
UC Irvine
UC Irvine Previously Published Works

Title
Bounds on eigenfunctions of semiclassical operators with double characteristics

Permalink
https://escholarship.org/uc/item/6tk3d8dc

Journal
Asymptotic Analysis, 106(1)

ISSN
0921-7134

Authors
Krupchyk, Katya
Uhlmann, Gunther

Publication Date
2018

DOI
10.3233/asy-171442
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6tk3d8dc
https://escholarship.org
http://www.cdlib.org/


ar
X

iv
:1

50
4.

01
06

9v
1 

 [
m

at
h.

A
P]

  5
 A

pr
 2

01
5

Lp BOUNDS ON EIGENFUNCTIONS FOR OPERATORS WITH

DOUBLE CHARACTERISTICS

KATYA KRUPCHYK AND GUNTHER UHLMANN

Abstract. We obtain sharp L
p bounds on the ground states for a class of

semiclassical pseudodifferential operators with double characteristics and com-
plex valued symbols, under the assumption that the quadratic approximations
along the double characteristics are elliptic.

1. Introduction and statement of results

Starting with the celebrated works [9] and [18], the question of establishing pre-
cise Lp estimates for eigenfunctions of elliptic self-adjoint operators on compact
manifolds in the high energy limit has been of fundamental significance in the
spectral theory and applications. Most of the works have been concerned with
the case of the Laplace operator and we refer to [19], [20], [21], [6], for some of
the recent contributions.

Turning the attention to the case of operators on Rn, similar problems have been
studied in [11] in the case of the harmonic oscillator −∆ + |x|2, as well as for
more general Schrödinger operators, see also [10], [23], and [24].

The work [12] has introduced a semiclassical point of view, unifying and extend-
ing the results of [18] and [11] to more general semiclassical pseudodifferential
operators. To motivate our result and to place it into its natural context, let us
recall some of the estimates established in [12] and [17], specialized to the case
of the semiclassical Schrödinger operator.

Let

P = −h2∆+ V on R
n, n ≥ 2,

where V ∈ C∞(Rn,R) is such that

|∂αxV (x)| ≤ Cα〈x〉m, α ∈ N
n,

V (x) ≥ 〈x〉m/C, |x| ≥ C,

for some m > 0. When equipped with the domain S(Rn), the operator P is
essentially self-adjoint on L2(Rn) and the spectrum of P is discrete, with eigen-
functions microlocalized to compact subsets of T ∗Rn, see [25, Theorems 6.4 and
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2 KRUPCHYK AND UHLMANN

6.7]. If u ∈ L2(Rn), ‖u‖L2 = 1, is an eigenfunction of P , then according to [12,
Theorem 6] and [17], we have

‖u‖L∞ ≤ O(1)h−
(n−1)

2 (1.1)

and
‖u‖

L
2n
n−2

≤ O(1)h−1/2. (1.2)

Interpolating between the bounds (1.1), (1.2), and the trivial L2 bound, the full
range of Lp estimates is obtained. For n ≥ 3, we have

‖u‖Lp ≤ O(1)h
n
p
− (n−1)

2 ,
2n

n− 2
≤ p ≤ ∞, (1.3)

and

‖u‖Lp ≤ O(1)h
n
2p

−n
4 , 2 ≤ p ≤ 2n

n− 2
, (1.4)

and for n = 2,

‖u‖Lp ≤ O(1)h
1
p
− 1

2 , 2 ≤ p ≤ ∞, (1.5)

see Figure 1.
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Figure 1. Estimates (1.3), (1.4) and (1.5) of [12] and [17] written
in the form ‖u‖Lp ≤ O(1)h−δ(p).

The following example shows that the estimates (1.4) and (1.5) are sharp.

Example. Consider the quantum harmonic oscillator,

P = −h2∆+ |x|2, x ∈ R
n, n ≥ 2.

The operator P , equipped with the domain,

D(P ) = {u ∈ L2(Rn) : xα∂βxu ∈ L2(Rn), |α+ β| ≤ 2},
is self-adjoint with discrete spectrum given by

λα(h) := (2|α|+ n)h, α ∈ N
n.
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The corresponding L2 normalized eigenfunctions are of the form

uα(h)(x) = h−
n
4 pα(x/h

1/2)e−
|x|2

2h ,

where pα are the Hermite polynomials of degree |α|, see [25, Section 6.1]. A direct
computation shows that

‖uα(h)‖Lp = Cαh
n
2p

−n
4 , 2 ≤ p ≤ ∞, (1.6)

where

Cα =

(∫

Rn

|pα(x)|pe−
|x|2p

2 dx

)1/p

.

It follows that the bounds (1.4) and (1.5) are saturated by the ground state
eigenfunctions uα(h), corresponding to λα(h) ≤ O(h). Furthermore, (1.6) implies
that the eigenfunctions uα(h), corresponding to λα(h) ≤ O(h), enjoy sharper
bounds than those in (1.3), for 2n

n−2
< p ≤ ∞, n ≥ 3.

The purpose of the present paper is to show that the sharp Lp bounds of the
form

‖u‖Lp ≤ O(1)h
n
2p

−n
4 , 2 ≤ p ≤ ∞, (1.7)

continue to hold for ground states of a natural class of semiclassical pseudo-
differential operators with complex valued symbols and double characteristics,
approximated by complex harmonic oscillators near the double characteristics,
see Figure 2.

n ≥ 3
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Figure 2. The solid lines correspond to the estimates (1.7), estab-
lished in Theorem 1.1, and the dashed lines correspond to estimates
(1.3) and (1.4) of [12].

Let us now describe precisely the class of operators that we are going to consider.
We shall be concerned with operators of the form

P = Opw
h (p) on R

n, n ≥ 2, (1.8)
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where Opw
h (p) is the semiclassical Weyl quantization of the symbol p = p(x, ξ),

(Opw
h (p)u)(x) =

1

(2πh)n

∫

Rn

∫

Rn

e
i
h
(x−y)·ξp

(
x+ y

2
, ξ

)
u(y)dydξ. (1.9)

Here 0 < h ≤ 1 is the semiclassical parameter.

Let us state our assumptions on the symbol p. First we assume that p ∈
C∞(R2n;C) is such that

∂αp ∈ L∞(R2n), α ∈ N
2n, |α| ≥ 2. (1.10)

We assume that

Re p(X) ≥ 0, X = (x, ξ) ∈ R
2n, (1.11)

and we also make the assumption of ellipticity at infinity for Re p in the sense
that for some C > 1,

Re p(X) ≥ 〈X〉2
C

, |X| ≥ C. (1.12)

Here 〈X〉 =
√
1 + |X|2. Furthermore, let us assume that

(Re p)−1(0) = {0}. (1.13)

Notice that (1.13) and (1.11) imply that

∇Re p(0) = 0.

Next we assume that

Im p(0) = ∇Im p(0) = 0,

so that X = 0 is a doubly characteristic point for the full complex valued symbol
p. By Taylor’s expansion, we write

p(X) = q(X) +O(|X|3), as |X| → 0, (1.14)

where

q(X) =
1

2
p′′(0)X ·X,

and p′′ is the Hessian of p. In view of (1.11), we know that Re q(X) ≥ 0, X ∈ R2n.
Our final assumption is that the quadratic form Re q is positive definite, i.e.

Re q(X) > 0, 0 6= X ∈ R
2n. (1.15)

Example. As an example of an operator for which all the assumptions above
are satisfied, let us consider a Schrödinger operator with a complex potential,

P = −h2∆+ V (x) + iW (x) on R
n, n ≥ 2.

Here V,W ∈ C∞(Rn;R) are such that ∂αV, ∂αW ∈ L∞(Rn) for |α| ≥ 2. We
assume that V (x) ≥ 0 for x ∈ Rn and V (x) ≥ |x|2/C for |x| ≥ C. Furthermore,
assume that V −1(0) = {0}, V ′′(0) > 0, and W (0) = ∇W (0) = 0.
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Coming back to the operator P in (1.8), we shall view it as a closed densely
defined operator on L2(Rn), equipped with the domain

D(P ) = {u ∈ L2(Rn) : (−h2∆+ |x|2)u ∈ L2(Rn)}.
We notice that the inclusion map D(P ) →֒ L2(Rn) is compact, and hence, the
spectrum of P is discrete.

Thanks to the works [15], [3], [7] and [8], we have complete asymptotic expansions
for the eigenvalues of P in an open disc D(0, Ch), in fractional powers of h.
Specifically, for any C > 0, there exists h0 > 0 such that for all 0 < h ≤ h0, the
eigenvalues λk of P in D(0, Ch) are given by

λk ∼ h(µk + h1/Nkµk,1 + h2/Nkµk,2 + . . . ).

Here µk are the eigenvalues of Opw
1 (q) in D(0, C), repeated with their algebraic

multiplicity Nk ∈ N.

The following is the main result of this paper, where we are concerned with
estimates for eigenfunctions of P , corresponding to eigenvalues in the spectral
region above.

Theorem 1.1. Let C > 0 be fixed and let λ ∈ Spec(P ) be such that |λ| < Ch.
Assume that u ∈ L2(Rn), ‖u‖L2 = 1, is such that

(P − λ)u = 0 on R
n, n ≥ 2.

There exists h0 > 0 such that for all h ∈ (0, h0], we have u ∈ L∞(Rn) and

‖u‖L∞ ≤ O(1)h−
n
4 . (1.16)

Hence, by interpolation,

‖u‖Lp ≤ O(1)h
n
2p

−n
4 , 2 ≤ p ≤ ∞. (1.17)

The estimates (1.16) and (1.17) are sharp, since they are saturated by the ground
states of the harmonic oscillator.

The case n = 2 of Theorem 1.1, when P is self-adjoint, is a special case of the
general results of [12] and [17].

Let us now describe the main idea of the proof of Theorem 1.1 and the plan of
the paper. Heuristically, we expect the eigenfunctions u of P , corresponding to
eigenvalues λ = O(h), to be concentrated to the region where p(x, ξ) = O(h),
so that (x, ξ) = O(h1/2). One wishes therefore to microlocalize u by means of
h-pseudodifferential operators of the form

Opw
h (χ(X/h

1/2)), χ ∈ C∞
0 (Rn). (1.18)

Since the symbols χ(X/h1/2) are only regular on the scale h1/2, we know from
[25, Theorem 4.17] that the operators (1.18) belong to a calculus having no
asymptotic expansion in powers of h. A suitable exotic h1/2 calculus, involving
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two small parameters 0 < h ≤ h̃≪ 1, was developed in [16], see also [4]. Here we
shall not rely on this calculus explicitly but rather borrow some of its ideas and
proceed as follows. First in Proposition 2.1 we establish a microlocalization of the
ground state eigenfunctions of P to a slightly larger region (x, ξ) = O(hδ), using
the standard hδ–calculus with 0 < δ < 1/2. Secondly, using the sharp G̊arding
inequality, we get an a priori estimate for P , involving a microlocal cutoff, regular

on the scale (h/h̃)1/2, see Proposition 2.3. Using the a priori estimate, we obtain
a uniform control in L2 on

Opw
h (q

N(Xh̃1/2/h1/2))u,

where q is the quadratic approximation of p and N large, see Proposition 2.4.
The proof of Theorem 1.1 is concluded by a Sobolev embedding argument.

2. Proof of Theorem 1.1

2.1. A rough microlocalization of the ground states. To state our microlo-
calization result we have to introduce some notation. Let m ≥ 1 be a C∞ order
function on R2n, i.e. there exist C0 ≥ 1 and N0 > 0 such that

m(X) ≤ C0〈X − Y 〉N0m(Y ), X, Y ∈ R
2n.

For 0 ≤ δ ≤ 1
2
, we consider the following symbol class,

Sδ(m) = {a(X ; h) ∈ C∞(R2n;C) : ∀α ∈ N
2n, ∃Cα > 0, ∀h ∈ (0, 1],

∀X ∈ R
2n, |∂αXa(X ; h)| ≤ Cαh

−δ|α|m(X)}.

We shall need the following composition formula for the Weyl quantization, see
[5], [25], and [1]. If a1 ∈ Sδ1(m1) and a2 ∈ Sδ2(m2) with 0 ≤ δ1, δ2 ≤ 1/2 and
δ1 + δ2 < 1, then

Opw
h (a1)Opw

h (a2) = Opw
h (a1#a2), a1#a2 ∈ Smax(δ1,δ2)(m1m2), (2.1)

and

(a1#a2)(x, ξ) = e
ih
2
σ(Dx,Dξ;Dy,Dη)(a1(x, ξ)a2(y, η))|y=x

η=ξ
,

where

σ(Dx, Dξ;Dy, Dη) = Dξ ·Dy −Dx ·Dη.

By Taylor’s formula, applied to t 7→ e
iht
2

σ(Dx,Dξ;Dy,Dη), for any N ∈ N, we have

(a1#a2)(x, ξ) =
N∑

k=0

1

k!

( ih
2
σ(Dx, Dξ;Dy, Dη)

)k
(a1(x, ξ)a2(y, η))|y=x

η=ξ
+

1

N !

×
∫ 1

0

(1− t)Ne
iht
2
σ(Dx,Dξ;Dy,Dη)

( ih
2
σ(Dx, Dξ;Dy, Dη)

)N+1
(a1(x, ξ)a2(y, η))|y=x

η=ξ
dt.

(2.2)
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It follows that

(a1#a2)(x, ξ)−
N∑

k=0

1

k!

( ih
2
σ(Dx, Dξ;Dy, Dη)

)k
(a1(x, ξ)a2(y, η))|y=x

η=ξ

∈ h(N+1)(1−δ1−δ2)Smax(δ1,δ2)(m1m2).

(2.3)

We shall also need the following formula from [13, p. 45], valid for k = 1, 2, . . . ,

σ(Dx, Dξ;Dy, Dη)
k(a1(x, ξ)a2(y, η))|y=x

η=ξ

=
∑

|α|+|β|=k

(−1)|α|
k!

α!β!
(∂αξ ∂

β
xa1(x, ξ))(∂

α
x∂

β
ξ a2(x, ξ)).

(2.4)

The main result of this subsection is as follows.

Proposition 2.1. Let C > 0 be fixed and let λ ∈ Spec(P ) be such that |λ| < Ch.
Assume that u ∈ L2(Rn), ‖u‖L2 = 1, is such that

(P − λ)u = 0 on R
n, n ≥ 2.

Then there is ψ ∈ C∞
0 (R2n, [0, 1]) such that for any 0 < δ < 1/2, there exists

h0 > 0 such that for all h ∈ (0, h0], we have

u = Opw
h (ψ(X/h

δ))u+Ru, (2.5)

where R ∈ hM(1−2δ)Sδ(〈X〉−N) for any M,N ∈ N.

Proof. Let χ ∈ C∞
0 (R2n, [0, 1]) be such that χ(X) = 1 for |X| ≤ 1 and supp (χ) ⊂

{X ∈ R2n : |X| ≤ 2}. Since p is not elliptic near zero, to prove (2.5) we consider
the symbol

p̃(X ; h) = p(X)− λ+ h2δχ(X/hδ), (2.6)

where 0 < δ < 1/2 is fixed, and construct a parametrix for the operator Opw
h (p̃).

In doing so we shall proceed similarly to the proof of the sharp G̊arding inequality
in [5].

First let us show that there is C > 0 such that

Re p(X) ≥ |X|2/C, X ∈ R
2n. (2.7)

Indeed, when |X| ≤ c0 with c0 > 0 being a small but fixed constant, the estimate
(2.7) follows from the quadratic approximation (1.14) together with (1.15). When
|X| ≥ C0 with C0 > 0 being a large but fixed constant, the estimate (2.7) follows
from (1.12). Finally, when c0 ≤ |X| ≤ C0, using (1.11) and the fact that Re p
vanishes only at X = 0, we conclude that Re p(X) ≥ c > 0, and hence, (2.7)
follows.

Now as a consequence of (2.7), we have

Re p(X) + h2δχ(X/hδ) ≥ h2δ

C
〈X〉2, X ∈ R

2n. (2.8)
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Indeed, when |X|/hδ ≥ 1, (2.8) follows from (2.7), and when |X|/hδ ≤ 1, the
estimate (2.8) is a consequence of (1.11) and the fact that χ(X/hδ) = 1 in this
region.

Thus, since 0 < δ < 1/2, there exists h0 = h0(δ) > 0 such that for 0 < h < h0 we
have

Re p̃(X ; h) ≥ h2δ

C
〈X〉2, X ∈ R

2n. (2.9)

We shall next estimate ∂α(1/p̃). To that end, we use Faà di Bruno’s formula,

∂αf−1 = f−1

|α|∑

k=1

∑

α=β1+···+βk,|βj|≥1

Cβ1,...,βk

k∏

j=1

(f−1∂β
j

f), (2.10)

for appropriate constants Cβ1,...,βk , see [25, p.94]. Using (1.10), for |β| ≥ 2, we
get

|∂β p̃(X ; h)| ≤ Cβh
δ(2−|β|), X ∈ R

2n. (2.11)

This estimate together with (2.9) implies that for |β| ≥ 2,
∣∣∣∣
∂β p̃

p̃

∣∣∣∣ ≤ Cβh
−δ|β|〈X〉−2, X ∈ R

2n. (2.12)

Let |β| = 1. Here we need the following gradient estimate. Let f : Rn → R be
C2 with f ′′ ∈ L∞(Rn), and f ≥ 0, then

|∇f(x)|2 ≤ 2‖f ′′‖L∞(Rn)f(x), (2.13)

see [25, Lemma 4.31]. We have therefore,

|∂β(Re p̃)| ≤ C(Re p̃)1/2, |β| = 1, (2.14)

with C > 0 independent of h.

Let us now estimate the gradient of Im p̃. By (1.10), (1.14) and (2.7), we get

|Im p(X)| ≤ C|X|2 ≤ CRe p(X). (2.15)

Treating the regions |X|/hδ ≤ 1 and |X|/hδ ≥ 1 separately and using the estimate
(2.7) in the latter region, for all 0 < h small enough, we see that

Re p(X) ≤ CRe p̃(X ; h). (2.16)

Thus, it follows from (2.15) and (2.16) that

CRe p̃(X ; h)− Im p(X) ≥ 0,

and therefore, using (2.13), we obtain that

|∂βIm p̃| = |∂βIm p| ≤ |∂β(CRe p̃− Im p)|+ C|∂βRe p̃|
≤ C(CRe p̃− Im p)1/2 + C(Re p̃)1/2 ≤ C(Re p̃)1/2, |β| = 1.

(2.17)
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It follows from (2.14), (2.17) and (2.9) that for all 0 < h < 1 small enough,
∣∣∣∣
∂β p̃

p̃

∣∣∣∣ ≤ C|p̃|−1/2 ≤ Ch−δ〈X〉−1, |β| = 1. (2.18)

Combining (2.12) and (2.18), we write
∣∣∣∣
∂β p̃

p̃

∣∣∣∣ ≤ Ch−|β|δ〈X〉−1, |β| ≥ 1, X ∈ R
2n. (2.19)

Letting e(X ; h) = 1/p̃, and using (2.10) together with (2.9) and (2.19), we obtain
that

|∂αe| ≤ Cαh
−2δ−δ|α|〈X〉−2, |α| ≥ 0, (2.20)

i.e. h2δe ∈ Sδ(〈X〉−2).

Using (2.2) with N = 1 and the fact that the Poisson bracket {e, p̃} = 0, we get

(e#p̃)(x, ξ) = 1

+
1

4

∫ 1

0

(1− t)e
iht
2

σ(Dx,Dξ;Dy,Dη)(ihσ(Dx, Dξ;Dy, Dη))
2(e(x, ξ)p̃(y, η))|y=x

η=ξ
dt.

(2.21)
Next we would like to determine the symbol class of the integrand in (2.21)
uniformly in t. To that end, in view of (2.4), we first conclude from (2.20) that

∂αξ ∂
β
xe(x, ξ) ∈ h−4δSδ(〈X〉−2), |α|+ |β| = 2, (2.22)

and from (2.6) and (1.10) that

∂αy ∂
β
η p̃(y, η) ∈ Sδ(1), |α|+ |β| = 2. (2.23)

Thus, using (2.4), (2.22) and (2.23), we get

h2σ(Dx, Dξ;Dy, Dη)
2(e(x, ξ)p̃(y, η)) ∈ h2−4δSδ(〈X〉−2). (2.24)

Using the fact that

e
iht
2
σ(Dx,Dξ;Dy,Dη) : Sδ(〈X〉−2) → Sδ(〈X〉−2),

see [25, Theorem 4.17], and (2.24), we obtain from (2.21) that

e#p̃ = 1 + h2−4δr, r ∈ Sδ(〈X〉−2).

Hence,

Opw
h (e)Opw

h (p̃) = 1 + h2−4δOpw
h (r), (2.25)

where the operator Opw
h (r) = O(1) : L2(Rn) → L2(Rn) is bounded for all 0 < h

small enough, see [25, Theorem 4.23]. As 0 < δ < 1/2, we have

‖h2−4δOpw
h (r)‖L2(Rn)→L2(Rn) < 1/2,

for all 0 < h small enough and therefore, the inverse (1 + h2−4δOpw
h (r))

−1 exists
as an operator L2(Rn) → L2(Rn).
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Next using that 1 + h2−4δr ∈ Sδ(1) and Beals’s theorem for Sδ(1), see [25, p.
176 – 177], we see that (1 + h2−4δOpw

h (r))
−1 := Opw

h (q) is a pseudodifferential
operator with q ∈ Sδ(1).

It follows from (2.25) that for all 0 < h small enough, we have

Opw
h (q)Opw

h (e)Opw
h (p̃) = 1.

Using the composition formula (2.1), we see that

Opw
h (q)Opwh (e)h

2δ = Opw
h (q̃), q̃ ∈ Sδ(〈X〉−2).

This together with (2.6), and the fact that (P − λ)u = 0 implies that

u = Opw
h (q̃)Opw

h (χ(X/h
δ))u. (2.26)

Let ψ ∈ C∞
0 (R2n, [0, 1]) be such that ψ = 1 near supp (χ) and

supp (ψ) ⊂ {X ∈ R
2n : |X| ≤ 3}.

Then it follows from (2.26) that

u = Opw
h (ψ(X/h

δ))u+Ru,

where
R = (1−Opw

h (ψ(X/h
δ)))Opw

h (q̃)Opw
h (χ(X/h

δ)).

Here we notice that

χ(X/hδ) ∈ Sδ(〈X〉−N), ∀N ∈ N, and 1− ψ(X/hδ) ∈ Sδ(1).

Since supp (1− ψ) ∩ supp (χ) = ∅, it follows from (2.2) that

R ∈ hM(1−2δ)Sδ(〈X〉−N),

for any N,M ∈ N. The proof is complete. �

2.2. Applying G̊arding’s inequality. We shall need the following version of
the sharp G̊arding inequality, see [22] and [2].

Theorem 2.2. Let a(x, ξ; h) ∈ C∞(R2n) be such that a ≥ 0 on R2n and ∂αa ∈
L∞(R2n) for all |α| ≥ 2. Then there exist C > 0, depending only on ‖∂αa‖L∞,

|α| ≥ 2, and h0 > 0 such that

(Opw
h (a)u, u)L2(Rn) ≥ −Ch‖u‖2L2(Rn),

for all 0 < h ≤ h0 and u ∈ L2(Rn).

We shall now establish a suitable a priori estimate for the operator P = Opw
h (p).

To that end, we let 0 < h̃ be sufficiently small but independent of h. We shall view

h̃ as a second semiclassical parameter. In order to relate the h–Weyl quantization

and h̃–Weyl quantization, following [16], we set

x =
√
εx̃, ξ =

√
εξ̃, y =

√
εỹ, ε = h/h̃.
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We obtain that
(Opw

h (a)u)(x) = ε−
n
4 (Opw

h̃
(ã)ũ)(x̃),

where

ã(x̃, ξ̃) = a(
√
εx̃,

√
εξ̃), ũ(x̃) = ε

n
4 u(

√
εx̃). (2.27)

Letting
U : u(x) 7→ ũ(x̃) = ε

n
4 u(

√
εx̃), (2.28)

one can easily see that U is unitary on L2(Rn), and we have

Opw
h (a) = U−1Opw

h̃
(ã)U. (2.29)

We have the following consequence of Theorem 2.2.

Proposition 2.3. Let C > 0 and let |λ| < Ch. Let χ ∈ C∞
0 (R2n, [0, 1]) be such

that χ(X) = 1 for |X| ≤ 1 and supp (χ) ⊂ {X ∈ R2n : |X| ≤ 2}. Then there

exist C̃ > 0 and h̃0 > 0 such that

Re ((P − λ)u, u)L2(Rn) + ε(Opw
h (χ(X/

√
ε))u, u)L2(Rn) ≥

ε

C̃
‖u‖2L2(Rn), (2.30)

for all 0 < h ≤ h̃ ≤ h̃0 and u ∈ L2(Rn). Here ε = h/h̃.

Proof. To establish (2.30), using (2.29), we pass to the h̃–Weyl quantization and
get

P − λ+ εOpw
h (χ(X/

√
ε)) = εU−1Opw

h̃
(p̃)U, (2.31)

where

p̃(X ; ε) =
1

ε
p(
√
εX)− λ

ε
+ χ(X). (2.32)

Let us show that there is C > 0 such that uniformly in ε > 0, we have

1

ε
Re p(

√
εX) + χ(X) ≥ 1/C, X ∈ R

2n. (2.33)

Indeed, when |X| ≤ 1, the estimate (2.33) follows from (1.11) and the fact that
χ(X) = 1 here. When |X| ≥ 1, (2.33) is implied by (2.7).

It follows from (2.32) and (2.33) that for 0 < h̃ small enough,

Re p̃(X ; ε) ≥ 1/C, X ∈ R
2n,

uniformly in h. Using (1.10), for |α| ≥ 2, we get

|∂αp̃(X ; ε)| ≤ (
√
ε)|α|

ε
|(∂αp)(√εX)|+ |∂αχ(X)| ≤ Cα, X ∈ R

2n,

uniformly in ε ≤ 1. Applying Theorem 2.2 to Re p̃ in the h̃–Weyl quantization,

we obtain that there exist C̃ > 0 and h̃0 > 0 such that

Re (Opw
h̃
(p̃)u, u)L2(Rn) ≥

1

C̃
‖u‖2L2(Rn), (2.34)
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for all 0 < h ≤ h̃ ≤ h̃0 and u ∈ L2(Rn).

Using (2.31), (2.34) and the fact that U is unitary on L2(Rn), we obtain that

Re ((P − λ)u, u)L2(Rn) + ε(Opwh (χ(X/
√
ε))u, u)L2(Rn)

= εRe (Opw
h̃
(p̃)Uu, Uu)L2(Rn) ≥

ε

C̃
‖u‖2L2(Rn),

for all 0 < h ≤ h̃ ≤ h0 and u ∈ L2(Rn). This completes the proof. �

2.3. Testing the a priori estimate. In what follows we shall take h̃ > 0 suf-
ficiently small but fixed, i.e. independent of h, so that Proposition 2.3 is valid.

The dependence on the parameter h̃ will therefore not be indicated explicitly.

The following result obtained by combining Proposition 2.1 and Proposition 2.3
is an essential step in the proof of Theorem 1.1.

Proposition 2.4. Let C > 0 and let λ ∈ Spec(P ) be such that |λ| ≤ Ch. Assume

that

(P − λ)u = 0 on R
n, n ≥ 2,

u ∈ L2(Rn), ‖u‖L2 = 1. Set q(X) = 1
2
p′′(0)X ·X. Then for every N ∈ N, there

exists h0 > 0 such that for all 0 < h ≤ h0, we have

‖Opw
h (q

N(X/
√
ε))u‖L2(Rn) ≤ ON(1), ε = h/h̃. (2.35)

Proof. First using Proposition 2.1, we see that Opw
h (q

N(X/
√
ε))u ∈ L2(Rn) for

any N ∈ N. Thus, it follows from the a priori estimate (2.30) that there is C̃ > 0
such that

Re ((P − λ)Opw
h (q

N(X/
√
ε))u,Opw

h (q
N(X/

√
ε))u)L2(Rn)

+ ε(Opw
h (χ(X/

√
ε))Opwh (q

N(X/
√
ε))u,Opwh (q

N(X/
√
ε))u)L2(Rn)

≥ ε

C̃
‖Opw

h (q
N(X/

√
ε))u‖2L2(Rn),

(2.36)

for all 0 < h small enough and all N ∈ N.

Let us start by estimating the second term in the left hand side of (2.36). Using
(2.27), (2.29), and the fact that U is unitary, we have

(Opw
h (χ(X/

√
ε))Opw

h (q
N(X/

√
ε))u,Opwh (q

N(X/
√
ε))u)L2(Rn)

= (Opw
h̃
(qN(X))Opw

h̃
(χ(X))Opw

h̃
(qN(X))Uu, Uu)L2(Rn) ≤ ON (1)‖u‖2L2(Rn),

(2.37)
for all 0 < h small enough and all N ∈ N. Here we have used the fact that χ has
a compact support, and therefore,

Opw
h̃
(qN(X))Opw

h̃
(χ(X))Opw

h̃
(qN(X)) ∈ Opw

h̃
(S(1)),
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so that

Opw
h̃
(qN (X))Opw

h̃
(χ(X))Opw

h̃
(qN(X)) = ON (1) : L

2(Rn) → L2(Rn)

is bounded, see [25, Theorem 4.23]

Let us consider the first term in the left hand side of (2.36) and show that

Re ((P − λ)Opw
h (q

N(X/
√
ε))u,Opwh (q

N(X/
√
ε))u)L2(Rn) ≤ ON (h)‖u‖2L2(Rn).

(2.38)
Since (P − λ)u = 0, we get

((P−λ)Opw
h (q

N(X/
√
ε))u,Opwh (q

N(X/
√
ε))u)L2(Rn)

= (Opw
h (q

N(X/
√
ε))[P,Opwh (q

N(X/
√
ε))]u, u)L2(Rn).

Since q is quadratic, by the composition formula for the Weyl quantization (2.2)
we have

[Opw
h (q),Opw

h (q
N)] =

h

i
Opw

h ({q, qN}) = 0. (2.39)

Letting
r(X) = p(X)− q(X),

and using (2.39), we get

Opw
h (q

N(X/
√
ε))[P,Opw

h (q
N(X/

√
ε))] =

1

ε2N
Opw

h (q
N(X))[Opw

h (r),Opwh (q
N(X))].

We have

B := Opw
h (q

N(X))[Opw
h (r),Opwh (q

N(X))] ∈ hS0(〈X〉4N+2), (2.40)

as r ∈ S0(〈X〉2) in view of (1.10), and qN ∈ S0(〈X〉2N).
By Proposition 2.1, there exists ψ ∈ C∞

0 (R2n, [0, 1]) such that for any 0 < δ < 1/2,
we have for all h > 0 small enough,

u = Opw
h (ψ(X/h

δ))u+Ru,

where R ∈ hM1(1−2δ)Sδ(〈X〉−M2) for any M1,M2 ∈ N. Thus,

ε−2NBR ∈ h−2N+M1(1−2δ)hSδ(〈X〉4N+2−M2) ∈ hSδ(1),

provided we choose M1 and M2 so large that

M1 ≥
2N

1− 2δ
, M2 ≥ 4N + 2.

Hence, the operator

ε−2NBR = O(h) : L2(Rn) → L2(Rn)

is bounded for 0 < h small enough.

Given N ∈ N, let us choose δ so that

1/2 > δ ≥ 2N

4N + 1
,
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and show that the operator

ε−2NBOpw
h (ψ(X/h

δ)) = O(h) : L2(Rn) → L2(Rn) (2.41)

is bounded for 0 < h small enough. To that end, first letting B = Opw
h (b), using

the composition formula (2.3) and the fact that ψ(X/hδ) ∈ Sδ(〈X〉−L) for any
L ∈ N, and (2.40), we write

ε−2Nb(x, ξ)#ψ(x/hδ, ξ/hδ)

= ε−2N
K−1∑

j=0

1

j!

(ih)j

2j
σ(Dx, Dξ;Dy, Dη)

j(b(x, ξ)ψ(y/hδ, η/hδ))|y=x,η=ξ + r̃,

(2.42)
where

r̃ ∈ ε−2NhK(1−δ)Sδ(〈X〉4N+2−L),

for any K ∈ N and any L ∈ N. Choosing

L ≥ 4N + 2 and K ≥ 4N + 2,

we conclude that the operator

Opw
h (r̃) = O(h) : L2(Rn) → L2(Rn)

is bounded for all 0 < h small enough.

To prove (2.41), let us determine the symbol class for the first term in the right
hand side of (2.42), i.e.

b̃(x, ξ) = ε−2N

K−1∑

j=0

1

j!

(ih)j

2j
σ(Dx, Dξ;Dy, Dη)

j(b(x, ξ)ψ(y/hδ, η/hδ))|y=x,η=ξ.

(2.43)
Using the composition formula (2.3), (2.4), and the fact that q is quadratic, we
get

b(x, ξ) =
2N∑

l=0

(ih)l

2l

2N∑

k=1

(ih)k

2k

∑

|α|+|β|=k

(−1)|α|

α!β!

∑

|γ|+|δ|=l

(−1)|γ|

γ!δ!
(∂γξ ∂

δ
xq

N(x, ξ))

∂γx∂
δ
ξ

[
(∂αξ ∂

β
x r(x, ξ))(∂

α
x∂

β
ξ q

N(x, ξ))− (∂αξ ∂
β
x q

N(x, ξ))(∂αx∂
β
ξ r(x, ξ))

]
.

(2.44)

Hence, to estimate b̃, we see using (2.43), (2.44), and (2.4) that we have to
estimate the following terms,

ε−2Nhj+l+k−δj∂µξ ∂
ν
x

[
(∂γξ ∂

δ
xq

N)∂γx∂
δ
ξ

[
(∂αξ ∂

β
x r)(∂

α
x∂

β
ξ q

N)− (∂αξ ∂
β
x q

N)(∂αx ∂
β
ξ r)

]]

(∂µx∂
ν
ξψ)(X/h

δ),
(2.45)
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where

j = 0, . . . , K − 1, l = 0, . . . , 2N, k = 1, . . . , 2N,

|α|+ |β| = k, |γ|+ |δ| = l, |µ|+ |ν| = j.

It follows from (2.45) that it is enough to estimate

ε−2Nhj+l+k−δj∂µX

[
(∂γXq

N )∂γX
[
(∂αXr)(∂

α
Xq

N)
]]
, (2.46)

on supp (ψ(X/hδ)), i.e. when |X| ≤ 3hδ, with

|α| = k, |γ| = l, |µ| = j.

Using Leibniz’s rule twice, we rewrite (2.46) as follows,

ε−2Nhj+l+k−δj
∑

µ1+µ2=µ

Cµ1,µ2(∂µ
1+γ

X qN)

( ∑

γ1+γ2=µ2+γ

Cγ1,γ2(∂γ
1+α

X r)(∂γ
2+α

X qN)

)
.

(2.47)

As |α| = k ≥ 1, we know that |γ1|+ |α| ≥ 1. Consider first the case |γ1|+ |α| = 1.
In this case

|∂γ1+α
X r| ≤ O(|X|2),

since

r(X) = O(|X|3) near 0.

Therefore, using the fact that

|∂βXqN | ≤
{
O(|X|2N−|β|), |β| ≤ 2N,

0, |β| > 2N,

we estimate the absolute value of (2.47) in the case |γ1|+ |α| = 1 by

≤ ε−2Nhj+l+k−δjO(|X|4N−j−2l−k+|γ1|)O(|X|2)
≤ ε−2NO(hhδ(4N+1)h(1−2δ)(j+l+k−1)) ≤ ε−2NO(hhδ(4N+1)) ≤ O(h).

(2.48)

Here we have used that 4N− j−2l−k+ |γ1| ≥ 0 and 1/2 > δ ≥ 2N
4N+1

. Similarly,
using that

|∂γ1+α
X r| ≤ O(|X|) when |γ1|+ |α| = 2,

and

|∂γ1+α
X r| ≤ O(1) when |γ1|+ |α| ≥ 3,

we obtain the estimate (2.48) also in the case when |γ1|+ |α| ≥ 2. Hence, we get

|̃b(x, ξ)| ≤ O(h).
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To estimate the derivatives ∂ρX b̃(X), |ρ| ≥ 1, arguing as above and using Leibniz’s
rule one more time, we conclude that we have to estimate

ε−2Nhj+l+k−δj−|ρ2|δ∂ρ1+µ
X

[
(∂γXq

N)∂γX
[
(∂αXr)(∂

α
Xq

N)
]]
, (2.49)

on supp (ψ(X/hδ)), with

|ρ| = |ρ1|+ |ρ2|, |α| = k, |γ| = l, |µ| = j.

Similarly to (2.47), we write (2.49) as follows,

ε−2Nhj+l+k−δj−|ρ2|δ
∑

µ1+µ2=ρ1+µ

Cµ1,µ2(∂µ
1+γ

X qN)

( ∑

γ1+γ2=µ2+γ

Cγ1,γ2(∂γ
1+α

X r)(∂γ
2+α

X qN)

)
.

Therefore, using that 4N − |ρ1| − j − 2l − k + |γ1| ≥ 0, we get

|∂ρX b̃(x, ξ)| ≤ ε−2Nhj+l+k−δj−|ρ2|δ|∂γ1+α
X r|O(|X|4N−|ρ1|−j−2l−k+|γ1|)

≤ h−δ|ρ|O(h−2Nhhδ(4N+1)h(1−2δ)(j+l+k−1)) ≤ h−δ|ρ|O(h),

since 1/2 > δ ≥ 2N
4N+1

. Hence,

b̃ ∈ hSδ(1),

and thus, (2.41) and (2.38) follow.

The estimate (2.35) follows from (2.36), (2.37) and (2.38). The proof is complete.
�

2.4. Concluding the proof of Theorem 1.1. Let N ∈ N be fixed. Then by
Proposition 2.4 and scaling (2.29), we have

‖Opw
h̃
(qN(X))Uu‖L2(Rn) ≤ O(1), (2.50)

for all 0 < h small enough. Now it is convenient to make an additional scaling to

pass to the case h̃ = 1. By (2.29) and the homogeneity of qN , we have

Opw
h̃
(qN) = h̃NV −1Opw

1 (q
N)V,

where

(V u)(x̃) = (h̃)
n
4 u(

√
h̃x̃).

Hence, in the remainder of the proof we may assume that h̃ = 1.

We have qN(X) ∈ S2N
X (R2n). Here

Sm
X (R2n) = {a(X) ∈ C∞(R2n;C) : ∀a ∈ N

2n, ∃Cα > 0, |∂αa(X)| ≤ Cα〈X〉m−|α|},
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see [14, Section 23.1]. Using the fact that Re q(X) is a positive definite quadratic
form, we get

|qN(X)| ≥ (Re q(X))N ≥ |X|2N/C, X 6= 0.

It follows from [14, Theorem 25.1] that there is b ∈ S−2N
X (R2n) such that

Opw
1 (b)Opw

1 (q
N)− I = R, (2.51)

where the operator R has a kernel in the Schwartz space S(R2n), and therefore,

R : S ′(R2n) → S(R2n). (2.52)

Here S ′(R2n) is the space of tempered distributions.

Let s ∈ R and let

Hs(Rn) = {u ∈ S ′(Rn) : Opw
1 ((1 + |x|2 + |ξ|2)s/2)u ∈ L2(Rn)}.

We know that

Opw
1 (b) : L

2(Rn) → H2N(Rn) (2.53)

is bounded, see [14, Theorem 25.2]. It follows from (2.51), (2.50), (2.52) and
(2.53) that

‖Uu‖H2N (Rn) ≤ ‖Opw
1 (b)Opw

1 (q
N)Uu‖H2N (Rn) + ‖RUu‖H2N (Rn) ≤ O(1), (2.54)

for all 0 < h small enough.

Choosing N > n/4 and using the fact that H2N(Rn) ⊂ H2N(Rn), the standard
Sobolev space, together with the Sobolev embedding H2N(Rn) ⊂ L∞(Rn), we get

‖Uu‖L∞(Rn) ≤ O(1).

Hence, recalling (2.28), we obtain that

‖u‖L∞(Rn) ≤ O(1)h−n/4.

This completes the proof of Theorem 1.1.

Remark 2.5. The estimate (2.54) also shows that for any K ∈ N, there exists

h0 > 0 such that for all h ∈ (0, h0], we have
∥∥∥∥
(

x

h1/2

)α

(h1/2∂x)
βu(x)

∥∥∥∥
L∞(Rn)

≤ OK(h
−n/4),

for all α, β ∈ Nn, |α+ β| ≤ K.
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[15] Sjöstrand, J., Parametrices for pseudodifferential operators with multiple characteristics.

Ark. Mat. 12 (1974), 85–130.
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