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Abstract

Digital light processing (DLP)-based 3D printing technology has the advantages of speed and 

precision comparing with other 3D printing technologies like extrusion-based 3D printing. 

Therefore, it is a promising biomaterial fabrication technique for tissue engineering and 

regenerative medicine. When printing cell-laden biomaterials, one challenge of DLP-based 

bioprinting is the light scattering effect of the cells in the bioink, and therefore induce 

unpredictable effects on the photopolymerization process. In consequence, the DLP-based 

bioprinting requires extra trial-and-error efforts for parameters optimization for each specific 

printable structure to compensate the scattering effects induced by cells, which is often difficult 

and time-consuming for a machine operator. Such trial-and-error style optimization for each 

different structure is also very wasteful for those expensive biomaterials and cell lines. Here, we 

use machine learning to learn from a few trial sample printings and automatically provide printer 

the optimal parameters to compensate the cell-induced scattering effects. We employ a deep 

learning method with a learning-based data augmentation which only requires a small amount of 

training data. After learning from the data, the algorithm can automatically generate the printer 

parameters to compensate the scattering effects. Our method shows strong improvement in the 

intra-layer printing resolution for bioprinting, which can be further extended to solve the light 

scattering problems in multilayer 3D bioprinting processes.
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Introduction

Three-dimensional (3D) bioprinting is one of the most important tools for tissue 

engineering, drug development, and regenerative medicine, due to its excellent ability 

to build 3D biomimetic tissue constructs and promising potential for printing patient-

specific 3D tissues or organs.[1–4] There have been many different bioprinting systems 

like extrusion-based, inkjet-based, and light-based[5–8]. Because light can be precisely 

manipulated to induce material polymerization and solidification in micro- and even nano-

scale,[9–11] light-based systems have been the most promising method for high-resolution 

biofabrication. Among the different 3D printing methods, the digital light processing (DLP) 

3D printing method, which uses a digital micromirror device (DMD) to control the light 

pattern and photopolymerize the entire layer of the exposed region in the bioink, is getting 

more popular thanks to its fine resolution (a few micro meters) and high printing speed (a 

few seconds to a few minutes printing time) [7,8,12–15].

For 3D bioprinting, the printing solution (bioink) typically consists of the hydrogel 

prepolymer biomaterial, the photo-initiator, and the cells. The cells in the bioink will induce 

a strong scattering effect of the incident light during the photopolymerization process, which 

may disturb the light pattern and thus result in a undesired print [16,17]. Such scattering 

arises from refractive index mismatch between the cytoplasm and the external hydrogel 

environment[18,19], from the Mie scattering caused by the nucleus and organelle, and 

from the Rayleigh scattering caused by the macro-molecule.[20] The scattering effect will 

scatter light from the target location, causing reduced light exposure at target location while 

adding exposure to the surroundings. Therefore, the undesired surrounding location may 

be polymerized, and some target location may fail to polymerize due to the reduced light 

exposure (Fig. 3(a)).

There have been a few methods on improving the 3D printing fidelity to mitigate the 

scattering effect of the turbid bioink. Enhancing the material absorption by adding light 

absorbing species (e.g. food dye) is the most common practice to mitigate the scattering 

effects. [21,22] In more light-absorbing materials, light, including the scattered photons, will 

travel a shorter distance. However, the improvement on fabrication resolution is limited, and 

it also leads to a slower printing speed. A prolonged printing time can significantly reduce 

the cell viability. You et al. introduced a flashing photopolymerization technique to avoid 

the scattering effect caused by the hydrogel polymer, however, the scattering caused by cells 

cannot be resolved by this method[17]. Recently, machine learning algorithms were used to 

improve 3D printing fidelity by compensating the scattering effect, which shows a promising 

approach to address this cell-induced scattering problem [16].

The machine learning algorithms and especially the deep learning algorithms, branching 

from machine learning based on the use of deep neural network (NN), have been 

demonstrated for applications in many different fields[23,24]. Machine learning in general 

is a computer algorithm that learns patterns or rules from the given data or from interacting 

with a responsive environment without any prior knowledge. The deep learning algorithm 

uses various NN models to more effectively extract and store information. Researchers 

have been applying machine learning algorithms to improve the dimensional accuracy in 
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traditional 3D printing [25–28]. Machine learning has also been applied for 3D printing 

in-situ monitoring and correction [29,30]. In our previous work, NN-based deep learning 

method was introduced to learn the shape transformation between output structure and input 

design when using light scattering material for printing. Three hundred trial printings were 

printed on the actual 3D printer using the light scattering material, and the microscopic 

images of the printed structures together with their corresponding input digital masks were 

used to train the NN. The structure images were cropped and resized to match the location 

and resolution of the input masks. After training, to compensate the scattering effect, the NN 

was able to generate a digital mask that differs from the original designed pattern. Compare 

to the conventional method of using a mask that is identical to the designed pattern, using 

the NN generated mask helps the printer to print the pattern with higher fidelity[16].

While the previous work was applied on a photopolymer material mixed with glass 

microbeads mimicking a generic class of scattering payload in the printing materials, in this 

paper, we apply the deep learning method to cell-loaded bioprinting and show the capability 

of improving bioprinting quality. We 3D print different structures using various predesigned 

digital masks, take microscopic images of the structures, and use the mask-structure image 

pairs as our data set to train the NNs. The trained algorithm can generate a deformed mask 

for any given target structure to compensate the scattering effect of the cell-loaded bioink. 

Furthermore, we further improve the previous deep learning method with an additional 

learning step, which learns parameters from a 3D printer simulator. This simulator serves as 

a data augmentation tool, which allows us to greatly reduce the required training samples 

by 10 folds. We show that using only 32 trial printings, which got augmented to 4000 

data pairs, is sufficient to train our NN. This reduction of training data requirement is very 

significant in bioprinting due to the high cost of biomaterials and bioreagent (such as growth 

factor), limited supply of cells (such as stem cells and primary cells), and the long cell 

culture time (weeks of culture time).

After we compared our optimized prints guided by machine learning with the conventional 

printing result, we can see that our deep learning method can indeed improve the printing 

fidelity for the highly scattering cell-loaded material.

Methods

3D printing method

Our samples are printed with a custom DLP-based 3D printer (Fig. 1). A 385 nm wavelength 

light source first projects the light onto a DMD chip, which contains an array of 2560 

by 1600 micro-mirrors. The on-off state of each individual micro-mirror is controlled by 

flipping the mirror angle, and a pattern will then appear on the micro mirror array. A 

grayscale pattern can be displayed by controlling the duty ration of the flipping of the 

mirrors. The patterned light reflected from the DMD is guided by a series of lenses and 

projects onto the holder with the prepolymer solution. Polymerization occurs at the exposed 

region, and a solid thin layer of the structure forms. The motorized stage then lifts the 

solidified structure, normally by tens or hundreds of microns, and leaves space for the 

solution to refill and then start the next layer of printing. The process is repeated for all the 
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cross sections of an object model in order to print a 3D object. Our study is focused on the 

printing process of an individual layer.

A computer software controls the light exposure on the target region. The software controls 

the light source power, the exposure duration, the DMD mirror array pattern, and local light 

exposure dose on each micro mirror. A digital mask with grayscale pixel values is used to 

represent the DMD pattern and the local exposure dose. In this study, the light source power 

and the exposure duration are set to be constant. We are only controlling a square region 

in the center of the DMD array, which is represented by a 512-by-512-pixel mask. The rest 

of the DMD array is set to a fixed state that is designed to localize the center region. In 

this setup, our 3D printing system can be abstracted as a nonlinear time-invariant system, 

where the input of the system is a 512×512 grayscale image representing the digital mask, 

and the output is a 512×512 binary image where 0 and 1 represent void and solid region, 

respectively (Fig. 3(a)). The size is chosen as multiples of 8 (a byte) for efficient CPU and 

GPU processing, and it is also chosen to not exceed our 8GB GPU memory during the NN 

training process.

Our prepolymer printing solution is composed of 5% (v/v) gelatin methacryloyl 

(GelMA) in phosphate-buffered saline (PBS) solution, 1% (w/v) lithium phenyl-2,4,6-

trimethylbenzoylphosphinate (LAP) as the photoinitiator, and 10 million/mL C2C12 mouse 

myoblast cells as the scattering load. The source of our C2C12 cell line was purchased from 

American Type Culture Collection.

The 3D printed structures are imaged with a fluorescent microscope. Due to the transparent 

nature of the GelMA polymer, it is hard to detect the printed structures’ contour under a 

bright field microscope. Hence, we apply fluorescent staining to the material in order to 

obtain high quality images distinguishing the printed and unprinted part. We obtained the 

Fluorescein (FAM) NHS ester, 6-isomer from Lumiprobe (MD, USA). The FAM-labeled 

GelMA was synthesized in accordance to the manufacturer’s general NHS ester conjugation 

protocol. We always wash away the residual solution after printing to avoid the false positive 

detection of the fluorescent signal in the residual solution. Thanks to the FAM label, the 

brightness of the fluorescence can directly translate to the density of the structure being 

polymerized. The fluorescent structure image is cropped, rotated, and resized to match the 

size and location of the input mask. We use the intensity on the fluorescent image as a 

measure of the polymerization completeness, and we take a threshold on the fluorescent 

image to obtain a binary image representing whether each part of the structure is properly 

polymerized (true, white) or not (false, black) (Fig. 3(a)).

The goal of our method is to find an optimal design mask for any printable structure, 

which represent the light exposure dose on every pixel location with a grayscale value, that 

help compensate the scattering effect of the cell-loaded material during 3D printing. Our 

machine learning algorithm is composed of two learning steps, the simulator calibration step 

for generating augmentation data, and the NN training step to generate desired grayscale 

masks (Fig. 2). The overall workflow of our algorithm is to first acquire image data of real 

3D printed structures with a variety of sample masks. Then we use these trial data and 

apply generic algorithm to learn the parameters of a mathematical simulator to simulate the 
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3D printer with scattering effects from the cell loading. With the calibrated simulator, we 

generate thousands of simulated data and train a specially designed deep neural network 

to learn the optimal mask choice for any desired target structure. For simplicity, all our 

experiments were done with a single layer of printing instead of multilayer 3D structures. It 

is worth noting that our method can easily extend to 3D cases by upgrading the simulator 

and NN design, and the overall learning process remains the same. The design region is 

fixed to 512×512 pixels in terms of the mask size with 2.96 micrometers per pixel, which is 

about 1.5×1.5 mm2 in physical size of the printing region.

Trial data acquisition

The first stage of our algorithm is to acquire real 3D printed structures (Fig. 2(a)). The goal 

of this stage is to collect data for analyzing the inner-layer scattering effects of cell loading. 

We first generate 32 predesigned masks as demonstrated in Fig. 3a with MATLAB code. 

These sample masks have three different types of randomized feature shapes, including 

random grayscale valued checkerboard shapes, randomly positioned and randomly sized 

rectangles, and randomly positioned variety of circular shapes. The design purpose of these 

masks is to provide various smooth and sharp features as represented by the circles and 

rectangles.

After we designed the sample masks, we use them as input into our DMD 3D printer. The 

grayscale value on each pixel of the mask image represents the percentage of light exposure 

dose of the 3D printer, which is controlled by the duty ration of the flipping of the DMD 

mirrors. A full valued pixel, which is 255 in 8-bit unsigned integer representation, represents 

a 100 percent exposure dose. The maximum light exposure dose is also controlled by the 

exposure time, light source power. For simplicity, we use a constant light source power and 

manually fix the exposure time to 20 seconds, and the maximum light intensity (at 255 

grayscale value on the mask) is measured to be 20.8 mW/cm2.

The printed structures are imaged using a fluorescence microscope. The intensity of 

fluorescence can translate to the completeness of polymerization. After a thresholding 

operation, we obtain the binary image with 0 and 1 representing void and polymerized 

state respectively. The processed structure images as well as their corresponding masks are 

then used as input to train our algorithm (Fig. 3(a)).

Simulator calibration

The data augmentation stage is the first learning step that takes the real printing data as input 

and generates various virtual data as output. The input data, including the sample masks and 

the postprocessed printed structure images, came from the previous data acquisition stage. 

The input data is used to calibrate a mathematical simulator that models the local and global 

deformation caused by the scattering effect of the cell-loaded material during the printing 

process. We have developed the simulation function according to the interpretation to the 

physical 3D printing process (Eq. 1).
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P = Sim M; c0, c1, c2, c3, c4, σ, T
= TℎresℎoldT Gaussσ ReLU c1X2 + c2Y 2 + c3X + c4Y + c0 × M (1)

The simulator takes a grayscale mask image M of size 512×512 as the input variable, and 

outputs a binary image P of the same size that shows the polymerization condition of each 

pixel point on the given region. A true or 1 represents fully polymerized unit, while a false 

or 0 represents an under-polymerized or unpolymerized unit. The mask is first element-wise 

multiplied by a basic light absorption matrix ReLU(c1X2 + c2Y2 + c3X + c4Y +c0). This 

matrix is composed of a linear combination of X and Y as well as their quadratics, where 

X is the first coordinate of each point on the mask, and Y is the second coordinate. Both X 
and Y are of the same dimension as M. The basic light absorption matrix serves to mimic 

the light emitting and absorbing process of the DMD 3D printer under a mask with no 

patterns on it. When it multiplies M pixelwise, the result should represent the light energy 

absorbed on each patterned pixel without considering the scattering effect. The basic light 

absorption matrix also provides the simulator the ability to mimic certain locational variant 

characteristics of the 3D printer, for example the light energy could be slightly stronger 

at the center of the exposed region compared to the side. The rectifier linear unit (ReLU) 

function zeros out all the negative values, since we know the light absorption is physically 

non-negative. After that, we have a 2D Gaussian kernel Gaussσ (·) with standard deviation σ, 

that simulates the light scattering effect of the cell-loaded material. Finally, the ThresholdT 

(·) function sets a threshold T that decides under what degree of light exposure should the 

material be considered as being successfully polymerized. After all the function processes in 

the simulator, it will calculate a binary map of polymerized versus under- or unpolymerized 

for each unit area.

The calibration of this simulator is done by optimizing the seven parameters in Eq. 1 with 

genetic algorithm, which is a commonly used non-gradient optimization method in many 

fields[31]. The optimization objective is set to be the mean squared distance between the 

real printed structure and the simulator output, averaging among all 32 trial data pairs. 

Optimization was implemented with MATLAB and the global optimization toolbox[32].

After calibration, we apply a new set of 4,000 masks to the simulator and obtain their 

corresponding simulated structures. These new masks are designed with the same scheme as 

the sample masks with a greater variety feature numbers and sizes as well as four additional 

feature types, vertical lines with different spacing, horizontal ones, the combination of two, 

and 2D vasculature shapes. After we get all the simulation results, we proceed to use this 

data to train the NNs in the final stage.

Neural network training

The next step of our machine learning method is the NNs training, which is the key part of 

our algorithm. We are looking to train a NN that can automatically calculate the appropriate 

mask for any potential target structure. We are supplying the 4,000 simulated data pairs from 

the data augmentation stage to train the NN.
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Our NN method is composed of two U-Net-like NNs which we call the master NN and the 

slave NN [16,33]. The slave NN learns the transformation of our physical 3D printer, which 

is similar to the function of the simulator in the previous stage. The major difference is that 

the slave NN is a differentiable function, which provides gradient information to support the 

training of the master NN. The master NN serves to learn the inverse transformation of the 

3D printer. For any given target structure, the master NN will suggest a deformed mask that 

could allow the printer to print out this target structure under the highly scattering condition.

The network architecture of the master NN is shown in Fig. 4. This architecture reproduces 

the U-net style encoder-decoder architecture with some adaptations [33,34]. The network 

consists of 14 building blocks. The network takes a 512×512 single-channel image as the 

input. The first 7 blocks each has a convolution layer with stride 2 to down-sample the 

images and features, and the convolution layer is followed by a batch normalization layer 

and a ReLU function[35,36]. The other 7 blocks each has a deconvolution layer with stride 

2 to up-sample the features and ensure the output resolution is the same as input. The 

deconvolution layers are again followed with batch normalization and ReLU, except the last 

layer uses the hyperbolic tangent function (Tanh) instead of the ReLU. The U-Net style skip 

connections copy the feature map from the first six block outputs to the last six blocks’ 

input features respectively. These skip connections help the network to learn the local details 

in the earlier feature maps while retaining the global information extracted from the later 

features. The slave NN has almost the same architecture as the master NN except the final 

output layer of the slave NN has 2 channels for the pixel-wise classification output, which 

outputs the binary structure, instead of the single channel regression output of the master 

NN.

To train the NNs, we randomly divide the 4,000 data pairs into 3,600 pairs of training 

data and 400 as testing data. The testing data is used to verify the convergence of the 

networks. Since we already have the simulator generated data as the augmented data, we 

are not applying other data augmentation techniques. The training process is achieved by 

backpropagation of the following loss function.

Loss = Ey LCrossentropy (Slave(Master(y)), y) + λ1
∗ Ex, y LL1(Master(y), x) +
λ2 ∗ Ex, y LCrossentropy (Slave(x), y) + λ3 ∗ Sparsityy(Master(y))

(2)

In Eq. 2, the loss function is the sum of four loss terms, the slave supported master loss, the 

data supported master loss, the data supported slave loss, and the sparsity loss. The details 

of the first three loss terms can be found in the Appendix section of [16]. The x here stands 

for the grayscale mask, which is rescaled to a range between −1 and 1, and y stands for the 

3D printer output structure, which is represented in a binary class map with two channels. 

E represents the expectation operator. The LCrossentropy calculates the cross-entropy loss 

between the two arguments, and LL1 is the L1 loss function or the least absolute deviations. 

Master is the master NN forward pass, and the Slave is the slave NN forward pass. The 

Sparsity is a sparsity loss term that sums the pixel grayscale values of a given region. In this 

case, the sparsity loss sums up the pixel values in the master NN generated mask, where it 
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is outside of the target structure region of y. This term ensures that the NN generated mask 

does not give unwanted exposure far away from the target structure region. λn is the tradeoff 

coefficient for different loss terms. We are setting the tradeoff coefficients λ1, λ2, λ3 to be 

1, 1, and 0.05 respectively. We also decay the λ1 term with factor 0.98 on every training 

iteration, so that the master NN relies on the training data initially, and it will gradually 

rely more on the slave NN gradients in the later epochs when the slave NN becomes more 

trained. This will improve the generalizability of the master NN by promoting it to spend 

more time on learning the 3D printer transformation instead of repeatedly looking at the 

training data.

In terms of training implementation, we used the PyTorch framework GPU version 1.2 with 

Adam solver for the back-propagation process [37,38]. We set the batch size to 10, learning 

rate to 10−5, gradient decay factor to 0.9, and the squared gradient decay factor to 0.999. 

A Gaussian noise term is added to the input x to avoid overfitting of slave NN, while the 

training error of slave NN itself could help avoid the master NN from overfitting[39]. The 

initialization of model weights is done by sampling from normal distribution with zero mean 

and 0.02 standard deviation. The training was executed on a desktop computer with Intel 

i5–7500 CPU and GTX 1070Ti GPU. We trained the networks for 200 epochs for about 

26 hours. After the network is trained, it will only require a few seconds on a CPU only 

machine to execute a forward pass of the master NN, while the GPU enabled machine can 

process the forward pass in less than a second.

Results

3D printing with NN-generated masks

To verify our trained NN, we set several testing designs that are unseen from the training 

data (Fig. 5(a)) (Fig. 6). The test structure designs mainly demonstrate various concave 

and convex sharp features as well as the ring shape that could potentially be used to print 

biological tissue models. We then input these target structures one-by-one to the master NN 

and get their corresponding NN-calculated masks as the output (Fig. 2(c)) (Fig. 5(b)).

The NN-calculated masks are indeed different from the target structure. We can interpret that 

the NN-calculated mask tends to “stretch out” at the protruded sharp regions and “shrink” at 

the denting regions (Fig. 5(e)). The overall behavior of how the NN tries to compensate the 

scattering effect is similar to our previous research[16]. It is important to note that these kind 

of mask designs are usually not possible even for an experienced expert in 3D printing.

After we obtain all the NN-calculated masks, we apply each mask to the DMD 3D printer 

and take microscopic fluorescent images as well as postprocess the images into binary 

representation, in the same way as we did in preparing the trial data (Fig. 5(c–d)). The 

resulting binary images matches nicely to the input target structures.

Printing quality comparison

To better demonstrate the power of our method, we compare the printing results between 

using the NN-calculated masks and using the traditional identical masks. Traditionally, 

an operator of the DMD 3D printer usually sets the DMD mask identical to the target 
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design and only changes the overall light exposure dose by tuning the light power and print 

time. Therefore, we use the 100%, 75%, 70%, and 50% grayscale mask values to mimic 

the overall light exposure changes of the traditional tuning. Later experiment shows that 

grayscale value of lower than 50% will hardly print any obvious structures, therefore, we 

choose 70% as the lower bound of intensity dose (Fig. 6). The printing results of these 

identical masks are then used as benchmark printing samples for comparison with the 

printing result of NN-calculated masks.

From the results in Fig. 6, we can easily see that the NN-calculated masks perform better 

than the traditional masks across all the testing target structures we had. In the first three 

rows, we can see that the NN results greatly reserves the sharp features of the target, while 

the benchmark results always lost the sharpness to the rounded smooth features. For the 

ring shapes in the bottom two rows, we find that although similar quality has shown on 

the bigger rings across the different masks, the smaller rings can only be properly printed 

with the NN-calculated masks. The ring shape with varying diameters shows an example 

that different patterns would require different manual tuning of the printer settings, since 

the varying rings under the same printing condition with identical masks would never show 

the same printing quality. With our machine learning method, we can see that different 

rings have a more consistent quality. Comparing the smooth ring patterns with the patterns 

with sharp features, we can see that the smooth features are easier to print even with the 

traditional identical mask method, while the more complex features can only be properly 

printed with NN masks to reserve the fine features. The size of the overall patterns also 

effects the print quality. From the various ring shapes, we can find that the large features are 

always easier to print, and the small features are very challenging to print under the high 

scattering effect even with the help of NN (Fig. 6).

Discussion

As 3D bioprinting attracts more and more industrial applications, key challenges emerge: 

how to improve printing fidelity when cell-induced light scattering effects dominate? How 

to minimize the traditional trial and error operation in optimizing the printing parameters? 

As shown in our results, the NN-based deep learning method demonstrate great success on 

advising the 3D bioprinter by providing the optimal optical masks to improve the printing 

fidelity when scattering cells present.

One major benefit of our method is the high data efficiency. Common machine learning 

algorithms would require a large amount of data (i.e. printed samples) in order to get reliable 

performance. In our algorithm, we are only using 32 actual printing samples as training 

data, which is an extremely small number compared to the common machine learning data 

sets that have thousands or even hundreds of thousands of samples. Even with such a small 

number of trial data, our trained NN showed its power to greatly improve the printing 

quality. Considering that the 3D bioprinting is normally very expensive to produce many 

samples due to the cost of the cells, bioinks, and cell cultures, our method is more practically 

applicable than the normal data heavy deep learning methods. If we are accessible to more 

printing data, our method can still be applied, and the resulting accuracy could be improved 
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according to the central limit theorem considering the random selection of initial masks and 

the potential production and imaging noises.

The way we utilize the limited amount of data is to introduce a simple equation, being 

calibrated with the trial data, to simulate the process of the 3D printer and the scattering 

effect. Although different from the common data augmentation methods[40], our approach 

of calibrated simulations can be seen as a heuristic way of data augmentation. By 

incorporating the understanding of the physical processes of the DMD 3D printing, our 

simulator only considers seven parameters. Compare to the basic image manipulation type 

of augmentations like flipping or rotation, our augmentation method shows many more 

different features by introducing a great variety of new masks than the sample masks in 

the simulation, which prevents the further overfitting that might be caused with simple 

augmentations[40].

Beside the calibrated simulation, our slave part of the NN can also be considered a kind of 

data augmentation, since it predicts the output structure for the input of master NN generated 

mask which can be potentially unseen from the training data. The slave NN can also be 

interpreted as a noise term that will gradually decrease with the training process, since the 

randomly initialized slave NN can produce very wrong prediction of the output structure at 

the beginning and improves through training. Adding noise to the NN training process is 

a known technique to improve the generalization performance of the trained NN[41]. The 

benefit of the slave NN has been experimentally studied in our previous paper[16].

Although our current experiment is on a single-layer basis, our method can easily be 

extended to apply on multilayer 3D structures. The only changes in the algorithm will be 

that the 2D convolution layers in the NNs will be replaced by 3D convolutions, and the 

simulation function will need to add an extra dimension. The difficulty we foresee is the way 

to properly image or scan the printed 3D structure. Also, the size of the data we are going 

to process will be a lot larger if we want to keep the resolution of each dimension. The huge 

data size could cause trouble in NN training.

Our current experiment is working on a custom DMD based 3D printer, and we are only 

printing with one specific material and cell composition. However, our method could easily 

adapt to a different printer or material composition with a new set of sample prints. Our 

requirement of 32 data samples is relatively easy to obtain comparing to some other 

deep learning methods that relies on big data[42]. Further online training to improve the 

performance and the generalizability across different settings would be an interesting future 

improvement.

Conclusion

Our deep learning method with learning-based data augmentation greatly improves the 

fidelity of bioprinting with as few as 32 sample prints to train the learning system. Our 

experiment shows that using the grayscale masks generated from our trained NN, we can 

print fine detailed structures surpassing the traditional manual tuning method with identical 

masks. Our method allows the use of a very small amount of trial data, which is usually not 
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possible for the common deep learning applications that relies on big dataset. Furthermore, 

our method could easily be applied on different materials or different printer settings with 

a new set of sample prints. Considering the high cost of cells, reagent, and bioinks, our 

deep learning method provides a powerful solution for bioprinting with reduced cost, high 

fidelity, and shorter time to product, paving the way for future large scale organ printing.
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Significance Statement

This work applies a deep learning method with learning-based data augmentation to 

improve printing fidelity in Digital Light Processing (DLP)-based 3D bioprinting using 

cell-loaded biomaterials, where cell-induced light scattering tends to decelerate the 

printing quality. The deep learning algorithm is able to learn the scattering behavior 

of the bioink and automatically generate a digital mask to compensate this light scattering 

effect. The learning-based data augmentation method is shown to greatly reduce the 

required sample prints. Experimental results show that the printing fidelity has been 

significantly improved through machine learning.

Guan et al. Page 14

Biofabrication. Author manuscript; available in PMC 2022 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Schematic of the DLP-based 3D bioprinting setup.

Guan et al. Page 15

Biofabrication. Author manuscript; available in PMC 2022 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Data Flow and schematic of the learning process. (a) 32 sample masks are used to print 32 

single-layer trial prints for training the algorithm. (b) The trial prints calibrate the printer 

simulator, and the calibrated simulator generates thousands of new training data. (c) The 

printed samples and the simulator generated samples are used to train the neural network, 

the trained network calculates the appropriate masks that compensate the cell scattering 

effect, and the final print quality is tested with some predefined target designs.
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Fig. 3. 
Examples of the calibration and training data. (a) The calibration data for the simulator. (b) 

The training data generated from the calibrated simulator for NN training. Scale bar is 200 

μm.
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Fig. 4. 
Architecture of the deep neural network. The neural network is composed of fourteen 

convolution or deconvolution layers with batch normalization, ReLU and Tanh activation 

function, as well as U-net style skip connections. The cuboids represent the feature maps of 

the input, intermediate, and output layers of the network. The feature resolution is denoted at 

bottom of each cuboid, and the corresponding channel size is on the top.
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Fig. 5. 
NN-calculated masks and the corresponding images of printing results. (a) The target 

structures. (b) The grayscale masks calculated by the trained NN. (c) The fluorescent images 

of the 3D printed structures using the masks from b. (d) The binarized images of c for easier 

comparison with the target. (e) The NN-calculated mask overlaid with a red contour showing 

its corresponding target structure. Scale bars are 200 μm.
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Fig. 6. 
Postprocessed microscopic images of the test printing results. The first column shows 

the designed target structures. The second column shows the printed structure using NN-

calculated masks. The third to fifth column are the printing results using the identical masks 

with 100%, 75%, and 70% exposure dose respectively. Scale bar is 200 μm.
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