
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Towards Robust Deep Neural Network Architectures for Malware Classification

Permalink
https://escholarship.org/uc/item/6tk5266f

Author
Song, Wei

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6tk5266f
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

Towards A Robust Deep Neural Network Architecture for Malware Classification

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Wei Song

March 2022

Dissertation Committee:

Dr. Heng Yin, Chairperson
Dr. Chengyu Song
Dr. Zhiyun Qian
Dr. Christian Shelton



Copyright by
Wei Song

2022



The Dissertation of Wei Song is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I am grateful to my advisor, Dr. Heng Yin, without whose help, I would not have been

here. His knowledge, enthusiasm, encouragement and continuous support are the key to my

Ph.D study. Besides, my sincere gratitude go to the rest of my PhD disseration committee:

Dr. Chengyu Song, Dr. Zhiyun Qian, Dr. Christian Shelton, for their insightful questions

and comments. I would like to thank the collaborators Sadia Afroz, Deepali Garg, Dmitry

Kuznetsov from Avast Antivirus, for their support and for all of the opportunities I was

given to further my research. I also want to thank my fellow Zixiang, Sheng, Zhenxiao,

Jinghan, Lian, Jie and Ju, for their help during my hard times. Most importantly, I would

like to thank my wife Wenwen Han. This dissertation would not be possible without her

love and support. This dissertation includes previously published materials entitled “MAB-

Malware: A Reinforcement Learning Framework for Blackbox Generation of Adversarial

Malware” published in the ACM ASIA Conference on Computer and Communications Se-

curity, 2022, and “DeepMem: Learning Graph Neural Network Models for Fast and Robust

Memory Forensic Analysis” published in the ACM SIGSAC Conference on Computer and

Communications Security, 2018.

iv



To my wife for all the support.

v



ABSTRACT OF THE DISSERTATION

Towards A Robust Deep Neural Network Architecture for Malware Classification

by

Wei Song

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2022

Dr. Heng Yin, Chairperson

Modern commercial antivirus systems increasingly rely on machine learning to

keep up with the rampant inflation of new malware. However, it is well-known that machine

learning models are vulnerable to adversarial examples. Previous works have shown that

ML malware classifiers are fragile to the white-box adversarial attacks. However, ML models

used in commercial antivirus products are usually not available to attackers and only return

hard classification labels. Therefore, it is more practical to evaluate the robustness of ML

models and real-world AVs in a pure black-box manner. The next question is how to

create a new deep neural network architecture to make the malware classifiers robust by

design. Compared to image recognition, there are few studies on improving the robustness

of models in the field of malware classification. We found that in the malware domain,

its threat model is quite different from the image domain. Existing methods have limited

improvement in the robustness of malware classifiers, and the accuracy of the model will

also decrease. Finally, memory-only malware has become popular in recent years. Since

they are not written on disks, it becomes important to recognize their presence in memory.

vi



These malware samples may hide their process information in the system, so we need a way

to identify them fast and robustly.

This dissertation addresses these problems by presenting insights, methods, and

techniques on how to perform attacks and defenses on malware classification in disk and

memory. Firstly, a black-box reinforcement learning-based framework called MAB-Malware

is developed to generate adversarial examples for PE malware classifiers and AV engines. It

has a much higher evasion rate than other off-the-shelf frameworks. Second, a new classifi-

cation architecture based on selective hierarchical BERT is proposed to automatically select

only malicious functions for malware classification, which is robust to different attacks and

self-explanatory. Thirdly, a graph-based deep learning approach is presented to automat-

ically generate abstract representations for kernel objects, with which we could recognize

the objects from raw memory dumps in a fast and robust way.

vii



Contents

List of Figures xi

List of Tables xii

1 Introduction 1
1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 An Adversarial Attack Framework: MAB-Malware 6
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Existing Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Our Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.1 Adversarial Attack as a Multi-armed Bandit Problem . . . . . . . . 16
2.5.2 Binary Rewriter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.3 Action Minimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.2 Adversarial Example Generation . . . . . . . . . . . . . . . . . . . . 28
2.6.3 Testing Functionality Preservation . . . . . . . . . . . . . . . . . . . 33
2.6.4 Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6.5 Transferability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.8 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

viii



3 A Robust Malware Classification Architecture: Selective Hierarchical
BERT 42
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Existing Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Our Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 Reasoner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.2 Judge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.3 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.2 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.3 Robustness under Code Randomization Attack . . . . . . . . . . . . 59
3.5.4 Robustness under MAB-Malware Attack . . . . . . . . . . . . . . . . 61

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 A Robust Memory Forensics Framework: DeepMem 63
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Memory Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2 Existing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.3 Our Insight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Design of DeepMem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.2 Memory Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.3 Graph Neural Network Model . . . . . . . . . . . . . . . . . . . . . . 75
4.4.4 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5.3 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.4 Detection Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.5 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5.6 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.5.7 Understanding Node Embedding . . . . . . . . . . . . . . . . . . . . 96
4.5.8 Impact of Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Conclusions 101
5.1 Final Thoughts and Future Works . . . . . . . . . . . . . . . . . . . . . . . 102

ix



Bibliography 104

x



List of Figures

1.1 Overview of Thesis Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 An example of action minimization. . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Decision rules are used to map actions to feature space . . . . . . . . . . . . 27
2.4 Evasion Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Number of Changed Bytes of Adversarial Examples. . . . . . . . . . . . . . 32
2.6 Action Sequences for Adversarial Examples . . . . . . . . . . . . . . . . . . 35
2.7 Feature changes that cause evasion. . . . . . . . . . . . . . . . . . . . . . . . 36
2.8 Transferability of Adversarial Samples . . . . . . . . . . . . . . . . . . . . . 37

3.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Training of Reasoner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 Distribution of Function Scores . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Changed Byte Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 The overview of the DeepMem architecture . . . . . . . . . . . . . . . . . . 67
4.2 Generate a memory graph from raw memory . . . . . . . . . . . . . . . . . 71
4.3 Node embedding computation in each iteration . . . . . . . . . . . . . . . . 76
4.4 Node Labeling of a ETHREAD Object . . . . . . . . . . . . . . . . . . . . . . 80
4.5 Random Mutation Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.6 Node Embedding Visualization using t-SNE . . . . . . . . . . . . . . . . . . 95
4.7 ROC Curves by Tuning Parameters . . . . . . . . . . . . . . . . . . . . . . . 97

xi



List of Tables

2.1 Action Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Affected Features by Actions. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Evasion Result on Antivirus. . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Functionality Preservation Rate of the Actions . . . . . . . . . . . . . . . . 34

3.1 Detection Rate of Original and Randomized Malware. . . . . . . . . . . . . 60
3.2 Accuracy on Original Samples and Robustness against MAB-Malware. . . . 61
3.3 Robustness against Graybox Attack. . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Statistics of memory dumps and memory graphs. . . . . . . . . . . . . . . . 86
4.2 Object Detection Results on Memory Image Dumps. . . . . . . . . . . . . . 86
4.3 Default Parameters of Experiments. . . . . . . . . . . . . . . . . . . . . . . 89
4.4 Results of FILE OBJECT Pool Tag Manipulation . . . . . . . . . . . . . . . 91
4.5 Results of DKOM Process Hiding Attacks . . . . . . . . . . . . . . . . . . . 91
4.6 Time Consumption at Different Phases. . . . . . . . . . . . . . . . . . . . . 95

xii



Chapter 1

Introduction

Malware attacks continue to be one of the most pressing security issues users face

today. Recent research showed that during the first nine months of 2019, at least 7.2 billion

malware attacks and 151.9 million ransomware attacks have been reported.1 The attack rate

hit a new high with the COVID-19 pandemic.2 The traditional signature-based methods

cannot keep up with this rampant inflation of novel malware. Hence commercial antivirus

companies started using machine learning [12, 165] to keep up with the rampant inflation

of new malware. Machine learning-based detectors are scalable and efficient at protecting

against the huge influx of malware. Since the first paper in 2001 on detecting malware

using machine learning [153], there has been an explosion of academic research papers on

predicting malicious content using machine learning. Many of them flaunting high accuracy

and being able to detect new malware unseen during training [138, 9, 37, 142, 150].

1https://www.msspalert.com/cybersecurity-research/sonicwall-research-malware-attacks-

2019/
2https://labs.bitdefender.com/2020/04/coronavirus-themed-threat-reports-havent-

flattened-the-curve/

1

https://www.msspalert.com/cybersecurity-research/sonicwall-research-malware-attacks-2019/
https://www.msspalert.com/cybersecurity-research/sonicwall-research-malware-attacks-2019/
https://labs.bitdefender.com/2020/04/coronavirus-themed-threat-reports-havent-flattened-the-curve/
https://labs.bitdefender.com/2020/04/coronavirus-themed-threat-reports-havent-flattened-the-curve/


But machine learning models are known to be vulnerable to adversarial attacks.

However, research has also demonstrated that machine-learning-based detectors can be

easily evaded by making even trivial changes to malware [28, 52, 177, 114, 143, 74, 85, 90,

7, 5, 161, 144, 72, 70, 131, 54, 179, 45, 112, 23]. Even commercial antivirus systems, such

as Cylance, have been shown to be susceptible to trivial adversarial attacks [11]. Suciu

et al. [162] and Kolosnjaji et al. [85] propose to calculate network gradient and modify

appended and injected content to conduct whitebox attacks on these models. Demetrio

et al. [42] and Xu et al. [177] apply genetic programming to append and inject content

to generate adversarial examples. Anderson et al. [7] propose to apply deep reinforcement

learning (RL) to generate AE for PE malware to bypass machine learning models. However,

we found that these methods have some limitations in problem modeling, which hinder their

attack capabilities. Meanwhile, few papers study how robust commercial AV systems are

against real-world adversarial attacks, and use adversarial malware to infer how closed-

source antivirus engines detect malware.

Our next research question is how to fundamentally improve the robustness of

malware classifiers? In the most actively researched field of image recognition, many works

have proposed various methods to improve the robustness of the model. In contrast, there

is very little research in the field of malware classification. Most existing works in the

malware domain directly use the method of the image field to improve the robustness of

malware classifiers. We found that the threat model in malware is quite different from the

image. Existing methods have limited improvement in the robustness of malware classifiers,

and the accuracy of the model will also decrease. In this dissertation, we try to find the

2



limitations of existing defense approaches and propose a new architecture that is robust

to different additive attacks, code randomization. At the same time, it does not sacrifice

detection accuracy on original samples.

We also find that memory-only malware has become popular in recent years. Since

they are not written on disk, it becomes important to first identify their presence in memory.

Memory forensic analysis [22] extracts live digital evidence of attack footprints from a

memory snapshot (or dump) of a running system. For instance, by identifying EPROCESS

objects in a Windows memory dump, analysts can figure out what processes are running

on the target operating system. Memory forensic analysis is advantageous over traditional

disk-based forensics because although stealth attacks can erase their footprints on disk,

they would have to appear in memory to run. Existing approaches have several limitations:

1) list-traversal approaches are vulnerable to DKOM (Direct Kernel Object Manipulation)

attacks, 2) robust signature-based approaches are not scalable or efficient, because it needs

to search the entire memory snapshot for one kind of object using one signature, and 3)

both list-traversal and signature-based approaches all heavily rely on domain knowledge of

the operating system.

1.1 Thesis Statement

In short, the fundamental research question is how to effectively attack existing

state-of-the-art machine learning-based models, understand how they make classification

decisions, and then design a new architecture that is fundamentally robust against adver-

sarial attacks. So the thesis statement is that to design a robust machine learning-based

3



malware classification model, you need to put your feet in the shoes of the attackers and

see what they can do in the malware domain. Understanding the uniqueness of the security

domain allows us to design an architecture that is fundamentally resistant to these attacks.

To this end, we propose three frameworks as illustrated in Figure1.1.

Perform reinforcement 
learning-based adversarial 

attacks on ML models & AVs

Automatically select malicious 
functions for malware 

classification

Scan the memory dumps and 
infer objects of various types 
in a fast and robust manner

An Adversarial Attack 
Framework: MAB-Malware

A Robust Malware 
Classification Architecture:

Selective Hierarchical BERT

A Robust Memory Forensics 
Framework: DeepMem

Understand the uniqueness of 
the security domain when 

designing ML models

Task 1 Task 2 Task 3

Figure 1.1: Overview of Thesis Work

MAB-Malware. We design a reinforcement learning guided framework MAB-Malware to

perform adversarial attacks on state-of-the-art machine learning models for malware clas-

sification and top commercial antivirus static classifiers. For each commercial antivirus

system, we compute the effectiveness of each action and the key features that cause eva-

sions. Our results show that MAB-Malware largely improves the evasion rate over other

reinforcement learning frameworks and that some of the adversarial attacks are transferable

between different antivirus systems that are similar to one another.

Selective Hierarchical-BERT. We explore in detail the different constraints of malware

classifiers and the properties that need to be satisfied to build a robust classifier. On

4



this basis, we propose a new robust deep neural network architecture based on selective

hierarchical BERT to automatically select malicious functions for malware classification,

which is robust to different attacks by design. Compared with other baselines, our model

can handle very large samples and can automatically select essential features for malware

classification, which fundamentally improves the robustness of the model without sacrificing

the accuracy of the model.

DeepMem. We propose a graph-based kernel object detection approach DeepMem. By

constructing a whole memory graph and collecting information through topological infor-

mation propagation, we can scan the memory dumps and infer objects of various types in

a fast and robust manner. is advanced in that 1) it does not rely on the knowledge of

operating system source code or kernel data structures, 2) it can automatically generate

features of kernel objects from raw bytes in memory dump without manual expert analysis,

3) it utilizes deep neural network architectures for efficient parallel computation, and 4) it

extracts robust features that are resistant to attacks like pool tag manipulation, DKOM

process hiding.

5



Chapter 2

An Adversarial Attack Framework:

MAB-Malware

2.1 Abstract

Modern commercial antivirus systems increasingly rely on machine learning (ML)

to keep up with the rampant inflation of new malware. However, it is well-known that

machine learning models are vulnerable to adversarial examples (AEs). Previous works

have shown that ML malware classifiers are fragile to the white-box adversarial attacks.

However, ML models used in commercial antivirus (AV) products are usually not available

to attackers and only return hard classification labels. Therefore, it is more practical to

evaluate the robustness of ML models and real-world AVs in a pure black-box manner. We

propose a black-box Reinforcement Learning (RL) based framework to generate AEs for PE

malware classifiers and AV engines. It regards the adversarial attack problem as a multi-

6



armed bandit problem, which finds an optimal balance between exploiting the successful

patterns and exploring more varieties. Compared to other frameworks, our improvements

lie in three points: 1) limiting the exploration space by modeling the generation process

as a stateless process to avoid combination explosions, 2) reusing the successful payload in

modeling; and 3) minimizing the changes on AE samples to correctly assign the rewards

in RL learning (which also helps identify the root cause of evasions). As a result, our

framework has much higher evasion rates than other off-the-shelf frameworks. Results show

it has over 74%–97% evasion rate for two state-of-the-art ML detectors and over 32%–48%

evasion rate for commercial AVs in a pure black-box setting. We also demonstrate that

the transferability of adversarial attacks among ML-based classifiers is higher than that

between ML-based classifiers and commercial AVs.

2.2 Introduction

Adversarial attacks against static malware classifiers are not new. Researchers

have proposed a variety of techniques to generate evasive samples (the terms “evasive sam-

ples” and “adversarial examples” are used exchangeably in this thesis), including genetic

programming [177, 42], Monte Carlo tree search [137], and deep Q-learning [7]. Although

some of these attempts [177, 137] are dealing with PDF malware and source code authorship

respectively, the general algorithms can be applied to PE malware.

Although these techniques have been demonstrated to be effective, we have identi-

fied several limitations. First, the existing techniques model the AE generation in a stateful

manner. However, it is hard to train a stateful model given that the search space is huge.

7



Therefore, we chose a stateless modeling approach, which can significantly reduce the learn-

ing difficulty and result in more productive AE generation. Second, most of the existing

techniques only learn a decision-making policy that decides what action to take in the next

step and randomly picks content if needed. We found that contents are as important as

actions. If the content associated with certain action has proved to be useful in generating

one AE, the same action-content pair will likely be useful for some other samples as well.

Third, when an AE is successfully generated, these techniques will assign rewards to all the

actions involved. In our evaluation, we observe that when AEs are generated, only a small

number of actions applied to these AE are essential. The rest are redundant and can be

removed. Assigning rewards to these redundant actions will confuse the learning process.

Based on these insights, we propose a reinforcement learning framework, called

MAB-Malware to generate AEs for PE malware. Its name comes from our modeling of the

AE generation problem as a classic multi-armed bandit (MAB) problem. In summary, the

contributions of this chapter are as follows:

• We examine the existing algorithms in blackbox AE generation and provide key in-

sights for stateful vs. stateless modeling, content-aware vs. content-agnostic modeling,

and redundant vs. essential actions.

• We argue that a stateless and content-aware modeling is more suitable for generating

adversarial PE malware, and an action minimization process is essential.

• To meet these design choices, we propose and implement a novel MAB-based rein-

forcement learning framework for generating adversarial PE malware.

• We conduct an extensive evaluation on two popular machine learning models and

8



three commercial AV engines. MAB-Malware outperforms the existing blackbox AE

generation algorithms by large margins.

• Based on our action minimization, we further look into the root cause of these evasions.

Our experiment results suggest the static classifiers in the commercial AV engines are

vulnerable to trivial changes to malware samples.

To facilitate the follow-up research on this topic, we released the source code of

our framework in a GitHub repository1.

2.3 Motivation

In this section, we first discuss the existing reinforcement learning-based and ge-

netic programming-based approaches on AE generation and their limitations, and then we

present our insights that motivate our MAB-based approach.

2.3.1 Existing Approaches

Deep Q-learning. Anderson et al. [7] propose to apply deep reinforcement learning (RL)

to generate adversarial examples of PE malware to bypass machine learning models. They

first define a set of actions (binary mutations), including changing fields in PE header,

appending overlay bytes, packing, and unpacking. Then the agent selects the next action

based on a policy and an environmental state. When an evasive sample is generated, all

applied actions (including early actions that produce no immediate reward) get promoted

for a given state.

1https://github.com/bitsecurerlab/MAB-malware.git

9

https://github.com/bitsecurerlab/MAB-malware.git


Monte Carlo Tree Search. Quiring et al. [137] propose a Monte Carlo Tree Search

(MCTS) based approach to mislead the classification of source code authorship. They

define a set of actions (code transformation) for changing stylistic patterns. Then they

create a Monte Carlo search tree, in which each node represents a variant of the code and

each edge represents an action. Then the task of AE generation is converted to a path

search problem. The goal is to find a path on the tree that leads to misclassification.

Genetic Programming. Demetrio et al. [42] propose a genetic programming-based ap-

proach to generate AEs of PE malware in a black-box attack manner. It formalizes the

problem as a constrained minimization problem, to trade-off between the probability of

evasion and injected payload size. The fitness function is defined as the sum of confidence

scores and injected payload size. In each iteration, it selects variants with the lowest fitness

score. Another paper from Xu et al. [177] also uses a genetic programming-based approach

to generate adversarial PDF malware.

2.3.2 Our Insights

While these existing techniques have demonstrated their effectiveness more or less,

we observe several key insights, which can motivate us to develop a better technique for AE

generation.

Stateful vs. Stateless Modeling. Existing reinforcement learning techniques [7, 42,

177, 137] model the AE generation problem in a stateful way. They try to build a search

tree, each node representing a state. The original sample is the root state. Each state

has multiple actions to choose from. After applying one action, the sample enters the next

10



state. Existing works attempt to learn a policy to choose the next action in different states.

For different states, the action selection strategy is different. However, as the search tree

grows, the total number of states increases exponentially. It makes the training of action

selection strategies difficult or sometimes impossible.

Our first insight is that we don’t need to learn a stateful model for the malware

AE generation problem. A model or AV engine classifies a sample as malicious may simply

because it matches a specific signature, such as a section name or byte sequence. Before

we find the correct action to change that signature, no matter how many irrelevant actions

are applied, the sample will be detected for the same reason. Therefore, we don’t need to

construct the search tree to model different states. It makes the learning task unnecessarily

difficult. Instead, we should keep the sample in only one state: non-evasive. Then our job

becomes much easier: how to choose the correct action to jump from the same non-evasive

state to the desired evasive state. We call it stateless modeling because there is only one

state before evasion.

We propose to utilize a classic reinforcement learning model, the multi-armed

bandit (MAB) [109] model, to solve the malware adversarial example generation problem.

The MAB problem is formally equivalent to a one-state Markov decision process. It has just

one state. From that state, it selects candidate actions to apply for the following iterations.

Through these selections, it gradually learns the reward probability of each action. It tries

to maximize the total rewards by finding the optimal tradeoff between exploration (learning

the reward probabilities of unfamiliar actions) and exploitation (applying actions with high

average rewards).

11



Content Modeling. Many actions used for manipulating PE need to be associated with

some contents. For instance, when adding a new section, we need to specify what content

to be filled in that section. When renaming a section, we need to provide a new section

name. Our second insight is that these contents are as important as the actions. If content

associated with one action has proved to be useful in generating one AE, the same action-

content pair is likely to be useful for other samples.

Most existing works do not take contents into account. They only learn a decision-

making policy to decide what action to take in the next step and take random content if

required. For example, if the next action to take is “Section Add” according to the policy,

they will fill the new section with random content. Our MAB-based framework treats an

< action, content > tuple as an integral unit (a slot machine in MAB) for modeling. If the

new content is discovered to be useful to generate an adversarial example, it will be saved

to be reused for other samples.

Precise Reward Assignment. Reward assignment is essential to all the existing AE

generation techniques described above. When an AE is successfully generated, a positive

reward is assigned to the corresponding sequence of actions. However, not all actions are

essential to the generation of this AE. According to our evaluation in Section 2.6.4, in most

cases, only one or two actions are essential. Therefore, assigning rewards to all the actions

involved in an AE generation will lead to a less accurate reinforcement learning model.

Hence, our third insight is that we should precisely assign rewards only to the essential

actions.

12



2.4 Problem

2.4.1 Threat Model

We follow the study by Carlini et al. [19] to describe our threat model, from three

aspects: adversarial goal, adversarial capabilities, and adversarial knowledge.

Adversarial Goal. The adversary’s goal is to manipulate malware samples to evade the

detection of static PE malware classifiers. Other types of malware like PDF malware or

Android malware are not within the scope of this study. This is an untargeted attack

because we only consider a binary classification (benign or malicious) not specific malware

families in this classification task and we are only interested in causing the malicious samples

to be classified as benign.

Adversarial Capabilities. In this work, we assume that the adversary does not have

access to the training phase of the malware classifiers. For instance, the adversary can-

not inject poisonous data into the training dataset. Also, the adversary cannot arbitrarily

change the input data. In most scenarios of adversarial attacks, such as image recognition,

the adversary is required to make only “small” changes to the original sample to keep the

manipulation visually imperceptible. However, when attacking malware classification, the

restriction is not on the number or size of changes, but on the preservation of malicious

functionality. If “small” changes on a malware sample indeed confuse a malware classi-

fier but prevent the malware from acting maliciously, this manipulation is not considered

successful.

Adversarial Knowledge. Based on the knowledge an adversary can obtain, an attack can

be divided into two types: 1) whitebox attacks where the adversary has unlimited access to

13



the model; and 2) blackbox attacks where the adversary has no knowledge about the model

and can obtain the classification results only through a limited number of attempts. A

classification result can be a score or simply a label. In this work, we consider an adversary

with only blackbox access. The adversary does not know anything about the internals of

the deployed classifiers, can perform a limited number of attempts to the classifiers, and

can observe the classifiers’ actions when the samples are considered malicious.

2.4.2 Problem Definition

In this chapter, we focus on three state-of-the-art machine learning classifiers and

the static classifiers of 3 top commercial antivirus products. We aim to automatically gener-

ate adversarial examples for malware classifiers and explain the root cause of the evasions.

The problem can be divided into two sub-problems: adversarial example generation and

feature interpretation.

We aim to manipulate a malware sample such that malware classifiers misclassify

it as benign, and do not break its malicious functionalities. For whitebox attacks in the

image domain, changes to original images are bounded with L2 and L∞ norms. It ensures

that the pixel changes are imperceptible to humans. However, in the malware classification

domain, as long as the binary behaviors remain the same, normal users are unlikely to notice

the differences between the original sample and the modified one. That is why previous

blackbox attacks [25, 57, 7] on malware do not try to minimize changes when generating

AEs. However, we find that the minimal change requirement is still crucial for three main

reasons: 1) it reveals which actions and the corresponding payloads are essential to generate

evasive samples that can be applied to other samples to create successfully evasive samples;

14



2) it unveils which feature changes caused the evasion to ensure that the classifier does not

rely on superficial features; and 3) it reduces the chance of creating broken binaries. In the

blackbox setting, instead of minimizing added noises in feature space, we minimize action

sequences applied to generate AEs. It includes removing redundant actions and replacing

actions that cause large changes to the features used for detection.

Let X be a malware dataset, f be a malware classifier that maps a sample x ∈ X to

a classification label y ∈ {0, 1} (0 represents benign, 1 represents malicious). We implement

an action set A = {a1, a2, . . . an} that can be used to perturb malware samples. We define

an objective function for adversarial example generation in (2.1). An adversarial example

x′ = t(x) is generated by applying a transformation function t, which is a sequence of actions

sampled from set A. L(f(t(x)), ȳ) measures the difference between the predicted label of

f(t(x)) and benign label ȳ. The transformation function t subjects to the constraint that

t(x) does not change the functionality of x, i.e. the functionality difference δ(x, t(x)) before

and after transformation equals to 0.

argmin
t
L(f(t(x)), ȳ),

s.t. δ(x, t(x)) = 0, y ̸= ȳ

(2.1)

15



Malware 
Samples

Evasive
Samples

Action
Minimizer

Minimized
Evasive
Samples

Reward Update 

Functionality 
Verification

Binary Rewriter

…...
Generic
Machine

M<SA, rand>

Generic
Machine

M<OA, rand>

Generic
Machine

M<SP, rand>

Generic
Machine

M<BC, rand>

Specific
Machine
M<SA, X>

Insert

Figure 2.1: Workflow

2.5 Methodology

2.5.1 Adversarial Attack as a Multi-armed Bandit Problem

The Multi-Armed Bandit problem [109] is a classic reinforcement learning problem

that embodies the exploration-exploitation trade-off dilemma. It is about how to maximize

the total reward by allocating limited resources to multiple competing choices. The property

of each choice is gradually learned in the process of resource allocation.

Slot machines in a typical casino are also called one-armed bandits [158] because

the early machines have large mechanical levers attached to the sides, and they can empty

the player’s pockets like a thief. When the lever of the machine is pulled, its reward

probability is θ. Therefore, a multi-armed bandit can be viewed as multiple slot machines

with different reward probabilities. The reward probabilities are unknown to players. A

player can observe each machine’s reward probability by pulling it. However, the player

has limited money. The goal is to maximize the sum of the rewards obtained through a

series of lever pulls. The multi-armed bandit can be viewed as a tuple of <M,R >. M is

a set of slot machines. R is a set of reward distributions {θ1, . . . , θK}, each distribution is

associated a machine.

In the malware domain, we have many actions that can change the features of a

PE binary without altering its functionality. Many actions require payload content to work.

16



For example, adding a new section requires benign content as the content of the new section.

Content plays a vital role in attacking machine learning models, because the added content

can largely change the byte entropy of the original malware sample in a certain direction.

Adversarial attacks can be viewed as a problem of how to choose a serial of action and

content pairs to maximize the probability of generating adversarial examples.

We treat the tuple < action, content > as a slot machine M . When M is selected,

it will apply action to the target binary file using the payload content. In our framework,

we have two kinds of machines: generic machines and specific machines.

Generic Machine. A generic machine M<action,rand> is a machine, when selected, applies

action to the target malware sample, with a random content extracted from benign binary

files. For example, the OA (overlay Append) generic machineM<OA,rand> extracts a random

section content from a random benign binary and appends the content to the target malware

sample as overlay data. The reason for creating a generic machines is that at the beginning

of the attack, we do not know which content is effective. By choosing a generic machine,

we can explore different benign content for a certain action.

Specific Machine. A specific machine M<action,X> is a machine that, when selected,

applies action to the target malware sample, with specific content X. After we generate an

adversarial example x′ by pulling a generic machineM<action,rand>, ifM machine is essential

to the evasion (see details in Section 2.5.3), we will create a specific machine M<action,X>.

The content X is the specific content used in generating x′. When M<action,X> is selected

by other malware samples, the specific content X is exploited to generate more adversarial

examples.

17



The workflow of our framework MAB-Malware is shown in Figure 2.1. It consists

of two main modules: the Binary Rewriter and the Action Minimizer. The Binary Rewriter

utilizes Thompson sampling to select machines from the machine setM and rewrites original

malware sample x to generate adversarial example x′. The Action Minimizer removes

redundant machines to generate adversarial samples x′min with minimal feature changes.

Redundant machines are machines selected by the Rewriter in the generation of adversarial

example x′, but later we find that without them, the rest machines can still generate an

adversarial example. That is because, at the beginning of the attack, the property of each

machine is unclear. Rewriter needs to select these redundant machines to infer their reward

probability. The rest necessary machines are called essential machines.

Our problem can be viewed as a tuple of < M,R >. M is a set of machines

(including generic machines and specific machines), each machine Mi refers to pulling one

slot machine < actioni, contenti >. R is a set of reward distributions {θ1, . . . , θK} (suppose

we haveK slot machines), each distribution is associated an action. The reward distribution

θi of each machine is unknown. We have a limited number of attempts to pull these

machines. The goal is to maximize the reward through a series of pulls.

Thompson Sampling. In our task, we face a delayed feedback problem. When evaluating

the static modules of commercial antivirus systems, we need to copy the generated sample

to the virtual machine with antivirus and wait for the scanning result. This process takes

seconds, even minutes for certain AVs. If we adopt a deterministic algorithm, such as

upper confidence bounds, it will always select the one with the highest values before the

result returns. It causes inefficient trials because of outdated information. To address this

18



issue, we use Thompson sampling algorithm [168], which is more robust than deterministic

algorithms in the delayed feedback environment [26].

We assume the reward follows a beta distribution [1] specific to that machine.

The beta distribution is a continuous probability distribution parameterized by two positive

parameters, denoted by α and β, i.e. M ∼ Beta(α, β). α and β correspond to the counts of

success or fail respectively. At each action selection iteration, for each machine, we sample

a value from its Beta(θ;α, β) distribution and select the machine with the highest value as

the next machine. When the α and β values of a machine are small, the uncertainty ofM is

high. Even if this average reward is lower than other machines, it still has a relatively high

possibility to get a large value. In this way, new machines are more likely to be selected

for exploration. After several trials, the α and β value of that machine becom large, and

the uncertainty decreases. In this way, machines with high average rewards are selected for

exploitation.

Reward Propagation. When a machine is created, we set α=1, β=1 for each machine.

For every machine that is selected by Rewriter but fails to generate the adversarial example,

we increase its β by 1. When an adversarial example is generated and minimized, for every

essential machine, we increase the α by 1. If the machine is a generic machine, we also

create new specific machines using its specific content (with α=1, β=1). If an essential

machine is a specific machine, we also increase the α of its corresponding generic machine

that it derives from, to encourage the exploration for certain types of actions.

19



2.5.2 Binary Rewriter

Action Set and Features

Table 2.1: Action Set.

Type Abbr Name Description

Macro

OA Overlay Append Appends benign contents at the end of a binary.
SP Section Append Appends random bytes to the unused space between sections.
SA Section Add Adds a new section with benign contents.
SR Section Rename Change the section name to a name in benign binaries.
RC Remove Certificate Zero out the signed certificate of a binary.
RD Remove Debug Zero out the debug information in a binary.
BC Break Checksum Zero out the checksum value in the optional header.
CR Code Randomization Replace instruction with semantically equivalent one.

Micro

OA1 Overlay Append 1 Byte Appends 1 byte at the end of a binary.
SP1 Section Append 1 Byte Appends 1 byte to the unused space between a section.
SA1 Section Add 1 Byte Adds a new section with 1 byte content.
SR1 Section Rename 1 Byte Change 1 byte of a section name.
CP1 Code Section Append 1 Byte Appends 1 byte to the unused space of code section.

Table 2.2: Affected Features by Actions.

CR OA SP SA SR RC RD BC OA1 SP1 SA1 SR1 CP1

Hash-Based
Signatures

F1: File Hash
F2: Section Hash

Rule-based
Signatures

F3: Section Count
F4: Section Name
F5: Section Padding
F6: Debug Info
F7: Checksum
F8: Certificate
F9: Code Sequence

Byte Entropy F10: Byte Entropy

We implemented 13 actions in Table 2.1. Each action manipulates a set of features

that a classifier may use to detect malware (shown in Table 2.2).

Macro-actions. We reimplemented actions proposed by Anderson et al. [7] using the

pefile library and fix many corner cases that may break the functionality. We also adopt a

code randomization action (CR) from Pappas et al. [125]. It is a defense method originally

20



proposed to prevent Return Oriented Programming (ROP) attacks. It provides binary

code transformations that can safely randomize stripped binaries, without changing their

semantics.

Micro-actions. If action a affects k features {f1, f2, . . . fk} of the malware sample, then

an action that affects only a subset of these features is the micro-action of a. We have

implemented 5 micro-actions: OA1, SP1, SA1, SR1, and CP1. They are similar to the

corresponding macro-actions but with minimized feature changes. Take SA1 as an example.

Similar to SA, SA1 also adds a new section entry in the header, but it only adds a 1-byte

section. SA adds a lot of benign content, and greatly changes the byte entropy of the original

binary, while SA1 does not. Therefore, SA affects features {F1, F3, F10}, SA1 only affect

features {F1, F3}. By looking up Table 2.2, you can see that SA’s micro-actions also include

OA1 and OA, affecting features {F1} and {F1, F10} respectively. OA is also considered a

macro-action during the attack. So, we can see that micro-action is a relative concept.

Workflow of Binary Rewriter

Algorithm 1 summarizes the workflow of Binary Rewriter. For a set of malware

samples X, our goal is to generate a set of adversarial samples Xa. First, we initializeM

by creating 8 generic machines, and each machine’s α value and β value are set to 1. To

select the next machine, for each machine, we sample a value from its β distribution and

select the machine with the highest value. Then we apply the corresponding machine to

x. We apply a serial of machines iteratively until we get an evasive sample or exceed the

total number of attempts N . When an evasive sample is generated, we further use Action

21



Algorithm 1 Adversarial Attack

Input: malware sample set X
Output: adversarial example set Xa

1: initialize(M)
2: Xa ← []
3: for all x ∈ X do
4: list M ← []
5: for all attempt idx← 1 to N do
6: M ← max(betaSampling(M))
7: x′ ← apply(x,M)
8: list M .add(M)
9: if isEvasive(x′) then

10: x′min, list Mmin ← minimize(x, list M)
11: Xa.add(x

′
min)

12: for all M ′ ∈ list Mmin do
13: incAlpha(M ′)
14: if isGeneric(M ′) then
15: M ′

s ← createSpecificMachine(M ′)
16: M.add(M ′

s)
17: else
18: M ′

g ← getParentGeneric(M ′)
19: incAlpha(M ′

g)
20: end if
21: end for
22: break
23: else
24: incBeta(M)
25: end if
26: end for
27: end for
28: return Xa

22



Minimizer to remove redundant machines. For the remaining machines list Mmin, we first

increase their α by 1. If it is a generic machine, we create a new specific machine M ′
s. If it

is a specific machine, we increase the α value of its parent generic machine, which has the

same action type but with random content. For failed machine, we increase the value of β

by 1.

Algorithm 2 Minimize

Input: malware sample x, applied machines list M
Output: minimized AE x′min, minimized machines list Mmin

1: list Mmin ← list M
2: for all M ∈ List M do
3: list M ′ ← List Mmin −M
4: x′ ← apply(x, list M ′)
5: if isEvasive(x′) then
6: list Mmin ← List M ′

7: x′min ← x′

8: else
9: list micro← get micro actions(M)

10: for all Mmic ∈ list micro do
11: list M ′ ← List Mmin −M +Mmic

12: x′ ← apply(x, list M ′)
13: if isEvasive(x′) then
14: list Mmin ← List M ′

15: x′min ← x′

16: break
17: end if
18: end for
19: end if
20: end for
21: return x′min, list Mmin

23



Benign
Malicious

a1

a2

a3

x

x23 x123

x13

x2'3

x2'3'
x2'3''

            apply a macro-action
            remove a redundant macro-action
            replace a macro-acton with a micro-action

Figure 2.2: An example of action minimization.

2.5.3 Action Minimizer

The Action Minimizer removes redundant actions and uses micro-actions to replace

macro-actions, to produce a “minimized” evasive sample that only changes minimal features.

As shown in Figure 2.2, the original malware sample x resides in the malicious

region of the feature space. During the attack, we perform a sequence of actions a1, a2 and

a3 until the generated sample x123 successfully reaches the benign region, and becomes an

adversarial example. In the minimization phase, we first remove redundant actions. The

action a2 is essential, because by removing action a2, the generated sample x13 is no longer

evasive anymore. The action a1 is useless because by removing action a1, the generated

sample x23 has no effect in the classifier’s decision. Then we disentangle these actions into

micro ones (i.e., actions that cause smaller changes). a2 can be replaced with micro-actions

a′2. Action a3 can be replaced with micro-actions a′3 or a′′3. We generate three samples

x2′3, x2′3′ and x2′3′′ . Finally, we have an adversarial sample x2′3′′ with a minimized action

sequence (a′2, a
′′
3). So a positive reward can be precisely assigned to these essential actions

a′2 and a′′3.

24



As shown in Algorithm 2, for each machine M in the applied machines list M , we

try to remove it and apply the new sequence list M ′ to the original sample x to generate x′.

If x′ is still evasive, it means that the machine M action is redundant. We can permanently

delete M from list M . Otherwise, we will find that all micro-actions list micro that only

change the subset of features changed by M . Then we try to replace M with each micro-

action Mmic in list micro and apply the new sequence to generate x′. If x′ is still evasive,

then we use Mmic to permanently replace M . If we find that M cannot be removed or

replaced, it means that machine M is essential. In this way, we can delete redundant

feature changes and find the essential actions.

For example, to generate an evasive sample x′ for x, Binary Rewriter has applied

5 actions: CR, OA, SP, BC, SA. Action Minimizer will check every machine to determine

if it can be removed. It finds that the first 4 actions are redundant, only the last action SA

cannot be removed. SA (add a new section) changes 3 features of the original binary file.

It changes the file hash, creates a new entry in the section table, and adds a content block

to the end of the file. Correspondingly, SA has 3 micro-actions: OA1, SA1, and OA. Each

of them only changes one feature. If we replace SA with any micro-action, we will remove

redundant feature changes. In this way, we can generate the minimized adversarial example

x′min.

From a defender’s point of view, we also would like to understand how an evasion

happens, where the weakest point of the classifiers is. The action minimization of evasive

samples provides a good opportunity to infer that information. Figure 2.3shows how we

break macro-actions into micro-actions. Take the action Section Append (SP) as an ex-

25



ample. First, by looking up Table 2.2, SP changes feature F = {F1, F2, F5} (File Hash,

Section Hash and Section padding). The actions that only change a subset of F are OA1

that changes {F1} and SP1 that changes {F1, F2}. Starting from the minimum change, we

try to replace SP with OA1 and check if the file is still evasive. If so, we can conclude that

the evasion is caused by the change of file hash (F1). If not, we continue to replace SP with

SP1. If successful, the evasion is caused by the change of section hash (F2). Otherwise, the

evasion is caused by the change of signatures in section padding content (F5). This way we

can generate a minimized adversarial example and find out what is causing the evasion.

2.6 Evaluation

2.6.1 Experiment Setup

Dataset: In this chapter, we generate adversarial examples for Windows PE binaries.

To ensure the executability and functionality of the generated samples, the format and

constraints of PE files must remain intact. To guarantee the quality of malware samples,

we randomly select 5000 samples from VirusTotal that meet the following requirements: 1)

more than 80% antivirus engines of VirusTotal label them malicious; and 2) the execution

of those samples in a Cuckoo sandbox shows malicious behavior.

Setup: The experiments are performed on 20 virtual machines of the Microsoft Azure

cloud platform. The configuration of each virtual machine is Standard D2s v3 (2 vcpus,

8 GiB memory). For all the antivirus software under testing, free versions and default

settings are used. We choose three top commercial antivirus products for blackbox testing,

26



If SP ← OA1, then feature = File Hash
Else If SP ← SP1, then feature = Section Hash

Else feature = Section Padding

(a) SP

if SA ← OA1, then feature = File Hash
Else If SA ← SA1, then feature = Section Count

Else If SA ← OA, then feature = Byte Entropy
Else feature = Section Count & Byte Entropy

(b) SA

If CR ← OA1, then feature = File Hash
Else If CR ← CP1, then feature = Section Hash

Else feature = Code Sequence

(c) CR

If RD ← OA1, then feature = File Hash
Else If RD ← CP1, then feature = Section Hash

Else feature = Debug Information

(d) RD

If SR ← OA1, then feature = File Hash
Else If SR ← SR1, then feature = Section Name

Else feature = Part of Secton Name

(e) SR

If OA ← OA1, then feature = File Hash
Else feature = Byte Entropy

(f) OA

If BC ← OA1, then feature = File Hash
Else feature = Checksum

(g) BC

If RC ← OA1, then feature = File Hash
Else feature = Certificate

(h) RC

Figure 2.3: Decision rules are used to map actions to feature space

which are anonymized as AV1, AV2, and AV3. Each antivirus is installed on an Azure

virtual machine with Windows 7. To ensure the malware will not infect other machines in

the network and the stability and reproducibility of our experiments, all network traffic is

routed to an InetSim instance on the host machine to provide simulated network services.

27



We choose the following models as our target models:

• EMBER [9] is an open-source machine-learning-based classifier that uses a tree-based

classifier model LightGBM to detect malware. It generates a 2350-dimensional fea-

ture vector for each sample consisting of two main types of features: raw features (e.g.

ByteHistogram, ByteEntropyHistogram, Strings) and parsed features (e.g. General-

FileInfo, HeaderFileInfo, SectionInfo, ImportsInfo, ExportsInfo). We use the model

provided in MLSEC2019 (Machine Learning Security Evasion Competition) [118].

• MalConv [138] is a malware detection model that uses a convolutional neural network

to learn knowledge directly on the raw bytes of malware samples. We also use the

model provided in MLSEC2019 [118].

• Commercial AVs. We also test the static classifiers of 3 top commercial antivirus

systems.

2.6.2 Adversarial Example Generation

Comparison with Other Off-the-Shelf Frameworks. We compare our MAB-Malware

with other two off-the-shelf attack frameworks: SecML-Malware2 and Gym-Malware3. SecML-

Malware is a plugin for the SecML Python library. It contains many kinds of attacks, includ-

ing black-box attacks with hard labels. We utilize its genetic programming-based black-box

attack (GAMMA) in this experiment. Gym-Malware is a reinforcement learning-based mal-

ware manipulation environment using OpenAI’s gym. Its agents learn how to manipulate

PE files to bypass AV based on a reward provided by taking specific manipulation actions.

2https://github.com/zangobot/secml_malware.git
3https://github.com/endgameinc/gym-malware.git

28

https://github.com/zangobot/secml_malware.git
https://github.com/endgameinc/gym-malware.git


0 10 20 30 40 50 60
total number of attempts

0

20

40

60

80

100

ev
as

io
n 

ra
te

 %

97.72%

67.68%

27.1%

49.16%49.96%

28.8%

MAB-Malware
SecML-Malware
Gym-Malware
Gym-Malware action set (Random)
MAB-Malware action set (MCTS)
MAB-Malware action set (Random)

(a) MalConv

0 10 20 30 40 50 60
total number of attempts

0

20

40

60

80

100

ev
as

io
n 

ra
te

 % 75.94%

48.9%

12.3%
15.26%
13.06%
12.1%

MAB-Malware
SecML-Malware
Gym-Malware
Gym-Malware action set (Random)
MAB-Malware action set (MCTS)
MAB-Malware action set (Random)

(b) EMBER

Figure 2.4: Evasion Results

We measure the evasion rate for two machine learning-based models, MalConv

and EMBER. Evasion Rate is defined as: Re = Ne/Nd, where Ne is the total number

of successful evasive samples, and Nd is the total number of original samples that can

be detected by the target model. For a fair comparison, we use the same dataset (5000

samples from VirusTotal) and MalConv and EMBER models (from the Machine Learning

Static Evasion Competition 2019 [118].) We run each experiment five times to calculate an

average.

29



From Figure 2.4, we can see that MAB-Malware performs much better than the

other approaches. It can generate AEs for 97.72% samples to evade MalConv, 74.4% sam-

ples to evade EMBER. The evasion rate of SecML-Malware (GAMMA-hard label) is 63.6%

and 50.0% respectively. Gym-Malware has the lowest evasion rate (27.1% and 12.3%).

The evasion rate is almost identical to random action selection using its own action set

(28.8% and 12.1%). This indicates that this deep Q-learning model does not learn mean-

ingful knowledge to guide the evasion. The reason is that the problem modeling creates

an exponentially large search space. And without action minimization, the reward assign-

ment is chaotic. Within 60 trials, it cannot explore enough in such a large space and learn

meaningful policy to select the correct action and corresponding content.

Comparison with Other Algorithms. The action sets of these three frameworks are dif-

ferent. SecML-Malware only uses benign content injection and appending. Gym-Malware’s

operation set is similar to ours, but it also includes packing and unpacking. As a result, we

cannot see the effectiveness of the MAB-based action selection algorithm.

So in this experiment, we only use our own action set and change the action

selection algorithms. The baseline is random selection. Then we compare our method

with the other reinforcement learning algorithm. In the experiment above, we have already

shown that the Q-learning models cannot directly improve the evasion rate over random

selection. In this experiment, we further implement another MCTS-based reinforcement

learning algorithm. Quiring et al. [137] propose an MCTS-based approach to mislead the

classification of source code authorship. Because their code cannot be directly applied to

malware classifiers, we borrowed their idea and reimplemented it for malware classification.

30



It can be seen from Figure 2.4 that in the same action set, our MAB algorithm

greatly improves the evasion rate compared to random action selection, while the MCTS

algorithm hardly provides any improvement. Existing frameworks model AE generation

in a stateful way and try to find the best state path leading to escape. This makes it

difficult to train in a large search space. In addition, the existing framework does not have

a mechanism to effectively reuse the successful payload.

Table 2.3: Evasion Result on Antivirus.

Antivirus
Frameworks

SecML-Malware MAB-Malware

AV1 5.61% 31.99%

AV2 11.40% 46.2%

AV3 12.75% 48.3%

Attacking Commercial Antivirus. We also test our framework on three commercial

antivirus engines. The throughputs of commercial AV engines are much lower than machine

learning classifiers. We need to copy a lot of generated samples into the virtual machine

with a particular AV installed and wait for AV engines to scan them to get labels. It usually

takes seconds or even minutes to get the result. As a result, we only use 1000 samples for this

experiment. Also, we do not compare Gym-malware since it cannot finish the experiment

within a reasonable time frame.

As shown in Table 2.3, SecML-Malware only achieves 5% - 12% evasion rate for

all AVs, while MAB-Malware achieves 31% - 48% evasion rate. It shows the advantages of

MAB-Malware in generating adversarial examples in a pure blackbox setting.

Number of bytes changed. The Action Minimizer ensures that the minimized evasive

samples only change minimal content to flip the classification label. So by checking how

31



many bytes we need to change, we can infer the robustness of different malware classifiers.

To measure the difference between the minimized evasive example and the original malware,

we compute the total number of bytes appended or modified by our framework.

evasive samples 1 - 123

103

105

107

ch
an

ge
 b

yt
e 

am
ou

nt

evasive samples 1 - 155

102

104

106

ch
an

ge
 b

yt
e 

am
ou

nt

(a) MalConv (b) EMBER

evasive samples 1 - 317

101

103

105

ch
an

ge
 b

yt
e 

am
ou

nt

evasive samples 1 - 452

101

103

105

107

ch
an

ge
 b

yt
e 

am
ou

nt

(c) AV1 (d) AV2

evasive samples 1 - 463

101

103

105

107

ch
an

ge
 b

yt
e 

am
ou

nt

(e) AV3

Figure 2.5: Number of Changed Bytes of Adversarial Examples.

By positioning the samples in a line sorted by byte changes (Figure 2.5), we notice

that:

• By only changing one byte of the original malware, we can generate 33 for AV1, 32

for AV2, 3 for AV3.

• Machine learning models are not vulnerable to small changes. However, it does not

mean that ML models are more robust than commercial AVs. From the previous

32



evasion rate results, we can see that using our framework, ML models are easier to

evade than commercial AVs.

2.6.3 Testing Functionality Preservation

We found that the action set in Gym-Malware, which is implemented using LIEF [99]

library, is not safe. According to our experiment result in Table 2.4, more than 60% of the

generated binaries after a single action cannot be executed, or behave differently. To solve

this problem, we carefully reimplement most actions using the pefile [21] library to avoid

many corner cases that may lead to a broken binary. For example, before adding a new

section, we check whether there is enough space between the last section header entry and

the first section.

We implement our own action set using the pefile library whereas the Gym-

Malware rewrites binaries using the LIEF library. We noticed that rewriting a binary

with the LIEF library can cause unnecessary changes to the binary that can sometimes

result in broken files, thus destroying the functionality of the original malware samples. To

compare our actions with the actions from Gym-Malware, we randomly select 50 malware

samples from our dataset, create adversarial samples by applying different actions, analyze

all variants in the Cuckoo sandbox, and compare the behaviors with the original samples.

From Table 2.4 we can see that except for the Overlay Append action, most actions

in the Gym-Malware framework cause 63.24% of the rewritten samples to lose functionality.

In contrast, only less than 8% of the rewritten samples using our actions create broken

binaries.

33



Table 2.4: Functionality Preservation Rate of the Actions

Actions
Functional Rate

Gym-Malware Actions MAB-Malware Actions

(OA) Overlay Append 45/48 (93.75%) 46/48 (95.83%)
(SP) Section Append 11/47 (23.40%) 42/43 (97.67%)
(SA) Section Add 11/47 (23.40%) 39/42 (92.86%)
(SR) Section Rename 11/47 (23.40%) 42/43 (97.67%)
(RC) Remove Certificate 1/3 (33.33%) 3/3 (100.00%)
(RD) Remove Debug 5/13 (38.46%) 13/13 (100.00%)
(BC) Break Checksum 9/48 (18.75%) 32/33 (96.97%)

Average 93/253 (36.76%) 217/225 (96.44%)

2.6.4 Explanation

Understanding why an evasion happens can help improve the robustness of a classi-

fier against adversarial attacks. For each evasive sample, the Action Minimizer first removes

all redundant actions and uses micro-actions to replace the macro-actions. We summarize

the most frequent action sequence combination is Figure 2.6. According to the rules in

Figure 2.3, we can infer the root cause of each evasion, shown in Figure 2.7. We found that:

• For two machine learning-based classifiers, the most important action is Overlay Ap-

pend (OA). Other actions that only change a few bytes have almost no effect on them.

It shows that the change in byte entropy is the root cause of the evasions.

• The Section Add 1 Byte (SA1) action plays a significant role in evading all AVs.

It indicates that all AVs utilize section count as an important feature for detecting

malware.

• Comparing to AV2 and AV3, AV1 is also vulnerable to the Code Section Append 1

Byte (CP1) action. CP1 alters the hash of the code section. It indicates AV1 uses

34



[OA]

[OA,OA]

[OA,OA,OA]
[CR]

[OA,OA,OA,OA]

[CR,OA]

[CR,OA,OA]

[OA,OA,OA,OA,OA]
0

25

50

75

100
pe

rc
en

ta
ge

 %

[OA]

[OA,OA]

[OA,OA,OA]

[OA,OA,OA,OA]

[OA,OA,OA,OA,OA]

[OA,OA,OA,OA,OA,OA]

[OA,OA,OA,OA,OA,OA,OA]

[OA,OA,SR
]

0

25

50

75

100

pe
rc

en
ta

ge
 %

(a) MalConv (b) EMBER

[CP1
,SA

1]

[CR,SA
1]

[CP1
]

[CR]

[CP1
,SA

1,S
A1]

[SA
1,S

P1
]

[SA
1]

[CP1
,SA

1,S
R1]

0

25

50

75

100

pe
rc

en
ta

ge
 %

[SA
]

[SA
1]

[SR
1]

[SA
1,S

R1]

[OA1,S
A]

[CR]

[OA1,S
A1]

[OA1,S
R1]

0

25

50

75

100

pe
rc

en
ta

ge
 %

(c) AV1 (d) AV2

[OA,SA
1] [SA

]

[SA
1,S

A1,S
A1]

[CR,OA,SA
1]

[SA
1]

[CR,OA1]

[CR,SA
]

[CR,SA
1,S

A1,S
A1]

0

25

50

75

100

pe
rc

en
ta

ge
 %

(e) AV3

Figure 2.6: Action Sequences for Adversarial Examples

code section hash as an important feature for detecting malware.

• The Section Rename 1 Byte (SR1) action itself can generate many adversarial exam-

ples for AV2. SR1 changes one byte of one section name. It indicates that AV2 relies

heavily on the section name for detecting malware.

• Comparing with AV2 and AV3, the Section Add (SA) action and the Overlay Append

(OA) action have almost no effect on AV1. SA and OA greatly change the byte

entropy of the original malware samples. It indicates that AV2 and AV3 integrate

35



F1: File Hash

F2: Section Hash

F3: Section Count

F4: Section Name

F5: Section Padding

F6: Debug Info

F7: Checksum

F8: Certificate

F9: Code Sequence

F10: Byte Entropy

EMBER

MalColnv

AV1

AV2

AV3

0.00 % 0.00 % 0.05 % 1.45 % 0.10 % 0.00 % 0.00 % 0.05 % 0.28 % 98.06 %

0.00 % 0.00 % 0.04 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 1.33 % 98.63 %

0.00 % 30.66 % 39.52 % 6.47 % 0.17 % 1.36 % 0.34 % 0.00 % 18.23 % 3.24 %

0.00 % 0.71 % 30.92 % 23.32 % 0.18 % 2.65 % 0.00 % 0.18 % 5.83 % 36.22 %

0.12 % 1.32 % 32.22 % 8.14 % 0.48 % 1.44 % 0.00 % 0.12 % 22.16 % 34.01 %

0

20

40

60

80

Figure 2.7: Feature changes that cause evasion.

some machine learning models in static detection. And AV1 mainly uses the signature-

based approach to detect malware.

2.6.5 Transferability

Transferability refers to the property that allows an adversarial sample that can

evade one model can also evade other similar models. If the adversarial malware samples

are transferable, then evading one malware detector would be enough to evade all malware

detectors.

Figure 2.8 shows the percentage of evasive samples generated for one classifier

that can also evade other classifiers. The number in the cell (model A, model B) shows the

36



EMBER
MalConv AV1 AV2 AV3

To

EMBER

MalConv

AV1

AV2

AV3

Fr
om

- 22.58 % 3.90 % 4.57 % 1.88 %

10.44 % - 3.28 % 4.30 % 1.74 %

0.32 % 3.15 % - 5.36 % 2.52 %

0.88 % 11.06 % 1.77 % - 9.96 %

3.67 % 5.18 % 11.88 % 12.53 % -

0

5

10

15

20

Figure 2.8: Transferability of Adversarial Samples

percentage of evasive samples generated for model A can also evade model B. We noticed:

• The transferability between machine learning models is quite high, although EMBER

and MalConv are trained on different features (2350-dimensional extracted features

vs. raw bytes), and the architecture is different (decision tree vs. neural network).

• Both AV2 and AV3 utilize machine learning models and consider Section count as an

important feature. So the transferability between AV2 and AV3 is relatively higher

than others.

2.7 Discussions

Triviality of Defense. The triviality of the defense depends on the type of attack. To

defend the overlay append attack, the defender can ignore the overlay data when training

37



models. To defend against the SA attack, the defender can lower the importance of benign

features in models, and only consider malware features. To defend against RD, SR, and

BC attacks, defenders should avoid using fragile patterns as malware features. However,

completely ignoring the trivial features can reduce the accuracy of a malware detector. The

code randomization (CR) attack is hard to defend because the defender cannot locate the

small snippet of binary that is randomized.

Recommendation for Researchers. We demonstrate how adversarial examples can be

used to explain a complex blackbox system. When training malware classifiers, researchers

should use explanation techniques to understand the behavior of the classifiers and check

if the learned features are fragile features that can be easily evaded or if they conflict with

expert knowledge. We also argue that for security applications, demonstrating harm to real

users is crucial to understanding the real ramification of an attack.

The generality of our evasive techniques. First, our framework conducts blackbox

attacks against classifiers. Unlike whitebox attacks, blackbox attacks do not require knowl-

edge of the architecture and parameters of the target classifier. Theoretically, our approach

can be used on any malware classifier, as long as the classifier returns a label for testing

samples. Second, we attacked 5 representative malware detectors of diverse techniques,

including a decision tree-based model (EMBER), a deep learning model (MalConv), and 3

commercial AV engines from top-level AV companies. The significant evasion rate improve-

ment of these detectors proves the generality of our method.

Mitigation using Dynamic Detection. Our solution cannot bypass dynamic detectors,

but we argue that dynamic evasion is another research topic. Static evasion itself is an

38



important research direction because it provides a defense before users execute potentially

dangerous programs. This is why ML-based static classifiers, such as EMBER and MalConv,

increasingly attract attention in the security community.

2.8 Discussions

Triviality of Defense. The triviality of the defense depends on the type of attack. To

defend the overlay append attack, the defender can ignore the overlay data when training

models. To defend against the SA attack, the defender can lower the importance of benign

features in models, and only consider malware features. To defend against RD, SR, and

BC attacks, defenders should avoid using fragile patterns as malware features. However,

completely ignoring the trivial features can reduce the accuracy of a malware detector. The

code randomization (CR) attack is hard to defend because the defender cannot locate the

small snippet of binary that is randomized.

Recommendation for Researchers. We demonstrate how adversarial examples can be

used to explain a complex blackbox system. When training malware classifiers, researchers

should use explanation techniques to understand the behavior of the classifiers and check

if the learned features are fragile features that can be easily evaded or if they conflict with

expert knowledge. We also argue that for security applications, demonstrating harm to real

users is crucial to understanding the real ramification of an attack.

The generality of our evasive techniques. First, our framework conducts blackbox

attacks against classifiers. Unlike whitebox attacks, blackbox attacks do not require knowl-

edge of the architecture and parameters of the target classifier. Theoretically, our approach

39



can be used on any malware classifier, as long as the classifier returns a label for testing

samples. Second, we attacked 5 representative malware detectors of diverse techniques,

including a decision tree-based model (EMBER), a deep learning model (MalConv), and 3

commercial AV engines from top-level AV companies. The significant evasion rate improve-

ment of these detectors proves the generality of our method.

Mitigation using Dynamic Detection. Our solution cannot bypass dynamic detectors,

but we argue that dynamic evasion is another research topic. Static evasion itself is an

important research direction because it provides a defense before users execute potentially

dangerous programs. This is why ML-based static classifiers, such as EMBER and MalConv,

increasingly attract attention in the security community.

2.9 Conclusion

In this chapter, We design a reinforcement learning guided framework MAB-

Malware to perform adversarial attacks on state-of-the-art machine learning models for

malware classification and top commercial antivirus static classifiers. We model the action

selection problem as a multi-armed bandit problem. During the attack, MAB-Malware in-

fers the property of actions and dynamically adding new machines with unseen successful

content. It finds an optimal balance between exploitation and exploration to maximize

the evasion rate within limited trials. The Action Minimization module of MAB-Malware

filters out the actions that are ineffective for adversarial sample generation and only change

minimal features, so our framework can also be used to explain why evasion occurs. For

each commercial antivirus system, we compute the effectiveness of each action and the key

40



features that cause evasions. Our results show that MAB-Malware largely improves the

evasion rate over other reinforcement learning frameworks and that some of the adversarial

attacks are transferable between different antivirus systems that are similar to one another.

41



Chapter 3

A Robust Malware Classification

Architecture: Selective

Hierarchical BERT

3.1 Abstract

In the most actively researched field of image recognition, many works have pro-

posed various methods to improve the robustness of the model. In contrast, there is very

little research in the field of malware classification. Most existing works directly use the

method of the image field to improve the robustness of malware classifiers. We found that

in the malware domain, its threat model is quite different from the image domain. Existing

methods have limited improvement in the robustness of malware classifiers, and the accuracy

of the model will also decrease. In this chapter, we explore in detail the different constraints

42



of malware classifiers and the properties that need to be satisfied to build a robust classifier.

On this basis, a new robust deep neural network architecture based on selective hierarchical

BERT is proposed to automatically select malicious functions for malware classification,

which is robust to different attacks by design. Compared with other baselines, our model

can handle very large samples and can automatically select essential features for malware

classification, which fundamentally improves the robustness of the model without sacrificing

the accuracy of the model.

3.2 Introduction

In the malware domain, existing state-of-the-art models, such as MalConv, EM-

BER, are very vulnerable in the presence of adversarial attacks. We used a multi-armed

bandit to model the problem in the last chapter and optimally attacked them, we can

achieve an evasion rate of 74%–97%.

Some works such as Demetrio1[43] use saliency map analysis to explain what Mal-

Conv has learned. The article found that MalConv only learned some very superficial

features. For example, it found that most of the features that MalConv considered most

important came from certain fields in the PE header. And these fields can be easily mod-

ified by attackers. And these modifications will not affect the normal execution of the

program. This paper also proposes an attack method that only modifies the content of

the PE header. The results show that very high evasion rates can be achieved without

modifying the internal code of the malware. Malware samples are malicious because their

internal code features do malicious things, other than co-occurrences and artifacts of cer-

43



tain superficial features in the training dataset. A robust malware classifier should exclude

easily changeable, superficial features.

MalConv’s recognition of features is location-sensitive. We find that if one random

byte is inserted at the beginning of the malware sample, the accuracy of MalConv drops

from 95% to about 50%. Although arbitrarily inserting bytes will affect the executable of

the malware sample, this shows that the recognition of features by MalConv is not shift-

invariant. Attackers can do code reallocation to change the location of malicious code. It

will not affect the sample’s functionality. Moreover, if attackers have the source code, they

can easily insert code to shift the location of the existing code in the compiled binary.

In summary, the contributions of this chapter are as follows:

• We examine existing methods for building robust classifiers and identify different

constraints between the fields of image identification and malware classification.

• We discuss and list the properties that need to be satisfied to build a robust malware

classifier.

• To satisfy these design choices, we propose and implement a novel selective hierarchical

BERT-based robust deep neural network architecture to automatically select malicious

functions for malware classification, aiming at robustness against different attacks.

• We conduct extensive evaluations of baseline models and attacks on our architecture

to show that our method is more robust and accurate than existing methods.

The remainder of this chapter is structured as follows. Section 3.3 provides a

background of existing approaches and our insights. Section 3.4 gives an overview of our

44



new robust architecture, followed by design details of each component. Section 3.5 presents

implementation details and evaluation results.

3.3 Motivation

3.3.1 Existing Approaches

In the field of image recognition, to defend against adversarial attacks, lots of

works have proposed various methods to improve the robustness and generality of deep

learning models.

Adversarial Training. Madry et al. [111] points out that adversarial training with one-

step perturbations is still vulnerable to sophisticated adversaries. They introduce a multiple-

step method that utilizes projected gradient descent (PGD) to generate AEs and train the

model iteratively. Xie et al. [176] find out that the non-smooth nature of the ReLU activation

function weakens the process of adversarial training. The reason is that adversarial training

needs more computations for the inner maximization step to generate the perturbation δ.

Regularization. Several papers, such as [79, 181] propose different regularization tech-

niques to minimize features learned by their machine learning models. The goal of regu-

larization is to make the model generalize to unseen examples. including AEs. However,

this kind of defense cannot resist more advanced adversarial attacks [91]. It also harms the

precision rate on clean samples.

Defensive Distillation. Papernot et al. [123] propose to train a second DNN model

using soft labels instead of hard class labels used by the original model. However, Carlini et

al. citecarlini2016defensive point out that defensive distillation is not effective since attackers

45



can slightly modify their attack to evade it. Meanwhile, it is generally used for multi-

classification tasks. And our target classifier is the binary classifier, which only distinguishes

whether it is malware or not.

Detect & Drop Adversarial Examples. Wang et al. [174] propose X-Ensemble, an

interpreter-based ensemble framework to detect and rectify adversarial examples. It utilizes

the gradient discrepancy in multiple interpreters between clean samples and adversarial

examples to train multiple CNN models (detector) to differentiate them.

Some of these methods have been proven ineffective, such as defensive distillation.

The attacker only needs to modify the loss function of the attack to generate stronger

adversarial examples. Among the rest methods, the most effective method is adversarial

training. It is widely used in the image recognition domain to defend against adversarial

attacks. Our first attempt was also to use our MAB-Malware framework (introduced in

Chapter 2) to generate adversarial examples and add them to the MalConv training dataset

to continue training. We quickly found that adversarial training reduced the accuracy of

MalConv.

To deal with similar problems in the image domain, Cai et al. [16] propose the

Curriculum Adversarial Training (CAT) method to develop a curriculum of adversarial

examples with an increasing range of attack strengths. It learns from easier adversarial

examples first, then gradually learns from stronger and stronger adversarial examples. It

can help to make the training easier and do not overfit adversarial examples in the image

domain. We also tried this approach in the beginning, but later we found that it does help

to keep MalConv’s accuracy from dropping too much. In the end, we found the curriculum

46



adversarial trained MalConv is still vulnerable to our MAB-Malware attacks, as well as

white-box attacks [85] against MalConv.

The reason for this is that the constraints for attacking images and attacking

malware are different. In the field of pictures, if there are too many modifications to the

picture, the human eye can notice it. Therefore, attackers usually need to satisfy that the

modification of the picture is within the range that a human eye cannot detect, or only

a small area of the picture can be modified. But in the malware field, since the malware

sample is just a file, ordinary users cannot see whether the file has been modified with

the naked eye. Therefore, the attacker can often append a large amount of new section or

overlay data to the original sample, and even the newly added data is many times larger than

the original data. The newly added data is usually extracted from the benign binaries and

contains many benign features. If malware classifiers see benign features are many times

more than malicious ones, misclassifications inevitably occur. In the Machine Learning

Security Evasion Competition 2020 [118], the winner’s method is to keep adding benign

sections at the end of the original sample until the model’s score falls below a threshold.

This seemingly simple method achieves a 100% success rate.

Regarding this issue, some works try to make the model using only malicious

features for classification, thus making the appending attack invalid. Fleshman et al. [56]

propose to modify the internal data of MalConv to obtain a monotonic model. A monotonic

model means that the values of all input features of the model can only be increased, not

decreased. In this way, if the input is modified, the score of the final output of the resulting

model will only increase. If the malware classifier has this feature, if the attacker appends

47



a lot of benign content after the malware sample, it will only increase the score of the

sample, not reduce it. Since the output of MalConv is 0 for benign and 1 for malicious,

all modifications will only make the model feel that the sample is more malicious, so that

adversarial examples will not be generated. Specifically, the training process of nonnegative

MalConv adds a clamp operation. After each step of training, all negative numbers in

weights and bias matrics of all layers are set to 0. set all the weights in the network to

be non-negative after each training step. Since the input to the model is a sequence of

8-dimensional vectors, each vector is 8 integers from 0 to 255. So the inputs are all non-

negative numbers. If the entire network is also non-negative inside, the final output of the

network is also non-negative. Since the output of MalConv is 0 for the benign and 1 for

malicious, for a benefit sample, after inputting it to the network, benefit features should not

excite any neuron, so that the final output will be a small number close to 0. For a malware

sample, the malicious feature will stimulate the corresponding neuron. It forces the network

to focus on malicious content and does not rely on benign content. The disadvantage of

this method is that its precision on clean samples is much lower than the original model.

The nonnegative-malconv paper found that the model obtained after such training is very

resistant to appending attacks, but its accuracy is lower than the original MalConv. The

accuracy of the original MalConv is 95%, while the nonneg-MalConv is only about 89%.

Such a drop in accuracy is unbearable for a malware classifier.

3.3.2 Our Insights

To sum up, our insight is that to build a robust malware classification model by

design, the architecture needs to meet the following requirements:

48



1. Exclude superficial features. The new robust architecture needs to base on the

intrinsic functionality features of the binary. A robust model should explicitly exclude

easily mutable superficial features in the input.

2. Shift invariance. This model needs to achieve the characteristics of shift invariance.

The attacker can reallocate the code of the malware sample to a new location through

each code displacement method. A truly robust model should be shift-invariant, so

as long as malicious features exist, they should be recognized by the model regardless

of whether their position has changed.

3. Only focus on malicious functions. The new robust architecture should only

focus on malicious features, and will not lead to a decrease in model accuracy. When

this model is doing classification, it should only focus on the malicious features, not

the benign features. Since the attacker can add benign features almost unlimitedly,

if the model focuses on two aspects of features, the added more benign feature will

continuously reduce the model’s score.

3.4 Approach

Since we have drawn various characteristics that the malware classifier of robust

should have, we will discuss how to implement it in turn.

Exclude superficial features. We choose to use functions in binary as input features. We

chose to use DeepDi[180] as the disassembly tool. It uses a novel graphical representation

called an “instruction flow graph” to model the different relationships between instructions,

and then uses Relational-GCN to reason and classify the instruction flow graph to accurately

49



classify the instructions. DeepDi matches or outperforms state-of-the-art disassemblers in

terms of accuracy. DeepDi is robust against binary obfuscations and adversarial attacks.

Moreover, it is orders of magnitude more efficient than other methods.

Shift Invariance. We directly used function embedding as the input of Reasoner and

did not use BERT’s embedding layer, which contains positional embeddings. So the final

output of CLS is only related to function embedding alone, not related to its position.

Only focus on malicious functions.. Nonnegative-MalConv[56] is a good attempt in this

direction. It does not modify the network architecture of the original MalConv model, it only

sets negative parameters to 0 after each training step. Because the input is non-negative

values (from 0 to 255), all parameters in the network are also non-negative, if attackers

append more bytes at the end of the original sample, it can only increase the output score.

It forces the network to only pick up malicious features to do the classification. However,

it causes the accuracy of the model to drop significantly compared to the original MalConv

(from 95% to 89%). It shows that non-negative models are hard to train. We need a

new architecture that allows models to focus only on malicious functions without hurting

accuracy.

Before describing our new robust architecture for malware classification, let’s look

at some closely related work in the field of natural language processing. Recently, there is

a very popular attention model called BERT (Bidirectional Encoder Representation from

Transformers) that achieves state-of-the-art results on various NLP tasks. However, BERT

cannot handle very long data because the attention mechanism occupies a large amount

of video memory, resulting in the input length being limited to a maximum of 512 tokens.

50



Many subsequent works have tried to solve this problem. For example, Pappagari et al. [124]

propose to use hierarchical-BERT, which used two different levels of BERT models to deal

with this problem. The first BERT model accepts token-level input and converts the token

sequence into an embedding. The BERT of the second layer receives the embedding sequence

as inputs. Theoretically, it can receive the input of 512*512 tokens. Another solution is

the CogLTX (Cognize Long TeXts) model proposed by Ding et al. [46]. The core insight

is that not any sentence of the input is related and necessary to the classification task.

For example, if a human reads a book and then answers a question related to the book,

he/she usually does not need to remember every sentence in the book at the same time.

Instead, in the process of reading, a human finds out the sentences related to this question

and highlights them. After reading, only focus on these highlighted sentences, and then

answer the questions accordingly. Train a classifier is similar. If the input text is super

long, instead of feeding all inputs, we can first extract the sentences that are most relevant

to the classification task in the original input to form a shorter input. This way you don’t

have to feed the entire input into one BERT model (called Reasoner) for classification. To

find the most relevant sentences, CogLTX also needs to train a Judge model to estimate

the relevance of each sentence. Since usually there is no corresponding relevance label for

every sentence, they generate an occlusion-based saliency map for the Reasoner model. If

a sentence is deleted from the input, and the value of Reasoner’s loss increases beyond

a certain threshold, that sentence is considered is important and relevant to classification

tasks. Otherwise, it is considered irrelevant. In this way, a training dataset can be generated

for the Judge model.

51



Back to the problem of malware classification. Because the length of the malware

sample can be very long, usually far more than 512*512 bytes. If we directly treat each

byte in the malware as a token to train a regular BERT or hierarchical BERT model, it

can only handle samples up to 256 KB. We also run into the problem of too long input.

Naturally, we first tried to integrate CogLTX into the hierarchical-BERT model, by training

a Judge model to find the most relevant parts of the input samples. Since the method of

CogLTX is orthogonal to hierarchical-BERT, it is not difficult to employ both approaches

in one architecture. Next, we revisit the insights of CogLTX and go one step further.

CogLTX uses the saliency map of Reasoner to select the most relevant segments for the

classification task. If we only select segments that are relevant and have a positive impact

on the classification score, then in the task of malware classification, we can select the most

malicious segments in the malware sample. Then even if the attacker appends a lot of

benign content at the end of a malicious sample, those appending benign segments will not

be selected, and eventually not affect the final classification score. It shares the same idea

as nonnegative-MalConv, which is to only focus on malicious features. It makes the model

robust against appending attacks by design, and much easier to train.

3.4.1 Reasoner

Similar to CogLTX, our basic assumption is that “a few key malicious functions

in malware samples store sufficient and necessary information for the task of malware clas-

sification”. Just like security experts manually analyzing a malware sample, he also doesn’t

need to check every function one by one. Often they just need to find some candidate func-

tions that contain sensitive system calls and observe what malicious behavior these func-

52



tions do when chained together. Formally, for a malware sample x = [f1, f2, f3, f4, ..., fn]

that contains n functions, we assume there exists a subset s = [fs1 , fs2 , fs3 , fs4 , ..., fsN ] of

N(N <= n) functions, satisfying

Reasoner(x) ≈ Reasoner(s) = sigmoid(MLP (BERT (s))) ∈ (0, 1) (3.1)

Training. Let us first assume that we have known each function’s score, which represents

the possibility that the function has a malicious behavior. We sort all functions according

to the scores, and select the Top N functions to form smal. We also create another srand

with randomly selected functions for exploration, because only functions in s will be used

to infer function labels in the next step. Then we create a BERT model (Reasoner) that

accepts smal and srand as input, and the target label is the original label of x. We train this

Reasoner until its loss stops decreasing.

Inference function label. To get the labels of functions about whether they contain

malicious functionality, for each function f ∈ s, we try to remove it and feed the rest

functions s − f to Reasoner. If the Reasoner’s output score decreases by more than a

certain threshold, the function f will get a malicious label, otherwise, it will get a benign

label. (Reasoner outputs 0 for benign and 1 for malicious.) A large reduction in the score

means that the removed features can activate neurons representing malicious features in

Reasoner.

53



3.4.2 Judge

Traing. In the previous step, we have generated input f and its corresponding label for

each function we have selected as the training dataset for Judge. Then we create a simple

4-layers MLP network model (Judge). We train this Reasoner until its loss stops decreasing.

Judge(f) = sigmoid(MLP (f)) ∈ (0, 1) (3.2)

Generate Estimation. For each function f in all samples of the dataset D, we use the

trained Judge model to estimate its maliciousness scores, which can be used in generating

smal in the next iteration. We will alternate training the Reasoner model and the Judge

model for num epoch times

More details can be found in Algorithm 3

3.4.3 Workflow

The workflow of our selective hierarchical BERT is shown in Figure 3.1.

1. For the malware samples, we first use DeepDi to find all functions in each sample and

generate embeddings for them (S = {F1, F2, F3, ......Fn}). (Red functions represent

functions with malicious behavior.)

2. For each function embedding, use the Judge model to generate an estimated malicious

score. Because the Judge model has not been trained in the beginning, this step can

be skipped. the estimated maliciousness scores of all functions are all 0s.

54



Algorithm 3 The Training Algorithm

Input: Traing set D = [(x0, y0), ..., (xn, yn)], num epoch,mode, thresh

1: for all epoch← 1 to num epoch do
2: {# train Reasoner}
3: for all x, y ∈ D do
4: smal ← build malicious input(x)
5: srand ← build random input(x)
6: lossrand ← BCEWithLogitsLoss(Reasoner(srand), y)
7: lossmal ← BCEWithLogitsLoss(Reasoner(smal), y)
8: Update Reasoner by descending ∇φ(lossrand + lossmal)
9: {# infer function label}

10: for all f ∈ s do
11: ∆score ← Reasoner(s)−Reasoner(s− f)
12: if ∆score > thresh then
13: label[f ]← 1
14: else
15: label[f ]← 0
16: end if
17: end for
18: end for
19: {# train Judge}
20: for all x, y ∈ D do
21: for all f ∈ x do
22: if f ∈ label then
23: loss =MSELoss(f, label[f ])
24: Update Judge by descending ∇θ(loss)
25: end if
26: end for
27: end for
28: {# generate estimation}
29: for all x, y ∈ D do
30: for all f ∈ x do
31: f.estimation = Judge(f)
32: end for
33: end for
34: end for

55



x f1 f2 f3 f4 f5 f6 …… fn

s f4 f6 f8 f9 f3 fn

ReasonerJudge

② Get scores by Judge

③ Select N highest scoring function embeddings

f7 f8 f9

Reasoner Input

0/1

saliency
map

0.08 0.03 0.22 0.99 0.01 0.86 …… 0.150.02 0.49 0.48

④ Train Reasoner ⑥ Train Judge

Judge Input

FnSample

① Generate function embeddings

BERT

MLP

MLP

DeepDi

⑤ Infer function labels

Figure 3.1: Workflow

3. The Top N functions with the highest malicious scores are chosen to form the input

S+ = {F1′
, F2

′
, F3

′
, ......Fn

′} for each sample. (In the beginning, since all functions

have malicious scores of 0, it actually chooses N functions at random.)

4. Train the Reasoner model. The input to the model is S+ and the corresponding labels

are the labels of the original samples S (1 for malicious, 0 for the opposite).

5. After the training of Reasoner is complete, we infer function labels (1 for functions

with malicious functionality, 0 for the opposite) by intervening: testing whether a

function has a positive effect on the classification score. For each function Fx
′
, we

try to remove it from S+. If the Reasoner’s score drops more than the threshold T

after Fx
′
is removed, Fx

′
is considered to contain some malicious behavior. its label

56



is assigned 1. Otherwise, if the score remains the same or even increases, its label is

assigned 0.

6. We use the training dataset generated in the previous step to train the Judge model.

7. Go to step 2). This time we start to use the Judge model to generate estimated

maliciousness scores for all functions.

3.5 Evaluation

3.5.1 Experiment Setup

In this section, we first describe the experiment setup, the dataset collection .

Section 3.5.2 provides details about training. In the end, we present the evaluation results

with respect to accuracy, robustness.

Dataset: In the experiments in this chapter, we use a dataset containing 10,000 samples,

including 5,000 malware samples collected by VirusTotal in the last two years, and 5,000

benign samples from CUM.

Setup: The experiments are performed on a machines with Intel(R) Core(TM) i9-10850K

CPU @ 3.60GHz, 64GB RAM, GeForce RTX 2080 Ti. The deep neural network models

are all implemented using the open-source deep learning framework PyTorch [136]. The

remaining codes of data processing, statistics are programmed in Python.

57



3.5.2 Model Training

Figure 3.2 (a) and (c) show the training accuracy of the Reasoner model and the

Judge model. The lowermost orange curve in (a) shows the training accuracy changes of

Reasoner at epoch 1. Each epoch stops early when the validation accuracy stops increasing

by 3 steps. The lowermost red curve in (b) shows the training accuracy changes of Judge at

epoch 1. Since the beginning, no function has estimated maliciousness score. At this time,

we can only randomly select functions for input s, instead of selecting the functions with the

best score. Therefore, Reasoner can only achieve 91% accuracy at the highest. At the same

time, Judge does not have enough function labels, and its highest accuracy can only reach

79%. As the training of Reasoner and Judge alternates, the two are also promoting each

other’s training, and the accuracy is gradually improving. In the end, Reasoner achieved

98% accuracy, and Judge achieved 89% accuracy. Figure 3.2 (b) shows that after training,

Reasoner’s accuracy on the validation dataset reached 95.5%, similar to the state-of-the-art

models, such as MalConv.

Figure 3.3 shows the distribution of scores for all functions in the dataset. Overall,

6.65% of all functions are considered by Judge to contain malicious behavior. Breaking down

by datasets, 84% of the functions in the malware dataset were marked as malicious by Judge.

Only 7% of functions in the benign software dataset were marked as malicious by Judge.

The functions of benign software may also invoke sensitivity system calls, and Reasoner

will comprehensively determine whether these selected suspicious functions indeed conduct

malicious activities.

58



Tooltip sorting method:

Show data download links

Ignore outliers in chart scaling

default

Smoothing

0.999

Horizontal Axis

STEP RELATIVE WALL

Runs

lightning_logs/

Write a regex to filter runs

version_221

version_222

version_223

version_224

version_225

version_226

version_227

version_228

version_229

version_230

version_231

version_232

version_233

version_234

version_235

version_236

version_237

version_238

version_239

version_240

version_241

version_242

version_243

version_244

version_245

version_246

version_247

version_248

version_249

version_250

version_251

version_252

version_253

version_254

TOGGLE ALL RUNS

acc

epoch

epoch
tag: epoch

loss

val_acc

val_acc
tag: val_acc

val_loss

Filter tags (regular expressions supported)

0.6

0.7

0.8

0.9

1

0 2k 4k 6k 8k 10k 12k

0

4

8

12

16

0 2k 4k 6k 8k 10k 12k

0.78

0.82

0.86

0.9

0.94

1k 3k 5k 7k 9k 11k 13k

TensorBoard INACTIVE UPLOADSCALARS TIME SERIES

epoch 1
epoch 2
epoch 3
epoch 4
epoch 5
epoch 6
epoch 7

Training Accuracy

Training Step

Tooltip sorting method:

Show data download links

Ignore outliers in chart scaling

default

Smoothing

0.999

Horizontal Axis

STEP RELATIVE WALL

Runs

lightning_logs/

Write a regex to filter runs

version_221

version_222

version_223

version_224

version_225

version_226

version_227

version_228

version_229

version_230

version_231

version_232

version_233

version_234

version_235

version_236

version_237

version_238

version_239

version_240

version_241

version_242

version_243

version_244

version_245

version_246

version_247

version_248

version_249

version_250

version_251

version_252

version_253

version_254

TOGGLE ALL RUNS

acc

acc
tag: acc

epoch

epoch
tag: epoch

loss

val_acc

val_loss

Filter tags (regular expressions supported)

0.6

0.7

0.8

0.9

1

0 2k 4k 6k 8k 10k 12k

0

4

8

12

16

0 2k 4k 6k 8k 10k 12k

0.78

0.82

0.86

0.9

0.94

1k 3k 5k 7k 9k 11k 13k

TensorBoard INACTIVE UPLOADSCALARS TIME SERIES

epoch 7

epoch 1

epoch 3

epoch 2

epoch 4
epoch 5
epoch 6

Training Step

Validation Accuracy

(a) Training Accuracy of Reasoner (b) Validation Accuracy of ReasonerTooltip sorting
method:

Show data download links

Ignore outliers in chart scaling

default

Smoothing

0.999

Horizontal Axis

STEP RELATIVE

WALL

Runs

lightning_logs/

Write a regex to filter runs
e s o _ 50

version_251

version_252

version_253

version_254

TOGGLE ALL RUNS

acc

epoch

epoch
tag: epoch

Filter tags (regular expressions supported)

0.45

0.55

0.65

0.75

0.85

0.95

0 10k 20k 30k 40k 50k

1

2

3

4

5

6

TensorBoard INACTIVE UPLOADSCALARS TIME SERIES

epoch 1
epoch 2
epoch 3
epoch 4
epoch 5
epoch 6
epoch 7

Training Step

Training Accuracy

(c) Training Accuracy of Judge

Figure 3.2: Training of Reasoner

3.5.3 Robustness under Code Randomization Attack

To verify the robustness of our model against binary randomization attacks, we

randomly sample 300 malware samples from the test data and use a method called Malware

Makeover1 to randomize these malware samples for 10 iterations, including in-place ran-

domization and code displacement. Figure 3.4 shows the number of bytes changed of each

sample during randomization. On average, each sample is changed by more than 21000

1https://github.com/pwwl/enhanced-binary-diversification

59

https://github.com /pwwl/enhanced-binary-diversification


1 1.04E-22
2 1.04E-22
3 2.08E-21
4 2.08E-21
5 2.92E-21
6 2.92E-21
7 5.00E-21
8 5.00E-21
9 7.50E-21
10 7.50E-21
11 1.65E-20
12 1.65E-20
13 2.34E-20
14 2.34E-20
15 4.25E-20
16 4.25E-20
17 6.41E-20
18 6.41E-20
19 7.89E-20
20 7.89E-20
21 1.03E-19
22 1.03E-19
23 1.76E-19
24 1.76E-19
25 2.95E-19
26 2.95E-19
27 3.28E-19
28 3.28E-19
29 4.18E-19
30 4.18E-19
31 4.59E-19
32 4.59E-19

Figure 3.3: Distribution of Function Scores

Samples Changed Byte Count 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 0
22 4
23 7
24 14
25 17
26 21
27 25
28 29
29 39
30 42
31 44
32 45
33 46
34 56

Figure 3.4: Changed Byte Count

bytes.

Table 3.1: Detection Rate of Original and Randomized Malware.

Classifier
Detection Rate

Original Randomized

Selective Hierachical-BERT 99.28% 99.28%

From Table 3.1, we can see that even after 10 iterations of binary randomization,

the detection rate of our selective hierarchical-BERT model is still as high as 99.28%. And

its accuracy on the original sample is not compromised.

60



3.5.4 Robustness under MAB-Malware Attack

Table 3.2: Accuracy on Original Samples and Robustness against MAB-Malware.

Classifier Accuracy on Original Attack Succ Rate

EMBER 97.2% 75.94%

MalConv 97.1% 97.72%

Nonneg-MalConv 85.45% 0.22%

Adversarial Trained MalConv 88.4% 67.0%

Selective Hierachical-BERT 95.8% 0%

We still use the MAB-Malware framework proposed in our last chapter to attack

various models including selective Hierarchical-BERT. Table 3.2 shows that the original

MalConv is very vulnerable, and our attack success rate can reach 97.72%. After adversarial

training with adversarial examples, our attack success rate can still reach 67%. It can be seen

that due to the different constraints of the attack, the attack can append almost unlimited

data, and adversarial training cannot effectively improve the robustness of MalConv, and

it also affects the model’s accuracy on original samples.

For our Selective Hierarchical-BERT model, if we directly use MAB-Malware to

attack it, the attack success rate is 0%. Because most actions in MAB-Malware will not

affect the function embeddings. To find the upper bound of the robustness of our model, we

conduct a gray-box attack on our model. We assume attackers 1) can get embeddings of all

functions. 2) know the output scores of both the Reasoner and Judge, 3) can inject as many

functions as possible, and 4) the injection will not break the functionality of the original

malware sample. The process of grey box attack is as follows: 1) Collect a large number of

functions in benign binaries, and get their embeddings, 2) Get scores for benign functions

through Judge, and only keep high-scoring functions, 3) Choose a malware sample and add

61



a high-scoring function benign to it, 4) Observe whether the score of Reasoner decreases, if

so, keep it, otherwise discard it, 5) Use multi-armed bandit to modeling function selection,

use reinforcement learning to select the next best benign function. 6) Go back to step 3

until the malware sample is misclassified.

Table 3.3: Robustness against Graybox Attack.

Classifier Attack Succ Rate

Selective Hierachical-BERT 2.0%

As shown in Figure 3.3, under this attack, the upper bound of the attack success

rate on our selective hierarchical BERT model is 2%, which is much lower than adversarial

trained MalConv, and the accuracy of the original samples is not affected.

3.6 Conclusion

In this chapter, we explore in detail the different constraints of malware classifiers

and the properties that need to be satisfied to build a robust classifier. On this basis,

a new robust deep neural network architecture based on selective hierarchical BERT is

proposed to automatically select malicious functions for malware classification, which is

robust to different attacks by design. Compared with other baselines, our model can handle

very large samples and can automatically select essential features for malware classification,

which fundamentally improves the robustness of the model without sacrificing the accuracy

of the model.

62



Chapter 4

A Robust Memory Forensics

Framework: DeepMem

4.1 Abstract

Kernel data structure detection is an important task in memory forensics that aims

at identifying semantically important kernel data structures from raw memory dumps. It is

primarily used to collect evidence of malicious or criminal behaviors. Existing approaches

have several limitations: 1) list-traversal approaches are vulnerable to DKOM attacks, 2)

robust signature-based approaches are not scalable or efficient, because it needs to search

the entire memory snapshot for one kind of objects using one signature, and 3) both list-

traversal and signature-based approaches all heavily rely on domain knowledge of operating

system. Based on the limitations, we propose DeepMem, a graph-based deep learning ap-

proach to automatically generate abstract representations for kernel objects, with which we

63



could recognize the objects from raw memory dumps in a fast and robust way. Specifically,

we implement 1) a novel memory graph model that reconstructs the content and topology

information of memory dumps, 2) a graph neural network architecture to embed the nodes

in the memory graph, and 3) an object detection method that cross-validates the evidence

collected from different parts of objects. Experiments show that DeepMem achieves high

precision and recall rate in identify kernel objects from raw memory dumps. Also, the

detection strategy is fast and scalable by using the intermediate memory graph represen-

tation. Moreover, DeepMem is robust against attack scenarios, like pool tag manipulation

and DKOM process hiding.

4.2 Introduction

Generally speaking, the existing memory forensic tools fall into two categories:

signature scanning and data structure traversal, all based on certain rules (or constraints),

either on values, points-to relations, or both. Signature scanning tools (e.g., psscan) in

Volatility [172] rely only on value constraints on certain fields to identify memory objects

in the OS kernel, whereas SigGraph [101] relies on points-to relations as constraints to scan

kernel objects. Data structure traversal tools (e.g., pslist) in Volatility and KOP [18] start

from a root object in a known location, traverse its pointers to discover more objects, and

further traverse pointers in the discovered objects to reach more objects. However, there

exist several intertwining challenges in the existing rule-based memory forensic analysis:

(1) Expert knowledge needed. To create signatures or traversing rules, one needs to

have expert knowledge on the related data structures. For a closed-source operating

64



system (like Windows), obtaining such knowledge is nontrivial if not impossible.

(2) Lack of robustness. Attackers may directly manipulate data and pointer values

in kernel objects to evade detection, which is known as DKOM (Direct Kernel Object

Manipulation) attacks [47]. In this adversarial setting, it becomes even more challenging

to create signatures and traversing rules that cannot be easily violated by malicious

manipulations, system updates, and random noise.

(3) Low efficiency. High efficiency is often contradictory to high robustness. For example,

an efficient signature scan tool (like psscan) simply skips large memory regions that

are unlikely to have the relevant objects (like EPROCESS) and relies on simple but easily

tamperable string constants as constraints. In contrast, a robust signature scan tool

would have to scan every single byte and rely on more sophisticated constraints (such

as value ranges, points-to relations) that are more computation-intensive to check.

In this work, we are inspired by the successful adoption of deep learning in many

domains, such as computer vision, voice, text, and social networks. We treat this memory

object recognition problem as a deep learning problem. Instead of specifying deterministic

rules for a signature scan and data structure traversal, we aim to learn a deep neural net-

work model to automatically recognize memory objects from raw memory dumps. Since the

model is trained in an end-to-end manner, no expert knowledge is required. The learned

deep neural network model is also more robust than rule-based search schemes because it

comprehensively evaluates all memory bytes and thus can tolerate perturbations to some

extent. A deep neural network model also excels in efficiency, as vector and matrix compu-

tations can be largely parallelized in modern GPUs.

65



More specifically, in order to take into account adjacency relations between data

fields within an object as well as points-to relations between two objects, we choose to build

a graph neural network model [151], in which each node represents a segment of contiguous

data values between two pointers, and each directed edge represents an adjacency relation

or a points-to relation between two nodes. We then conduct supervised learning on this

model: we collect a large number of diverse memory dumps, and label the objects in them

using existing memory forensic tools like Volatility, and train the classification model using

this labeled dataset.

We implement a prototype called DeepMem and conduct the extensive evaluation

with respect to accuracy, efficiency, and robustness. Experimental results show that it

achieves high precision and recall rate at above 99.5% for important kernel objects, like

EProcess and EThread. For efficiency, it scans a memory dump of 1GB in size only

once to build the memory graph in about 80 seconds. Then, for each type of object, the

detection time is about 13 seconds per type on a moderate desktop computer (Core i7-6700,

16GB RAM, and no GPU). Moreover, in the attack scenarios, like pool tag manipulation

and DKOM process hiding, signature-based memory forensics tool (e.g. Volatility) fail to

correctly report kernel objects while DeepMem can tolerate those attacks.

In summary, the contributions of this chapter are as follows:

• A graph representation of raw memory. We devise a graph representation for

a sequence of bytes, taking into account both adjacency and points-to relations, to

better model the topological information in memory dumps.

• A graph neural network architecture. We propose a graph-based deep learn-

66



ing architecture with two jointly-trained networks: embedding network and classifier

network. This deep neural network architecture captures both internal patterns of

memory bytes as well as topological information in the memory graph and infers node

properties in the graph.

• A weighted voting scheme for object detection. We propose a weighted vot-

ing scheme for object detection, which summarizes and cross-validates the evidence

collected from multiple parts of an object to infer its location and type.

The remainder of this chapter is structured as follows. Section 4.3 provides a

background of memory object detection. Section 4.4 gives an overview of the DeepMem,

followed by design details of each component. Section 4.5 presents implementation details

and evaluation results.

Graph Constructor

Node Label Generator

Memory Graph

Node Labels

Training
Memory Dump

Object Detector

Training Phase Detection Phase

Kernel objects

Embedding Network

Node Classifier Network

Memory Graph Graph Constructor

Testing
Memory Dump

Node Labels

Figure 4.1: The overview of the DeepMem architecture

4.3 Memory Object Detection

In this section, we first give a formal problem statement for memory object detec-

tion, and then describe the existing techniques and their limitations.

67



4.3.1 Problem Statement

If we treat a memory dump as a sequence of bytes, an object in this dump are

treated as a sub-sequence in this memory dump. Naturally, we can define the object detec-

tion problem as a sub-sequence labeling problem in a large sequence.

Our goal is to search and identify kernel objects in raw memory images dumped

from running operating systems. Let C = {c1, c2, ...} be the set of kernel data structure

types in operating system. Given a raw memory dump as input, the output is defined as

a set of kernel objects O = {o1, o2, ...}, where each object in the set is denoted as a pair

oi = (addri, ci), ci ∈ C. Here, addri is the address of the first byte of the object in kernel

space, and ci is the type of the kernel object.

We would like to achieve the following goals:

• No reliance on source code. Unlike MAS [36] and KOP [18], which rely on the

kernel source code to compute a complete kernel object graph, we do not assume the

access to such information. Instead, we resort to learn from real memory dumps.

• Automatic feature selection. We do not rely on human experts to define signa-

tures or traversing rules for various kernel objects. We aim to automatically learn a

detection model in an end-to-end manner.

• High robustness. Our method should tolerate content and pointer manipulation of

attackers in DKOM attacks.

• High efficiency. We would like to design a scanning approach to examine every byte

in the memory, and at the same time, achieve high efficiency and scalability.

68



4.3.2 Existing Techniques

There are two approaches to utilize the knowledge of data structures for memory

analysis.

The first one is data structure traversal. We can first identify a root object based on

the data structure definition and then follows the pointers defined in this object to find more

objects. In particular, Volatility [172], a well-known memory forensic tool, provides a set

of tools for listing running processes, modules, threads, network connections, by traversing

the relevant data structures. Since data structure definitions in C/C++ are often vague

and incomplete (due to the presence of generic pointers), the completeness of this approach

is affected. To address this problem, KOP [18] and MAS [36] perform points-to analysis

on the C/C++ source code to resolve the concrete types for the generic pointers, and

thus produce complete data structure definitions. This approach is efficient (as we can

quickly find more objects by just following pointers), but not robust because attackers may

modify the pointers to hide important objects, known as Direct Kernel Object Manipulation

(DKOM) attacks.

The second approach is signature scan. We can scan the entire memory snapshot

for objects that satisfy a unique pattern (called signature). Volatility [172] provides a

set of scan tools as well to scan for processes, modules, etc. To improve search accuracy,

SigGraph [101] automatically constructs graph-like signatures by taking into account points-

to relations in data structure definitions, at the price of even lower search efficiency. In

general, the signature scan is more resilient against DKOM attacks, because it does not

depend so much on pointers. However, it is very inefficient and not scalable, because it has

69



to search the entire memory snapshot for one kind of objects using one signature. To further

improve the robustness of signatures, Dolan-Gavitt et al. [50] propose to perform fuzz testing

to mutate each data structure field and eliminate from the signature the constraints that

can be easily violated by attackers. However, this will likely lead to the increase of false

positives.

Both data structure traversal and signature scan require precise knowledge of

data structures and also heavily depend on specific versions of the software or the operating

system, because data structures change from one version to another. Therefore, to use

these tools, a data profile must be extracted from each unique operating system version,

which is clearly not convenient or scalable. To address this problem, researchers propose to

reuse the code already existed in the memory snapshot to interpret the memory snapshot

itself [58, 49, 149]. These techniques avoid creating data profiles and implementing traversal

algorithms, but they still heavily rely on the knowledge of specific operating systems to

understand what code to reuse and how to reuse the code. Moreover, this approach is still

subject to DKOM attacks. In terms of efficiency, code reuse is better than signature scan,

but worse than data structure traversal.

4.3.3 Our Insight

We believe that the bottleneck for these memory analysis approaches is the rule-

based search scheme. They search and traverse memory objects based on pre-defined rules.

The rules can be hard to construct in the first place, and moreover, the rules cannot easily

adapt to an unknown operating system and a new version and tolerate malicious attackers

that attempt to deliberately violate these rules. To address these limitations, a “learning”

70



𝑨𝑨 𝑩𝑩 𝑪𝑪 𝑫𝑫 A B C D
rnrn rn

lnln ln

rp/lprp lp

lprp

(a) Raw Memory (b) Memory Graph

Figure 4.2: Generate a memory graph from raw memory

ability becomes essential. A new memory analysis approach should automatically learn the

intrinsic features of an object that are stable across operating system versions and resilient

against malicious modifications, and at the same time is able to detect these objects in a

scalable manner. In this work, we resort to deep learning to tackle this problem.

4.4 Design of DeepMem

In this section, we first present an overview of DeepMem, and then delve into

three important components respectively.

4.4.1 Overview

Figure 4.1 illustrates the overview of DeepMem. Generally speaking, we divide

DeepMem into two separate stages: training and detection.

Training Stage

In this stage, DeepMem automatically learns the representation of kernel objects

from raw bytes. First, memory dumps are fed into a graph constructor to generate a graph

for each memory dump (which is called “memory graph”), where each node is a segment

71



between two pointers, and each edge represents either an adjacency relation or a points-to

relation between two nodes.

Second, a node label generator will assign a label for each node in the memory

graph. We can use any existing tools (such as Volatility [172], or dynamic binary analysis

tool DECAF [68]) for this purpose. This seems a little contradictory: we rely on an existing

analysis tool to build a new analysis tool. This is reasonable because the existing tool only

serves as an offline training purpose, so it does not need to be efficient and robust. It only

needs to have reasonable accuracy in terms of labeling. After training, our detection model

is expected to achieve good efficiency, robustness, and accuracy simultaneously.

Third, a memory graph is fed into a graph neural network architecture. By propa-

gating information from neighboring nodes after several iterations, this graph neural network

carries a latent numeric vector (called embedding) for each node in the memory graph.

Finally, all nodes’ embedding vectors will go through a neural network classifier

to get the predicted labels. The predicted labels will be compared with the expected labels

to compute the loss of the classifier and update the weights of our neural network.

Detection Stage

In this stage, DeepMem accepts an unlabeled raw memory dump and detects

kernel objects inside it. First, it follows the same procedure to generate a memory graph

for this memory dump. Second, the memory graph is fed into the Graph Neural Network

(GNN) model obtained from the training stage to generate embeddings of all the nodes and

then predict node labels using the neural network classifier. At last, DeepMem performs

an object detection process. This is because the labels predicted from the last step are

72



for segments, and an object may consist of one or several segments. Therefore, the object

detection process takes segment labels as input and uses a voting mechanism to detect

objects, for which most of their segment labels agree upon the same object label.

In the remainder of this chapter, we will discuss the definition of memory graph

and its construction in Section 4.4.2, the graph neural network model for computing memory

segments’ embeddings as well as the segment classification network in Section 4.4.3, and

object detection scheme in Section 4.4.4.

4.4.2 Memory Graph

A memory graph is a directed graph G = (N,Eln, Ern, Elp, Erp), where:

• N is a node set, and each n ∈ N represents a segment of contiguous memory bytes

between two pointer fields.

• Eln is an edge set, and each e ∈ E represents a directed edge from ni to nj , and ni is

left neighbor of nj .

• Ern is an edge set, and each e ∈ E represents a directed edge from ni to nj , and ni is

right neighbor of nj .

• Elp is an edge set, and each e ∈ E represents a directed edge from ni to nj , and ni is

pointed by a pointer on the left boundary of nj .

• Erp is an edge set, and each e ∈ E represents a directed edge from ni to nj , and ni is

pointed by a pointer on the right boundary of nj .

73



In other words, a memory graph is a directed graph with four sets of edges, which

capture both the adjacency and points-to relations of memory segments, on both left-hand-

side and right-hand-side of each segment.

Figure 4.2 illustrates an example of how to construct a memory graph from raw

memory. Figure 4.2(a) shows a part of raw memory, in which three pointer fields split this

part of memory into four segments: A, B, C, and D, each of which may have one or more

contiguous memory bytes. As a result, A, B, C, and D become vertices in the corresponding

memory graph. These vertices are connected by four kinds of edges. For instance, since A

is the left neighbor of B, we have A
ln−→ B. Conversely, since B is the right neighbor of A,

we have B
rn−→ A. Moreover, since the pointer field left to C points to D, and the pointer

field right to C points to A, we then have D
lp−→ C and A

rp−→ C. Note that these two edges

are reverse to the actual points-to directions. This is because an edge in the memory graph

represents an information flow. For instance, the pointer field left to C points to D, which

means determining D’s label can help label C. Therefore, from the information flow point

of view, there is an edge from D to C.

A special case is that there are multiple consecutive pointers. Assume there are

two consecutive pointers between C and D, pointing to A and B respectively, we then create

four edges A
rp−→ C, B

rp−→ C, A
lp−→ D and B

lp−→ D.

A careful reader might suggest adding edges for the points-to directions as well.

For instance, the pointer field left to C points to D, and it might make sense to have

C → D, because identifying C also helps to identify D. We choose not to do so, because an

adversary can easily create a pointer in an arbitrary address outside of a kernel object and

74



make it point to the object, then the topology of the object in memory graph is changed if

we add edges for point-to directions. This will adversely affect the detection. On the other

hand, compared to the above case, it is more difficult to create a fake pointer or manipulate

an existing pointer within a legitimate object that he/she tries to hide, without causing

system crashes or other issues.

4.4.3 Graph Neural Network Model

The GNN (Graph Neural Network) model will accept the memory graph generated

in Section 4.4.2 as input, and then output the labels of all nodes in the graph. The goal of

the GNN model is to first extract a low-dimensional internal representation of nodes from

raw bytes of a memory dump, and then infer the properties of nodes. As such, the GNN

model should consist of two consecutive subtasks: a representation learning task and an

inference task.

We represent the GNN model as F . It consists of two jointly-trained subnetworks.

The first subnetwork is an embedding network which is responsible for node representation

abstraction. We denote it as ϕw1 . The second subnetwork is a classifier network, which is

responsible for node label inference. We denote it as ψw2 . The formal definition of F is

defined as follows.

F = ψw2(ϕw1(·)) (4.1)

The input of the embedding network ϕw1 is a vector representation of a node,

denoted as vn, and the output is embedding vector, denoted as µn. The classifier network

75



𝒗𝒗𝑛𝑛

Input Vector
𝝁𝝁𝑚𝑚1(𝑡𝑡)
𝝁𝝁𝑚𝑚2(𝑡𝑡)

𝝁𝝁𝑚𝑚𝑟𝑟(𝑡𝑡)
…

𝑊𝑊1

+

+ 𝜎𝜎1

𝑚𝑚𝑖𝑖 ∈ 𝐸𝐸𝑙𝑙𝑙𝑙[𝑛𝑛]

𝑡𝑡𝑡𝑡𝑛𝑛𝑡 𝝁𝝁𝑛𝑛(𝑡𝑡 + 1)

Neighbors’ Embedding Vectors at t FCN with ReLU

… … …

𝝁𝝁𝑚𝑚𝑖𝑖(𝑡𝑡)
… + 𝜎𝜎2

𝑚𝑚𝑖𝑖 ∈ 𝐸𝐸𝑟𝑟𝑙𝑙[𝑛𝑛]

𝝁𝝁𝑚𝑚𝑖𝑖(𝑡𝑡)
… + 𝜎𝜎3

𝑚𝑚𝑖𝑖 ∈ 𝐸𝐸𝑙𝑙𝑛𝑛[𝑛𝑛]

𝝁𝝁𝑚𝑚𝑖𝑖(𝑡𝑡)
… + 𝜎𝜎4

𝑚𝑚𝑖𝑖 ∈ 𝐸𝐸𝑟𝑟𝑛𝑛[𝑛𝑛]

𝜎𝜎𝑖𝑖

Embedding Vector at t+1

Figure 4.3: Node embedding computation in each iteration

ψw2 takes the output of the embedding network as input, and then output the node label,

denoted as yn.

More specifically, let vn be a d-dimensional vector of node n derived from its actual

memory content, then the embedding vector µn is computed as follows:

µn = ϕw1(vn,µEln[n],µErn[n],µElp[n],µErp[n]) (4.2)

In other words, each node’s embedding is computed from its actual content and

the embeddings of its four kinds of neighboring nodes. We use a simple method to derive

a d-dimensional vector for each node: we treat each dimension as one memory byte. If this

memory segment is longer than d bytes, we truncate it and only keep d bytes; if it is shorter

than d bytes, we fill the remaining bytes with 0.

Then the output vector yn is computed as follows.

76



yn = ψw2(µn) (4.3)

In the following paragraphs, we will describe how embedding network and classifier

network are defined and how they work.

Embedding Network

For each node n in the memory graph G, the embedding network ϕw1 integrates

input vector vn and the topological information from its neighbors, both adjacent neighbors

and point-to neighbors, into a single embedding vector µn.

Inspired by Scarselli et al. [151], we implement the embedding vector as a state

vector that gradually absorbs information propagated from multiple sources over time. To

add a time variable into embedding vector computation, we transform Equation (4.2) into

Equation (4.4). The total iterations needed to calculate the embedding vector is denoted

as T . The embedding vector of time t + 1 depends on the neighbor embedding vectors at

time t, as shown in Figure 4.3.

µn(t+ 1) = ϕw1(vn,µEln[n](t),µErn[n](t),

µElp[n](t),µErp[n](t))

(4.4)

For each node n, the embedding network collects the information about neighbor

nodes in a BFS (Breadth First Search) fashion. In each iteration, it traverses one layer

of neighbor nodes and integrates the neighbors’ states into the state vector µn of node n.

77



We name the neighbors expanded in the first layer as 1-hop neighbors, in the same way,

the neighbors expanded in the k-th layer as k-hop neighbors. In each layer expansion, we

collect information from four types of neighbors, which are left neighbor, right neighbor, left

pointer neighbor and right pointer neighbor. The more iterations we run, the information

of farther neighbors are collected into embedding vector µn. At time t = T , µn(t) stores

the information of the node sequence n itself and the information of neighbor nodes within

T hops.

We implement embedding vector µn as Equation (4.5).

µn(t+ 1) = tanh(W1 · vn + β(n, t)) (4.5)

β(n, t) =σ1(
∑

m∈Ept[n]

µm(t)) + σ2(
∑

m∈Ern[n]

µm(t))+

σ3(
∑

m∈Elp[n]

µm(t)) + σ4(
∑

m∈Erp[n]

µm(t))

(4.6)

The weight matrix W1 is the weight parameters of the node content, which is a

matrix of shape |µ| × d. Neighbor state weight parameters are a set of weight matrices in

multiple layered neural networks. Note that there are four separate sets of weight matrices

for σ1, and σ2, and σ3, and σ4, such that the embeddings of different kinds of neighbors are

propagated differently. The architecture of each σ network is a feed-forward neural network,

each layer is a fully connected layer with ReLU activation function. The pseudo code of

embedding network is shown in Algorithm 4.

78



Algorithm 4 Information Propagation Algorithm of Embedding Network ϕw1

Input: Memory Graph G = (N,Eln, Ern, Elp, Erp), iteration time T
Output: Graph Embedding µn for all n ∈ N

1: Initialize µn(0) = 0, for each n ∈ N
2: for all t← 1 to T do
3: for all n ∈ N do
4: β = σ1(

∑
m∈Ern[n]

µm(t− 1))
5: β+ = σ2(

∑
m∈Eln[n]

µm(t− 1))
6: β+ = σ3(

∑
m∈Elp[n]

µm(t− 1))

7: β+ = σ4(
∑

m∈Erp[n]
µm(t− 1))

8: µn(t) = tanh(W1 · vn + β)
9: end for

10: end for

All of the mentioned weight parameters of embedding network are learned using

supervised learning on a labeled training dataset. Since the weights are learned jointly with

the weights in the classifier network, we will leave the training details after introducing the

classifier network in the section below. The embedding vector obtained in this section is just

an intermediate representation of the whole supervised training. To perform an end-to-end

training from raw bytes to labels, we need the classifier network to generate the final node

label for training.

Classifier Network

Let l be a node label, and L be the set of all node labels. Node classifier network

is used to map embedding vector to a node label: ψw2 : µn → l, where n ∈ N, l ∈ L.

In order to facilitate object detection that will be discussed in Section 4.4.4, we

choose to label each node as a 3-tuple of the object type, offset and length. For example,

a node with label T 16 24 means the node is part of a ETHREAD object and it is located

at offset 16 from the beginning of the ETHREAD object, the length of it is 24 bytes. As

79



illustrated in Figure 4.4, three nodes are labeled as T 16 24, T 52 12 and T 84 28. These

labels all agree upon a single fact that a ETHREAD object is located at the same address.

Similar labeling methods are adopted in the linguistics domain to solve word segmentation

tasks [182, 183]. In particular, they label the characters at the start, in-between and at the

end of a word, in order to split words from streams of free texts.

16

𝑻𝑻_𝟓𝟓𝟓𝟓_𝟏𝟏𝟓𝟓 𝑻𝑻_𝟖𝟖𝟖𝟖_𝟓𝟓𝟖𝟖𝑻𝑻_𝟏𝟏𝟏𝟏_𝟓𝟓𝟖𝟖

52

84

Object
Address

24 2812

Figure 4.4: Node Labeling of a ETHREAD Object

An object type may have many node labels. However, some rare and invariant

node labels have low occurrences in type c. To get a robust model, we should not fit these

outliers node labels. Hence, we just keep the node labels with high frequency in type c,

denoted as key node label set L(c). The node labeling method is described in detail in

experiment evaluation Section 4.5.2.

With node labels of each object type, we then build a multi-class classifier to

classify the nodes into one of the labels in that object type. For example, there will be

a ETHREAD classifier, a EPROCESS classifier, etc. The node classifier takes an embedding

vector µn as input and produces a predicted node label as output. To implement the

classifier, we choose to use FCN (Fully Connected Network) model that has multi-layered

hidden neurons with ReLU activation functions, following by a softmax layer.

80



After introducing the embedding network ϕw1 and the classifier network ψw2 , we

will show how to train them together. During training, training samples are fed into the

embedding network for contextual information collection. After propagating several it-

erations, the final embedding vectors are fed into the classifier network to generate the

predicted output labels. To train the weights in the GNN model, we compute the cross-

entropy loss between the predicted label and annotated label, and update weights in the

process of minimizing the loss.

We adopt the BP (Back Propagation) [152] strategy to pass the loss error from

output layer back to previous layers to update the weights along the way. In the next loop of

training, the classification is performed using newly-updated weights. After several training

loops, the loss will stabilize to a small value and the model is fully trained. Specifically, we

use Adam (Adaptive Moment Estimation) [83] algorithm, a specific implementation of BP

strategy, as the weight parameter optimizer of the GNN deep model.

Formally, let training dataset D = {d1, d2, ...} be a set of node samples, where

each sample di = (v(i),y(i)) is a pair of node vector and associated node label vector. The

optimization goal is to compute the solution to Equation (4.7). L is the cross-entropy

loss function that estimates the differences between classifier outputs and annotated labels.

The parameters of embedding network w1(including weights of W1, σ1, σ2, σ3, σ4) and

parameters of classifier network w2 are updated and optimized in training.

argmin
w1,w2

|D|∑
i=1

L(y(i),F(v(i)) (4.7)

81



4.4.4 Object Detection

The basic idea behind object detection is that if several nodes indicate that there

exists an object of certain type c at the same address s in the memory dump, we can

conclude with a high confidence that we have detected an object of type c at that address,

c ∈ C. Thus, a node label can be considered as a voter that votes for the presence of an

object. For example, a node with a T 16 24 label means the node votes for the address,

16 bytes before the node address, to be the address of a ETHREAD object. Each node in

the memory indicates the presence of an object. Thus with all the node labels, we can

generate a set of candidate object addresses S = {s1, s2, ...} and corresponding voters for

each address.

Next, we need to determine whether an address s ∈ S is indeed a start address of

an object. Ideally, if all the key nodes of type c vote for s to be an object of type c, for

example T 16 24, T 52 12, T 84 28... all suggest the presence of an ETHREAD at the same

address s, we can confidently report a ETHREAD object is detected at s. It is also likely

that only a fraction of the key node labels votes for address s, then our confidence to report

address s will be lower. We use L(s, c) to denoted the voter set, which is all the key node

labels of type c that vote for address s.

Specifically, we design a weighted voting mechanism. It gives different node labels

(or in other words voters) different vote weights. Since the voter with higher frequency in

a certain object type better indicates the presence of the objects of that type, and thus is

assigned with a larger weight. The weights are calculated from a large real-world labeled

dataset.

82



Finally, we introduce the prediction function f(s, c) in Equation (4.8). It measures

the difference between the prediction confidence and a pre-defined threshold δ. When the

value of f(s, c) exceeds the threshold, we draw a conclusion that an object with type c is

detected at address s.

f(s, c) =


1,

∑
li∈L(s,c)

ρ(c,li)
ρ(c) + γ(s, c)) > δ

0, otherwise

(4.8)

Here, ρ is a counting function, ρ(c) counts the number of objects of type c in the

dataset, and ρ(c, l) counts the number of objects of type c that has node label l in the

dataset, l ∈ L(c). Then, we divide ρ(c, l) by ρ(c) to estimate the weights of node label l in

predicting objects of type c , which is a decimal value in (0, 1]. Since the weight values of

voters range in (0, 1], it is possible that weighted combination of multiple small-weighted

voters is less than that of a large-weighted single voter (e.g. weight sum of two small voters

0.4 + 0.3 ¡ weight value of a single large voter 0.8). In fact, the evidence from multiple voters

is more persuasive than a single voter with a large weight, because it is less likely that two

different voters both make errors and vote for the same address of the same type in a large

and arbitrary memory space. So, we add a function γ(s, c) to reward the cross-validated

addresses voted by multiple voters.

In the implementation, the threshold δ is determined using a searching method in

the validation dataset. We run the experiment by tuning the value of threshold δ to get the

one that yields the highest F-score [134], and set it as the default threshold. The reward

function is devised as γ(s, c) = |L(s, c)| − 1.

83



4.5 Evaluation

In this section, we first describe the experiment setup in Section 4.5.1. Then, we

discuss the dataset collection and labeling approach in Section 4.5.2. Section 4.5.3 provides

details about training. In the end, we present the evaluation results with respect to accuracy,

robustness, and efficiency in Section 4.5.4, 4.5.5, and 4.5.6 respectively.

4.5.1 Experiment Setup

Our experiment uses two settings of configurations. 1) The training experiment is

performed on a high-performance computing center with each worker node equipped with

32 cores Intel Haswell CPUs, 2 x NVIDIA Tesla K80 GPUs and 128 GB memory. 2) The

detection experiment is performed on a moderate desktop computer with Core i7-6700,

16GB, no GPU. We use powerful GPUs on the computing center for training, which is a

one-time effort. Once the model is trained, it is loaded on a desktop computer to conduct

the kernel object detection.

The deep neural network models in DeepMem, like embedding network and clas-

sifier network, are all implemented using the open-source deep learning framework Tensor-

Flow [166]. The remaining codes of data processing, statistics, plotting are programmed in

Python.

84



4.5.2 Dataset

Memory Dumps Collection

While DeepMem can analyze any operating system versions in principle, it is

limited by the object labeling tool used in training. In the evaluation, we choose to evaluate

DeepMem on Windows 7 X86 SP1 rather than the latest Windows 10, mainly because the

object labeling tool we used, Volatility [172], was unable to consistently parse Windows 10

images or memory dumps, but worked very stable for Windows 7 images.

To automatically collect a large number of diverse memory dumps for training and

detection, we developed a tool with two functionalities: 1) simulating various random user

actions, and 2) forcing the OS to randomly allocate objects in the memory space between

consecutive memory dumps.

To simulate various user actions, the memory collecting tool first starts the guest

Windows 7 SP1 virtual machine which is installed in the VirtualBox [170]. When the virtual

machine is started, guest OS automatically starts 20 to 40 random actions, including starting

programs from a pool of the most popular programs, opening websites from a pool of the

most popular websites, and opening random PDF files, office documents, and picture files.

Next, the memory collecting tool waits for 2 minutes and then dumps the memory of the

guest system to a dump file. When the dump is saved to the hard disk of the host system, it

restarts the virtual machine and repeats until we collect 400 memory dumps, each of which

is 1GB in size.

To ensure kernel objects to be allocated at random locations, we enabled KASLR

when generating our dataset and restarted the virtual machine after each dump. We found

85



out that the address allocations of objects are different among different memory dumps.

Only 1.32% EPROCESS objects in a memory dump are located at the same virtual ad-

dress of EPROCESS objects in another dump. The ratio is 4.7% for ETHREAD, 0.68% for

FILE OBJECT, 15.9% for DRIVER OBJECT. The basic statistics of memory dumps and mem-

ory graphs are shown in Table 4.1.

Kernel Object Type Mean Count Std Dev

EPROCESS 85 7.47

ETHREAD 1,216 112.25

FILE OBJECT 3,639 918.06

DRIVER OBJECT 109 0.22

LDR DATA TABLE ENTRY 141 0.59

CM KEY BODY 1,921 953.76

Memory Graph Statistics Mean Count Std Dev

Nodes 1,334,822 134,564.24

Edges 5,325,214 513,624.71

Table 4.1: Statistics of memory dumps and memory graphs.

Kernel Object Types Length #TP #FP #FN Precision% Recall% F-Score

EPROCESS 704 82.834 0.017 0.303 99.979% 99.635% 0.99807

ETHREAD 696 1211.476 5.514 0.7 99.547% 99.942% 0.99744

DRIVER OBJECT 168 108.938 0.255 0.024 99.766% 99.978% 0.99872

FILE OBJECT 128 3621.007 67.545 23.045 98.169% 99.368% 0.98765

LDR DATA TABLE ENTRY 120 139.093 0.0 2.4 100.0% 98.304% 0.99145

CM KEY BODY 44 1979.207 94.621 0.414 95.437% 99.979% 0.97655

Table 4.2: Object Detection Results on Memory Image Dumps.

Memory Graph Construction

To generate a memory graph, we first read and scan all available memory pages in

the kernel virtual space of memory dumps. Then, we locate all the pointers in the pages by

finding all fields whose values fall into the range of kernel virtual space. For each segment

86



between two pointers, we create a node in the memory graph. For each node, we find its

neighbor nodes in the memory dump according to the neighbor definitions in Section 4.4.2,

and create an edge in the memory graph.

Node Labeling

The node labeling process takes four steps: 1) utilize Volatility to find out the offset

and length information of 6 kernel object types (i.e. EPROCESS, ETHREAD, DRIVER OBJECT,

FILE OBJECT, LDR DATA TABLE ENTRY, CM KEY BODY) in memory dumps; 2) for each node

in the memory graph, determine if it falls into the range of any kernel object, and if so,

calculate the offset and length of that node in that kernel object and give the node a label;

3) select the top 20 most frequent node labels across all kernel objects of type c as key node

label set L(c) for type c; and 4) label the rest nodes in the memory graph as none.

Sample Balancing

Inside a large memory dump, kernel objects only take up a small portion of the

memory space. Thus, the key nodes of kernel objects in the memory graph are very sparse.

Also, the key nodes of a certain object type are not evenly distributed. To accelerate the

training process and achieve better detection results, we need to balance samples in the

training dataset.

The principle of balancing is to preserve the topologies of the key nodes in the

memory graph after the balancing process. Specifically, 1) to reduce non-key nodes, we

remove the nodes that are k-hops away from key nodes in memory graph (k is a predefined

value), 2) to increase key nodes and balance between different node types, we duplicate

87



the key nodes to the same amount, and also duplicate the edges between nodes in edge

matrix. Since the embedding vector is calculated using inward edges only, such duplication

does not create new neighbors for the original key nodes, so it does not affect the topology

propagation of the original key nodes.

4.5.3 Training Details

We split the collected 400 memory dumps into 3 subsets. We randomly select 100

images as the training dataset, 10 images as the validation dataset and the remaining 290

images as the testing dataset. The validation dataset and testing dataset will not be used

in the training phase, and this guarantees that the detection model never sees the testing

set in the training phase.

In each training iteration, we randomly select an image from the training dataset

for training. To determine whether the model is fully trained, we monitored the loss and

accuracy on the validation dataset during the training process. When the loss reaches a

relatively small and stable value, we deem the model as fully trained or it reaches its learning

capacity. Dropout layers [159] are added to prevent the over-fitting problem. We set the

keep probability to 0.8 in the training phase, and to 1 in the evaluation phase and testing

phase.

By default, the experiments are all performed under the same parameter setting

as described in Table 4.3.

88



Parameters Value

Layers of σ 3

Layers of ψ 3

Optimizer Adam Optimizer

Learning Rate 0.0001

Propagation Iteration T 3

Input Vector Dimension 64

Embedding Vector Dimension 64

keep prob 0.8

Table 4.3: Default Parameters of Experiments.

4.5.4 Detection Accuracy

We measured the accuracy using a number of different metrics, including precision,

recall, and F-score [134]. For each object type, precision calculates the correctly classified

samples against all detected samples. Recall calculates the correctly classified samples

against all labeled samples in this type. F-score is the harmonic mean of precision and

recall.

Table 4.2 shows the detection results of various kernel object types on raw memory

images by training for 13 hours. We can see from the result, the overall recall rate is

satisfactory, ranging from 98.304% to 99.979%. Most large kernel objects (≥ 120 bytes)

have over 98% precision rate. Important kernel object types EPROCESS, ETHREAD both

achieve over 99.6% recall rate, and over 99.5% precision rate. Also, we observed a tendency

that larger objects achieve better recognition results. The reason is that for small objects,

there are fewer nodes and pointers inside them. Then, the chance of obtaining stable key

nodes is lower.

89



4.5.5 Robustness

For the evaluation of robustness, we performed three experiments. The first exper-

iment is pool tag manipulation, with the aim to evaluate its impact on signature scanning

tools and DeepMem. The second experiment is pointer manipulation, with the aim to eval-

uate if DeepMem is still effective in DKOM process hiding attacks. The third experiment

is a general yet more destructive attack which is to randomly mutate arbitrary bytes in

memory, with the aim to see whether our approach is resistant to various attack scenarios,

and to what extent it can tolerate random mutations.

Pool Tag Manipulation

To perform pool tag manipulation, we change the 4 bytes pool tags [155] of each

object to random values in the memory dump file. Using the manipulated dump, we then

test the effectiveness of our approach and Volatility plugin.

In our experiment, we randomly select 10 memory dumps as the testing set, and

take scanning FILE OBJECT object as an example. As shown in Table 4.4, the filescan

plugin of Volatility cannot correctly report FILE OBJECT objects. Its recall rate drops to

a small value of 0.0082%. The reason is that filescan first needs to search for the pool

tag of FILE OBJECT in the entire memory dump. As a result, most of the objects are not

reported.

As a comparison, DeepMem works normally in evaluation results. It can achieve a

recognition precision of 99.1% and recall of 99.05%. The reason is that DeepMem examines

every byte of a memory dump to detect objects, rather than merely rely on pool tag con-

90



straints to locate objects. Hence, without valid pool tags, DeepMem can still detect objects

in the memory dump. This indicates that approaches based on hard constraint matching

are not robust. In contrast, our approach is based on soft features automatically learned

from raw object bytes, which can capture a more robust representation of an object.

Method Avg. #TP Avg. #FP Avg. #FN Precision% Recall%

filescan 0.3 0.0 3661.8 100% 0.0082%

DeepMem 3627.2 32.9 34.9 99.1% 99.05%

Table 4.4: Results of FILE OBJECT Pool Tag Manipulation

DKOM Process Hiding

This DKOM attack is to hide a malicious process by unlinking its connections to

precedent and antecedent processes in a double linked list. In this case, list traversal related

tools, like the pslist plugin in Volatility, will fail to discover the hidden process through

this broken link list.

In our experiment, we randomly choose 20 memory dumps as a testing set, and

then manipulated the value of the forward link field in each EPROCESS object to random

value. In Table 4.5, we can see that the Volatility plugin pslist fails to discover most

EPROCESS objects except the first one in each dump. Since the EPROCESS list is broken by

the manipulation, it cannot traverse through the double linked list to find other processes.

In contrast, DeepMem can still find 99.77% EPROCESS objects with 100% precision.

Method Avg. #TP Avg. #FP Avg. #FN Precision% Recall%

pslist 1.05 0.0 85.7 100% 1.21%

DeepMem 86.55 0.0 0.2 100% 99.77%

Table 4.5: Results of DKOM Process Hiding Attacks

91



Random Mutation Attack

It is hard to simulate all kinds of DKOM attacks. Therefore, we take a simple ap-

proach to find out how much DeepMem can tolerate DKOM attacks: we gradually increase

the number of bytes to be manipulated in random positions of kernel objects, including

the pointer and non-pointer fields, and evaluate the precision and recall rate at different

mutation levels. In Section 4.5.5 and Section 4.5.5, we have already demonstrated how

DeepMem works on memory dumps with small changes. In this section, we will show how

DeepMem perform when large bytes are changed.

Even if an attacker largely changes the contents and topologies in kernel objects

of the operating system, DeepMem can be used in this scenario without retraining the

detection model with the samples from that attack. We just need to lower the prediction

threshold δ. However, in extreme case, if the threshold is set to a very small value, then

most addresses in candidate address set S will be reported, causing many false positives

and low precision. To guarantee a high precision while getting a recall as high as possible,

it is better to report the objects cross-validated by at least two voters. This can be achieved

by setting the threshold δ of prediction function f(s, c) to 1 (If there are more than two

voters, the reward function γ(s, c) = |L(s, c)| − 1 ≥ 1, the prediction confidence ¿ 1. See

Equation (4.8)).

We evaluate the detection results by mutating different amount of bytes in objects

for EPROCESS and ETHREAD objects, with threshold δ set to 1. We can see from Figure 4.5,

as the number of mutated bytes increases, the precision rate remains stable at around 97% -

98% with tiny perturbations. Recall rate curve stays at a high rate at first, then drops down

92



Pe
rc

en
ta

ge
 %

Mutated Bytes Amount

Precision Rate
Recall Rate

Pe
rc

en
ta

ge
 %

Mutated Bytes Amount

Precision Rate
Recall Rate

(a) Random Mutation Attack ( EPROCESS) (b) Random Mutation Attack ( ETHREAD)

Figure 4.5: Random Mutation Attack

as the number of mutated bytes further increases. Specifically, for EPROCESS, it achieves

over 97% precision rate at all mutation levels, and 100% recall rate before 20 bytes are

changed. Our model can tolerate up to 50 bytes random mutation, without causing the

precision and recall rate drop significantly. For ETHREAD, our model can tolerate up to 30

bytes random mutation. We can see when we set the threshold δ to a low value 1, the

precision rate does not drop significantly.

The causes of the high precision and recall rate are twofold. First, the neural

network itself can inherently tolerate small mutations due to the robust features it learns

from the training data. Second, even when deep model incorrectly predicts the labels of

some nodes of an object, the remaining nodes can make cross-validation and collectively

conclude the presence of an object. The recall rate indeed drops significantly with larger

mutations. However, these larger mutations will likely cause system crashes or instability,

and therefore might be rarely seen in real-world attacks.

93



4.5.6 Efficiency

To investigate the efficiency of DeepMem, we measure the time allocations in dif-

ferent phases. We consider three types of time consumption: GNN model training time Tt,

memory graph construction time Tg and object detection time Td. 1) The training time Tt

measures the time from inputting raw labeled training dataset dumps to obtaining a fully

trained model with a small and stable prediction loss. 2) The memory graph construction

time Tg measures the time from inputting a raw memory dump to obtaining matrix repre-

sentation of the memory graph. 3) The object detection time Td measures the time from

inputting a memory graph matrix to obtaining detected kernel object set of a certain object

type. The experiment settings of training and detection are described in Section 4.5.1.

In the training phase, we utilize the GPU in the computing center to train the

model because the major computation of training is matrix-based and GPU can accelerate

the matrix computation. We train the model for 13 hours for one object type. After training,

the model can be saved to disk and deployed in a desktop computer(with or without GPU).

In our detection experiment, we copy the model to a moderate desktop computer without

GPU. On average, it takes 79.7 seconds to construct the whole memory graph for one

memory dump of 1GB size, and 12.73 seconds to recognize the objects of a certain type in

it, as shown in Figure 4.6. This detection time can be accelerated by using GPU. In our

computing center, the detection time can be reduced to about 7.7 seconds.

DeepMem is efficient for two reasons. First, it turns a memory dump into a graph

structure denoted as large node matrices and edge matrices, which is especially suitable

for fast GPU parallel computation. Second, since it converts the memory dump into an

94



−40 −20 0 20 40 60

−40

−20

0

20

40

60 P_24_20
P_52_16
P_76_64
P_192_20
P_236_4
P_300_36
P_400_64
P_496_8
P_516_64
P_584_20

−40 −20 0 20 40 60

−40

−20

0

20

40
T_84_28
T_252_12
T_340_20
T_472_8
T_496_24
T_528_20
T_556_16
T_580_8
T_596_20
T_624_64

(a) EPROCESS (b) ETHREAD

−40 −20 0 20
−40

−20

0

20

40

D_8_4
D_16_4
D_28_4
D_40_64
D_40_16
D_44_64
D_48_8
D_56_64
D_96_64
D_132_36

−40 −20 0 20 40

−40

−20

0

20

40

60
F_8_4
F_20_32
F_24_28
F_28_24
F_56_28
F_56_44
F_92_8
F_108_8
F_124_12
F_124_16

(c) DRIVER OBJECT (d) FILE OBJECT

Figure 4.6: Node Embedding Visualization using t-SNE

intermediate representation (memory graph), and performs the detection of various object

types on this graph, there is no need to scan the raw memory multiple times to match the

various set of signatures for different object types.

Time Measurements Mean Std Dev

Training Training Tt (per object type) 13 Hours N/A

Detection
Graph Construction Tg (per dump) 79.7 Sec 6.64
Object Detection Td (per type) 12.73 Sec 1.24

Table 4.6: Time Consumption at Different Phases.

95



4.5.7 Understanding Node Embedding

We plot the embedding vectors of nodes using t-SNE visualization technique [108]

in Figure 4.6. Each node embedding vector in multi-dimensional space is mapped as a

point in two-dimensional space. We collect embedding vectors of different object types at

the output layer of the embedding network before they are fed into the classifier network.

Figure 4.6 shows the distribution of embedding vectors in 2D space, where different colors

are used to denote different types of node labels. To clearly show plenty of embeddings of

different types, we only plot the first 10 key nodes for each object type. We expect to observe

that points of the same colors locate near each other, and different colors locate far from

each other. From the figure, we can see that the visualized results meet that expectation.

These embeddings can capture the intrinsic characteristics of nodes, and different types of

nodes are well separated.

4.5.8 Impact of Hyperparameters

We plot ROC curves [67] of detection results to show the impact of the different

hyperparameters of our model. We adjust three parameters: the propagation iteration

times T , the embedding vector size, and the embedding depth of embedding network σ.

ROC curve shows the trade-off between sensitivity (true positive rate) and specificity (false

positive rate) of the object detector.

Figure 4.7(a) shows the performance of the FILE OJBECT detector by tuning the

iteration parameter T of node embedding network ϕ. We can see that the ROC curve of

T = 3 is nearest to the upper left corner, followed by the curves of T = 2 and T = 1.

96



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

_FILE_OBJECT

T=1
T=2
T=3

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

_FILE_OBJECT

Embedding Size=16
Embedding Size=32
Embedding Size=64

(a) ROC versus Iterations T (b) ROC versus Embedding Vector Size

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

_FILE_OBJECT

Layer Depth=1
Layer Depth=2
Layer Depth=3

(c) ROC versus Layer Depth of σ

Figure 4.7: ROC Curves by Tuning Parameters

The trend demonstrates the importance of topological information propagation in object

detection. With more information collected through propagation, the prediction ability of

the object detector is further improved.

Figure 4.7(b) shows the performance of FILE OBJECT detector by tuning embed-

ding vector size of node embedding network ϕ. In the figure, the ROC curve with larger

embedding size is closer to the upper left corner. It shows that larger embedding vector size

is more expressive and better approximate the data intrinsic characteristics. However, this

is also a trade-off between learning ability and training time. In practical usages, for the

97



same level of learning ability, a smaller embedding size is preferred for faster training and

testing. The determination of such embedding size should be a combined consideration of

the task complexity and training effort.

Figure 4.7(c) shows the performance of FILE OBJECT detector by tuning embed-

ding layers depth of σ. In the figure, the ROC curve with more layers is closer to the

upper left corner. It indicates that the learning ability of deeper neural network is stronger

than shallower networks. Enlarging the number of layers and embedding size is a preferred

solution for training complex object types.

4.6 Discussion

Small Objects. DeepMem may not perform well for small objects with few or no pointers,

like many other pointer-based approaches [100]. Our approach model objects based on

both content of objects and topological relations between objects. Small objects lacking

pointers are not informative enough and also have weak or no relations with other nodes

in the memory. Thus very little information could be gathered from others nodes to make

inference on the objects. Fortunately, important kernel objects like EPROCESS, ETHREAD

and DRIVER OBJECT are long enough for our approach to achieve over 99.6% recall and over

99.5% precision rate, which is sufficient for general memory forensic purposes.

Data Diversity and Validity To generate diverse dumps, we try to simulate random user

actions and allocate kernel objects in random positions in the memory, as described in the

evaluation section. Even with these efforts, our dataset may not be diverse enough. To make

it more diverse, researchers can use different physical machines, load different drivers, etc.

98



Nevertheless, our evaluation on the dataset at least demonstrates the feasibility of DeepMem

in a homogeneous environment (e.g., an enterprise network in which all computers have the

same configuration and in a cloud environment where VMs are instantiated from the same

base image). We use Volatility to label memory dumps as ground truth. According to the

paper [135], Volatility achieves zero FPs and FNs for most of their plugins for non-malicious

dumps. So our training set labeling should not be affected. Plus, we can use other solutions

to label memory dumps as suggested in this chapter, such as using DECAF [68].

Cross Operating System Versions. In the evaluation phase, we have already demon-

strated the robustness of our approach in scenarios like pool tag attack, DKOM process

hiding and random bytes mutation. It shows that our approach tolerates well for small

changes and manipulations of the memory. This feature is useful in real-world applications.

For example, our approach will adapt to systems changes across versions and patches. We

leave this for future work.

4.7 Conclusion

In this chapter, we propose a graph-based kernel object detection approach Deep-

Mem. By constructing a whole memory graph and collecting information through topolog-

ical information propagation, we can scan the memory dumps and infer objects of various

types in a fast and robust manner. DeepMem is advanced in that 1) it does not rely on

the knowledge of operating system source code or kernel data structures, 2) it can au-

tomatically generate features of kernel objects from raw bytes in memory dump without

manual expert analysis, 3) it utilizes deep neural network architectures for efficient parallel

99



computation, and 4) it extracts robust features that are resistant to attacks like pool tag

manipulation, DKOM process hiding. The experimental result shows that it performs well

in terms of accuracy, robustness, and efficiency. For accuracy, it reaches above 99.5% recall

and precision rate for important kernel objects like EPROCESS and ETHREAD. In terms of

robustness, DeepMem’s recognition results remain stable across different attack scenarios,

such as manipulating pool labels, pointers, and even random byte mutations.In terms of

efficiency, DeepMem converts a memory dump into an intermediate memory graph repre-

sentation and efficiently uses the GPU for detection of different types of objects on this

graph.

100



Chapter 5

Conclusions

In a nutshell, attacking state-of-the-art machine learning-based models effectively

helps us understand how ML models make classification decisions and why they fail on

adversarial examples. Then a new architecture is proposed that is fundamentally robust to

adversarial attacks. To address the problem of memory-only malware attacks, DeepMem

is proposed to scan memory dumps and infer various types of objects in a fast and robust

manner.

MAB-Malware utilizes reinforcement learning to perform adversarial attacks on

state-of-the-art machine learning models for malware classification and top commercial an-

tivirus static classifiers. It finds an optimal balance between exploitation and exploration to

maximize the evasion rate within limited trials. It filters out the actions that are ineffective

for adversarial sample generation, so our framework can also be used to explain why evasion

occurs. Our results show that MAB-Malware largely improves the evasion rate over other

reinforcement learning frameworks.

101



Selective Hierarchical BERT is proposed to automatically select malicious func-

tions for malware classification, which is robust to different attacks by design. Compared

with other baselines, our model can handle very large samples and can automatically select

essential features for malware classification, which fundamentally improves the robustness

of the model without sacrificing the accuracy of the model.

DeepMem constructs a whole memory graph and collects information through

topological information propagation, we can scan the memory dumps and infer objects of

various types in a fast and robust manner. DeepMem is advanced in that 1) it does not

rely on the knowledge of operating system source code or kernel data structures, 2) it can

automatically generate features of kernel objects from raw bytes in memory dumps, 3)

it utilizes DNN architectures for efficient parallel computation, and 4) it extracts robust

features that are resistant to attacks like pool tag manipulation, DKOM process hiding.

5.1 Final Thoughts and Future Works

As machine learning becomes more and more widely used in various fields, we

are facing more challenges while enjoying the convenience it brings. It is especially true

in the field of computer security. It requires researchers to keep security in mind when

designing the DNN model. As the models’ complexity grows, it is increasingly difficult to

know whether the model works as expected. That’s why deep model explanation gains

more and more interest in the ML community. As many works point out, interpretability

and robustness are two sides of the same coin. If the interpretability of the deep model is

increased, its robustness is also increased. Our work Selective Hierarchical BERT shows that

102



explanation can be directly used to improve the robustness of deep models. (We interpret

the Reasoner model to get function labels to train the Judge model, which in turn helps to

increase the robustness of the Reasoner model.) Our work MAB-Malware shows that it is

possible to explain blackbox models, like the commercial antivirus engines.

My future work will focus on the analysis and interpretation of the Judge model.

I will do some case studies to explain how the Judge model identifies malicious functions.

I plan to try more techniques to improve the accuracy of the Judge model. It will help

to further improve the interpretability and robustness of the whole malware classification

architecture.

103



Bibliography

[1] Beta distribution. https://en.wikipedia.org/wiki/Beta_distribution.

[2] Mohammed Abuhamad, Tamer AbuHmed, Aziz Mohaisen, and DaeHun Nyang.
Large-scale and language-oblivious code authorship identification. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
pages 101–114. ACM, 2018.

[3] Ahmed Abusnaina, Aminollah Khormali, Hisham Alasmary, Jeman Park, Afsah An-
war, Ulku Meteriz, and Aziz Mohaisen. Examining adversarial learning against graph-
based iot malware detection systems. arXiv preprint arXiv:1902.04416, 2019.

[4] Amir Afianian, Salman Niksefat, Babak Sadeghiyan, and David Baptiste. Malware
dynamic analysis evasion techniques: A survey. arXiv preprint arXiv:1811.01190,
2018.

[5] Abdullah Al-Dujaili, Alex Huang, Erik Hemberg, and Una-May O’Reilly. Adversarial
deep learning for robust detection of binary encoded malware. In 2018 IEEE Security
and Privacy Workshops (SPW), pages 76–82. IEEE, 2018.

[6] Abdullah Al-Dujaili, Alex Huang, Erik Hemberg, and Una-May O’Reilly. Adversarial
deep learning for robust detection of binary encoded malware. In 2018 IEEE Security
and Privacy Workshops (SPW), pages 76–82. IEEE, 2018.

[7] Hyrum S Anderson, Anant Kharkar, Bobby Filar, David Evans, and Phil Roth. Learn-
ing to evade static pe machine learning malware models via reinforcement learning.
arXiv preprint arXiv:1801.08917, 2018.

[8] Hyrum S Anderson, Anant Kharkar, Bobby Filar, and Phil Roth. Evading machine
learning malware detection. Black Hat, 2017.

[9] Hyrum S Anderson and Phil Roth. Ember: an open dataset for training static pe
malware machine learning models. arXiv preprint arXiv:1804.04637, 2018.

[10] Cosimo Anglano. Forensic analysis of whatsapp messenger on android smartphones.
2014.

104

https://en.wikipedia.org/wiki/Beta_distribution


[11] Adi Ashkenazy and Shahar Zini. Cylance, i kill you! https://skylightcyber.com/

2019/07/18/cylance-i-kill-you/, 2019.

[12] Ai & machine learning. https://www.avast.com/en-us/technology/ai-and-

machine-learning, 2018.

[13] Arati Baliga, Vinod Ganapathy, and Liviu Iftode. Automatic inference and enforce-
ment of kernel data structure invariants. In Computer Security Applications Confer-
ence (ACSAC), 2008.

[14] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX Annual
Technical Conference, FREENIX Track, 2005.

[15] Chris Betz. MemParser. https://sourceforge.net/p/memparser/wiki/Home/,
2018.

[16] Qi-Zhi Cai, Min Du, Chang Liu, and Dawn Song. Curriculum adversarial training.
arXiv preprint arXiv:1805.04807, 2018.

[17] Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan, Clare Voss,
Fabian Yamaguchi, and Rachel Greenstadt. De-anonymizing programmers via code
stylometry. In 24th {USENIX} Security Symposium ({USENIX} Security 15), pages
255–270, 2015.

[18] Martim Carbone, Weidong Cui, Long Lu, Wenke Lee, Marcus Peinado, and Xuxian
Jiang. Mapping kernel objects to enable systematic integrity checking. In Proceedings
of the 16th ACM conference on Computer and communications security, pages 555–
565. ACM, 2009.

[19] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber,
Dimitris Tsipras, Ian Goodfellow, and Aleksander Madry. On evaluating adversarial
robustness. arXiv preprint arXiv:1902.06705, 2019.

[20] Curtis Carmony, Xunchao Hu, Heng Yin, Abhishek Vasisht Bhaskar, and Mu Zhang.
Extract me if you can: Abusing pdf parsers in malware detectors. In NDSS, 2016.

[21] Ero Carrera. pefile. https://github.com/erocarrera/pefile, 2016.

[22] Andrew Case and Golden G Richard III. Memory forensics: The path forward. 2016.

[23] Raphael Labaca Castro, Corinna Schmitt, and Gabi Dreo. Aimed: Evolving mal-
ware with genetic programming to evade detection. In 2019 18th IEEE Interna-
tional Conference On Trust, Security And Privacy In Computing And Communica-
tions/13th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), pages 240–247. IEEE, 2019.

[24] Raphael Labaca Castro, Corinna Schmitt, and Gabi Dreo Rodosek. Poster: Training
gans to generate adversarial examples against malware classification.

105

https://skylightcyber.com/2019/07/18/cylance-i-kill-you/
https://skylightcyber.com/2019/07/18/cylance-i-kill-you/
https://www.avast.com/en-us/technology/ai-and-machine-learning
https://www.avast.com/en-us/technology/ai-and-machine-learning
https://sourceforge.net/p/memparser/wiki/Home/
https://github.com/erocarrera/pefile


[25] Fabŕıcio Ceschin, Marcus Botacin, Heitor Murilo Gomes, Luiz S Oliveira, and André
Grégio. Shallow security: on the creation of adversarial variants to evade machine
learning-based malware detectors. In Proceedings of the 3rd Reversing and Offensive-
oriented Trends Symposium, pages 1–9, 2019.

[26] Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In
Advances in neural information processing systems, pages 2249–2257, 2011.

[27] Li Chen. Understanding the efficacy, reliability and resiliency of computer vision
techniques for malware detection and future research directions. arXiv preprint
arXiv:1904.10504, 2019.

[28] Lingwei Chen, Yanfang Ye, and Thirimachos Bourlai. Adversarial machine learning in
malware detection: Arms race between evasion attack and defense. In 2017 European
Intelligence and Security Informatics Conference (EISIC), pages 99–106. IEEE, 2017.

[29] Xiao Chen, Chaoran Li, Derui Wang, Sheng Wen, Jun Zhang, Surya Nepal, Yang
Xiang, and Kui Ren. Android hiv: A study of repackaging malware for evading
machine-learning detection. IEEE Transactions on Information Forensics and Secu-
rity, 15:987–1001, 2019.

[30] Yizheng Chen, Shiqi Wang, Dongdong She, and Suman Jana. On training robust pdf
malware classifiers. arXiv preprint arXiv:arXiv:1904.03542, 2019.

[31] Clamav. https://www.clamav.net/.

[32] James C. Corbett. Using shape analysis to reduce finite-state models of concurrent
java programs. In Proceedings of the International Symposium on Software Testing
and Analysis, 1998.

[33] Scott E Coull and Christopher Gardner. Activation analysis of a byte-based deep
neural network for malware classification. arXiv preprint arXiv:1903.04717, 2019.

[34] Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T. King. Digging for data
structures. In the 8th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI’08), 2008.

[35] Cuckoo Sandbox. https://cuckoosandbox.org/.

[36] Weidong Cui, Marcus Peinado, Zhilei Xu, and Ellick Chan. Tracking rootkit foot-
prints with a practical memory analysis system. In 21st USENIX Security Symposium
(USENIX Security 12), pages 601–615, 2012.

[37] George E Dahl, Jack W Stokes, Li Deng, and Dong Yu. Large-scale malware classi-
fication using random projections and neural networks. In 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 3422–3426. IEEE, 2013.

[38] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable
models for structured data. In International Conference on Machine Learning, pages
2702–2711, 2016.

106

https://www.clamav.net/
https://cuckoosandbox.org/


[39] Anusha Damodaran, Fabio Di Troia, Corrado Aaron Visaggio, Thomas H Austin,
and Mark Stamp. A comparison of static, dynamic, and hybrid analysis for malware
detection. Journal of Computer Virology and Hacking Techniques, 13(1):1–12, 2017.

[40] Hung Dang, Yue Huang, and Ee-Chien Chang. Evading classifiers by morphing in
the dark. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 119–133. ACM, 2017.

[41] Park Daniel, Khan Haidar, and Yener Bülent. Generation & evaluation of adversarial
examples for malware obfuscation. arXiv preprint arXiv:1904.04802, 2019.

[42] Luca Demetrio, B. Biggio, Giovanni Lagorio, F. Roli, and A. Armando. Functionality-
preserving black-box optimization of adversarial windows malware. arXiv: Cryptog-
raphy and Security, 2020.

[43] Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli, and Alessandro Ar-
mando. Explaining vulnerabilities of deep learning to adversarial malware binaries.
arXiv preprint arXiv:1901.03583, 2019.

[44] Ambra Demontis, Marco Melis, Battista Biggio, Davide Maiorca, Daniel Arp, Konrad
Rieck, Igino Corona, Giorgio Giacinto, and Fabio Roli. Yes, machine learning can be
more secure! a case study on android malware detection. IEEE Transactions on
Dependable and Secure Computing, 2017.

[45] Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio,
Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli. Why do adversarial attacks trans-
fer? explaining transferability of evasion and poisoning attacks. In 28th {USENIX}
Security Symposium ({USENIX} Security 19), pages 321–338, 2019.

[46] Ming Ding, Chang Zhou, Hongxia Yang, and Jie Tang. Cogltx: Applying bert to long
texts. Advances in Neural Information Processing Systems, 33:12792–12804, 2020.

[47] FU rootkit. https://www.blackhat.com/presentations/win-usa-04/bh-win-04-
butler.pdf, 2018.

[48] Brendan Dolan-Gavitt. The vad tree: A process-eye view of physical memory. In
Digital Investigation, Volume 4, Supplement 1, 2007.

[49] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke Lee.
Virtuoso: Narrowing the semantic gap in virtual machine introspection. In Proceedings
of the IEEE Symposium on Security and Privacy (Oakland), May 2011.

[50] Brendan Dolan-Gavitt, Abhinav Srivastava, Patrick Traynor, and Jonathon Giffin.
Robust signatures for kernel data structures. In Proceedings of the 16th ACM Con-
ference on Computer and Communications Security, pages 566–577, 2009.

[51] Brendan Dolan-Gavitt, Abhinav Srivastava, Patrick Traynor, and Jonathon Giffin.
Robust signatures for kernel data structures. In Proceedings of the 16th ACM confer-
ence on Computer and communications security, pages 566–577. ACM, 2009.

107

https://www.blackhat.com/presentations/win-usa-04/bh-win-04-butler.pdf
https://www.blackhat.com/presentations/win-usa-04/bh-win-04-butler.pdf


[52] Saeed Ehteshamifar, Antonio Barresi, Thomas R Gross, and Michael Pradel. Easy
to fool? testing the anti-evasion capabilities of pdf malware scanners. arXiv preprint
arXiv:1901.05674, 2019.

[53] EvadeML. https://github.com/uvasrg/EvadeML, 2016.

[54] Aurore Fass, Michael Backes, and Ben Stock. Hidenoseek: Camouflaging malicious
javascript in benign asts. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 1899–1913, 2019.

[55] Qian Feng, Aravind Prakash, Heng Yin, and Zhiqiang Lin. Mace: high-coverage
and robust memory analysis for commodity operating systems. In Proceedings of the
30th Annual Computer Security Applications Conference (ACSAC’14), pages 196–
205. ACM, 2014.

[56] William Fleshman, Edward Raff, Jared Sylvester, Steven Forsyth, and Mark McLean.
Non-negative networks against adversarial attacks. arXiv preprint arXiv:1806.06108,
2018.

[57] William Fleshman, Edward Raff, Richard Zak, Mark McLean, and Charles Nicholas.
Static malware detection & subterfuge: Quantifying the robustness of machine learn-
ing and current anti-virus. In 2018 13th International Conference on Malicious and
Unwanted Software (MALWARE), pages 1–10. IEEE, 2018.

[58] Yangchun Fu and Zhiqiang Lin. Space traveling across vm: Automatically bridging
the semantic gap in virtual machine introspection via online kernel data redirection.
In 2012 IEEE symposium on security and privacy, pages 586–600. IEEE, 2012.

[59] Hisham Shehata Galal, Yousef Bassyouni Mahdy, and Mohammed Ali Atiea.
Behavior-based features model for malware detection. Journal of Computer Virol-
ogy and Hacking Techniques, 12(2):59–67, 2016.

[60] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a dag, or a cyclic graph? a shape
analysis for heap-directed pointers in c. In Proceedings of the 23rd ACM Symposium
on Principles of Programming Languages, 1996.

[61] Yoav Goldberg and Omer Levy. word2vec explained: Deriving mikolov et al.’s
negative-sampling word-embedding method. 2014.

[62] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[63] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick
McDaniel. Adversarial perturbations against deep neural networks for malware clas-
sification. arXiv preprint arXiv:1606.04435, 2016.

[64] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick
McDaniel. Adversarial examples for malware detection. In European Symposium on
Research in Computer Security, pages 62–79. Springer, 2017.

108

https://github.com/uvasrg/EvadeML


[65] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing. Lemna:
Explaining deep learning based security applications. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, pages 364–
379. ACM, 2018.

[66] gym-malware. https://github.com/endgameinc/gym-malware, 2018.

[67] James A Hanley and Barbara J McNeil. The meaning and use of the area under a
receiver operating characteristic (roc) curve. 1982.

[68] Andrew Henderson, Aravind Prakash, Lok Kwong Yan, Xunchao Hu, Xujiewen Wang,
Rundong Zhou, and Heng Yin. Make it work, make it right, make it fast: building a
platform-neutral whole-system dynamic binary analysis platform. In Proceedings of
the 2014 International Symposium on Software Testing and Analysis, 2014.

[69] Greg Hoglund and James Butler. Rootkits: subverting the windows kernel. 2006.

[70] Weiwei Hu and Ying Tan. Generating adversarial malware examples for black-box
attacks based on gan. arXiv preprint arXiv:1702.05983, 2017.

[71] Weiwei Hu and Ying Tan. Generating adversarial malware examples for black-box
attacks based on gan. arXiv preprint arXiv:1702.05983, 2017.

[72] Weiwei Hu and Ying Tan. Black-box attacks against rnn based malware detection
algorithms. In Workshops at the Thirty-Second AAAI Conference on Artificial Intel-
ligence, 2018.

[73] Weiwei Hu and Ying Tan. Black-box attacks against rnn based malware detection
algorithms. In Workshops at the Thirty-Second AAAI Conference on Artificial Intel-
ligence, 2018.

[74] Alex Huang, Abdullah Al-Dujaili, Erik Hemberg, and Una-May O’Reilly. On visual
hallmarks of robustness to adversarial malware. arXiv preprint arXiv:1805.03553,
2018.

[75] Yonghong Huang, Utkarsh Verma, Celeste Fralick, Gabriel Infantec-Lopez, Brajesh
Kumar, and Carl Woodward. Malware evasion attack and defense. 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks Work-
shops (DSN-W), Jun 2019.

[76] IDA Pro Disassembler. http://www.hex-rays.com/idapro/.

[77] Inigo Incer, Michael Theodorides, Sadia Afroz, and David Wagner. Adversarially
robust malware detection using monotonic classification. In Proceedings of the Fourth
ACM International Workshop on Security and Privacy Analytics, pages 54–63. ACM,
2018.

[78] Kyriakos K. Ispoglou and Mathias Payer. malwash: Washing malware to evade dy-
namic analysis. In 10th USENIX Workshop on Offensive Technologies (WOOT 16),
Austin, TX, August 2016. USENIX Association.

109

https://github.com/endgameinc/gym-malware
http://www.hex-rays.com/idapro/


[79] Daniel Jakubovitz and Raja Giryes. Improving dnn robustness to adversarial attacks
using jacobian regularization. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 514–529, 2018.

[80] ElMouatez Billah Karbab, Mourad Debbabi, Abdelouahid Derhab, and Djedjiga
Mouheb. Android malware detection using deep learning on api method sequences.
arXiv preprint arXiv:1712.08996, 2017.

[81] Aminollah Khormali, Ahmed Abusnaina, Songqing Chen, DaeHun Nyang, and Aziz
Mohaisen. Copycat: Practical adversarial attacks on visualization-based malware
detection. arXiv preprint arXiv:1909.09735, 2019.

[82] Jin-Young Kim, Seok-Jun Bu, and Sung-Bae Cho. Zero-day malware detection using
transferred generative adversarial networks based on deep autoencoders. Information
Sciences, 460:83–102, 2018.

[83] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
2014.

[84] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence
functions. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 1885–1894. JMLR. org, 2017.

[85] Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide Maiorca, Giorgio Giac-
into, Claudia Eckert, and Fabio Roli. Adversarial malware binaries: Evading deep
learning for malware detection in executables. In 2018 26th European signal processing
conference (EUSIPCO), pages 533–537. IEEE, 2018.

[86] Hyungjoon Koo and Michalis Polychronakis. Juggling the gadgets: Binary-level code
randomization using instruction displacement. In Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security, pages 23–34. ACM,
2016.

[87] Hyungjoon Koo and Michalis Polychronakis. Juggling the gadgets: Binary-level code
randomization using instruction displacement. In Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security, pages 23–34. ACM,
2016.

[88] Alex Kouzemtchenko. Defending malware classification networks against adversarial
perturbations with non-negative weight restrictions. arXiv preprint arXiv:1806.09035,
2018.

[89] Felix Kreuk, Assi Barak, Shir Aviv-Reuven, Moran Baruch, Benny Pinkas, and Joseph
Keshet. Adversarial examples on discrete sequences for beating whole-binary malware
detection. arXiv preprint arXiv:1802.04528, 2018.

[90] Felix Kreuk, Assi Barak, Shir Aviv-Reuven, Moran Baruch, Benny Pinkas, and Joseph
Keshet. Deceiving end-to-end deep learning malware detectors using adversarial ex-
amples. arXiv preprint arXiv:1802.04528, 2018.

110



[91] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at
scale. arXiv preprint arXiv:1611.01236, 2016.

[92] Raphael Labaca-Castro, Battista Biggio, and Gabi Dreo Rodosek. Poster: Attacking
malware classifiers by crafting gradient-attacks that preserve functionality. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pages 2565–2567. ACM, 2019.

[93] Chris Lattner, Andrew Lenharth, and Vikram Adve. Making Context-Sensitive
Points-to Analysis with Heap Cloning Practical For The Real World. In Proceed-
ings of the 2007 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’07), San Diego, California, June 2007.

[94] Quan Le, Oiśın Boydell, Brian Mac Namee, and Mark Scanlon. Deep learning at the
shallow end: Malware classification for non-domain experts. Digital Investigation,
26:S118–S126, 2018.

[95] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. 2015.

[96] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

[97] Deqiang Li, Ramesh Baral, Tao Li, Han Wang, Qianmu Li, and Shouhuai Xu.
Hashtran-dnn: A framework for enhancing robustness of deep neural networks against
adversarial malware samples. arXiv preprint arXiv:1809.06498, 2018.

[98] Deqiang Li, Qianmu Li, Yanfang Ye, and Shouhuai Xu. Enhancing robustness of
deep neural networks against adversarial malware samples: Principles, framework,
and aics’2019 challenge. arXiv preprint arXiv:1812.08108, 2018.

[99] LIEF. https://github.com/lief-project/LIEF.

[100] Zhiqiang Lin, Junghwan Rhee, Chao Wu, Xiangyu Zhang, and Dongyan Xu. Dimsum:
Discovering semantic data of interest from un-mappable memory with confidence. In
Proc. NDSS, 2012.

[101] Zhiqiang Lin, Junghwan Rhee, Xiangyu Zhang, Dongyan Xu, and Xuxian Jiang.
Siggraph: Brute force scanning of kernel data structure instances using graph-based
signatures. In Proceedings of the Network and Distributed System Security Symposium,
February 2011.

[102] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic reverse engineering of
data structures from binary execution. In Proceedings of the 11th Annual Information
Security Symposium, 2010.

[103] Xiang Ling, Shouling Ji, Jiaxu Zou, Jiannan Wang, Chunming Wu, Bo Li, and Ting
Wang. Deepsec: A uniform platform for security analysis of deep learning model. In
IEEE S&P, 2019.

111

https://github.com/lief-project/LIEF


[104] Xiaolei Liu, Xiaojiang Du, Xiaosong Zhang, Qingxin Zhu, Hao Wang, and Mohsen
Guizani. Adversarial samples on android malware detection systems for iot systems.
Sensors, 19(4):974, 2019.

[105] Xinbo Liu, Jiliang Zhang, Yaping Lin, and He Li. Atmpa: Attacking machine learning-
based malware visualization detection methods via adversarial examples. In 2019
IEEE/ACM 27th International Symposium on Quality of Service (IWQoS), pages
1–10. IEEE, 2019.

[106] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable
adversarial examples and black-box attacks. arXiv preprint arXiv:1611.02770, 2016.

[107] Keane Lucas, Mahmood Sharif, Lujo Bauer, Michael K Reiter, and Saurabh Shintre.
Malware makeover: Breaking ml-based static analysis by modifying executable bytes.
In Proceedings of the 2021 ACM Asia Conference on Computer and Communications
Security, pages 744–758, 2021.

[108] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. 2008.

[109] Multi-armed bandit. https://en.wikipedia.org/wiki/Multi-armed_bandit.

[110] Holger Macht. Live memory forensics on android with volatility. Friedrich-Alexander
University Erlangen-Nuremberg, 2013.

[111] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. arXiv
preprint arXiv:1706.06083, 2017.

[112] Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Giacinto.
Stealth attacks: An extended insight into the obfuscation effects on android malware.
Computers & Security, 51:16–31, 2015.

[113] Davide Maiorca, Battista Biggio, Maria Elena Chiappe, and Giorgio Giacinto. Adver-
sarial detection of flash malware: Limitations and open issues. CoRR, abs/1710.10225,
2017.

[114] Davide Maiorca, Battista Biggio, and Giorgio Giacinto. Towards robust detection
of adversarial infection vectors: Lessons learned in pdf malware. arXiv preprint
arXiv:1811.00830, 2018.

[115] MCTS. https://gist.github.com/qpwo/c538c6f73727e254fdc7fab81024f6e1,
2019.

[116] Marco Melis, Davide Maiorca, Battista Biggio, Giorgio Giacinto, and Fabio Roli.
Explaining black-box android malware detection. In 2018 26th European Signal Pro-
cessing Conference (EUSIPCO), pages 524–528. IEEE, 2018.

[117] Xiaozhu Meng, Barton P Miller, and Somesh Jha. Adversarial binaries for authorship
identification. arXiv preprint arXiv:1809.08316, 2018.

112

https://en.wikipedia.org/wiki/Multi-armed_bandit
https://gist.github.com/qpwo/c538c6f73727e254fdc7fab81024f6e1


[118] Machine Learning Static Evasion Competition 2019. https://github.com/

endgameinc/malware_evasion_competition.

[119] Machine Learning Static Evasion Competition 2020. https://github.com/Azure/

2020-machine-learning-security-evasion-competition.

[120] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report, 1999.

[121] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples. arXiv
preprint arXiv:1605.07277, 2016.

[122] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia conference on computer and communications
security, pages 506–519. ACM, 2017.

[123] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
Distillation as a defense to adversarial perturbations against deep neural networks. In
2016 IEEE Symposium on Security and Privacy (SP), pages 582–597. IEEE, 2016.

[124] Raghavendra Pappagari, Piotr Zelasko, Jesús Villalba, Yishay Carmiel, and Najim
Dehak. Hierarchical transformers for long document classification. In 2019 IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU), pages 838–844.
IEEE, 2019.

[125] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. Smashing the
gadgets: Hindering return-oriented programming using in-place code randomization.
In 2012 IEEE Symposium on Security and Privacy, pages 601–615. IEEE, 2012.

[126] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. Smashing the
gadgets: Hindering return-oriented programming using in-place code randomization.
In 2012 IEEE Symposium on Security and Privacy, pages 601–615. IEEE, 2012.

[127] Daniel Park, Haidar Khan, and Bülent Yener. Short paper: Creating adversarial
malware examples using code insertion. CoRR, abs/1904.04802, 2019.

[128] Jithin Pavithran, Milan Patnaik, and Chester Rebeiro. D-time: Distributed threadless
independent malware execution for runtime obfuscation. In 13th USENIX Workshop
on Offensive Technologies (WOOT 19), Santa Clara, CA, August 2019. USENIX
Association.

[129] The best antivirus protection. https://www.pcmag.com/picks/the-best-

antivirus-protection, 2020.

[130] Nick L Petroni, Aaron Walters, Timothy Fraser, and William A Arbaugh. Fatkit: A
framework for the extraction and analysis of digital forensic data from volatile system
memory. 2006.

113

https://github.com/endgameinc/malware_evasion_competition
https://github.com/endgameinc/malware_evasion_competition
https://github.com/Azure/2020-machine-learning-security-evasion-competition
https://github.com/Azure/2020-machine-learning-security-evasion-competition
https://www.pcmag.com/picks/the-best-antivirus-protection
https://www.pcmag.com/picks/the-best-antivirus-protection


[131] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro. In-
triguing properties of adversarial ml attacks in the problem space. 2020 IEEE Security
and Privacy, 2020.

[132] Robert Podschwadt and Hassan Takabi. Effectiveness of adversarial examples and
defenses for malware classification. arXiv preprint arXiv:1909.04778, 2019.

[133] Michael JD Powell. An efficient method for finding the minimum of a function of
several variables without calculating derivatives. 1964.

[134] David Martin Powers. Evaluation: from precision, recall and f-measure to roc, in-
formedness, markedness and correlation. 2011.

[135] Aravind Prakash, Eknath Venkataramani, Heng Yin, and Zhiqiang Lin. On the trust-
worthiness of memory analysis-an empirical study from the perspective of binary
execution. 2015.

[136] Pytorch. https://pytorch.org/.

[137] Erwin Quiring, Alwin Maier, and Konrad Rieck. Misleading authorship attribution
of source code using adversarial learning. In 28th {USENIX} Security Symposium
({USENIX} Security 19), pages 479–496, 2019.

[138] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and
Charles K Nicholas. Malware detection by eating a whole exe. In Workshops at the
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[139] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and
Charles K Nicholas. Malware detection by eating a whole exe. In Workshops at the
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[140] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. Droidchameleon: evaluating android
anti-malware against transformation attacks. In Proceedings of the 8th ACM SIGSAC
symposium on Information, computer and communications security, pages 329–334.
ACM, 2013.

[141] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?:
Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1135–1144.
ACM, 2016.

[142] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. Automatic
analysis of malware behavior using machine learning. Journal of Computer Security,
19(4):639–668, 2011.

[143] Ishai Rosenberg, Asaf Shabtai, Yuval Elovici, and Lior Rokach. Query-efficient gan
based black-box attack against sequence based machine and deep learning classifiers.
arXiv preprint arXiv:1804.08778, 2018.

114

https://pytorch.org/


[144] Ishai Rosenberg, Asaf Shabtai, Lior Rokach, and Yuval Elovici. Generic black-box
end-to-end attack against state of the art api call based malware classifiers. In Inter-
national Symposium on Research in Attacks, Intrusions, and Defenses, pages 490–510.
Springer, 2018.

[145] Ishai Rosenberg, Asaf Shabtai, Lior Rokach, and Yuval Elovici. Generic black-box
end-to-end attack against state of the art api call based malware classifiers. In Inter-
national Symposium on Research in Attacks, Intrusions, and Defenses, pages 490–510.
Springer, 2018.

[146] Brendan Saltaformaggio, Rohit Bhatia, Zhongshu Gu, Xiangyu Zhang, and Dongyan
Xu. Guitar: Piecing together android app guis from memory images. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pages 120–132. ACM, 2015.

[147] Brendan Saltaformaggio, Rohit Bhatia, Zhongshu Gu, Xiangyu Zhang, and Dongyan
Xu. Vcr: App-agnostic recovery of photographic evidence from android device mem-
ory images. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015.

[148] Brendan Saltaformaggio, Rohit Bhatia, Xiangyu Zhang, Dongyan Xu, and Golden G
Richard III. Screen after previous screens: Spatial-temporal recreation of android app
displays from memory images. In USENIX Security Symposium, 2016.

[149] Brendan Saltaformaggio, Zhongshu Gu, Xiangyu Zhang, and Dongyan Xu. Dscrete:
Automatic rendering of forensic information from memory images via application logic
reuse. In USENIX Security Symposium, 2014.

[150] Joshua Saxe and Konstantin Berlin. Deep neural network based malware detection
using two dimensional binary program features. In 2015 10th International Conference
on Malicious and Unwanted Software (MALWARE), pages 11–20. IEEE, 2015.

[151] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. pages 61–80, 2009.

[152] Jürgen Schmidhuber. Deep learning in neural networks: An overview. 2015.

[153] Matthew G Schultz, Eleazar Eskin, F Zadok, and Salvatore J Stolfo. Data min-
ing methods for detection of new malicious executables. In Proceedings 2001 IEEE
Symposium on Security and Privacy. S&P 2001, pages 38–49. IEEE, 2000.

[154] Andreas Schuster. Searching for processes and threads in microsoft windows memory
dumps. 2006.

[155] Andreas Schuster. The impact of microsoft windows pool allocation strategies on
memory forensics. In Digital Investigation, Volume 5, 2008.

[156] Alexander G Schwing and Raquel Urtasun. Fully connected deep structured networks.
2015.

115



[157] PV Shijo and A Salim. Integrated static and dynamic analysis for malware detection.
Procedia Computer Science, 46:804–811, 2015.

[158] Slot machine. https://en.wikipedia.org/wiki/Slot_machine.

[159] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
2014.

[160] Jack W Stokes, De Wang, Mady Marinescu, Marc Marino, and Brian Bussone. At-
tack and defense of dynamic analysis-based, adversarial neural malware classification
models. arXiv preprint arXiv:1712.05919, 2017.

[161] Jack W Stokes, De Wang, Mady Marinescu, Marc Marino, and Brian Bussone. Attack
and defense of dynamic analysis-based, adversarial neural malware detection mod-
els. In MILCOM 2018-2018 IEEE Military Communications Conference (MILCOM),
pages 1–8. IEEE, 2018.

[162] Octavian Suciu, Scott E Coull, and Jeffrey Johns. Exploring adversarial examples
in malware detection. In 2019 IEEE Security and Privacy Workshops (SPW), pages
8–14. IEEE, 2019.

[163] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep
networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 3319–3328. JMLR. org, 2017.

[164] Rahim Taheri, Reza Javidan, Mohammad Shojafar, Zahra Pooranian, Ali Miri, and
Mauro Conti. On defending against label flipping attacks on malware detection sys-
tems. arXiv preprint arXiv:1908.04473, 2019.

[165] Microsoft Defender ATP Research Team. New machine learning model
sifts through the good to unearth the bad in evasive malware. https:

//www.microsoft.com/security/blog/2019/07/25/new-machine-learning-

model-sifts-through-the-good-to-unearth-the-bad-in-evasive-malware/,
2019.

[166] Tensorflow. https://www.tensorflow.org.

[167] Shun Tobiyama, Yukiko Yamaguchi, Hajime Shimada, Tomonori Ikuse, and Takeshi
Yagi. Malware detection with deep neural network using process behavior. In 2016
IEEE 40th Annual Computer Software and Applications Conference (COMPSAC),
volume 2, pages 577–582. IEEE, 2016.

[168] Thompson Sampling. https://en.wikipedia.org/wiki/Thompson_sampling.

[169] Upx packer. https://upx.github.io.

[170] VirtualBox. https://www.virtualbox.org/, 2018.

[171] VirusTotal. https://www.virustotal.com.

116

https://en.wikipedia.org/wiki/Slot_machine
https://www.microsoft.com/security/blog/2019/07/25/new-machine-learning-model-sifts-through-the-good-to-unearth-the-bad-in-evasive-malware/
https://www.microsoft.com/security/blog/2019/07/25/new-machine-learning-model-sifts-through-the-good-to-unearth-the-bad-in-evasive-malware/
https://www.microsoft.com/security/blog/2019/07/25/new-machine-learning-model-sifts-through-the-good-to-unearth-the-bad-in-evasive-malware/
https://www.tensorflow.org
https://en.wikipedia.org/wiki/Thompson_sampling
https://upx.github.io
https://www.virtualbox.org/
https://www.virustotal.com


[172] Volatility: Memory Forencis System. https://www.volatilityfoundation.org/,
2018.

[173] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge dis-
covery and data mining, 2016.

[174] Jingyuan Wang, Yufan Wu, Mingxuan Li, Xin Lin, Junjie Wu, and Chao Li. Inter-
pretability is a kind of safety: An interpreter-based ensemble for adversary defense.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 15–24, 2020.

[175] Zhi Wang, Xuxian Jiang, Weidong Cui, and Peng Ning. Countering kernel rootkits
with lightweight hook prevention. In Proceedings of the 16th ACM Conference on
Computer and Communication Security (CCS’09), 2009.

[176] Cihang Xie, Mingxing Tan, Boqing Gong, Alan Yuille, and Quoc V Le. Smooth
adversarial training. arXiv preprint arXiv:2006.14536, 2020.

[177] Weilin Xu, Yanjun Qi, and David Evans. Automatically evading classifiers. In Pro-
ceedings of the 2016 network and distributed systems symposium, pages 21–24, 2016.

[178] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. Neural
network-based graph embedding for cross-platform binary code similarity detection. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017.

[179] Wei Yang, Deguang Kong, Tao Xie, and Carl A Gunter. Malware detection in ad-
versarial settings: Exploiting feature evolutions and confusions in android apps. In
Proceedings of the 33rd Annual Computer Security Applications Conference, pages
288–302, 2017.

[180] Sheng Yu, Yu Qu, Xunchao Hu, and Heng Yin. Deepdi: Learning a relational graph
convolutional network model on instructions for fast and accurate disassembly.

[181] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and
Michael I Jordan. Theoretically principled trade-off between robustness and accuracy.
arXiv preprint arXiv:1901.08573, 2019.

[182] Yue Zhang and Stephen Clark. Joint word segmentation and pos tagging using a
single perceptron. 2008.

[183] Hai Zhao, Chang-Ning Huang, and Mu Li. An improved chinese word segmentation
system with conditional random field. In Proceedings of the Fifth SIGHAN Workshop
on Chinese Language Processing, 2006.

[184] Zhengli Zhao, Dheeru Dua, and Sameer Singh. Generating natural adversarial exam-
ples. arXiv preprint arXiv:1710.11342, 2017.

117

https://www.volatilityfoundation.org/


[185] Fan Zhou, Yitao Yang, Zhaokun Ding, and Guozi Sun. Dump and analysis of android
volatile memory on wechat. In Communications (ICC), 2015 IEEE International
Conference on, 2015.

118


	List of Figures
	List of Tables
	Introduction
	Thesis Statement

	An Adversarial Attack Framework: MAB-Malware
	Abstract
	Introduction
	Motivation
	Existing Approaches
	Our Insights

	Problem
	Threat Model
	Problem Definition

	Methodology
	Adversarial Attack as a Multi-armed Bandit Problem
	Binary Rewriter
	Action Minimizer

	Evaluation
	Experiment Setup
	Adversarial Example Generation
	Testing Functionality Preservation
	Explanation
	Transferability

	Discussions
	Discussions
	Conclusion

	A Robust Malware Classification Architecture: Selective Hierarchical BERT
	Abstract
	Introduction
	Motivation
	Existing Approaches
	Our Insights

	Approach
	Reasoner
	Judge
	Workflow

	Evaluation
	Experiment Setup
	Model Training
	Robustness under Code Randomization Attack
	Robustness under MAB-Malware Attack

	Conclusion

	A Robust Memory Forensics Framework: DeepMem
	Abstract
	Introduction
	Memory Object Detection
	Problem Statement
	Existing Techniques
	Our Insight

	Design of DeepMem
	Overview
	Memory Graph
	Graph Neural Network Model
	Object Detection

	Evaluation
	Experiment Setup
	Dataset
	Training Details
	Detection Accuracy
	Robustness
	Efficiency
	Understanding Node Embedding
	Impact of Hyperparameters

	Discussion
	Conclusion

	Conclusions
	Final Thoughts and Future Works

	Bibliography



