ning networks. AutoInfer first analyzes network configurations to extract all potential

intents and then utilizes an adaptive refinement scheme to conduct runtime monitoring.

The output of AutoInfer are network intent graphs for the runtime states. Experimental

results based on realistic benchmarks show that AutoInfer achieves higher inference

accuracy compared with existing solutions and is suitable for online use.

136

Bibliography

[1] 2015 data Breach Investigations Report. http://www.
verizonenterprise.com/DBIR/2015/.

[2] Amazon Virtual Private Cloud. https://aws.amazon.com/vpc/?nc1=
h_ls.

[3] Amazon Web Service (AWS). https://aws.amazon.com/.

[4] Apstra Operating System. https://www.apstra.com/products/.

[5] Aruba ClearPass Policy Manager. https://www.arubanetworks.com/
products/security/network-access-control/.

[6] AT&T fined $ 25 million after call center employees stole cus-
tomers. http://arstechnica.com/techpolicy/2015/04/
att-fined-25-million-after-call-centeremployees-stole\
-customers-data/.

[7] Chronology of data breaches. http://www.privacyrights.org/
data-breach.

[8] Google Cloud Platform. https://cloud.google.com/.

[9] Gurobi. http://www.gurobi.com/.

[10] Haproxy-the reliable, high-performance tcp/http load balancer. http://
haproxy.

[11] Hassel-C. http://bitbucket.org/peymank/hassel-public/.

[12] Header Space Library and Netplumber. http://bitbucket.org/
peymank/hassel-public/.

[13] Intent based networking. https://www.cisco.com/c/en/us/
solutions/intent-based-networking.html.

[14] The internet2 observatory data collections. http://www.internet2.
edu/observatory/archive/data-collections.html.

137

http://www.verizonenterprise.com/DBIR/2015/
http://www.verizonenterprise.com/DBIR/2015/
https://aws.amazon.com/vpc/?nc1=h_ls
https://aws.amazon.com/vpc/?nc1=h_ls
https://aws.amazon.com/
https://www.apstra.com/products/
https://www.arubanetworks.com/products/security/network-access-control/
https://www.arubanetworks.com/products/security/network-access-control/
http://arstechnica.com/techpolicy/2015/04/att-fined-25-million-after-call-centeremployees-stole\ -customers-data/
http://arstechnica.com/techpolicy/2015/04/att-fined-25-million-after-call-centeremployees-stole\ -customers-data/
http://arstechnica.com/techpolicy/2015/04/att-fined-25-million-after-call-centeremployees-stole\ -customers-data/
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
https://cloud.google.com/
http://www.gurobi.com/
http://haproxy
http://haproxy
http://bitbucket.org/peymank/hassel-public/
http://bitbucket.org/peymank/hassel-public/
http://bitbucket.org/peymank/hassel-public/
https://www.cisco.com/c/en/us/solutions/intent-based-networking.html
https://www.cisco.com/c/en/us/solutions/intent-based-networking.html
http://www.internet2.edu/observatory/archive/data-collections.html
http://www.internet2.edu/observatory/archive/data-collections.html

[15] Microsoft Azure Cloud Computing Platform & Services. https://azure.
microsoft.com/en-us/.

[16] Network complexity, change, and human factors are failing the busi-
ness. https://www.veriflow.net/wp-content/uploads/2016/
11/VRFL0926-Veriflow-Survey-PPT-FINAL.pdf.

[17] Open vSwitch. https://www.openvswitch.org/.

[18] Opendaylight network intent composition (nic) graph implementation. https:
//tinyurl.com/gld2qzn.

[19] P4. https://p4.org/.

[20] Palo Alto Networks. https://www.paloaltonetworks.com/
products/secure-the-network/next-generation-firewall.

[21] Pktgen. http://pktgen.readthedocs.io/en/latest/.

[22] Radioshack sells customer data after settling with states. http:
//www.bloomberg.com/news/articles/2015-05-20/
radioshackreceives-approval-to-sell-nameto-standard-general.

[23] Service Function Chaining. https://datatracker.ietf.org/wg/
sfc/documents/.

[24] Software-Defined Networking. https://www.cisco.com/c/en/us/
solutions/software-defined-networking/overview.html.

[25] understand policy routing. https://www.cisco.com/c/en/us/
support/docs/ip/border-gateway-protocol-bgp/10116-36.
html.

[26] University of oregon route views project. http://www.routeviews.org.

[27] Veriflow network verification tools. https://www.veriflow.net/.

[28] WAN Optimization as-a-Service. http://www.routeviews.org.

[29] Zscaler Cloud Firewall. https://www.zscaler.com/products/
next-generation-firewall.

[30] Anubhavnidhi Abhashkumar, Joon-Myung Kang, Sujata Banerjee, Aditya
Akella, Ying Zhang, and Wenfei Wu. Supporting diverse dynamic intent-based
policies using janus. In Proc. of ACM CoNEXT, 2017.

138

https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://www.veriflow.net/wp-content/uploads/2016/11/VRFL0926-Veriflow-Survey-PPT-FINAL.pdf
https://www.veriflow.net/wp-content/uploads/2016/11/VRFL0926-Veriflow-Survey-PPT-FINAL.pdf
https://www.openvswitch.org/
https://tinyurl.com/gld2qzn
https://tinyurl.com/gld2qzn
https://p4.org/
https://www.paloaltonetworks.com/products/secure-the-network/next-generation-firewall
https://www.paloaltonetworks.com/products/secure-the-network/next-generation-firewall
http://pktgen.readthedocs.io/en/latest/
http://www.bloomberg.com/news/articles/2015-05-20/radioshackreceives-approval-to-sell-nameto-standard-general
http://www.bloomberg.com/news/articles/2015-05-20/radioshackreceives-approval-to-sell-nameto-standard-general
http://www.bloomberg.com/news/articles/2015-05-20/radioshackreceives-approval-to-sell-nameto-standard-general
https://datatracker.ietf.org/wg/sfc/documents/
https://datatracker.ietf.org/wg/sfc/documents/
https://www.cisco.com/c/en/us/solutions/software-defined-networking/overview.html
https://www.cisco.com/c/en/us/solutions/software-defined-networking/overview.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/10116-36.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/10116-36.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/10116-36.html
http://www.routeviews.org
https://www.veriflow.net/
http://www.routeviews.org
https://www.zscaler.com/products/next-generation-firewall
https://www.zscaler.com/products/next-generation-firewall

[31] Ehab Al-Shaer and Saeed Al-Haj. Flowchecker: Configuration analysis and
verification of federated openflow infrastructures. In Proc. of ACM SafeConfig,
2010.

[32] Ehab Al-Shaer, Will Marrero, Adel El-Atawy, and Khalid Elbadawi. Network
configuration in a box: Towards end-to-end verification of network reachability
and security. In Proc. of IEEE ICNP, 2009.

[33] Hassan Jameel Asghar, Luca Melis, Cyril Soldani, Emiliano De Cristofaro, Mo-
hamed Ali Kaafar, and Laurent Mathy. Splitbox: Toward efficient private net-
work function virtualization. In Proc. of ACM HotMiddlebox, 2016.

[34] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Antony Rowstron. To-
wards predictable datacenter networks. In Proc. of ACM SIGCOMM, 2011.

[35] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. A general ap-
proach to network configuration verification. In Proc. of ACM SIGCOMM, 2017.

[36] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David
Walker. Don’t mind the gap: Bridging network-wide objectives and device-level
configurations. In Proc. of ACM SIGCOMM, 2016.

[37] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David
Walker. Network configuration synthesis with abstract topologies. In Proc. of
ACM PLDI, 2017.

[38] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics of data
centers in the wild. In Proc. of ACM IMC, 2010.

[39] Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Martin Vechev.
Net2text: Query-guided summarization of network forwarding behaviors. In
Proc. of USENIX NSDI, 2018.

[40] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on
ciphertexts. In Theory of cryptography, pages 325–341. 2005.

[41] Anat Bremler-Barr, Yotam Harchol, and David Hay. Openbox: A software-
defined framework for developing, deploying, and managing network functions.
In Proc. of ACM SIGCOMM, 2016.

[42] Randal E Bryant. Graph-based algorithms for boolean function manipulation.
Computers, IEEE Transactions on, 100(8):677–691, 1986.

[43] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. Tools
and Algorithms for the Construction and Analysis of Systems, 2008.

139

[44] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: intro-
duction and applications. Communications of the ACM, 54(9):69–77, 2011.

[45] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A fast and reliable software network load balancer.
In Proc. of USENIX NSDI, 2016.

[46] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.
Cuckoo filter: Practically better than bloom. In Proc. of ACM CoNEXT. ACM,
2014.

[47] Seyed K Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas
Sekar, and George Varghese. Efficient network reachability analysis using a
succinct control plane representation. In Proc. of USENIX OSDI, 2016.

[48] Seyed Kaveh Fayazbakhsh, Michael K Reiter, and Vyas Sekar. Verifiable net-
work function outsourcing: requirements, challenges, and roadmap. In Proc. of
ACM HotMiddlebox, 2013.

[49] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govin-
dan, Ratul Mahajan, and Todd Millstein. A general approach to network config-
uration analysis. In Proc. of USENIX NSDI, 2015.

[50] Jazib Frahim and Omar Santos. Cisco ASA: All-in-One Firewall, IPS, Anti-X,
and VPN Adaptive Security Appliance. Pearson Education, 2009.

[51] Aaron Gember-Jacobson, Aditya Akella, Ratul Mahajan, and Hongqiang Harry
Liu. Automatically repairing network control planes using an abstract represen-
tation. In Proc. of ACM SOSP, 2017.

[52] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Maha-
jan. Fast control plane analysis using an abstract representation. In Proc. of ACM
SIGCOMM, 2016.

[53] G. Gibb, H. Zeng, and N. McKeown. Outsourcing network functionality. In
Proc. of ACM HotSDN, 2012.

[54] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network
failures in data centers: measurement, analysis, and implications. In ACM SIG-
COMM Computer Communication Review, volume 41, pages 350–361. ACM,
2011.

[55] Oded Goldreich. Foundation of cryptography: volumes I Basic tools, 2001.

[56] Michael T Goodrich and Roberto Tamassia. Introduction to computer security.
Pearson, 2011.

140

[57] R. Guerzoni et al. Network functions virtualisation: an introduction, benefits,
enablers, challenges and call for action, introductory white paper. In SDN and
OpenFlow World Congress, 2012.

[58] Victor Heorhiadi, Michael K Reiter, and Vyas Sekar. Simplifying software-
defined network optimization using {SOL}. In Proc. of USENIX NSDI, 2016.

[59] T. Inoue, T. Mano, K. Mizutani, S. Minato, and O. Akashi. Rethinking packet
classification for global network view of software-defined networking. In Proc.
of IEEE ICNP, 2014.

[60] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Ar-
jun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4:
Experience with a globally-deployed software defined wan. Proc. of ACM SIG-
COMM, 2013.

[61] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ron-
nie Chaiken. The nature of data center traffic: measurements & analysis. In
Proc. of ACM IMC, 2009.

[62] Peyman Kazemian, Michael Chan, Hongyi Zeng, George Varghese, Nick McK-
eown, and Scott Whyte. Real time network policy checking using header space
analysis. In Proc. of USENIX NSDI, 2013.

[63] Peyman Kazemian, George Varghese, and Nick McKeown. Header space analy-
sis: Static checking for networks. In Proc. of USENIX NSDI, 2012.

[64] A. R. Khakpour and A. X. Liu. Quantifying and querying network reachability.
In Proc. of IEEE ICDCS, 2010.

[65] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten
Godfrey. Veriflow: Verifying network-wide invariants in real time. In Proc. of
USENIX NSDI, 2013.

[66] Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feam-
ster, and Russ Clark. Kinetic: Verifiable dynamic network control. In Proc. of
USENIX NSDI, 2015.

[67] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew
Roughan. The internet topology zoo. IEEE Journal on Selected Areas in Com-
munications, 2011.

[68] Eddie Kohler. The Click Modular Router. PhD thesis, Massachusetts Institute of
Technology, 2000.

[69] Bikash Koley. The zero touch network. https://research.google.
com/pubs/pub45687.html, 2016.

141

https://research.google.com/pubs/pub45687.html
https://research.google.com/pubs/pub45687.html

[70] M. Kuzniar, P. Peresini, and D. Kostic. What you need to know about SDN flow
tables. In Proc. of PAM, 2015.

[71] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia Ratnasamy, and Zhi Liu.
Embark: Securely outsourcing middleboxes to the cloud. In Proc. of USENIX
NSDI, 2016.

[72] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: rapid
prototyping for software-defined networks. In Proc. of ACM HotNets, 2010.

[73] Xin Li and Chen Qian. Traffic and failure aware vm placement for multi-tenant
cloud computing. In Proc. of IEEE IWQoS, 2015.

[74] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. One sketch to rule them all: Rethinking network flow monitoring
with univmon. In Proc. of ACM SIGCOMM, 2016.

[75] Nuno P Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and
George Varghese. Checking beliefs in dynamic networks. In Proc. of USENIX
NSDI, 2015.

[76] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T. King.
Debugging the data plane with Anteater. In Proc. of ACM SIGCOMM, 2011.

[77] Pasquale Malacaria and Jonathan Heusser. Information theory and security:
Quantitative information flow. In Formal Methods for Quantitative Aspects of
Programming Languages, pages 87–134. Springer, 2010.

[78] Sharad Malik and Lintao Zhang. Boolean satisfiability from theoretical hardness
to practical success. Communications of the ACM, 52(8):76–82, 2009.

[79] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio
Honda, Roberto Bifulco, and Felipe Huici. Clickos and the art of network func-
tion virtualization. In Proc. of USENIX NSDI, 2014.

[80] Rick McGeer. Verification of switching network properties using satisfiability.
In Proc. of IEEE ICC, 2012.

[81] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. Innovative instructions
and software model for isolated execution. In Proc. of ACM HASP, 2013.

[82] Luca Melis, Hassan Jameel Asghar, Emiliano De Cristofano, and Mohamed Ali
Kaafar. Private processing of outsourced network functions: Feasibility and
constructions. In Proc. of ACM SDN-NFV Security, 2016.

142

[83] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. Trumpet:
Timely and precise triggers in data centers. In Proc. of ACM SIGCOMM, 2016.

[84] OpenConfig. Vendor-neutral, model-driven network management designed by
users. http://openconfig.net. Online; accessed 22 January 2018.

[85] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Proc. of ESA,
2001.

[86] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia
Ratnasamy, Luigi Rizzo, and Scott Shenker. E2: a framework for NFV applica-
tions. In Proc. of ACM SOSP, 2015.

[87] Palo Alto Networks. Palo Alto Networks next-generation firewalls. https:
//www.paloaltonetworks.com/. Online; accessed 22 January 2018.

[88] Aurojit Panda, Ori Lahav, Katerina J Argyraki, Mooly Sagiv, and Scott Shenker.
Verifying reachability in networks with mutable datapaths. In Proc. of USENIX
NSDI, 2017.

[89] Helder Pereira, André Ribeiro, and Paulo Carvalho. L7 classification and polic-
ing in the pfsense platform. Atas da CRC, 2009.

[90] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy.
Safebricks: Shielding network functions in the cloud. In Proc. of USENIX NSDI,
2018.

[91] Rahul Potharaju and Navendu Jain. Demystifying the dark side of the middle: a
field study of middlebox failures in datacenters. In Proc. of ACM IMC, 2013.

[92] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya
Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma, and Ying
Zhang. Pga: Using graphs to express and automatically reconcile network poli-
cies. In Proc. of ACM SIGCOMM, 2015.

[93] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya
Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma, and Ying
Zhang. Pga: Using graphs to express and automatically reconcile network poli-
cies. ACM SIGCOMM Computer Communication Review, 2015.

[94] Gregor N Purdy. Linux iptables-pocket reference: firewalls. NAT and account-
ing, 2004.

[95] Gregor N Purdy. Linux iptables Pocket Reference: Firewalls, NAT & Accounting.
2004.

143

http://openconfig.net
https://www.paloaltonetworks.com/
https://www.paloaltonetworks.com/

[96] Z. A. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. Simple-fying
middlebox policy enforcement using SDN. In Proc. of ACM SIGCOMM, 2013.

[97] Michel Raynal and Mukesh Singhal. Logical time: Capturing causality in dis-
tributed systems. Computer, 29(2):49–56, 1996.

[98] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David
Walker. Abstractions for network update. In Proc. of ACM SIGCOMM, 2012.

[99] Gábor Rétvári, János Tapolcai, Attila Kőrösi, András Majdán, and Zalán
Heszberger. Compressing ip forwarding tables: towards entropy bounds and
beyond. In Proc. of ACM SIGCOMM, 2013, extended version in IEEE/ACM
Transactions on Networking.

[100] André Ribeiro and Helder Pereira. L7 classification and policing in the pfsense
platform. In 21st International Teletraffic Congress (ITC 21), Paris, France,
2009.

[101] Vyas Sekar, Michael K Reiter, and Hui Zhang. Revisiting the case for a mini-
malist approach for network flow monitoring. In Proc. of ACM IMC, 2010.

[102] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-
nasamy, and Vyas Sekar. Making middleboxes someone else’s problem: network
processing as a cloud service. In Proc. of ACM SIGCOMM, 2012.

[103] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-
nasamy, and Vyas Sekar. Making middleboxes someone else’s problem: network
processing as a cloud service. In Proc. of ACM SIGCOMM, 2012.

[104] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. Blindbox:
Deep packet inspection over encrypted traffic. In Proc. of ACM SIGCOMM,
2015.

[105] Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone, Robert
Kleinberg, Emin Gun Sirer, and Nate Foster. Merlin: A language for provision-
ing network resources. In Proc. of ACM CoNEXT, 2014.

[106] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. Symnet:
Scalable symbolic execution for modern networks. In Proc. of ACM SIGCOMM,
2016.

[107] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. Distributed network
monitoring and debugging with switchpointer. In Proc.of USENIX NSDI, 2018.

[108] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Stefano Vissicchio, and Laurent
Vanbever. Stroboscope: Declarative network monitoring on a budget. In Proc.
of USENIX NSDI, 2018.

144

[109] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod Bhato-
tia, and Christof Fetzer. Shieldbox: Secure middleboxes using shielded execu-
tion. In Proc. of ACM SOSR, 2018.

[110] Brendan Tschaen, Ying Zhang, Theo Benson, Sujata Banerjee, Jeongkeun Lee,
and Joon-Myung Kang. Sfc-checker: Checking the correct forwarding behavior
of service function chaining. In Proc. of IEEE NFV-SDN, 2016.

[111] A. Vahidi. Jdd, a pure java bdd and z-bdd library. http://javaddlib.
sourceforge.net/jdd/index.html, 2004.

[112] Huazhe Wang, Chen Qian, Ye Yu, Hongkun Yang, and Simon S Lam. Practical
Network-wide Packet Behavior Identification by AP Classifier. In Proc. of ACM
CoNEXT, 2015.

[113] Wenfei Wu and Ying Zhang. Network function modeling and its applications.
IEEE Internet Computing, (4):82–86, 2017.

[114] Wenfei Wu, Ying Zhang, and Sujata Banerjee. Automatic synthesis of nf models
by program analysis. In Proc. of ACM HotNets, 2016.

[115] G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson, and
J. Rexford. On static reachability analysis of IP networks. In Proc. of IEEE
INFOCOM, 2005.

[116] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems. In Security and
Privacy (SP), 2015 IEEE Symposium on, 2015.

[117] Hongkun Yang and S. S. Lam. Real-time verification of network properties using
atomic predicates. Technical Report TR-13-15, The Univ. of Texas at Austin,
Dept. of Computer Science, Aug. 2013.

[118] Hongkun Yang and S. S. Lam. Real-time verification of network properties using
atomic predicates. In Proc. of IEEE ICNP, 2013, extended version in IEEE/ACM
Transactions on Networking.

[119] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic measurement
with opensketch. In Proc. of USENIX NSDI, 2013.

[120] Ye Yu, Chen Qian, and Xin Li. Distributed collaborative monitoring in software
defined networks. In Proc. of ACM HotSDN, 2014.

[121] Xingliang Yuan, Huayi Duan, and Cong Wang. Bringing practical execution
assurances to outsourced middleboxes. In Proc. of IEEE ICNP, 2016.

145

http://javaddlib.sourceforge.net/jdd/index.html
http://javaddlib.sourceforge.net/jdd/index.html

[122] Xingliang Yuan, Xinyu Wang, Jianxiong Lin, and Cong Wang. Privacy-
preserving deep packet inspection in outsourced middleboxes. In Proc. of IEEE
INFOCOM, 2016.

[123] Hongyi Zeng, Peyman Kazemiany, George Varghese, and Nick McKeown. Au-
tomatic test packet generation. In Proc. of ACM CoNEXT, 2012.

[124] Yin Zhang, Sumeet Singh, Subhabrata Sen, Nick Duffield, and Carsten Lund.
Online identification of hierarchical heavy hitters: algorithms, evaluation, and
applications. In Proc. of ACM IMC, 2004.

[125] Ying Zhang, Neda Beheshti, Ludovic Beliveau, Geoffrey Lefebvre, Ramesh
Mishra, Ritun Patney, Erik Rubow, Ramesh Subrahmaniam, Ravi Manghir-
malani, Meral Shirazipour, Catherine Truchan, and Mallik Tatipamula. StEER-
ING: A Software-Defined Networking for Inline Service Chaining. In Proc. of
IEEE ICNP, 2013.

[126] Ying Zhang, Wenfei Wu, Sujata Banerjee, Joon-Myung Kang, and Mario A
Sanchez. Sla-verifier: Stateful and quantitative verification for service chain-
ing. In Proc. of IEEE INFOCOM, 2017.

[127] Yu Zhao, Huazhe Wang, Xin Lin, Tingting Yu, and Chen Qian. Pronto: Efficient
test packet generation for dynamic network data planes. In 2017 IEEE 37th Inter-
national Conference on Distributed Computing Systems (ICDCS), pages 13–22.
IEEE, 2017.

146

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Overview of Dissertation

	Practical Network-wide Packet Behavior Identification by AP Classifier
	Model and Background
	Design Framework of AP Classifier
	AP Tree
	Computing packet behaviors

	AP Tree Optimization
	Query throughput versus average depth
	Quick-Ordering algorithm
	Optimized AP Tree construction
	Optimization for packet distribution
	Dealing with packet header changes.

	AP Tree update and reconstruction
	Real-time update of an AP Tree
	Parallel reconstruction of an AP Tree

	Experimental Evaluation
	Depths of leaf nodes
	Memory Usage
	AP Tree construction time
	Query throughput for static networks
	Dynamic Networks
	Impact of packet distribution
	Dealing with packet header changes

	Related Work

	SICS: Secure and Dynamic Middlebox Outsourcing
	Overview
	The SICS Outsourcing Architecture
	Security Model
	Middlebox with Label Matching
	Design Framework

	Enterprise Modules of SICS
	Rule Composition
	Header Space Mapping
	Example
	Packet Classification

	In-Cloud Modules of SICS
	Stateful Middlebox
	Header Transformer
	Case Studies

	Update operations
	Security Analysis
	Implementation
	Evaluation
	Enterprise-side performance
	In-cloud Middleboxes

	Related Work

	Epinoia: Intent Checker for Stateful Networks
	Epinoia Design and Architecture
	Intent and Network Models
	Network Intent Specification
	Network Models

	Intent Decomposer
	Atomic Address Object
	Path Segmentation

	Continuous verification
	Causality Graph
	Running Intent Checking Queries

	Evaluation
	Real-world evaluation
	Scalability
	Runtime performance

	Related Work

	AutoInfer: Automated Network Intent Inference
	Motivation
	Overview
	From Configurations to Individual Intents
	Adaptive monitoring refinement
	Calculating a minimum cycle
	Calculating a maximum filling

	Evaluation
	Methodology
	Intent Aggregation
	Scheduling Performance
	Testbed Evaluation

	Related work

	Conclusion
	Bibliography

