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Abstract

On the Classification of Unstable First-Order Theories

by

Scott Mutchnik

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Thomas Scanlon, Chair

We discuss the classification of unstable theories in first-order logic.

In chapter 1, we initiate the study of a generalization of Kim-independence, Conant-
independence, based on the notion of strong Kim-dividing of Kaplan, Ramsey and Shelah.
We introduce an axiom on stationary independence relations essentially generalizing the
“freedom” axiom in some of the free amalgamation theories of Conant, and show that this
axiom provides the correct setting for carrying out arguments of Chernikov, Kaplan and
Ramsey on NSOP1 theories relative to a stationary independence relation. Generalizing
Conant’s results on free amalgamation to the limits of our knowledge of the NSOPn

hierarchy, we show using methods from Conant as well as our previous work that any
theory where the equivalent conditions of this local variant of NSOP1 holds is either NSOP1

or SOP3 and is either simple or TP2, and observe that these theories give an interesting
class of examples of theories where Conant-independence is symmetric, including all of
Conant’s examples, the small cycle-free random graphs of Shelah and the (finite-language)
ω-categorical Hrushovski constructions of Evans and Wong.

We then answer a question of Conant, showing that the generic functional structures of
Kruckman and Ramsey are examples of non-modular free amalgamation theories, and show
that any free amalgamation theory is NSOP1 or SOP3, while an NSOP1 free amalgamation
theory is simple if and only if it is modular.

Finally, we show that every theory where Conant-independence is symmetric is NSOP4.
Therefore, symmetry for Conant-independence gives the next known neostability-theoretic
dividing line on the NSOPn hierarchy beyond NSOP1. We explain the connection to some
established open questions.

In chapter 2, we exhibit a connection between geometric stability theory and the classifica-
tion of unstable structures at the level of simplicity and the NSOP1-SOP3 gap. Particularly,
we introduce generic expansions TR of a theory T associated with a definable relation R
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of T , which can consist of adding a new unary predicate or a new equivalence relation.
When T is weakly minimal and R is a ternary fiber algebraic relation, we show that TR is
a well-defined NSOP4 theory, and use one of the main results of geometric stability theory,
the group configuration theorem of Hrushovski, to give an exact correspondence between
the geometry of R and the classification-theoretic complexity of TR. Namely, TR is SOP3,
and TP2 exactly when R is geometrically equivalent to the graph of a type-definable group
operation; otherwise, TR is either simple (in the predicate version of TR) or NSOP1 (in the
equivalence relation version.) This gives us new examples of strictly NSOP1 theories.

In chapter 3, we prove the following fact:

NSOP1 is equal to NSOP2.

This answers an open question, first formally posed by Džamonja and Shelah in 2004, but
attested in notes of Shelah based on lectures delivered at Rutgers University in fall of 1997.

In chapter 4, we prove some results about the theory of independence in NSOP3 theories
that do not hold in NSOP4 theories. We generalize Chernikov’s work on simple and co-
simple types in NTP2 theories to types with NSOP1 induced structure in N-ω-DCTP2 and
NSOP3 theories, and give an interpretation of our arguments and those of Chernikov in
terms of the characteristic sequences introduced by Malliaris. We then prove an extension
of the independence theorem to types in NSOP3 theories whose internal structure is NSOP1.
Additionally, we show that in NSOP3 theories with symmetric Conant-independence, finitely
satisfiable types satisfy an independence theorem similar to one conjectured by Simon for
invariant types in NTP2 theories, and give generalizations of this result to invariant and
Kim-nonforking types.

In chapter 5, we show that approximations of strict order can calibrate the fine structure
of genericity. Particularly, we find exponential behavior within the NSOPn hierarchy from

model theory. Let |⌣
ð0 denote forking-independence. Inductively, a formula (n+1)-ð-divides

over M if it divides by every |⌣
ðn-Morley sequence over M , and (n+1)-ð-forks over M if it

implies a disjunction of formulas that (n+ 1)-ð-divide over M ; the associated independence

relation over models is denoted |⌣
ðn+1

. We show that a theory where |⌣
ðn is symmetric must

be NSOP2n+1+1. We then show that, in the classical examples of NSOP2n+1+1 theories, |⌣
ðn

is symmetric and transitive; in particular, there are strictly NSOP2n+1+1 theories where |⌣
ðn

is symmetric and transitive, leaving open the question of whether symmetry or transitivity
of |⌣

ðn is equivalent to NSOP2n+1+1.
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To those whom we entrust to merge the syntax to the semantics.
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Introduction

In this dissertation, we investigate first-order logic. Able to express the conjunction and
negation of statements and to quantify over all individuals in a given domain, first-order
logic allows us to discuss some of the basic concepts of our natural language in a rigorous
way. However, its power is not absolute: it cannot quantify over properties. This is a
constraint we deliberately impose on ourselves. From the viewpoint of the methodology we
will use in this thesis—that of model theory—conjunction and negation alone may limit the
reach of our investigation. But so will a logic that is able to express too much; as Quine
famously put it in [93], full second-order logic no longer falls within the scope of model
theory, but is rather set theory in disguise1. In analyzing the limits of what a logical system
can express, the richness of its structure comes into focus. On the other hand, a language
that is able to say too muchfrom the point of view of our methodology will, like Borges’s
Library of Babel2, end up saying nothing at all.

In model theory, the topic of classification theory aims to make sense of the expressive
limits of a mathematical structure’s logical theory—especially within first-order logic. By
classifying structures according to their logical complexity, it often seeks to better understand
the semantic properties of a structure alongside those of the language itself. Historically,
classification theory arose out Morley’s celebrated categoricity theorem in [82]—which holds
that a structure categorical in one uncountable cardinal is categorical in any uncountable car-
dinal—and was developed by Shelah ([97]) in the context of the problem of determining the
number of non-isomorphic models of a first-order theory. With the depth of its implications
for the semantics of models, it is surprising that so much of the classification itself can be
stated in terms of the syntactic properties of formulas. For example, the cornerstone of this
classification, stability, is just the absence of a formula with the order property: a definable
relation R(x, y) with {ai}, {bi} so that |= R(ai, bj) if and only if i < j. By the compactness
of first-order logic, this can easily be restated without any mention of sequences within a
model. This absence of order within the syntax is all that is needed to get an independence
relation that is stationary and a geometric structure on stable theories that underlies Morley
and Shelah’s classification according to non-isomorphic models. This independence relation,
forking-independence, is analogous to linear independence in vector spaces and algebraic
independence in algebraically closed fields, which in fact coincide with forking-independence

1See [108], [107] for some elaboration on this point.
2from a short story in the collection, “The Garden of Forking Paths.”
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in those respective theories. It is the point of origin for the use of model theory in studying
the geometry of a general mathematical structure, an approach that extends well beyond
the stable case into surprisingly complex mathematical theories.

This is one of the main reasons for classification theory’s contemporary salience: its
power as a tool for analyzing the semantics of a mathematical structure, and analyzing it,
specifically, through a geometric lens, even outside of any of the concrete contexts classically
associated with geometry. It lies at the core of why model theory has been so aptly described
as “algebraic geometry minus fields” ([47]). While classification theory has evolved from its
roots within classical stability theory to the more imperial ambitions of a “geography of
tame mathematics,” the influence of stability theory is evident in the classification theory of
unstable structures, particularly in its geometric content. Indeed, much of the elegance of
classification theory lies in its interactions with the field of neostability theory. Neostability
theory combines generalizations of stability theory with applications of stability theory, aim-
ing to develop the algebro-geometric picture of model theory through combinatorial means.
It includes geometric stability theory, exposited in [87], which looks in particular at the ge-
ometry imposed by closure operators on stable theories, often satisfying the predimension
axioms. A central result of geometric stability theory, the group configuration theorem of
Hrushovski ([48]), says that the incidence pattern of four lines in a projective plane, within
the geometry imposed by the model-theoretic algebraic closure in a stable theory, always
arises from a type-definable group. Despite referring only to stable theories, we will see that
the group configuration theorem admits a precise correspondence to the classification theory
of unstable theories—in fact, to classification theory more than one step beyond the level of
stability.

Outside of geometric stability theory as classically construed, neostability theory interacts
more directly with the classification of unstable structures. This classification proceeds
though multiple dividing lines which measure the complexity of first-order theories, forming
a “map” of the mathematical universe much of which is visualized at [30]. Like stability,
many of these dividing lines have entirely syntactic statements in terms of the combinatorics
of formulas. However, also in common with stability, some of the dividing lines for theories
also carry geometric information, if not equivalent statements in terms of the geometric
properties of their models. The original geometric structure on stable theories, forking-
independence, is further developed by Kim and Pillay for simple theories, defined as theories
none of whose formulas have the tree property. In [61], Kim shows that forking-independence
in simple theories is symmetric—in fact, symmetry of forking-independence characterizes
simple theories–and in [65], Kim and Pillay prove a generalization of stationarity for forking-
independence to simple theories, where forking-independence is no longer stationary, but
satisfies an amalgamation property, the independence theorem. Beyond even simplicity, the
strong order property hierarchy of Shelah, defined in [97] for levels n ≥ 3 and extended to
n = 1, 2 with definitions first formally introduced in [40], gives a further set of syntactic
dividing lines which approximate, at different levels, a definable linear order:

Definition 0.0.1. A theory T is NSOP1 if there does not exist a formula φ(x, y) and tuples
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{bη}η∈2<ω so that {φ(x, bσ↿n)}n∈ω is consistent for any σ ∈ 2ω, but for any η2 ⊵ η1 ⌢ ⟨0⟩,
{φ(x, bη2), φ(x, bη1⌢⟨1⟩)} is inconsistent. Otherwise it is SOP1.

Definition 0.0.2. A theory T is NSOP2 if there does not exist a formula φ(x, y) and tuples
{bη}η∈2<ω so that {φ(x, bσ↿n)}n∈ω is consistent for any σ ∈ 2ω, but for incomparable η1 and
η2, {φ(x, bη1), φ(x, bη2)} is inconsistent. Otherwise it is SOP2.

Definition 0.0.3. Let n ≥ 3. A theory T is NSOPn (that is, does not have the n-strong
order property) if there is no definable relation R(x1, x2) with no n-cycles, but with tuples
{ai}i∈ω with |= R(ai, aj) for i < j. Otherwise it is SOPn.

The geometric side of the strongest property, NSOP1, was developed by Kaplan and
Ramsey in their work on Kim-independence ([52]). In place of forking-independence, Kaplan
and Ramsey develop a new notion of forking-independence “at a generic scale,” showing, in
conjunction with work of Chernikov and Ramsey in [28], that NSOP1 is characterized by
symmetry of this new independence relation as well as by the independence theorem for this
new relation.

Beyond this, in [32], Conant implicitly invents the concept of forking-independence “at a
maximally generic scale” by considering forking-independence relative to a synthetic relation
of “free amalgamation” satisfying certain axioms. However, in the context of Conant’s
work, this new geometric structure turns out to be trivial, in the sense that it is submerged
beneath the algebraic closure. Part of the definition of this independence relation also makes
an appearance in the “strong Kim-dividing” of Kaplan, Ramsey, and Shelah [54], who do
not study it as an independence relation. Only in this thesis is the relation reified as a
geometric concept and shown to coincide with previously “ad hoc” relations on concrete
structures, such as the “d-independence” of [41], [42]. Prior to this thesis, our knowledge of
the geometric information conveyed by the strong order hierarchy remained limited beyond
NSOP1

3. We will show that the semantic reach of classification theory and its accompanying
model-theoretic geometry goes farther than previously thought.

On the other hand, another reason for the continued significance of classification theory
can in one sense be thought of as independent of the semantics. The saturation of an
ultraproduct of a structure by a regular ultrafilter depends only on its theory, and not
on the particular model, yielding an order on first-order theories. This order, the Keisler
order, yields an entirely different approach for classifying theories: rather than analyzing
the internal structure of their models, we rank their complexity in comparison with other
theories. While we have only begun to understand the interaction between Keisler’s order
and the classification-theoretic dividing lines (as Malliaris and Shelah point out, “Keisler’s
order is not simple, and simple theories may not be either,” [80]), what we do know is
significant. For example, in celebrated work of Malliaris and Shelah ([79]), it is shown that
SOP2 theories are maximal in Keisler’s order. Though it is open whether maximality in

3But see [81], where the analysis of “higher formulas” in NSOP2 and NSOP3 theories illuminates the
structure of these theories, as well as laying the groundwork for the theory of independence of NSOP1 theories
in [52].
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Keisler’s order gives a complete characterization of SOP2, [40] [102] [81] do give us, under
mild set-theoretic assumptions, a complete characterization of SOP2, as the maximal class in
the related interpretability order. Though the semantic side of classification theory lies closer
to our actual methods than this comparative classification in terms of complexity orders, we
highlight it in order to motivate one of the key results of this thesis.

Motivation

The semantic and geometric considerations discussed above, as well as the interactions with
ultrafilters and comparative complexity, both offer compelling motivations to study classi-
fication theory. Yet the limits of our classification-theoretic knowledge extend to a more
fundamental level: the identity of the classification-theoretic properties themselves. Among
the properties of Shelah’s strong order hierarchy, it remains open whether the tree property
SOP2 is the same as the order property SOP3. Until recently, it was also open whether
the tree properties SOP2 and SOP1 are equal. This question was first formally posed by
Džamonja and Shelah in [40], but can be found in notes of Shelah on lectures at Rutgers
University as far back as Fall of 1997 ([98]). Given the connection between NSOP1 (the nega-
tion of SOP1) and geometry, and the connection between SOP2 and ultrafilters, finding that
these classes line up would suggest that the interactions between structure and complexity
are deeper than previously thought.

Arguably our most startling finding in this dissertation is that these classes do line up:

NSOP1 is equal to NSOP2.

There is precedent for results concerning the identity of classification-theoretic properties:
for example, Shelah, in [97], shows that theories with both NSOP2 and NTP2 are simple, and
that theories that are NSOP and lack the independence property are stable. It is also known
that NSOP2 = NTP1 ([2]), that weak k-TP1 implies SOP1 ([64]), and that TP1 = k − TP1

([28]). For a full overview of the implications and equivalences between dividing lines, see [30].
Our result that NSOP1 = NSOP2 is of a different nature from the other known equivalences
and implications, for two reasons.

First of all, the established identities are all of a quantifier-free kind. For example,
an unstable formula, every boolean combination of which is NSOP, has the independence
property. Likewise, if every boolean combination of a formula is NTP1 and NTP2, it is
simple, some conjunction of instances of any k-TP1 formula must be TP1, and so on. By
contrast, the equivalence of NSOP1 and NSOP2 for theories does not say that an SOP1

formula must have a Boolean combination that is SOP2. In fact, Ahn and Kim produce an
SOP1 formula, no conjunction of instances of which is SOP2. Since a standard indiscernibility
argument shows that a disjunction of NSOP2 formulas is NSOP2, and the negation of Ahn
and Kim’s formula does not create any nontrivial inconsistency, their proof can be modified
to show that no boolean combination of their SOP1 formula is SOP2. In this sense, the
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equivalence of SOP1 and SOP2 is a result about the global structure of theories, even as
it influences the local combinatorics of formulas—though see Chapter 4 of this thesis for a
discussion of how the SOP2 formula we obtain is related to the original SOP1 formula. In the
terminology of Juliette Kennedy, we see that the classification of structures exhibits a degree
of “logical entanglement” ([56]) with first-order logic—with the existential quantifier—that
is not apparent in prior results.

Kennedy defines logical entanglement in the context of formalizing our natural-language
concepts of mathematical objects and conversely, attempting to understand these concepts
outside of any formalism. She defines logical entanglement as “the fact that certain canonical
mathematical objects are remarkably sensitive to slight perturbations of syntax and logic,”
and contrasts this with formalism freeness, “the idea that certain canonical concepts and con-
structions are stable across a variety of conceptually distinct formalisations.” In Kennedy’s
own work on mathematical logic, or more specifically logics, plural, she exhibits both logi-
cal entanglement and formalism freeness with respect to strengthenings of first-order logic.
She discusses her joint work with Magidor and Väänänen on the set-theoretic constructible
universe in various logics, with the goal of “implementing” Gödel’s program of finding an
“absolute” or “formalism-independent” concept of definability. In [57], they show that when
the first-order definability in the construction of the constructible universe L is replaced
with many other logics that are significantly stronger than first-order, the same model L of
set theory is obtained; However, adding the cofinality quantifier produces models of set the-
ory that differ from L, despite the logic satisfying compactness and the Löwenhein-Skolem
property for ℵ1.

In model theory, formalism freeness and logical entanglement become significant in the
opposite direction, where one weakens first-order logic rather than strengthening it. Kennedy
cites AECs, where one attempts to eliminate logical syntax altogether, as an example of for-
malism freeness in model-theoretic practice, but even classical model theory makes recourse
to formalism freeness. While the existential quantifier makes first-order logic into a richer
object of study, an important tool for handling this additional complexity, especially in ap-
plied contexts, is often to eliminate it. Using quantifier elimination, model theorists can
often reduce the logical problems posed by model theory to classically mathematical prob-
lems in the (quantifier-free) language of a particular mathematical structure, such as the
algebraically closed field. For example, to show a particular theory, such as the algebraically
closed fields with a generic additive subgroup ([37], [36]), is simple or NSOP1, one simply
gives a description of the types in terms of a natural quantifier-free language (such as the
algebraically closed field structure with a predicate for the additive subgroup) and then
finds a relation between structures in this language with the correct amalgamation proper-
ties. (See the “Kim-Pillay” characterization of simplicity and NSOP1, [65], [52]). Implicitly,
what one is doing is showing that the problem of finding this relation is the same, whether
construed in the full first-order logic, or just in the quantifier-free language for the structure.
As Kennedy observes in the general case of stability theory, where one no longer eliminates
quantifiers in a particular language but still tends to refer only to the geometric structure of
a stable theory (such as closure operators and forking-independence), the “framework... is
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spelled out with only passing reference to formal languages and their properties.” Baldwin’s
remark about “focusing on a specific vocabulary, designed for the topic rather than a global
framework,” ([9]) cited by Kennedy as a description of model theorists’ approach to logical
foundations, applies even in the classical setting, where a well-chosen mathematical language
can eliminate the first-order logic of a given theory.

Outside of the applied context of quantifier elimination, model theory has seen success
in analyzing formulas at a local, combinatorial level, independently of any quantifiers. For
example, Malliaris and Shelah give a structure theorem specializing the Szemerédi regularity
lemma to a graph with a stable edge relation ([75]), and Malliaris reduces the saturation
requirements of Keisler’s order to the saturation of types in a single formula ([76]). Likewise,
in our prior account of the model-theoretic dividing lines themselves, the existential quantifier
has been submerged. As discussed above, instead of saying, for example, that a unstable
theory either has the strong order property or the independence property, one could just as
well have said that the same about the quantifier-free formulas of a model of that theory,
or even rephrased the statement of this result to talk about the combinatorics of particular
binary relations. By contrast, whether NSOP1 = NSOP2 depends on whether these refer to
properties of the quantifier-free formulas of a theory, or properties of the entire first-order
theory. Under a suitable formulation of the classification-theoretic dividing lines to vary
the underlying logic, one can imagine a parametrized account of classification theory much
like Kennedy, Magidor and Väänänen’s account of the constructible universe in [57], where
NSOP1 is distinct from NSOP2 in a logic with only Boolean combinations, but the two merge
together in full first-order logic. Classification theory, even at the level of which dividing
lines are which, is deeply entangled with the existential quantifier—though not all of the
equivalences or implications in the model-theoretic “map” can see this.4

Another key, and related, difference between this result and other classification-theoretic
identities is a methodological one. We prove the result using techniques from stability the-
ory—or in more contemporary terminology, using geometric techniques from neostability
theory. Much like the stability theorist or simplicity theorist develops forking-independence
as a way of analyzing theories geometrically, and the specialist in NSOP1 theories charac-
terizes them in terms of Kim-independence, we start by translating the syntactic property
NSOP2 into a semantic theory of independence. The resulting structure theory for NSOP2

theories will be similar to that of the free amalgamation theories described by Conant in
[32], where he shows modular free amalgamation theories are simple or SOP3. Using a sim-
ilar technique, we show that NSOP2 theories are either NSOP1 or SOP3. Because NSOP2

theories are already NSOP3, they must be NSOP1.
This proof represents the on-again-off-again-ism, the “localized, dynamic and transient

use of metamathematical ideas in logico-mathematical practice,” described by Kennedy in
[56]. Citing Baldwin’s comments in [9] that “we approach global mathematical issues not by

4In the other direction, Väänänen observed that in Henkin second-order logic, even the theory of equality
is unstable ([56]). A very expressive logic may often be too expressive from the perspective of classification
theory.
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seeking a common foundation but by finding common themes and tools for various areas, not
in terms of the topic studied, but in terms of common combinatorial and geometric features
isolated by formalizations in each area,” Kennedy emphasizes the ad-hoc, instrumental role
of logical foundations within model theorists’ mathematical epistemology. Importantly, the
effect of foundations can go in the direction from semantics to syntax, or vice versa. As
“an example in which semantics serves as a waystation to proving now a syntactic result,”
([56]) Kennedy points to Zilber’s proof in [114] of the categoricity of pseudo-exponential
fields, which have a formal axiomatization in a strengthening of first-order logic but are
proven categorical using entirely geometric considerations. Again, Kennedy notes that the
geometric properties of stable theories “can, arguably, be listed without any reference to
the syntax and semantics of first-order logic” ([56]) and this is also a possibility not just
for Zilber’s examples, but for constructions like forking-independence in simple theories and
Kim-independence in NSOP1 theories. However, this abstraction away from the syntactic is
not absolute: an important property of the Kim-Pillay characterization of simple or NSOP1

theories in terms of abstract independence relations ([65], [52]) is “strong finite character,”
which says that dependence must always be witnessed by a formula.

Like the case study of Zilber’s result, our proof that NSOP1 = NSOP2 exemplifies this
semantics-to-syntax direction of on-again-off-again-ism, starting with one syntactic property,
NSOP2, and developing a structure theory in order to arrive at another syntactic property,
NSOP1. Even with precedent for semantic arguments in the analysis of formal syntax, the
reach of on-again-off-again-ism within the classification-theoretic context surprised us. A
ubiquitous tool for studying syntactic properties in classification theory is the existence of
indiscernible sequences and indiscernible trees, which allow us to study formulas and their
Boolean combinations at the combinatorial level; some important recent developments in
the theory of tree indiscernibilities are due to [96] and [105]. While interactions between
syntactic classification-theoretic properties on one side and their semantic implications for
theories on the other are well-established, it was not initially clear to us that semantics, at
the level of a geometric theory of independence, was relevant to the relationship between the
syntactic properties themselves, which had no explicit reference to the global properties of
the structure at all. Of course, the fact that every Boolean combination of Ahn and Kim’s
SOP1 formula ([3]) is NSOP2 suggested that any proof of the equivalence of NSOP1 and
NSOP2 at the level of theories would require heavily semantic methods, cutting to the core
of what Kennedy calls the “fragility of the syntax/semantic distinction” ([56]).

Outline

In Part I of this thesis, we investigate the connection between free amalgamation relations
and classification theory, in particular the problems of whether NSOP1 equals NSOP3, and
whether NSOPn theories without TP2 are simple for n > 2. In addition to the geomet-
ric independence relations arising from the classification theory itself, many classification-
theoretically “tame” theories have additional abstract relations giving a canonical or “free”
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amalgamation construction for sets. As observed in [42] and [32], these free amalgamation
relations have classification-theoretic implications: a modular free amalgamation theory, or a
theory obtained by the Fräıssé-Hrushovski construction, must be simple or SOP3. Moreover,
a free amalgamation theory or theory obtained by the Fräıssé-Hrushovski construction must
be NSOP4, and simple or TP2

5.
In Chapter 1, we observe that Conant’s argument can be modified to show that any free

amalgamation theory is NSOP1 or SOP3, and that, answering Question 7.19 of Conant in
[32], there is a non-modular free amalgamation theory, which will be strictly NSOP1; in fact
an NSOP1 free amalgamation theory will be strictly NSOP1 (i.e. non-simple) if and only if
it is non-modular. So we will have improved Conant’s results to a true partial result on the
NSOP1 vs. NSOP3 problem. In fact, we will be able to isolate two structural properties, with
no known counterexamples among the NSOP4 theories (which contain the NSOP3 theories),
such that a theory with both of these properties must be NSOP1 or SOP3. This explains
the difficulty of the NSOP1 vs. SOP3 problem, and gives a potential strategy for a positive
solution.

The two properties we isolate with no known NSOP4 counterexamples, the strong wit-
nessing property and symmetry for Conant-independence, turn out to be related by a gen-
eralization of Conant’s free amalgamation axioms in [32]. These generalized axioms include
some weak assumptions on an abstract stationary independence relation, together with a
generalization of Conant’s freedom axiom. They cover not only Conant’s free amalgamation
theories, but the ω-categorical Hrushovski constructions of [41], [42], which did not fit into
Conant’s original axioms in [32]. Following Lemma 7.6 of [32], we develop the theory of
Kim-independence relative to Morley sequences in these stationary independence relations.
By relativizing the arguments about Kim-independence in NSOP1 theories from [52] to an
independence relation with these properties, we show that symmetry of the relative notion of
Kim-independence is equivalent to a relative version of Kim’s lemma, even outside of NSOP1.
When these equivalent conditions hold for a stationary independence relation satisfying the
generalized freedom axiom, a theory has the strong witnessing property, which is defined to
be a generalization of Kim’s lemma, as well as symmetric Conant-independence. General-
izing Conant’s arguments in [32], these properties, as noted above, imply NSOP1 or SOP3,
and the strong witnessing property implies TP2 or simplicity. The fact that there are no
known NSOP4 theories without symmetric Conant-independence and the strong witnessing
property gives evidence that all NSOP4 theories, and thus all theories, must be either SOP3

or NSOP1, and that all NSOP4 theories must be either TP2 or simple. This would answer
two open problems about equivalences between dividing lines.

Conant-independence, though it arises in many examples as Kim-independence relative
to an abstract free amalgamation relation, is in fact an absolute independence relation:

Definition 0.0.4. Let M be a model and φ(x, b) a formula. We say φ(x, b) Conant-divides
over M if for every invariant Morley sequence {bi}i∈ω over M starting with b, {φ(x, b)}i∈ω

5[42] do not show simple or TP2 for the Fräıssé-Hrushovski construction, but it follows from arguments
in [32].
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is inconsistent. We say φ(x, b) Conant-forks over M if and only if it implies a disjunction of
formulas Conant-dividing over M . We say a is Conant-independent from b over M , written
a |⌣

K∗

M
b, if tp(a/Mb) does not contain any formulas Conant-forking over M .

In analogy to Kaplan and Ramsey’s development of Kim-independence in NSOP1 theories
as forking-independence “at a generic scale” ([52]), it is forking-independence at a maximally
generic scale. It coincides with Kim-independence in NSOP1 theories, and offers a way
of extending the theory of independence in the NSOP hierarchy beyond NSOP1. In the
remainder of Chapter 1, we characterize Conant-independence in some examples of theories;
in the free amalgamation theories of Conant ([32]), it is trivial. In the finite-language case of
the Fräıssé-Hrushovski constructions of [41], [42], it coincides with d-independence, which was
shown in [41] to coincide with forking-independence in the simple case but had no known
pure model-theoretic definition outside of the simple case. We also characterize Conant-
independence in the generic < n-cycle-free undirected graphs of [101], where it has a natural
description as a symmetric independence relation. All of these examples, where Conant-
independence is symmetric, are NSOP4, the important examples strictly so (i.e. SOP3.)

We conclude Chapter 1 by showing that any theory where Conant-independence is sym-
metric, just like any free amalgamation theory, must be NSOP4. So n = 4 is the greatest n so
that there are strictly NSOPn theories where Conant-independence is symmetric. This leaves
open the question of whether all NSOP4 theories have symmetric Conant-independence,
which would give us a true theory of independence for NSOP4 theories generalizing the
theory of Kim-independence in NSOP1 theories. It also leaves open whether theories with
symmetric Conant-independence must be either NSOP1 or SOP3, and either TP2 or simple;
if we add in the related strong witnessing property, both of these conclusions become true.
If we can show NSOP4 theories have symmetric Conant-independence, and answer either
of these two questions about symmetric Conant-independence and dividing lines, we have
solved one of the central classification-theoretic problems: the problem of whether any the-
ory must be either NSOP1 or SOP3, and whether any NSOP4 theory must be either TP2

or simple. This suggests a connection between the study of classification-theoretic dividing
lines qua dividing lines, and the geometric theory of independence, a connection we will
revisit in Chapter 3.

In Chapter 2, we demonstrate a connection between geometric stability theory, in par-
ticular Hrushovski’s group theorem [48], and the classification of unstable structures at the
level of NSOP1 vs. SOP3. Given a definable ternary relation R in a weakly minimal theory
T that is fiber algebraic ([29]), we define an expansion T¬R which will be part of a more
general construction:

Definition 0.0.5. Let T be a theory with quantifier elimination, and let R be a relation
definable in T . Let E be an additional binary relation symbol and LE = L ∪ {E}. Let R
be a definable n-ary relation in L. Define TR to be the LE-theory consisting of the axioms
for T , the requirement that E be an equivalence relation, and the axiom ∀x̄

∧
1≤i ̸=j≤n(xi ̸=

xj ∧ E(xi, xj)) → R(x̄).
Then we use TR to denote the model companion of TR, if it exists.
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The significance of this expansion will be the connection between its classification-
theoretic properties and the group configuration theorem. The theory T¬R will have the
generalized free amalgamation properties of Chapter 1, so will be either NSOP1, or both
SOP3 and TP2 (under a different variation, it will be either simple, or SOP3 and TP2.)
Whether it is NSOP1 (usually, non-simple NSOP1) or SOP3 will depend on the geometric
properties of R. For R to be a fiber-algebraic ternary relation means that it will be a
reasonable candidate for being the graph of a group operation. By translating a failure of
the independence theorem in T¬R in terms of the group configuration, and then applying
the group configuration theorem of [48], we show that T¬R is SOP3 rather than NSOP1

exactly when R is geometrically equivalent to the graph of a type-definable group operation:

Theorem 0.0.1. Let T be weakly minimal and let R be a ternary relation definable in T .
Assume ¬R is fiber-algebraic. Then TR is NSOP1 if and only if there is no set of parameters
A over which R is definable, and (rank-one) group G type-definable (or definable, if T is
strongly minimal) over A, so that the coordinates of a point of ¬R generic (that is, of full
rank) over A are individually interalgebraic with the coordinates of a point of the graph ΓG

of the multiplication in G generic over A. Otherwise, TR is TP2, SOP3, and NSOP4.

This gives an exact correspondence between geometric stability theory and the classifica-
tion theory of unstable structures. It also gives an application of geometric stability theory
to the construction of new examples of non-simple NSOP1 theories, an active area of recent
research.

In Part II, consisting of Chapter 3, we prove the equivalence of NSOP1 and NSOP2

described earlier in this introduction. We reproduce the definitions here:

Definition 0.0.6. A theory T is NSOP1 if there does not exist a formula φ(x, y) and tuples
{bη}η∈2<ω so that {φ(x, bσ↿n)}n∈ω is consistent for any σ ∈ 2ω, but for any η2 ⊵ η1 ⌢ ⟨0⟩,
{φ(x, bη2), φ(x, bη1⌢⟨1⟩)} is inconsistent. Otherwise it is SOP1.

Definition 0.0.7. A theory T is NSOP2 if there does not exist a formula φ(x, y) and tuples
{bη}η∈2<ω so that {φ(x, bσ↿n)}n∈ω is consistent for any σ ∈ 2ω, but for incomparable η1 and
η2, {φ(x, bη1), φ(x, bη2)} is inconsistent. Otherwise it is SOP2.

It follows from the definitions that all NSOP1 theories are NSOP2. Conversely,

Theorem 0.0.2. All NSOP2 theories are NSOP1.

The proof draws from techniques originally used to study Kim-independence in NSOP1

theories (by Kaplan and Ramsey in [52]), forking and dividing in NTP2 theories (by
Chernikov and Kaplan in [27]), and the classification of free amalgamation theories,
initiated by Evans and Wong ([42]) and Conant ([32]) and further developed in Chapter 1
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of this thesis. The equivalence of NSOP1 and NSOP3 remains open, but our partial results
on this problem observed in Chapter 1 form the backbone of the proof of this theorem.

In Part III of this thesis, we continue a theme we previewed in Chapter 1 with respect
to NSOP4, investigating the interactions between classification-theoretic properties more
complex than NSOP2 and the structure theory provided by model-theoretic independence
relations. We will have shown that symmetry of Conant-independence implies NSOP4, but in
Chapter 4, we will be interested in the opposite direction: to what extent can classification-
theoretic properties beyond NSOP2 give us a geometric theory of independence extending
that of Kim-independence in NSOP1 theories? (Recall that [81] gives the beginnings of a
structure theory for NSOP3 theories, but in terms of higher formulas, rather than in terms
of a global theory of independence generalizing stability-theoretic constructions). We will
investigate this question in the case of NSOP3 theories, though the fact that it is open
whether all NSOP3 theories are NSOP1 leads to a paucity of concrete examples. Instead, we
will prove some properties of independence in NSOP3 theories that fail when the assumption
NSOP3 is relaxed to NSOP4, and give concrete examples of NSOP4 theories where these
properties fail.

We will first generalize work of Chernikov in [26] on simple types in NTP2 theories.
Chernikov shows that in NTP2 theories, simple types satisfy the dual property of being co-
simple. As expected, in a suitable weakening of NTP2 theories related to the NATP theories
of introduced in Ahn and Kim ([3]) and developed by Ahn, Kim and Lee ([4]), an analogous
result holds for “NSOP1 types”. This is expected, because this weakening of NTP2 is a
possible candidate for a class analogizing to NSOP1 theories the relationship between NTP2

and simple theories, as asked for in [69]. However, we prove a result on NSOP3 theories that
does not fit into this analogy. Instead of directly generalizing the definition of simple type,
we consider a more natural and often weaker property of a type, requiring it have internally
NSOP1 structure:

Definition 0.0.8. Let p(x) be a partial n-type over M . Let Lp contain an m-ary relation
symbol Rφ for each formula φ(x1, . . . , xm) ∈ L(M) with |xi| = n for i ≤ n. Then Mp is the
Lp-structure with domain p(Mn) and with Rφ(p(Mn)m) = φ(Mmn)∩ p(Mn)m. The type p(x)
is internally NSOP1 if Mp is NSOP1

We show that an internally NSOP1 type in a NSOP3 theory must be co-NSOP1, gener-
alizing the results of Chernikov ([26]) in a new direction. This will fail if we relax NSOP3

to NSOP4. We then give an interpretation of our results and those of Chernikov in terms of
the characteristic sequences of [77], which we hope will prove illuminating for both of these
results.

Using our result that internally NSOP1 types are co-NSOP1 in NSOP3 theories, we then
show a variant of the independence theorem between internally NSOP1 types in NSOP3

theories:

Theorem 0.0.3. Let T be NSOP3, and let p1, p2, p3 be internally NSOP1 types over M . Let
a1 ≡M a′1 ⊂ p1(M), a2 ⊂ p2(M), a3 ⊂ p3(M). If a1 |⌣

K∗

M
a2, a

′
1 |⌣

K∗

M
a3, a2 |⌣

K∗

M
a3, there is
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some a′′1 with a′′1 |= tp(a1/Ma2)∪tp(a′1/Ma3). Moreover, a′′1 can be chosen with a2a3 |⌣
K∗

M
a′′1,

a2a
′′
1 |⌣

K∗

M
a3 and a3a

′′
1 |⌣

K∗

M
a2.

This will again fail if we relax NSOP3 to NSOP4, and will also not follow just from co-
NSOP1. While a full independence theorem, by results of [52], will be impossible unless a
theory is NSOP1, this result will tell us that internally NSOP1 types will fit together in an
NSOP3 theory the same way they fit together in an NSOP1 theory. This is of interest to
the problem of whether NSOP2 is equivalent to NSOP3, because it suggests we cannot start
with NSOP2 (equivalently NSOP1) structures, put them together somehow in a way that
gives a failure of NSOP2 via a failure of the independence theorem, and get a theory that is
still NSOP3.

We then turn to NSOP3 theories with symmetric Conant-independence. This is a nat-
ural assumption on NSOP3 theories, because, as noted above, there are no known NSOP4

theories without symmetric Conant-independence. We show that in an NSOP3 theory with
symmetric Comant-independence, finitely satisfiable types satisfy an variant of the indepen-
dence theorem, similar to that proposed for NTP2 theories in a question of Simon ([104]).
Namely:

Theorem 0.0.4. Let T be an NSOP3 theory, and assume |⌣
K∗

is symmetric. Suppose p
and q are M-finitely satisfiable (global) types with pω|M = qω|M , and let a, b ⊇ M be small
supersets of M with a |⌣

K

M
b. Then there is c |= p(x)|a ∪ q(x)|b with c |⌣

K∗

M
ab

We also prove an extension of this result that, compared to the proof of this one, uses
more of the force of symmetry for Conant-independence.

The similarity to possible properties of NTP2 theories is surprising given the additional
question of [26], of whether NSOP3 ∩ NTP2 coincides with simplicity, which could have
led us to think that NSOP3 theories are very different from NTP2 theories. This result is
also of interest in light of the question from Chapter 1 of whether NSOP3 theories with
symmetric Conant-independence are NSOP1, as developing a further structure theory for
NSOP3 theories with symmetric Conant-independence could give us insight on this question.
As with the other two results of this chapter, there are NSOP4 theories with symmetric
Conant-independence in which our conclusion fails.

Finally, in section 5, we show that the interactions between the theory of independence
and the levels of the NSOPn hierarchy for n > 4 exhibit exponential behavior. Using the same
idea of “independence at a maximally generic scale” that inspired Conant-independence, we
introduce an infinite family of independence relations, the n-ð-independence relations |⌣

ðn

(pronounced “eth” as in “father”):

Definition 0.0.9. (1) Let |⌣
ð0, 0-ð-independence, denote forking-independence over a model

M .
Inductively,
(2a) A formula φ(x, b) (n+1)-ð-divides over a model M if, for any |⌣

ðn-Morley sequence
{bi}i<ω with b0 = b, {φ(x, bi)}i<ω is inconsistent.
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(2b) A formula φ(x, b) (n + 1)-ð-forks over a model M if there are φi(x, bi) (n + 1)-ð-
dividing over M so that |= φ(x, b) →

∨n
i=1 φi(x, bi).

(2c) We say that a is (n + 1)-ð-independent from b over M , denoted a |⌣
ðn+1

M
b, if

tp(a/Mb) contains no formulas (n+ 1)-ð-forking over M .

These relations coincide in NSOP1 theories, but reveal a fine structure to independence
that turns out to be calibrated by the properties NSOP2n+1+1 for n ≥ 1. We show that for
n ≥ 1, |⌣

ðn is symmetric and transitive in the classical examples of NSOP2n+1+1 theories,
including some SOP2n+1 examples. On the other hand, we also show that for n ≥ 1, symmetry
or transitivity of |⌣

ðn implies NSOP2n+1+1. In analogy to k = 4 being the least value of k
so that there is a strictly NSOPk theory with symmetric Conant-independence, we will have
shown, in summation, that:

Theorem 0.0.5. The least value of k so that there is a strictly NSOPk theory where |⌣
ðn is

symmetric is k = 2n+1 + 1. Moreover, the least value of k so that there is a strictly NSOPk

theory where |⌣
ðn is transitive is k = 2n+1 + 1.

This leaves open the question of whether symmetry, or perhaps transitivity, of |⌣
ðn is

equivalent to NSOP2n+1+1 for n ≥ 1, which would give a true theory of independence for
NSOP2n+1+1.

We assume a knowledge of basic model theory, including stability theory and simplicity
theory. Two excellent expositions of simplicity theory are given in [110] and [62]. There
are many good treatments of stability theory; for a more geometric perspective, see [87].
Additional background will be given in each chapter.
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Chapter 1

Conant-independence and generalized
free amalgamation

1.1 Introduction

One of the most rapidly evolving areas of model theory is the study of potentially non-NSOP1

NSOP theories. Two cornerstone problems of this field include determining the status of
the open regions of this part of the classification-theoretic map, and developing a theory of
independence for these theories1. One of the main questions of the first program, asked by
Džamonja and Shelah [40], of whether the class NSOP2 coincides with the class NSOP1, was
recently answered in the affirmative by the author in Chapter 3. Yet the following question
from [40] remains open:

Problem 1.1.1. Is every NSOP3 theory NSOP2 (and therefore NSOP1?).

An additional open question ([30] [26]), involves the interactions of the NSOPn hierarchy
with NTP2:

Problem 1.1.2. Is the NSOPn hierarchy strict within NTP2 (including NSOPn for n ≥ 3
as well as NSOP itself?)

Note that Shelah ([97]) showed that all NSOP2 NTP2 theories are simple. Partial re-
sults on these problems include work of Evans and Wong in [42] proving the ω-categorical
Hrushovski constructions introduced in [41] are either simple or strictly NSOP4, work of Co-
nant in [32] proving modular free amalgamation theories are either simple or strictly NSOP4

TP2, and upcoming work of Kaplan, Ramsey and Simon ([95]) shows that all binary theories
are either SOP3 or NSOP2, and either SOP1 or simple (and therefore SOP3 or simple.) Yet
none of the previous literature explicitly treats general classes of theories that approach the

1For a somewhat different tradition in the theory of independence for potentially non-simple theories,
with some overlap with the higher NSOPn hierarchy including the modular free amalgamation theories from
[32], see [84].
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limits of our understanding of the NSOPn hierarchy: potentially SOP3, but also potentially
strictly NSOP1. (However, recent work of Johnson and Ye, introducing curve-excluding fields
([50]; see also [49]) known to be TP2 and thus not simple but thought to be NSOP4, de-
serves mention; see below.) One of the goals of this chapter is to show that the potentially
non-modular free amalgamation theories are such a class (and that, answering a question
of Conant in [32], non-modular free amalgamation theories exist), and to introduce some
properties of theories, essentially generalizing the free amalgamation theories with no known
NSOP4 counterexamples, under the assumption of which the NSOP1-SOP3 dichotomy holds.

On the other hand, our understanding of independence in the NSOP region beyond
NSOP2 theories has remained thin to non-existent. Kaplan and Ramsey ([52]) have success-
fully introduced the concept of Kim-independence, or forking independence “at a generic
scale,” as the appropriate extension of forking-independence to the class NSOP1. Yet to
extend Kim-independence itself past NSOP2 remains open. Stronger and often stationary
abstract independence relations with no known concrete model-theoretic characterization
are also abundant in the class NSOP. The theory of purely abstract independence relations
is introduced by Adler in [1], where he outlines axioms these relations can satisfy to behave
in certain ways like forking-independence in stable theories. In [36], D’Elbée proposes the
problem of finding a model-theoretic definition of stronger “free amalgamation” relations
alongside Kim-independence in NSOP1 theories, such as the strong independence in the
theory ACFG of algebraically closed fields with a generic additive subgroup; he also notes
that relations with similar properties hold in the strictly NSOP4 Henson graphs. Just as in
the case of free amalgamation of generic functional structures in [71] or generic incidence
structures in [33], d’Elbée observes that these stronger independence relations can be used
to prove the equivalence of forking and dividing for complete types in many known NSOP1

theories. Conant [32] introduces his formulation of free amalgamation based on concepts
used to study the isometry groups of Urysohn spheres in [106], giving an abstract set of
axioms for independence relations generalizing those found in homogeneous structures, such
as those given by adding no new edges in the (simple) theory of the random graph or the
(strictly NSOP4) theory of the generic triangle-free random graph. Aside from the canonical
coheirs introduced by the author in Chapter 3 to simulate the assumption of a stationary
independence relation in the proof of NSOP1 for NSOP2 theories, our understanding of this
phenomenon of “strong independence” is entirely synthetic. Yet theories exhibiting this
phenomenon often come equipped with a weaker notion of independence, which we show
to have a purely model-theoretic characterization as forking-independence “at a maximally
generic scale” (in other words, the result of forcing Kim’s lemma onto Kim-independence)
extending that of Kim-independence in NSOP1 theories. This notion is based on the concept
of “strong Kim-dividing” introduced by Kaplan, Ramsey and Shelah in [54] in the context of
“dual local character” in NSOP1 theories. We show that NSOP4 theories are the last class
in the NSOPn hierarchy where this notion of independence can be symmetric, providing the
beginnings of a theory of independence beyond NSOP1.

An outline of the chapter is as follows. In section 3, we introduce a weak set of axioms
on stationary independence relations, essentially generalizing the “freedom” axiom in Co-
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nant’s free amalgamation theories beyond the traditional homogeneous structures. It is not
a true generalization of Conant’s axioms, as Conant employs a non-standard definition of
stationarity, yet these relations can be found in all of Conant’s examples. We show that
under these axioms, we can carry out arguments for NSOP1 theories from Chernikov and
Ramsey [28] and Ramsey and Kaplan [52] relative to an independence relation, even outside
of the NSOP1 context. Specifically, we prove the equivalence of a relative Kim’s lemma,
or minimality among invariant Morley sequences in the dividing order indroduced by [113],
and symmetry for relative Kim-independence for a relation with these axioms. It follows
that when the relative Kim-independence is symmetric, it is no longer a relative notion, but
rather the absolute notion of forking-independence “at a maximally generic scale” that we
call Conant-independence, after Conant’s observation in [32] (Lemma 7.6) that Morley se-
quences in a free amalgamation relation can only witness dividing when the relation A |⌣

a

C
B

defined by acl(AC) ∩ acl(BC) = acl(C) fails. A version of this was defined by the author in
Chapter 3 as a candidate for Kim-independence in NSOP2 theories, but we define it here in
terms of invariant Morley sequences rather than coheir Morley sequences, as in the “strong
Kim-dividing” of [54]. Using part of the proof from Chapter 3 of the equivalence of NSOP1

and NSOP2, in turn adapting many of the arguments from [32] on modular free amalgamation
theories, we also show that when these equivalent “relative NSOP1” conditions hold for a re-
lation with our axioms, or more generally when we have symmetry for Conant-independence
and a minimal Kim’s lemma even without these axioms, a theory must be either NSOP1

or NSOP3; additionally, generalizing arguments from [32], it must be either simple or TP2.
Importantly, we do not know whether there is an NSOP4 theory where either of these two
symmetry or witnessing conditions fail.

In section 4, we extend Conant’s result in [32] that modular free amalgamation theories
must be either simple or SOP3 to all free amalgamation theories, using the results of the
previous section to show that free amalgamation theories must be either NSOP1 or SOP3.
Accordingly, we show that Kruckman and Ramsey’s example of the generic theory of a
function from [71], when equipped with a nonstandard free amalgamation relation that
actually falls under Conant’s axioms, gives an example of a non-modular free amalgamation
theory, answering the aformentioned question of Conant. As a corollary, we get a converse
to Conant’s result that a simple free amalgamation theory must be modular, showing that
a modular NSOP1 free amalgamation theory must be simple. In a personal communication,
Conant noted to the author that Claim 1 of Theorem 7.7 of [32] was in error; by using
an entirely different method in Chapter 3 for the analogous claim in our proof that a free
amalgamation theory must be NSOP1 or SOP3, we recover Conant’s theorem that a modular
free amalgamation theory must be simple or SOP3.

In section 5, we give some examples of theories with a “relatively NSOP1” stationary
independence relation with our axioms, and characterize Conant-independence in these the-
ories. We show that the finite-language case of the ω-categorical Hrushovski constructions
of [41], which Conant notes are not necessarily free amalgamation theories in his sense, do
satisfy this more general notion of free amalgamation, and that Conant-independence gives
us a purely model-theoretic interpretation of the d-independence of [41] even outside of the
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simple case (where it coincides with forking-independence). We then give a similar analysis
to the generic graphs without small cycles introduced in [101] as examples of strictly NSOP4

theories. It appears that the curve-excluding fields introduced in recent work of Johnson and
Ye ([50]; see also [49]) might also have a stationary independence relation with the required
properties, with Conant-independence coinciding with algebraic indepenence in the sense of
fields, suggesting that these fields must be either strictly NSOP1 or, taking into account the
next paragraph, strictly NSOP4.

In section 6, we show that any theory where Conant-independence is symmetric must be
NSOP4. The original suggestion of a special significance for NSOP4, in connection with free
amalgamation, is due to Patel ([85]), who in unpublished work provided an argument for
NSOP4 for various examples that was later generalized, along with work from various other
authors, by Conant in [32] (where a more complete historical background can be found.)
By showing n = 4 is the least so that there is a strictly NSOPn theory with symmetric
Conant-indepednence, we give neostability-theoretic justification for this significance. We
then pose some questions about symmetry for Conant-independence within the neostability
hierarchy, highlighting some connections with established open problems on dividing lines
as well as a potential characterization of NSOP4 in terms of Conant-independence, similar
to Kaplan and Ramsey’s characterization of NSOP1 in terms of Kim-independence.

1.2 Preliminaries

Notations are standard;M will denote a model while a, b, c, A,B,C will denote sets. A global
type p(x) is a complete type over the sufficiently saturated model M. For M ≺ M, a global
type p(x) is invariant over M if whether φ(x, b) belongs to p for φ(x, y) a fixed formula
without parameters depends only on the type of the parameter b over M and not on the
specific realization of that type. A special subclass of types invariant overM is that of those
finitely satisfiable over M , meaning any formula in the type is satisfied by some element of
M . We say an infinite sequence {bi}i∈I , is an invariant Morley sequence over M if there
is a fixed global type p(x) invariant over M so that bi |= p(x)|M{bj}j<i

for i ∈ I. Invariant
Morley sequences over M are indiscernible over M , and the EM-type of an invariant Morley
sequence over M depends only on p(x).

We recall Conant’s definition of free amalgamation theories in [32], and define a few other
properties of relations between sets. Many of these definitions come originally from Adler
([1]) and the axiom system itself resembles that of Ziegler and Tent in [106]. A theory is a
free amalgamation theory if there is a ternary relation |⌣ between two sets over another set
with the following properties:

Invariance: Whether A |⌣C
B is an invariant of the type of ABC.

Monotonicity: If A |⌣C
B and A0 ⊆ A, B0 ⊆ B, then A0 |⌣C

B0.
Full transitivity: For any A, if D ⊆ C ⊆ B then A |⌣D

B if and only if A |⌣D
C and

A |⌣C
B.
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Full existence: For any a,B and for C algebraically closed, there is some a′ ≡C a with
a′ |⌣C

B.
Stationarity: For a, b, C algebraically closed with C ⊆ a ∩ b, and for any a′ ≡C a, if

a |⌣C
b and a′ |⌣C

b then a′ ≡b a.
Freedom: For A,B,C,D with A |⌣C

B, if C ∩ AB ⊆ D ⊆ C, then A |⌣D
B.

Closure: For a, b, C algebraically closed with C ⊆ a ∩ b and a |⌣C
b, ab is algebraically

closed.
Sometimes a relation is defined only between sets over a model, rather than over an

arbitrary set. We define some additional properties that we will use in this case. As Co-
nant’s definition of stationarity is nonstandard, this includes the standard formulation of
stationarity, which will apply to example 3.2.1 of [32], the random graphs, Henson graphs
and Urysohn sphere.

Full stationarity: If A |⌣M
B, A′ |⌣M

B, and A ≡M A′, then A ≡MB A′.
Left extension: If A |⌣M

B and A ⊆ C, there is some B′ ≡A B with C |⌣M
B′.

Right extension: If A |⌣M
B and B ⊆ C, there is some A′ ≡B A with A′ |⌣M

C.

We define a |⌣
i

M
b to mean that tp(a/Mb) extends to an M -invariant global type. The

relation a |⌣
a

M
b, denoting acl(aM) ∩ acl(bM) =M can be found in [32]; it is well-known to

satisfy right (and left) extension.
We review the relevant regions of the generalized stability hierarchy. The following, which

we take as the definition of simplicity, is well-known:

Definition 1.2.1. We say tp(a/bM) does not divide over M , denoted a |⌣
div

M
b, if there is

no formula φ(x, b) ∈ tp(a/bM) and M-indiscernible sequence {bi}i∈I starting with b so that
{φ(x, bi)}i∈I is inconsistent. A theory T is simple if |⌣

div is symmetric.

The properties NSOP1 and NSOP2 were introduced in [40]:

Definition 1.2.2. A theory T is NSOP1 if there does not exist a formula φ(x, y) and tuples
{bη}η∈2<ω so that {φ(x, bσ↿n)}n∈ω is consistent for any σ ∈ 2ω, but for any η2 ⊵ η1 ⌢ ⟨0⟩,
{φ(x, bη2), φ(x, bη1⌢⟨1⟩)} is inconsistent. Otherwise it is SOP1.

Definition 1.2.3. A theory T is NSOP2 if there does not exist a formula φ(x, y) and tuples
{bη}η∈2<ω so that {φ(x, bσ↿n)}n∈ω is consistent for any σ ∈ 2ω, but for incomparable η1 and
η2, {φ(x, bη1), φ(x, bη2)} is inconsistent. Otherwise it is SOP2.

These two classes coincide; see Chapter 3.
Justifying the “order” terminology, the following family of classes was introduced in [101]:

Definition 1.2.4. Let n ≥ 3. A theory T is NSOPn (that is, does not have the n-strong
order property) if there is no definable relation R(x1, x2) with no n-cycles, but with tuples
{ai}i∈ω with |= R(ai, aj) for i < j. Otherwise it is SOPn.

We will only concern ourselves with NSOPn theories for 1 ≤ n ≤ 4. Finally, [99] in-
troduces the following notion, whose interaction with the NSOPn hierarchy beyond NSOP2

remains open:
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Definition 1.2.5. A theory T is NTP2 (that is, does not have the tree property of the second
kind) if there is no array {bij}i,j∈ω and formula φ(x, y) so that there is some fixed k so that,
for all i, {φ(x, bij)}j∈ω is inconsistent, but for any σ ∈ ωω, {φ(x, biσ(i))}i∈ω is consistent.

Kaplan and Ramsey ([52]) extend the theory of forking-independence in simple theories
to NSOP1 theories. We give a brief overview, mostly by way of motivation:

Definition 1.2.6. A formula φ(x, b) Kim-divides over M if there is an invariant Morley
sequence {bi}i∈ω starting with b (said to witness the Kim-dividing) so that {φ(x, bi)}i∈ω is
inconsistent. A formula φ(x, b) Kim-forks over M if it implies a (finite) disjunction of
formulas Kim-dividing over M . We write a |⌣

K

M
b, and say that a is Kim-independent from

b over M if tp(a/Mb) does not include any formulas Kim-forking over M .

Any NSOP1 theory is characterized by the following variant of Kim’s lemma for simple
theories, as well as by symmetry of Kim-independence.

Fact 1.2.1. ([52]) Let T be NSOP1. Then for any formula φ(x, b) Kim-dividing overM , any
invariant Morley sequence over M starting with b witnesses Kim-dividing of φ(x, b) over M .
Conversely, suppose that for any formula φ(x, b) Kim-dividing overM , any invariant Morley
sequence (even in a finitely satisfiable type) over M starting with b witnesses Kim-dividing
of b over M . Then T is NSOP1.

It follows that Kim-forking coincides with Kim-dividing in any NSOP1 theory.

Fact 1.2.2. ([28], [52]) The theory T is NSOP1 if and only if |⌣
K is symmetric.

The following preorder restricts the dividing order of [113]. We are interested in the
minimal class.

Definition 1.2.7. Let p(x), q(x) be two invariant global types extending a common type over
a model M . Then p(x) is greater than or equal to q(x) in the Kim-dividing order if its
invariant Morley sequences witness Kim-dividing of every formula the Kim-dividing over M
of which is witnessed by invariant Morley sequences in q(x).

1.3 Generalized free amalgamation and relative NSOP1

Throughout this section we assume unless otherwise noted a ternary relation |⌣ between sets
is defined over models and has invariance, monotonicity, full existence, and full stationarity.
Following Definition 7.5 of [32], we first define special Morley sequences.

Definition 1.3.1. LetM ≺ M. An |⌣-Morley sequence overM (in q ∈ S(M)) is an infinite
sequence {ai}i∈I so that ai |⌣M

a<i for all i ∈ I (so that ai |= q for all i ∈ I.)
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Note that |⌣-Morley sequences of realizations of any type p(x) over M will always exist,
their type over M will depend only on p(x), and they will be indiscernible over M with any
two terms |⌣

a-independent.
We consider a new axiom on |⌣, motivated by the freedom axiom from [32] defined in

section 2 and covering all of the examples from [32].
Generalized freedom: If M ≺ M ′ ≺ M and there is an |⌣-Morley sequence over M

starting with a and indiscernible over M ′, then an |⌣-Morley sequence starting with a over
M ′ is also an |⌣-Morley sequence over M .

(See [53], [39] for some results involving preservation of Morley sequences under change
of base.)

Remark 1.3.1. If |⌣ additionally satisfies the freedom axiom, it also satisfies the generalized
freedom axiom.

Proof. Since any two terms of |⌣-Morley sequences over M starting with a will be |⌣
a-

independent over M , the hypothesis of the generalized freedom axiom implies M ′ |⌣
a

M
a.

The rest is just the proof of Lemma 7.6 of [32]. By stationarity, it suffices to construct an |⌣-
Morley sequence {ai}i∈ω starting with a overM ′ that remains an |⌣-Morley sequence overM .
Suppose a0, . . . , an already constructed. Choose a copy an+1 |⌣M ′ a0 . . . an of a over M ′. So
M ′∩a0 . . . an+1 ⊆M ⊆M ′. Then by the freedom axiom, additionally an+1 |⌣M

a0 . . . an.

Example 1.3.2. In Examples 3.2.1(i-iii) of [32], the random graphs, Henson graphs and the
Urysohn ball of radius 3, free amalgamation satisfies full stationarity and therefore satisfies
the generalized freedom axiom.

Example 1.3.3. In the generic (Kn+K3)-free graphs of [24] (the first of which is introduced
in [67]), it follows from the discussion in Example 3.2.2 of [32] (namely the result of Patel
[85] that the class of (Kn +K3)-free graphs is closed under free amalgamation over an alge-
braically closed base; since the algebraic closure is distintegrated, this free amalgamation is
itself algebarically closed) that isomorphic algebraically closed sets are elementarily equiva-
lent. Since it is required for elementary equivalence that the sets be algebraically closed, the
free amalgamation from this example only satisfies stationarity, rather than full stationarity.
However, consider the fully stationary relation A |⌣M

B defined by free amalgamation of
acl(AM) and acl(BM) overM ; we show that the generalized freedom axiom holds. Suppose
the hypothesis holds, so M ′ |⌣

a

M
a. Consider an |⌣-Morley sequence {ai}i∈ω over M ′ start-

ing with a. Then {acl(Mai)}i∈ω can be seen to be |⌣
a-independent over M , and because

acl(Mai) does not meetM ′ except inM , that {acl(M ′ai)}i∈ω are in free amalgamation (given
by adding no new edges) over M ′ implies that the {acl(Mai)}i∈ω are in free amalgamation
over M .

We consider Conant’s other example from [32], the freely disintegrated ω-categorical
Hrushovski constructions of [41], in Section 5, as part of larger general class of ω-categorical
Hrushovski constructions that Conant notes in this example are not necessarily free amal-
gamation theories.
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Example 1.3.4. In the strictly NSOP1 theory ACFG of algebraically closed fields
with a generic additive subgroup, the strong independence relation A |⌣

st

M
B, intro-

duced as part of a larger family in [37] and developed in [36], given by A |⌣
ACF

M
B and

G(acl(MAB)) = G(acl(MA)) + G(acl(MB)), satisfies the generalized freedom axiom; note
that Kim-independence A |⌣

K

M
B is given by the “weak independence” A |⌣

ACF

M
B and

G(acl(MA) + acl(MB)) = G(acl(MA)) + G(acl(MB)), and the hypothesis of this axiom
in the NSOP1 case is just Kim-independence. It is expected that all of the other examples
from the literature of “strong independence” in NSOP1 theories listed in [37] also satisfy
this axiom.

We wish to show that even outside of the NSOP1 context, the theory of Kim-forking from
[52] characteristic of NSOP1 theories can be developed relative to an independence relation
|⌣ satisfying the generalized freedom axiom, though when the equivalent relative versions
of NSOP1 are satisfied, the relative version of Kim-independence becomes a new absolute
independence relation. We first introduce the relative notion:

Definition 1.3.2. Let φ(x, b) be a formula. We say φ(x, b) |⌣-Kim-divides over a model
M if {φ(x, bi)}i∈I is inconsistent (so k-inconsistent for some k) for some (any) |⌣-Morley
sequence {bi}i∈I over M starting with b, and that it |⌣-Kim-forks over M if it implies a
(finite) disjunction of formulas |⌣-Kim-dividing over M . We say a is |⌣-Kim-independent

from b over M (written a |⌣
K |⌣

M
b) if a does not satisfy a formula of the form φ(x, b) |⌣-

Kim-forking over M .

A feature of stationarity is that we automatically get “Kim’s lemma” (the analogue of
Fact 1.2.1) for the class of |⌣-Morley sequences taken alone, giving us equivalence of |⌣-
Kim-forking and |⌣-Kim-dividing with no further assumptions.

Proposition 1.3.5. For formulas, |⌣-Kim-forking coincides with |⌣-Kim-dividing. There-

fore, |⌣
K |⌣

satisfies right extension.

Proof. The following is standard; see [52] for the application of this method to Kim-
independence in NSOP1 theories. Let |= φ(x, b) →

∨n
i=1 ψi(x, ci) for ψi(x, ci) |⌣-Kim-

dividing over M . By left extension (which follows from the assumptions) and monotonicity,
whether or not a formula |⌣-Kim-divides over M does not change when adding unused
parameters, so we can assume ci = b for 1 ≤ i ≤ n. Then φ(x, b) Kim-divides over M , for
suppose otherwise. Let {bi}i∈N be an |⌣-Morley sequence over M starting with b; then
there will be some a realizing {φ(x, bi)}i∈N. So by the pigeonhole principle, there will be
some 1 ≤ j ≤ n so that a realizes {ψj(x, bi)}i∈S for S ⊆ N infinite. But by monotonicity
and an automorphism, we can assume {bi}i∈S is an |⌣-Morley sequence over M starting
with b, contradicting |⌣-Kim-dividing of ψi(x, b).

Next, we introduce one possible formulation of NSOP1 relative to |⌣ (see Fact 1.2.1).
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Definition 1.3.3. The relation |⌣ satisfies the relative Kim’s lemma if the type over M of
any b |⌣M

M is always minimal in the Kim-dividing order.

Aside from the motivation by NSOP1 theories (as well as similarity to a property of the
canonical coheirs of Chapter 3), this is a natural assumption. Strictly NSOP4 theories are
often defined as the generic examples of structures avoiding a particular configuration, such
as the Henson graph avoiding Kn or the ω-categorical Hrushovski constructions avoiding
finite substructures of negative predimension. Free amalgamation-like relations in these
examples will have the minimal amount of obstructions to consistency along an invariant
Morley sequence, which is to say, obstructions (say, edges or relations) to the avoidance of a
forbidden configuration. Using the generalized freedom axiom, arguments from [28], [52] can
be carried out here, showing the equivalence of this assumption to symmetry of the relative
Kim-indepndence (see Facts 1.2.1 and 1.2.2).

Theorem 1.3.6. Suppose |⌣ satisfies the generalized freedom axiom. Then |⌣ satisfies the

relative Kim’s lemma if and only if |⌣
K |⌣

is symmetric.

Proof. We follow the proofs of Theorems 3.16 and 5.16 of [52], taking note of where the gen-
eralized freedom axiom applies in each direction; note that because the |⌣-Morley sequences
will go in the opposite direction of the configurations originally found in the proofs of the
results on NSOP1 theories, we will require densely ordered indiscernible sequences. We will
also need to make some modifications to respect the Skolemization.

(⇒) Suppose |⌣ also satisfies the relative Kim’s lemma. Then we have the following
chain condition:

Claim 1.3.7. (Chain Condition) Let a |⌣
K |⌣

M
b. Then there is some |⌣-Morley sequence

I = {bi}i∈N over M indiscernible ovr Ma starting with b so that a |⌣
K∗

M
I.

Proof. The proof can be taken nearly word-for-word from Proposition 3.5.2 of Chapter 3,
itself similar to the standard proof of the chain condition found in, say, [52]. By compactness,
there is a Morley sequence I = {bi}i∈N over M starting with b and indiscernible over Ma.

We must show that a |⌣
K |⌣

M
I. It suffices to show that a |⌣

K |⌣

M
b1 . . . bk for any k ≥ 1. But

the concatenation {bikbik+1 . . . bik+(k−1)}i∈ω is still an invariant Morley sequence over M , so
by the relative Kim’s lemma and compactness and Ramsey there is an |⌣-Morley sequence
starting with b1 . . . bk and indiscernible over a. The claim follows by Proposition 1.3.5.

Now suppose for contradiction that a |⌣
K |⌣

M
b but b is |⌣-Kim-dependent on a over M .

Let φ(x, a) ∈ tp(b/Ma) |⌣-Kim-divide over M , and choose a Skolemization of T .

Claim 1.3.8. There is a sequence {ci,0, ci,1}i∈ω with ci,j ≡M a, with ci,0 ≡dclSk(Mc<i,0,c<i,1) ci,1,
and a formula φ(x, y) with {φ(x, ci,0)}i∈ω consistent, but {ci,1}i∈ω, read backwards, an |⌣-
Morley sequence; therefore, {φ(x, ci,1)}i∈ω will be inconsistent.
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Proof. Because this configuration is obtained the same way as that from the proof of Proposi-
tion 5.13 of [52], but with the difference that, as in Chapter 3, the branches must form special
Morley sequences–in this case |⌣-Morley sequences instead of canonical Morley sequences–
rather than any invariant Morley sequence, and with the additional difference that the Morley
tree is extracted in the Skolemization, we only sketch the proof. The idea is to first build a
very large tree with the following properties:

(1) The type over M of a non-leaf node, taken together with a leaf with that node on its
path, is the same of that of ab.

(2) The branches at a given node form an |⌣-Morley sequence.
(3) Each node is |⌣-Kim independent from its branches, taken together.
This is by transfinite induction, or by induction and compactness. Suppose at a given

stage, the tree I is already built. We want to find some a′∅ |⌣
K |⌣

M
I so that the type of a′∅ with

each leaf node over M is the same as that of ab over M . At the base case, this is just the

assumption a |⌣
K |⌣

M
b. At the successor stage, note that the root node is |⌣-Kim-independent

from the rest of the tree and satisfies, with each leaf node, the type of ab over M , so we

get a′∅ by right extension for |⌣
K |⌣

. Now use the chain condition to choose an |⌣-Morley

sequence {Ii}i<κ starting with I and indiscernible over Ma′∅ so that a′∅ |⌣
K |⌣

M
{Ii}i<κ, and

reindex accordingly.
Now in the Skolemization, use Lemma 5.10 of [52] to extract a Morley tree (see Definition

5.7 of [52] from the non-leaf nodes and let ci,0 be the node indexed by ⟨0⟩n, ci,1 be the node
indexed by ⟨0⟩n−1 ⌢ ⟨1⟩. If one does not wish to deal with Morley trees, one may also use
the more elementary argument of Proposition 5.6 of [28]. Suppose the ci,0 = cλi

, indexed
by nodes λi and ci,1 = cηi indexed by nodes ηi with ηj ∧ λj ▷ λi for 1 ≤ i < j ≤ n and
λi ⊵ (ηi ∧ λi) ⌢ ⟨0⟩, ηi ⊵ (ηi ∧ λi) ⌢ ⟨1⟩, are already constructed. Then using the pigeonhole
principle, choose nodes λn+1 = λn ⌢ ⟨0⟩κ1 ⌢ ⟨1⟩, ηn+1 = λn ⌢ ⟨0⟩κ2 ⌢ ⟨1⟩ for κ1 < κ2 < κ so
that the corresponding terms of the tree, which we then call cn+1,0 = cλn+1 and cn+1,1 = cηn+1 ,
have the same type over dclSk(Mc≤n,0, c≤n,1).

We now apply the generalized freedom axiom to carry out the argument for Proposition
3.14 of [52], the one underlying Kim’s lemma in actual NSOP1 theories, to contradict the
relative Kim’s lemma.

We can find {ci,0, ci,1}i∈Q+ for Q+ = Q∪{∞}, indiscernible over M in the Skolemization
with the same properties. Let M ′ = dclSk(M{ci,0, ci,1}i∈Q), and p(y) = tp(c∞,0/M

′) =
tp(c∞,1/M

′).

Claim 1.3.9. There is an |⌣-Morley sequence over M of realizations of p(y).

Proof. By compactness, it suffices to show the same replacing p(y) with its restriction to
Mj = dclSk(M{ci,0, ci,1}i<j) for some j ∈ Q. But this is just tp(cj+1,1/Mj), and {ck,1}∞j<k≤j+1,
read backwards, is an |⌣-Morley sequence starting with cj+1,1 indiscernible over Mn.

Now just as in the proof of Proposition 3.14 of [52], the consistency of {φ(x, ci,0)}i∈Q+

gives an M ′-finitely satisfiable extension of p not witnessing the Kim-dividing of φ(x, c∞,0)
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over M ′, namely the limit type of {ci,0}i∈Q over M . But by the generalized freedom axiom
and Claim 1.3.9, a |⌣-Morley sequence starting with c∞,1 over M

′ will remain an |⌣-Morley
sequence overM , so will witness the Kim-dividing of φ(x, c∞,1) overM , and thus overM ′, by
the inconsistency of {φ(x, ci,1)}i∈Q. Since c∞,1 ≡M c∞,0, this contradicts the relative Kim’s
lemma.

(⇐) Suppose the relative Kim’s lemma fails; then we find a, b,M ′ with tp(a/M ′b) finitely

satisfiable and thus invariant over M ′, so a fortiori a |⌣
K |⌣

M ′ b, but b |⌣-Kim-dependent on a
overM ′. Let φ(x, c) be a formula that |⌣-Kim divides overM , and let q(y) be anM -invariant
extension of tp(c/M) whose invariant Morley sequences do not witness this Kim-dividing.
Choose a Skolemization of T .

Claim 1.3.10. We get the same configuration as in Claim 1.3.8: There is a sequence
{ci,0, ci,1}i∈Z with ci,0 ≡dclSk(Mc<i,0,c<i,1) ci,1, and a formula φ(x, y) with {φ(x, ci,0)}i∈Z consis-
tent, but {ci,1}i∈Z, read backwards, an |⌣-Morley sequence over M ; therefore {φ(x, ci,1)}i∈Z
is inconsistent.

Proof. Attempting the method of Proposition 3.15 of [52], we fail to respect the Skolem-
ization, so we will instead construct a very large tree, either by transfinite induction or
induction and compactness. See the proof of Theorem 3.5.3; the construction here will be
similar but easier. The requirements of the tree will be that the paths, read in the direction
of the root, will be invariant Morley sequences in q(y) over M , while the branches at each
node will form an |⌣-Morley sequence over M (read left to right as in the proof of Claim
1.3.8. At the successor stage, suppose the tree I is already constructed. Take an |⌣-Morley
sequence {I i}i<κ of copies of I over M , then choose a new root node realizing q(y)|M{Ii}i<κ

,
and reindex accordingly.

The claim follows as in the last paragraph of the proof of Claim 1.3.8.

Now we follow Proposition 5.6 in Chernikov and Ramsey in [28], the result underlying
the other direction of Kaplan and Ramsey’s symmetry characterization of NSOP1 in [52].
After choosing {ci,0, ci,1}i∈Z as in Claim 1.3.10 to be indiscernible in the Skolemization, let us
replace the index set Z with Q+ = Q ∪ {∞}. Let M ′ = dclSk(M{ci,0, ci,1}i∈Q). Let a = c∞,0

and by Ramsey, compactness and an automorphism, let b |= φ(x, a) so that {ci,0}i∈Q+ isMb-
indiscernible. Then tp(a/M ′b) is finitely satisfiable over M ′. It remains to show that φ(x, a)
|⌣-Kim-divides over M ′. By invariance and a ≡M ′ c1,∞, it is enough to show that φ(x, c1,∞)
|⌣-Kim-divides over M ′. Since {ci,1}i∈Q+ read backwards, is an |⌣-Morley sequence over
M starting with c1,∞, so will witness Kim-dividing of φ(x, c1,∞), we only have to show the
following claim, concluding by the generalized freedom axiom as in the other direction:

Claim 1.3.11. There is an |⌣-Morley sequence over M of realizations of tp(c1,∞/M
′)

Proof. Exactly as in Claim 1.3.9.
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Example 1.3.12. In Examples 1.3.2 and 1.3.3, |⌣-Kim-independence coincides with |⌣
a.

Clearly it implies |⌣
a. Now suppose a |⌣

a

M
b. By extension for |⌣

a we can assume a and b

are algebraically closed sets, or models, containingM . Now for Example 1.3.2 that a |⌣
K |⌣

M
b

follows from Lemma 7.6 of [32] (or the proof of Remark 1.3.1). For Example 1.3.3 (where |⌣
differs from free amalgamation in general), it follows from the discussion in that example.

Example 1.3.13. If T is NSOP1, |⌣-Kim independence will always coincide with Kim-
independence.

If |⌣ satisfies the generalized freedom axiom and the equivalent conditions of Theorem
1.3.6, then the in this case superficially relative notion of |⌣-Kim independence is not really
a relative notion at all, but rather a new notion of independence with an intrinsically model-
theoretic definition.

Definition 1.3.4. Let M be a model and φ(x, b) a formula. We say φ(x, b) Conant-divides
over M if for every invariant Morley sequence {bi}i∈ω over M starting with b, {φ(x, b)}i∈ω
is inconsistent. We say φ(x, b) Conant-forks over M if and only if it implies a disjunction of
formulas Conant-dividing over M . We say a is Conant-independent from b over M , written
a |⌣

K∗

M
b, if tp(a/Mb) does not contain any formulas Conant-forking over M .

Note that Conant-dividing is just “strong Kim-dividing,” Definition 5.1 of [54].

Corollary 1.3.13.1. Suppose |⌣ satisfies the generalized freedom axiom. Then if |⌣-Kim
independence is symmetric, it coincides with Conant-independence.

Proof. By Theorem 1.3.6, |⌣-Kim-dividing coincides with Conant-dividing, so |⌣-Kim-
forking coincides with Conant-forking.

Conant-independence will coincide with Kim-independence in NSOP1 theories and with
|⌣

a in free amalgamation theories (see below), so it is not readily apparent from these
examples that Conant-independence is a new independence notion. Nonetheless, in section
5 we will discuss some interesting examples of strictly NSOP4 theories not covered by these
cases.

Note that a related notion called “Conant-independence” is defined using finitely satisfi-
able Morley sequences in Chapter 3, where it is shown to coincide with Kim-independence
in NSOP2 theories. Despite the fact that the choice between invariant or finitely satisfi-
able Morley sequences does not matter for Kim-independence in NSOP1 theories (see Fact
1.2.1), it is not known when our notion of Conant-independence and the one from Chapter
3 coincide2.

2We suspect that they do not, even in NSOP4 theories. If Conant-independence with respect to finitely
satisfiable Morley sequences coincided with the standard Conant-independence |⌣

a
in the triangle-free ran-

dom graph, and there were also minimal finitely satisfiable types in restriction of the Kim-dividing order to
finitely satisfiable types, then |⌣

a
would have to satisfy a “weak independence theorem” (see Proposition

6.10 of [52] for the original result, or proposition 3.5.5, whose proof is quoted below, for a result involving
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Example 1.3.14. In an NSOP4 theory, or even a theory with symmetric Conant-
independence, the relation |⌣ might satisfy the generalized freedom axiom but not the
equivalent conditions of Theorem 1.3.6. Consider the theory of the generic K3-free graph
with two constants, c and d, for distinct vertices. This is NSOP4, originally by work of
Shelah ([101]). Declare A |⌣M

B if A ∩ B ⊆ M and a node a of A\M and a node b of
B\M have an edge between them if and only if a connects to c (denoted by its constant), b
connects to d (denoted by its constant) and a and b connect to no common vertices in M .
This makes sense as a stationary relation, as the fact that a and b connect to no common
vertices in M tells us that no triangles can be formed with vertices in M , and the fact
that two vertices of A\M or B\M must connect to a common constant, so must not be
connected themselves, if they are to recieve any new edges, tells us that no triangles can be
formed without vertices in M . We will first show the generalized freedom axiom. Suppose
there is an |⌣-Morley sequence {Ai}i∈ω of copies of a set A over M realizing the type of A
over M ′ ≻ M . Then clearly Ai ∩M ′ ⊆ M and Ai ∩ Aj ⊆ M for i ̸= j, and it remains to
show that the edges between nodes a of Ai\M and b of Aj\M remain as selected according
to |⌣, when considered over M ′. If there is no edge between a and b, then the conditions
for |⌣ to dictate this remain clearly remain true over M ′. On the other hand, if a and b are
related by an edge, then (assuming i > j) a must be connected to c and b to d, but they
must still not be connected to any common nodes even in M ′\M , because then a triangle
would be formed. So the conditions for an edge according to |⌣ remain true over M ′ in this
case, too.

However, |⌣ does not satisfy the relative Kim’s lemma (so neither is relative Kim-
independence symmetric). Consider distinct disconnected vertices c = {c1, c2} outside of
M , c1 connected only to c and to no other vertices of M , c2 connected only to d and to no
other vertices of M . Consider the formula φ(x, c) =: x ̸= c1 ∧ x ̸= c2 ∧ xRc1 ∧ xRc2. Clearly
this does not Kim-dividide with respect to the standard free amalgamation given by adding
no new edges. But it |⌣-Kim-divides, as if c1, c2 begin an |⌣-Morley sequence of copeies of
c over M , then c21 and c12 are related by an edge, making it impossible for some other vertex
to connect to both of them.

Therefore, we cannot get a witnessing lemma for stationary independence relations for
NSOP4 theories of the kind we obtained for NSOP2 theories in Theorem 3.4.2 in order to
prove the NSOP1-SOP3 dichotomy (so in that case, NSOP1). Moreover, this example tells
us that even though the equivalent conditions of Theorem 1.3.6 imply that |⌣-Kim indepen-
dence is just Conant-independence, in the statement of Theorem 1.3.6 we must still consider
|⌣-Kim-independence itself and not just Conant-independence, as Conant-independence can
be symmetric (perhaps due to the presence of a relation |⌣1

with the generalized freedom
axiom and the relative Kim’s lemma, relative Kim-independence with respect to which will
then be Conant-independence; see Example 1.3.2for the triangle-free random graph), even if

Conant-independence with respect to finitely satisfiable Morley sequences) with respect to those minimal
finitely satisfiable types. But satisfying a weak independence theorem for |⌣

a
can be seen in this example to

characterize free amalgamation (the standard one, with no new edges). We do not think that the invariant
types given by free amalgamation in the triangle-free random graph are finitely satisfiable.
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there is some relation |⌣2
(which will then be different from |⌣1

, such as in the relation con-
structed in this example) with the generalized freedom axiom but without the relative Kim’s
lemma, so that |⌣2

-Kim independence, which will not be Conant-independence, remains
asymmetric.

We conclude this section by isolating two model-theoretic assumptions, related by the
generalized freedom axiom as in Theorem 1.3.6 and without any known NSOP4 counterex-
amples, which together imply that a theory must be either NSOP1 or SOP3, and either TP2

or simple.

Definition 1.3.5. We say a theory T has the strong witnessing property if for M ≺ M there
is some M1 ≻ M so that for b ⊂ M1, tp(b/M) is an M-invariant extension of tp(b/M)
minimal in the Kim-dividing order.

Note that if |⌣
i has left extension, then whether a formula φ(x, b) Kim-divides over M

is unchanged under adding or removing unused parameters, so under this assumption the
strong witnessing property is satisfied as long as every type over M has an M -invariant
extension minimal in the Kim-dividing order.

Theorem 1.3.15. If a theory T satisfies the strong witnessing property and has symmetric
Conant-independence, then it is either NSOP1 or SOP3.

Proof. If p(x) is a type over M , then define a strong witnessing extension of p(x) to be a
global extension q(x) of p(x) so that, for all tuples b ∈ M if c ∈ M with c |= q(x)|Mb, then for
any a ∈ M there is a′ ≡Mc a with a′ ∈ M so that tp(a′c/Mb) extends to an M -invariant type
minimal in the Kim-dividing order amongM -invariant extensions of tp(a′c/M) = tp(ac/M).
By the strong witnessing property, strong witnessing types extending any p(x) exist (see
Lemma 3.5.4). Conant-dividing is the same as Kim-dividing witnessed by a Morley sequence
in some (any) strong witnessing type, and Conant-forking is the same as Conant-dividing as
in Proposition 1.3.5. Meanwhile, Conant-independence is symmetric by assumption, and the
chain condition for Conant-independence with respect to Morley sequences in strong wit-
nessing types is as in Claim 1.3.7. So the result follows nearly word-for-word from the proofs
of Proposition 3.5.5 and the discussion in Chapter 3.6, just replacing any reference to the
coheir notions of Conant-independence and Kim-dividing independence with the invariant
notions, and replacing any reference to canonical coheirs and canonical Morley sequences
with strong witnessing types and invariant Morley sequences in those types.

Note that the proof of Proposition 3.5.5 comes directly from the proof of the “weak
independence theorem” (Proposition 6.10) of Kaplan and Ramsey in [52]. It plays the role in
our argument that the freedom axiom plays in Theorem 7.17 of [32], showing that a modular
free amalgamation theory must be either simple or SOP3. The proof of that theorem serves
as a basis for Chapter 3.6, which requires an new argument as in Claim 3.6.1 of that section
or as in [74].

The following follows Theorem 7.7 of Conant ([32]), using a similar argument:
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Theorem 1.3.16. If a theory T satisfies the strong witnessing property and has symmetric
Conant-independence, then it is either TP2 or simple.

Proof. If T is not simple then dividing-independence is not symmetric, so because Conant-
independence is symmetric, there are a |⌣

K∗

M
b and indiscernible sequence I = {bi}i<κ for

very large κ1, starting with b, and φ(x, b) ∈ tp(a/Mb) so that {φ(x, bi)}i∈I is k-inconsistent
for some k. Find a copy pver I, I ′ ≡M I, in M1 from the definition of the strong witnessing
property, and let q(y) = tp(I ′/M1). By the pigenonhole principle we can assume that each
term of I satisfies the same type q1(y) over M. Now take an invariant Morley sequence in
q(y) over M . Taking the each copy of I as a row, which will then give us an inconsistent
set of instances of φ(x, y), we see also that the paths are consistent, being invariant Morley
sequences in the type q(y) which is minimal in the Kim-dividing order, with φ(x, b) not
Conant-dividing over M .

Corollary 1.3.16.1. Suppose |⌣ satisfies the generalized freedom axiom and the relative
Kim’s lemma. Then T is either NSOP1 or SOP3, and is either simple or TP2.

Remark 1.3.17. Under the hypotheses of the corollary, applying the generalized freedom
axiom rather than the chain condition in the proof of the “weak independence theorem”
analogue, we get (by stationarity) a “base monotone” version of this result (see section 2
of [71] for related results on “base monotone” versions of independence): if M ′ |⌣

K∗

M
a and

M ′ |⌣
K∗

M
b and a |⌣M ′ b, then a |⌣M

b. When in addition |⌣
K∗

= |⌣
a, note the resemblance

to the case of the freedom axiom where C = M ′, D = M are models and C ∩ AB ⊆
C ∩ acl(AD)acl(BD) = D ⊆ C.

1.4 Non-modular free amalgamation theories

The following property of relations |⌣ between sets can be found in the “full transitivity”
from section 2:

Definition 1.4.1. The relation |⌣ has base monotonicity if A |⌣B
C and B ⊆ D ⊆ C then

A |⌣D
C.

This is Proposition 8.8 of [52]:

Fact 1.4.1. An NSOP1 theory is simple if and only if Kim-independence satisfies base mono-
tonicity for B =M ≺M ′ = D models.

Conant asks ([32], Question 7.19) if any free amalgamation theory is modular :

Definition 1.4.2. A theory is modular if |⌣
a has base monotonicity.
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Answering this question, we give an example of a nonmodular free amalgamation theory.
Kruckman and Ramsey ([71]) show that the empty theory in a language with a binary
function symbol f(x, y) has a strictly NSOP1 model completion, where Kim-independence
coincides with |⌣

a and the algebraic closure coincides with closure under f(x, y). This
theory is therefore non-modular. To show that forking coincides with dividing for complete
types over models, they introduce a relation of “free amalgamation” that we expect to
satisfy the generalized freedom axiom (see example 1.3.4), but it is not a free amalgamation
relation in the sense of [32]. We define a nonstandard relation |⌣, which will satisfy the free
amalgamation axioms. Let T be the model completion of the empty theory in the language
with a binary function symbol, with an additional constant symbol c. Define A |⌣C

B to
mean A ∩ B ⊆ C and, for a ∈ A\C and b ∈ B\C, f(b, a) = f(a, b) = c. We show that
|⌣ is a free amalgamation relation. Invariance through full transitivity are straightfoward.
For full existence, we can enlarge a,B to their algebraic closure with C, which we assume is
algebraically closed. We can easily find a structure in the language extending C where a and
B embed disjointly over C, and where a point with coordinates properly in each of a and B
will have image c. Full existence then follows from the fact that T is the model completion.
If C ⊆ a ∩ b, a, b, C algebraically closed, then a |⌣C

b determines the isomorphism type of
ab over C, so stationarity follows from quantifier elimination. For freedom, if A |⌣C

B and
C ∩AB ⊆ D ⊆ C, then A∩B ⊆ C ∩AB ⊆ D, while for a ∈ A\D ⊆ A\C, b ∈ B\D ⊆ B\C,
f(a, b) = f(b, a) = c as before. Finally, if A |⌣C

B for C ⊆ A ∩ B and A,B,C algebraically
closed, then the closure under f(x, y), and therefore the algebraic closure, of AB remains
AB, yielding the closure axiom.

The existence of non-modular free amalgamation theories motivates the following gener-
alization of Theorem 7.17 of [32] that modular free amalgamation theories are either simple
or SOP3:

Theorem 1.4.2. Free amalgamation theories are either NSOP1 or SOP3.

First, we observe that, justifying the terminology, Lemma 7.6 of Conant in [32] is essen-
tially a characterization of Conant-independence:

Proposition 1.4.3. Conant-independence in free amalgamation theories coincides with |⌣
a

over models.

Proof. Clearly Conant-independence implies |⌣
a. Conversely, suppose a |⌣

a

M
b. By extension

for |⌣
a, we can assume that a and b are algebraically closed sets containing M . But then by

Lemma 7.6 of [32], there will be an |⌣-Morley sequence over M (extending Definition 1.3.1

appropriately) starting with b and indiscernible over Ma, so a |⌣
K∗

C
b.

We also see that free amalgamation theories satisfy the strong witnessing property (Def-
inition 1.3.5): a formula φ(x, b) not Conant-dividing over M must have a realization a with
a |⌣

a

M
b, and then we can proceed as in the above proof. So the theorem follows from Theo-

rem 1.3.15.
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If a free amalgamation theory T is NSOP1, then by Fact 1.2.1 and Proposition 1.4, |⌣
K =

|⌣
K∗

= |⌣
a. Thus the characterization of simple theories within the class NSOP1 in Fact

1.4.1 gives us the following, extending Conant’s result [32] that a simple free amalgamation
theory is modular:

Proposition 1.4.4. An NSOP1 free amalgamation theory is modular if and only if it is
simple.

1.5 Some examples

We consider two examples of theories with relations satisfying the assumptions at the begin-
ning of Section 3, as well as the generalized freedom axiom and the relative Kim’s lemma,
and characterize Conant-independence in these structures. Our purposes are twofold: to
give a model-theoretic interpretation of certain tame independence relations in potentially
strictly NSOP4 theories, and to extend the concept of free amalgamation to examples not
covered by Conant’s work in [32].

Example 1.5.1. (Countably categorical Hrushovski constructions.) We consider the case
of the examples of ω-categorical structure with a predimension introduced in section 3 of
[41], which is developed in [42]. Let L be a language with finitely many relations ([42] only
require finitely many relations of each arity, but we include this requirement so that the
predimension function only takes a discrete set of values), and for each relation symbol Ri,
let αi be a non-negative real number associated to Ri. For A a finite L-structure, define a
predimension d0(A) = |A| −

∑
i αi|Ri(A)|, with Ri(A) the set of tuples of Ri with elements

of A, and define the relation A ≤ B for A a finite L-structure and B any L-structure to
mean that every finite superstructure of A within B has predimension greater than A. Let f
be an increasing continuous positive real-valued function and let Cf be the class of finite L-
structures any substructure A of which satifies d0(A) ≥ f(A). Assume that, if B1 ≥ A ≤ B2

belong to Cf , then their evident “free amalgamation,” by taking their disjoint union over A
and adding no new edges, likewise belongs to Cf . Then there is a L-structure M every finite
substructure of which belongs to Cf and so that if B ≥ A ≤ M with B finite, then there is
an embedding ι : B → M over A so that ι(B) ≤ M . Let T be its (complete) theory. The
theory T is ω-categorical, so has bounded algebraic closure, and isomorphic algebraically
closed sets are elementarily equivalent. For M a model of T , and A ⊆ B ⊆M with A finite
and B any set, A is algebraically closed in B if A ≤ B, and M will always continue to have
the property that if B ≥ A ≤M with B finite, then there is an embedding ι : B →M over
A so that ι(B) ≤M .

Though T is not necessarily simple, [42] show that it is either strictly NSOP4 or simple.
However, it does have a natural notion of independence, even in the strictly NSOP4 case.
We first recall an additional property of an abstract relation |⌣ between sets:



CHAPTER 1. CONANT-INDEPENDENCE AND GENERALIZED FREE
AMALGAMATION 32

Definition 1.5.1. We say |⌣ has finite character if A |⌣B
C holds whenever A |⌣B

C0 holds
for all finite C0 ⊆ C.

This notion of independence, called d-independence, is defined in [41]; it will coincide with
forking-independence in the simple case. For finite A,B, denote d(A/B) = d0(acl(AB)) −
d0(acl(B)) (recalling the bounded algebraic closure). This notion of relative dimension has
a natural extension over infinite sets: for A a finite set and B any set, denote d(A/B) =
min({d(A/B0) : B0 ⊆ B finite}). We use the following notation for the relation referred
to in [41] as d-independence: for a finite and B,C any sets, let a |⌣

d

B
C if and only if

d(a/BC) = d(a/B) and acl(aB) ∩ acl(CB) = acl(B); for a, B, C finite this last condition
will be redundant. In [41] it is shown that this has finite character and is symmetric,
monotone and fully transitive where defined, so it extends naturally to a relation defined for
a possibly infinite with the same properties. We claim that there is a natural relation |⌣
satisfying the assumptions at the beginning of section 3 as well as the generalized freedom
axiom and the relative Kim’s lemma, and that Conant-independence coincides with |⌣

d (so
is in particular, symmetric).

We first observe a variant of property (P5) of [41] which, in place of a finitary analogue
of the “independence theorem” holding only in the simple examples, constitutes a base-
monotone version of the “weak independence theorem” with respect to free amalgamation
analogous to those in [52] with respect to coheir-independence or Chapter 3 with respect
to canonical coheirs. This is used implicitly in [42] to show NSOP4, but we provide some
justification.

(P5’) Let B1 ≥ A ≤ B2 be finite algebraically closed sets such that B1 and B2 are freely
amalgamated over A, which is to say acl(B1B2) is the disjoint union of B1 and B2 over A
with no new relations. Let c1, c2 be finite with c1 |⌣

d

A
B1, c1 |⌣

d

A
B2 with c1 ≡A c2; then there

is some c realizing tp(c1/B1) ∪ tp(c2/B2)–with c |⌣
d

A
B1B2 (which is not needed here)–and

acl(cB1) and acl(cB2) freely amalgamated over acl(cA).
When we only require that B1 |⌣

dB2 rather than that they be freely amalgamated, this
is shown in Theorem 3.6(ii) of [41] under assumptions on f , so we need only observe that this
proof works for this partial result without the assumptions on f . As in that proof we can form
the L-structure F = E12∪E13∪E23 with no new relations, and with compatible isomorphisms
φ12 : acl(B1B2) → E12, φj3 : acl(cjBj) → Ej3, which will be a special case of the construction
from that proof where the “underlying” predimension y is just the cardinality. Now by point
(i) of that proof, which does not use the additional assumption on f required for simplicity,
Eij ≤ E. The part of the proof where this additional assumption is required is point (ii),
where it is shown that F ∈ Cf ; it must be shown that for each D ⊆ F , d0(D) ≥ f(|D|).
However, the assumption on f is only used when D is not contained in the union of two of the
Eij (where the requirement follows by closure under free amalgamation). But F = E13∪E23

because acl(B1B2) = B1∪B2. So embedding a copy of F over B1B2 (where B1B2 is identified
by its image in E12 ⊂ F ) so that it is algebraically closed will realize both types, and in a
d-independent way by point (iii), which does not rely on the additional assumptions on f .
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Now note that for B1 ≥ A ≤ B2 algebraically closed finite sets and c any finite set
with acl(cB1) and acl(cB2) freely amalgamated over acl(cA), the type of cB1 and cB2 then
completely determine the type of cB1B2 and in particular B1B2, so (P5’) implies that B1 and
B2 are freely amalgamated over A. This observation leads to the following definition: for M
a model and b, c finite sets of parameters, say a |⌣M

b if for any finite A ≤M with a |⌣
d

A
M ,

b |⌣
d

A
M (such an A always exists because d0 only takes a discrete set of values; see Lemma

2.17(a)(ii) of [41]), acl(aA) and acl(bA) are freely amalgamated over a. For existence, by
compactness, it suffices to show that for types p(x) and q(y) over M , finitely many finite
Ai ≤ M such that p(x) and q(x) d-independently extend their restrictions to Ai, and finite
B ⊆ M , there are realizations a of p(x)|B and b of q(y)|B so that acl(aAi) and acl(bAi) are
freely amalgamated over Ai for each i. But take any A ≤ M containing each of the Ai and
B and take realizations a of p(x)|A and b of q(y)|A so that acl(aA) and acl(bA) are freely
amalgamated over A; then the free amalgamation conditions over the Ai, by the observation
at the beginning of this paragraph, will be satisfied. Since by the quantifier elimination, this
relation is clearly stationary, and it is monotone by the properties of free amalgamation for
finite sets, it extends to a relation a |⌣M

b for a, b potentially infinite.

We next show that if M ′ |⌣
d

M
a and {ai}i∈I is an |⌣-Morley sequence starting with a

over M ′, then it is an |⌣-Morley sequence over M . But this follows from the definitions,

by the fact that if A ≤M is finite with a |⌣
d

A
M and M ′ |⌣

d

M
a, then a |⌣

d

A
M ′ (transitivity

and symmetry). So we have the generalized freedom axiom. We can also carry out a similar
proof for a set in place of M ′ (which we can assume to be algebraically closed and contain
M), so |⌣

d implies |⌣-Kim independence.

We next show that |⌣-Kim independence implies |⌣
d: if |⌣

d fails, the proof from [41]
that this implies dividing-independence (Lemma 2.19 (a) of [41]) relies on [65], which will
tell us than any |⌣

d-independent sequence witnesses dividing. (This will actually cover both

of the cases of that lemma). But |⌣-Morley sequences are |⌣
d-independent sequences.

So |⌣
d coincides with |⌣-Kim independence, which is then symmetric, and |⌣ satisfies

the generalized freedom axiom, so |⌣ satisfies the relative Kim’s lemma and |⌣
d coincides

with Conant-independence.

Example 1.5.2. (Random graphs without small cycles). Shelah introduces this example
in Claim 2.8.5 of [101]. Let n ≥ 3, and consider first the case where n is even. Then the
theory of graphs without cycles of length not exceeding n has a model companion T , but it
is not the model completion. The theory T does have quantifier elimination, however, in the
graph language expanded by the definable partial function symbols F k

m, for k ≤ m not more
than n

2
, sending vertices a and b of distance m to the kth vertex along the path between a

and b; note that (particularly to the even case) any two vertices in T have a unique path
of length at most n

2
between them. (We adopt the convention that paths cannot retrace

themselves.) The algebraically closed sets are then the induced subgraphs any two vertices
of which have distance within the subgraph not more than n

2
, and are determined up to
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elementary equivalence by their type in the graph language. Shelah shows this theory is
NSOP4.

We define a stationary relation |⌣ over models, as follows. Define a |⌣M
b if a |⌣

a

M
b

and the algebraic closure of Mab is constructed as follows, noting that this construction is
free of any choice and thus gives, by quantifier elimination, a relation with invariance and
stationarity. Let the graph given by acl(Ma) ∪ acl(Mb) with no new edges be stage 0. At
stage n+1, add formal vertices forming a unique path of length n

2
between any two vertices

with no path of length at most n
2
between them in stage n. Note that this cannot create

small cycles, as a small cycle can be assumed to either contain any new formal path or to
not meet it at all, but it would be too small to contain two new formal paths (and an edge
from the old graph) and if it contained only one formal path then that path would never
have been placed based on our criteria. Since T is the model companion, we have existence,
and we need to show monotonicity.

To that end, we claim that if A ⊆ B with A algebraically closed in B (that is, each
path in B of length n

2
between verticies of A goes through A), then when we apply the

construction of adding a formal path of length n
2
between any two vertices without such a

path within B, we have that:
(i) the restriction of this construction to A (looking only at A together with the new

paths added between vertices of A) is the same as what we would have obtained by looking
only at A originally and applying the same construction

(ii) this restriction of the construction to A remains algebraically closed within this
construction applied to B.

For (i), the only reason we would have added a new path between vertices of A considered
alone, but not within B, is that there is a path between those vertices of length n

2
within B

that is not within A. But that does not happen, because A is algebraically closed in B. For
(ii), any path of length at most n

2
between two nodes of the restriction of this construction

to A, within the construction applied to B, cannot go through one of the new formal paths
that are not between two vertices of A as then it would be too long. So it must stay within
B together with the new formal paths between vertices of A, but the parts of the path within
B will in fact be within A, since A is algebraically closed in B.

It follows by induction that if A is algebraically closed in B, then applying all of the
stages of the construction to B and restricting it to A is the same as applying it to A
originally. But if A |⌣

a

M
B and A′ ⊆ A, B′ ⊆ B, then acl(MA′) ∪ acl(MB′) is algebraically

closed in acl(MA) ∪ acl(MB); for any path of length at most n
2
between two vertices of

acl(MA′) ∪ acl(MB′), the parts within acl(MA) will be in acl(MA′) and the parts within
acl(MB) will be in acl(MB′). Thus we have monotonicity for |⌣.

Now define the relation A |⌣
n
4

M
B to mean that A |⌣

a

M
B and for a, b ∈ acl(AM)∪acl(BM)

so that there is no path of length at most n
4
between a and b in the graph acl(AM)∪acl(BM)

with no new edges, a and b are of distance greater than n
4
apart. (Note the importance of

this distance restriction in Shelah’s proof of NSOP4.) We claim that if M ′ |⌣
n
4

M
a, then an

|⌣-Morley sequence of copies of a over M ′ will remain so over M. To see this, note that,
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if
⋃

i∈I acl(M
′ai) were a disjoint union over M ′ of formal copies of acl(M ′ai) over M

′ with
no new edges, then

⋃
i∈I acl(Mai) would be algebraically closed within

⋃
i∈I acl(M

′ai), as
otherwise a path of length at most n

2
between two of the acl(Mai) would have to pass

through M ′\M , and it would be too short not to pass between one of the acl(Mai) and
M ′\M in no greater than n

4
steps. So by the above observation that the construction of

repeatedly adding formal paths does not depend on the ambient graph in which a graph is
assumed algebraically closed, an |⌣-Morley sequence of copies of a over M ′ will remain an
|⌣-Morley sequence over M . As the same reasoning works for a set in place of M ′, we see

that |⌣
n
4 implies |⌣-Kim independence.

We show the reverse implication, which will tell us additionally that |⌣ satisfies the rel-

ative Kim’s lemma and |⌣
n
4 is Conant-independence. Suppose a |⌣

n
4

M
b is false, and a |⌣

a

M
b.

Then there is a path of length at most n
4
not passing through M between a vertex a of

acl(Ma) and a vertex of acl(Mb). Let φ(x, b) ∈ tp(a/Mb) imply that there is such a path.
(Note that for a path of length at most n

4
not to pass through M , it need only avoid the

finitely many elements of M within distance n
4
of b.) Suppose {bi}i∈ω is an invariant Morley

sequence with {φ(x, bi)}i∈ω consistent, realized by some a′. Then a′ will lie on a path of
length at most n

2
between vertices of acl(Mb0) ∪ acl(Mb1) avoiding M , so will belong to

acl(Mb0b1)\M . Similarly, a ∈ acl(Mb2b3)\M . But the concatenation {b2ib2i+1}i∈ω remains
an invariant Morley sequence, so b0b1 |⌣

a

M
b2b3, a contradiction.

Note that |⌣
n
4 does not coincide with |⌣

a, making this an interesting case of Conant-
independence. To see this, consider an vertex a of distance n

2
from the model M and take

some algebraically closed graph (that is, a graph with no two vertices farther than n
2
apart)

B ⊃ M containing M and a, then take two disjoint copies B1 and B2 of this graph over
M , with a1 and a2 the copies of a over M , and no further edges. Then we can add an edge
of length at most n

4
between a1 and a2 and not create any small cycles. Embed this into a

larger model over M , and the images of B1 and B2 will be independent according to |⌣
n
4

but not |⌣
a.

The case where n = 2m + 1 is odd is different in that, while the quantifier elimination
still holds in the language expended by the definable partial function symbols, two vertices
can be of length m+ 1 apart and none of the partial function symbols can be defined there,
in which case there are infinitely many paths of length m + 1 between them. So defining
|⌣ is easier: let a |⌣M

b if a |⌣
a

M
b and any two vertices in acl(Ma) ∪ acl(Mb) that are not

already of distance at most m apart within acl(Ma) ∪ acl(Mb) with no new edges will have
distance m+ 1. Then a similar analysis holds.

1.6 Conant-independence in the NSOPn hierarchy

We prove that symmetry of Conant-independence implies NSOP4. We begin with the fol-
lowing fact, whose proof is essentially that of Proposition 3.5.1:
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Fact 1.6.1. For formulas, Conant-forking over M implies witnessing of Kim-dividing by
any Morley sequence in a type finitely satisfiable over M .

Proof. Let |= φ(x, b) →
∨n

i=1 ψi(x, ci) for ψi(x, ci) Conant-dividing over M , so in particular
Kim-dividing over M by any invariant Morley sequence in a finitely satisfiable type. By left
extension and monotonicity for |⌣

u , whether or not a formula |⌣-Kim-divides over M does
not change when adding unused parameters, so we can assume ci = b for 1 ≤ i ≤ n. Then
φ(x, b) Kim-divides over M by any invariant Morley sequence in a finitely satisfiable type
over M , for suppose otherwise. Let {bi}i∈N be an invariant Morley sequence in a finitely
satisfiable type over M starting with b; then there will be some a realizing {φ(x, bi)}i∈N. So
by the pigeonhole principle, there will be some 1 ≤ j ≤ n so that a realizes {ψj(x, bi)}i∈S
for S ⊆ N infinite. But by monotonicity and an automorphism, we can assume {bi}i∈S is
an invariant Morley sequence in that same finitely satisfiable type over M starting with b,
contradicting Conant-dividing of ψi(x, b).

The following uses similar Skolemization methods to Proposition 5.6 of Chernikov and
Ramsey in [28], which generalize in a surprising way to indiscernible sequences ordered by a
definable relation with no 4-cycles.

Theorem 1.6.2. Any theory where Conant-forking is symmetric is NSOP4. Thus n = 4 is
the greatest n so that there are strictly NSOPn theories with symmetric Conant-independence.

Proof. Suppose a theory T has SOP4; we show that Conant-independence cannot be sym-
metric. Let R(x, y) be a definable binary relation with no 4-cycles, and let ⟨ai⟩i∈I be an
infinite sequence so that R(ai, aj) for i < j. Fixing a Skolemization of T , we can as-
sume that this sequence is indiscernible in that Skolemization and is of the form ⟨ci⟩i∈ω +
⟨a1⟩ + ⟨b1⟩ + ⟨a2⟩ + ⟨b2⟩ + ⟨a3⟩ + ⟨ci⟩i∈ω∗ . Let M = dclSk(⟨ci⟩i∈ω + ⟨ci⟩i∈ω∗), a = a1a2a3,
b = b1b2; we show a |⌣

K∗

M
b but b is Conant-dependent on a overM . For the first part, clearly

⟨ci⟩i∈ω + ⟨a1⟩ + ⟨b1⟩ + ⟨a2⟩ + ⟨b2⟩ + ⟨a3⟩ + ⟨ci⟩i∈ω∗ is contained in a sequence, indiscernible
in the Skolemization, of the form ⟨ci⟩i∈ω + ⟨a1⟩ + ⟨bi1⟩i∈ω + ⟨a2⟩ + ⟨bi2⟩i∈ω∗ + ⟨a3⟩ + ⟨ci⟩i∈ω∗ ,
with b0j = bj for j = 1, 2. But ⟨bi1bi2⟩i∈ω is a coheir Morley sequence over M starting

with b and indiscernible over Ma, so by Fact 1.6.1 we get a |⌣
K∗

M
b. For the dependent

direction, we show R(a1, y1) ∧ R(y1, a2) ∧ R(a2, y2) ∧ R(y2, a3) ∈ tp(b/Ma) Conant-divides
over M . Let ⟨ai1ai2ai3⟩i∈ω be an M -invariant Morley sequence starting with a and suppose
{R(ai1, y1) ∧ R(y1, a

i
2) ∧ R(ai2, y2) ∧ R(y2, a

i
3)}i∈ω were consistent, realized by b′1b

′
2. Then

|= R(a12, b
′
2)∧R(b′2, a03). Now |= ∃xR(a01, x)∧R(x, a12), witnessed by b′1. But a

0
1 ≡M a03, so by

invariance, a01 ≡Ma1 a
0
3, and in particular a01 ≡Ma12

a03. So |= ∃xR(a03, x)∧R(x, a12), witnessed,
say, by b′′1. But |= R(a12, b

′
2) ∧R(b′2, a03) ∧R(a03, b′′1) ∧R(b′′1, a12), a 4-cycle, contradiction.

Thus one of the three main classification-theoretic properties Conant proved for free
amalgamation theories in [32]–they are either NSOP1 or SOP3, are either simple or TP2,
and are NSOP4–holds solely under the assumpton of symmetric Conant-independence. So
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far, we are only able to prove the other two identities for theories with symmetric Conant-
independence and an additional assumption about invariant types minimal in the Kim-
dividing order (see section 3); these assumptions together generalize the free amalgamation
theories and are not known to fail in any NSOP4 theory, but it would be desirable if we had
a criterion analogous to independence in the simple or NSOP1 case that gave us all of the
classification-theoretic properties of free amalgamation theories. Can we get those other two
properties with just symmetry for Conant-independence alone?

Problem 1.6.3. Must a theory with symmetric Conant-independence be either simple or
TP2? Must it be either NSOP1 or SOP3?

We are also interested in extending the theory of Kim-independence beyond NSOP1.
Given that the class of strictly NSOP4 theories is the most complicated classification-
theoretic class where Conant-independence is symmetric, we may ask whether symmetry for
Conant-independence characterizes NSOP4 the same way symmetry for Kim-independence
characterizes NSOP1.

Problem 1.6.4. In an NSOP4 theory, is Conant-independence always symmetric?

A positive answer to both the last problem and one of the two questions from the previous
problem will solve some of the open regions of the classification-theoretic hierarchy, further
underscoring the connections between classification theory and the theory of model-theoretic
independence.
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Chapter 2

Generic expansions and the group
configuration theorem

2.1 Introduction

This chapter connects two subfields of model theory: geometric stability theory and the clas-
sification theory of unstable structures. Geometric stability theory, an excellent exposition
of which is given in [87], relates pregeometries in stable theories, such as the pregeometry
defined by algebraic closure on a strongly or weakly minimal structure, to the global struc-
ture of those theories. One of the most important theorems of geometric stability theory
is the group configuration theorem of Hrushovski, which says that the incidence pattern of
four lines in a projective plane, viewed entirely from within the geometric structure of the
algebraic closure in a stable theory, must arise from a type-definable group:

Fact 2.1.1. (Group Configuration Theorem, Hrushovski ([48])): Let T be a stable theory and
a, b, c, x, y, z nonalgebraic tuples. Suppose, in the below Figure 1, that any three noncollinear
points are independent, but any point is in the algebraic closure of any other two points
on the same line. Then for some parameter set A independent from abcxyz, there is some
connected group G type-definable over A so that, for a′, c′, x′ independent generics of G over
A and b′ = c′ ·a′, x′ = a′ · y′ and b′ = z′ · y′, each of a, b, c, x, y, z is individually interalgebraic
over D with, respectively, a′, b′, c′, x′, y′, z′.

This result has been generalized to some unstable contexts, such as simple theories [13],
o-minimal theories [86], and generically stable types [111]. In the following, we will show that
the original group configuration theorem for stable theories has applications to classification
theory outside of the stable or even simple context.

One central question in the classification theory of unstable structures, much of which
was initiated alongside the classification of stable theories by Shelah [97], asks which
classification-theoretic properties are equivalent and which are distinct. For example, until
recently it was open whether the class NSOP1 was equal to NSOP2, and it remains open
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b x
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z

Figure 2.1: The basic case of the group configuration. Diagram based on [11].

whether NSOP2 is equal to NSOP3 ([40]); it is also open whether NSOPn NTP2 theories are
simple for n ≥ 3 ([26]). In the applied setting, there has also been interest in determining
the classification-theoretic complexity of structures, including finding new examples of
strictly NSOP1 theories. Several new examples have recently been found using generic
constructions, such as algebraically closed fields of prime characteristic with a generic
additive subgroup ([37], [36]), generic incidence structures ([33]), generic expansions by
Skolem functions ([71]), and the ω-free PAC fields ([28], further developed in [52]; see also
[22], [21]), to give some examples. We will introduce the first examples, to our knowledge,
where the classification-theoretic property NSOP1 results from geometric stability theory,
particularly the group configuration theorem. At the boundary of NSOP1, the possible
levels of classification-theoretic complexity have been characterized for theories with a
suitable notion of free amalgamation. Evans and Wong ([42]) show that the ω-categorical
Hrushovski constructions introduced by Evans ([41]) are either simple or SOP3, and Conant
([32]) show that modular theories satisfying some abstract free amalgmation axioms are
either simple, or both SOP3 and TP2; in Chapter 1, the author generalizes the work of Evans
and Wong, and of Conant, to potentially strictly NSOP1 theories, giving partial results on
the equivalence of NSOP1 = NSOP2 and NSOP3 covering most of the known examples of
NSOP4 theories. We will introduce a family of structures defined by generic constructions,
in particular the expansion of stable structures by new generic predicates or equivalence
relations, whose complexity will be characterized by this NSOP1 − SOP3 dichotomy; which
side of the dichotomy a structure in this family lies on will be characterized by the group
configuration theorem.

The expansion of a theory by generic relations or function symbols was introduced by
Winkler ([112]), and was studied by Chatzidakis and Pillay ([20]) in the case of a unary pred-
icate, which was shown to preserve simplicity. Later, Kruckman and Ramsey ([71]) showed
that expansions by generic function symbols, which covers generic equivalence relations con-
sidered as a unary function to a new sort, preserve the property NSOP1. The construction is
to start with a theory T , add symbols to the language but no new axioms to get the theory T0,
and take the model companion T ′ of T0, which exists whenever T eliminates quantifiers and
eliminates ∃∞. The setting for the correspondence between groups and classification theory
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will be the model companion T ′ of an expansion T0 of a theory T . However, new axioms,
and not just new symbols, will be added to form T0. Allowing any axioms quickly becomes
complicated, as one can encode, say, automorphisms; see [10], exposited in [88]; [59], [58],
for some examples of the literature on the existence of model companions of theories with
automorphisms, and [23] for a particularly interesting example. So instead of studying all
possible new axioms, we add an n-ary relation R definable in a theory T with quantifier elim-
ination, and add universal axioms of a particular form to get a new theory T0 = TR. Namely,
for P a new unary relation symbol, we add ∀x̄(

∧
1≤i ̸=j≤n xi ̸= xj ∧

∧n
i=1 P (xi) → R(x̄)) to

get TR, or alternatively, for E a new binary relation symbol, we add that E is an equivalence
relation and ∀x̄

∧
1≤i ̸=j≤n(xi ̸= xj ∧ E(xi, xj)) → R(x̄) to get TR. When T is nfcp, TR in

either case will then have a model companion T ′ = TR.
The main result of this chapter will be on the complexity of TR, when T is weakly minimal

(so nfcp, [43] as observed in [34]) and ¬R is a ternary fiber algebraic relation ([29], Definition
3.1). Ternary fiber algebraic relations coincide with relations of rank ≤ 2 in the strongly
minimal case, and in general they include all graphs of group operations on unary definable
sets: this result says that TR will be classification-theoretically complicated precisely when
¬R is geometrically equivalent to the graph of a group operation:

Theorem 2.1.2. Let T be weakly minimal and let R be a ternary relation definable in T .
Assume ¬R is fiber-algebraic. Then the equivalence relation version of TR is NSOP1 if and
only if there is no set of parameters A over which R is definable, and (rank-one) group G
type-definable (or definable, if T is strongly minimal) over A, so that the coordinates of a
point of ¬R generic (that is, of full rank) over A are individually interalgebraic with the
coordinates of a point of the graph ΓG of the multiplication in G generic over A. Otherwise,
TR is TP2 and strictly NSOP4.

For the predicate version of TR, this is the same, but replace “NSOP1” with “simple.”

So among ternary relations ¬R that have no trivial reason not to be the graph of a group
operation, classification theory at the level of NSOP1 − SOP3 gap measures exactly when
¬R is equivalent to the graph of a (rank-one) group operation.

Geometric properties of a stable theory are known to be connected to classification-
theoretic properties of its expansions. For example, [16] (including a result due to
Hrushovski) and [109] relate the linearity of a theory T to the rank of certain generic
expansions of that theory by a model (see also [14] for the relationship between the
dimensional order property of a theory and the stability of its expansions by models), and
[7] shows that the pregeometry of a strongly minimal set is trivial if and only if arbitrary
expansions of that theory by a unary predicate are stable. The literature on expansions is
vast–see [8] for an overview–and includes connections between properties of stable theories
and simplicity of expansions (for example, nfcp within stable theories and simplicity in
pseudo-algebraically closed expansions, [91]). Our result is the first that we know of to relate
geometric stability theory to the classification of unstable expansions of stable theories at
the level of simplicity and the NSOPn hierarchy.
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We give an outline of the chapter. In section 1, we define our setting for the generic
expansion TR of a theory T , associated with the definable relation R. The connection
between the property nfcp from [97], which implies stability, and axiomatizability of generic
expansions, was first demonstrated by Poizat ([89]) in his work on belles paires of models.
This is generalized to the simple case in [12] using the weaker wnfcp, and generalized further
using the nfcp in [68]; see [19], [7], [73], [15] for examples of connections of nfcp to more
general (not necessarily generic) expansions, and [8] for an overview of the connections
between expansions and nfcp. Generalizing the arguments of Poizat, we show that when
T is nfcp, and R is a definable relation, both the predicate version and the equivalence
relation version of TR exist. We also give a converse, encoding a partial automorphism of a
linear order with the construction for TR when T is unstable and showing that the model
companion cannot exist using the argument from [58]. This gives us a new characterization
of nfcp of independent interest. When ¬R is a fiber-algebraic ternary relation, we observe
that TR has quantifier elimination up to finite covers.1

In section 2, we consider relational expansions of NSOP1 theories with quantifier elim-
ination and general free amalgamation properties. In Chapter 1, the notion of Conant-
independence was introduced as the extension of the Kim-independence from [52] beyond
the NSOP1 theories. Using results of Chapter 1, we characterize Conant-independence in
these theories, and show that the theory is either NSOP1, or both TP2 and strictly NSOP4;
the underlying arguments for the classification-theoretic results come from Conant’s work
in [32], with a new lemma of the author from Chapter 3 (which can itself be proven using
the proof of Proposition 3.14 of [52]; see footnote 1 of Chapter 4, and [74]). Meanwhile, the
most general version of the result on Conant-independence will come from an improvement,
very similar to [72], on the “algebraically reasonable chain condition” that was applied to
NSOP1 generic expansions in [71]. This gives us a general criterion for classifying expansions
of NSOP1 theories, which will be applied to the particular case of TR where T is weakly
minimal and ¬R is a fiber-algebraic ternary relation.

Finally, in section 3, we prove our main result, Theorem 2.1.2.
Notations are standard. We use x̄, ȳ, z̄, etc. and ā, b̄, c̄ to denote tuples of variables or

constants, and x, y, z, a, b, c to denote tuples or singletons depending on context.

2.2 The model companion

We define the general setting for this section and section 4. Throughout this chapter, the
theory T will always have quantifier elimination in the language L.

We start with the predicate version of this setting. Let δ(x̄) denote that the coordinates
of x̄ are distinct. Let P be an additional unary predicate symbol and LP = L∪ {P}. Let R

1In fact, when ¬R is a fiber-algebraic ternary relation, nfcp is not required for TR to be well-defined: TR

is well-defined even when T only eliminates ∃∞. Because the weakly minimal case, where our main result
holds, is already nfcp ([43], [32]), we relegate this to an appendix. We would like to acknowledge Gabriel
Conant for drawing our attention to this.
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be a definable n-ary relation in L. Define TR to be the LP -theory consisting of T together
with the axiom ∀x̄(δ(x̄)∧

∧n
i=1 P (xi) → R(x̄)). In words, TR will be the theory of models of

T together with a unary predicate P so that any n-tuple with distinct coordnates in P will
belong to R. If TR has a model companion, we denote it TR; in analogy with [20], TR will
be the generic expansion of T by a unary predicate, subject to a universal constraint.

Now we define the equivalence relation version of the setting. Let E be an additional
binary relation symbol and LE = L ∪ {E}. Let R be a definable n-ary relation in L.
Define TR to be the LE-theory consisting of the axioms for T , the requirement that E be
an equivalence relation, and the axiom ∀x̄

∧
1≤i ̸=j≤n(xi ̸= xj ∧ E(xi, xj)) → R(x̄). In words,

TR will be the theory of models of T together with an equivalence relations E so that any
n-tuple of distinct elements of the same equivalence class will belong to R. If TR has a model
companion, we denote it TR.

The predicate and equivalence relation version of TR will have the same properties, except
that the equivalence relation version can be strictly NSOP1, and the proofs for each version
will be similar. When it is not clear from context, we will use TR,P , T

R
P to denote the

predicate version and TR,E, T
R
E to denote the equivalence relation version.

We would like to know when TR exists. In fact, we characterize the theories that can
only interpret theories T , so that TR always exists for any R definable in T . We need the
following classification theoretic property, from [97]:

Definition 2.2.1. A formula φ(x, y) has nfcp, or the non-finite cover property, if there is
some n so that any set {φ(x, bi)}i∈I is consistent if and only if it is n-consistent. A theory
is nfcp if every formula is nfcp.

The following generalizes the direction (i) → (ii) of Theorem 6 of [90]; as expected, it
uses the fact that consistency of a φ-type is definable in an nfcp theory.

Proposition 2.2.1. Let T be an nfcp theory, and R an n-ary relation definable in T . Let
L be the language L0 of T together with an additional symbol P for a unary relation. Let
TR be the theory in L of models M |= T such that, for any n-tuple ā ∈ P (M), M |= R(ā).
Then the model companion TR of TR exists.

Proof. (Equivalence relation version.)
The theory TR is a consistent theory: isolate each element of a model in its own E-

equivalence class. (This was the purpose of requiring that the xi be distinct.) Since TR is
formed from the model-complete theory T by adding universal axioms, ascending chains of
models of T are again models of T . It follows that existentially closed models of TR exist,
and it remains to show that the class of existentially closed models is axiomatizable. Let
φ(ȳ, x̄) be a quantifier-free LE-formula. We will show that there is an LE-formula ρ(y) such
that, for M |= TR, M |= ρ(m̄) if and only if there is some extension N ⊇ M with N |= TR
so that N |= φ(m̄, n̄) for some n̄ ∈ N with n̄ ∩M = ∅. This will be enough for us, by the
following claim:
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Claim 2.2.2. Suppose that for each quantifier-free LE-formula φ(x̄, ȳ), there exists a LE-
formula ρφ(ȳ) as above. Then the sentences ∀y(ρφ(ȳ) → ∃x̄φ(ȳ, x̄)) where φ(ȳ, x̄) ranges
over the quantifier-free LP -formulas, will axiomatize when a model M |= TR is existentially
closed.

Proof. (Implicit in the proof of Theorem 2.4 of [20].) Clearly, an existentially closed model of
TR satisfies these sentences. Conversely, let M |= TR satisfy these sentences. We show that
M is existentially closed. It suffices to show that for ψ(ȳ; z̄x̄) a quantifier-free LP -formula,
M ⊆ N |= TR, m̄, ā ∈ M , b̄ ∈ N with b̄ ∩ N = ∅, and N |= ψ(m̄, ā, b̄), there is some
b̄′ ∈ M so that M |= ψ(m̄, ā, b̄′). We just apply the hypothesis to φ(ȳz̄; x̄) =: ψ(y, zx),
noting M |= ρφ(m̄ā) in this case.

Our strategy will be as follows. The existence of N ⊇ M , with n̄ ∈ N |= TR and
n̄ ∩M = ∅, so that N |= φ(m̄, n̄) will be equivalent to the consistency of a partial L-type,
consisting of instances of finitely many L-formulas, where the parameters for those instances
can be described in the language LP in a way that is uniform in m̄ andM . As the L-formulas
are nfcp, the consistency of this type is equivalent to n-consistency of the type, which can
be expressed by an LP -formula.

We may assume that φ(ȳ, x̄) is a formula of the form ψ(ȳ, x̄) ∧ η(ȳ, x̄) where

• ψ(ȳ, x̄) is a L-formula that implies ȳ, x̄ is a tuple of distinct elements, and

• η(ȳ, x̄) is a consistent boolean combination of instances of E(xi, yj) that completely
describes the restriction of the equivalence relation E to the variables ȳ, x̄.

We will define a L-formula τ(x̄, ȳ, z̄). Here z̄ = (z1, . . . , zn, w̄1, . . . , w̄n), and w̄i is an
N+1-tuple of variables, where C1, . . . CN is an enumeration of the equivalence classes on the
variables ȳ, x̄ described by the formula η(ȳ, x̄) and containing variables from ȳ. Let τ(x̄, ȳ, z̄)
express that

(a) |= ψ(ȳ, x̄)
(b) Let ā be an n-tuple with distinct coordinates drawn from x̄, whose coordinates are

required by η(ȳ, x̄) to belong to the same equivalence class, not containing any of the ȳ.
Then |= R(ā)

(c)
∧

i≤|x̄|,j≤n xi ̸= zj
(d) Let ā be an n-tuple, consisting of x̄-coordinates all required by η(ȳ, x̄) to belong to

the equivalence class represented by Ci for some fixed i, and z̄ coordinates of the form z̄j
such that w̄j consists of exactly i many distinct elements. (So the w̄j encode the indices of
the C1, . . . CN). Then |= R(ā).

Note that τ(x̄, ȳ, z̄) can indeed be chosen to be a L-formula, and not a LP -formula,
because the equivalence relation E itself is not referred to, only the requirements imposed
by η(ȳ, x̄). Note also that it can be chosen uniformly in M .

For ē ∈ M with |ē| = |ȳ|, define a partial τ(x̄, ȳz̄)-type p(x, ē) in the variables x̄, with
parameters in M , as follows:
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Let p(x, ē) be the set of τ(x̄, ē, b̄), where (c1, . . . , cn, d̄1, . . . , d̄n) = b̄ ∈ M , and for j ≤ n,
|= E(cj, e), where e is any element of ē required by η(ȳ, x̄) to belong to the equivalence class
Ci on ȳ, x̄, if and only if d̄j consists of i many distinct elements, and |= ∧e∈ē¬E(cj, e) if and
only if d̄j consists of N + 1 many distinct elements.

In this form, it can be seen that for any k, there is an LP -formula ρk(ȳ) so that |= ρk(ē)
if and only if p(x, ē) is k-consistent. But since τ(x̄, ȳz̄) is nfcp, there is some k so that a
τ -type is consistent if and only if it is k-consistent. So there is ρ(ȳ) so that |= ρk(ē) if and
only if p(x, ē) is consistent. Note that ρ(ȳ) can be chosen uniformly in M . We show ρ(ȳ) is
as desired.

Note that p(x, ē) expressed the following conditions
(a′) |= ψ(ē, x̄)
(b′) Let ā be an n-tuple with distinct coordinates drawn from x̄, whose coordinates are

required by η(ȳ, x̄) to belong to the same equivalence class, not containing any of the ȳ.
Then |= R(ā)

(c′) x̄ ∩M = ∅
(d′) Let ā be an n-tuple with distinct coordinates drawn from M ∪ x̄, consisting of x̄-

coordinates all required by η(ē, x̄) to belong to the equivalence class of e ∈ ē, and elements
of M belonging to the equivalence class of e. Then |= R(ā).

It remains to show that the following are equivalent:
(i) there exists N ⊇M , with n̄ ∈ N |= TR and n̄ ∩M = ∅, so that N |= φ(ē, n̄)
(ii) p(x̄, ē) is consistent
For (i ⇒ ii), clearly n̄ |= p(x, ē). Conversely, let M ≺ N |= T be an L-elementary of

N , and n̄ |= p(x, ē). By (c’), n̄ ∩M = 0. Therefore, we can expand M to a LE-extension
of M as follows: choose the finest equivalence relation on N extending that on M , so that
N |= η(ē, n̄). By (a’) and the fact that φ(ȳ, ē) = ψ(ȳ, x̄)∧ η(ȳ, x̄), N |= φ(ē, n̄). To complete
the proof of (ii) ⇒ (i) it remains to show N |= TR. Any elements of n̄ equivalent to elements
of M are equivalent to some e ∈ ē, while any elements of N\(M ∪ n̄) are isolated. So to
show show that N |= TR, we just need to show N |= R(ā) for ā a tuple of distinct elements
taken from an equivalence class of some a ∈ ā not equivalent to any element of M , or from
an equivalence class of e ∈ ē. The first case follows from (b’), and the second from (d’).

(Predicate version.) This is similar to the equivalence relation version, but less compli-
cated, so we only give a sketch.

As in the equivalence relation version, it suffices to find ρ(ȳ). By the claim, it
suffices to define those m̄ so that φ(m̄, x̄) is realized in some model of TR extending
M , by a tuple with no coordinates in M . We may assume that φ(ȳ, x̄) is of the form
ψ(ȳ, x1, . . . xm) ∧

∧k
1 P (xi) ∧

∧m
k+1 ¬P (xi) for ψ(ȳ, x1, . . . xm) an L-formula. Let τ(x̄, ȳ, z̄)

where z̄ = (z0, z1, . . . , zn, w̄0, w̄1, . . . , w̄n) and w̄i = (ui, vi) be the L0-formula expressing the
following: ψ(ȳ, x1, . . . xm) is true,

∧
i≤|x̄|,j≤n xi ̸= zj, and for each of the n-tuples ā of distinct

elements whose coordinates are among the x1, . . . xk together with those zi, 1 ≤ i ≤ n
with ui = vi, M |= R(ā). For ē ∈ M , let the set p(x̄, ȳ) consist of those z̄-instances of
τ(ȳ, x̄, z̄) over M for which zi ∈ P (M) if and only if ui = vi. Then (i) φ(ē, x̄) is realized
in an extension of M by a tuple with no coordinates in M if and only if (ii) p(x̄, ē) is
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consistent. For the direction (ii) ⇒ (i), proceed as in the equivalence relation version, but
choose P (N) = P (M) ∪ ¯̄n. Because T is nfcp, there is some k not depending on M so that,
for m ∈ M , any family of z̄-instances of τ(m̄, ȳ, z̄) is consistent if it is k-consistent. But
k-consistency of p(m̄, x̄) is expressible in LP .

Note that nfcp is preserved under interpretation. Therefore, if T is nfcp, any theory that
is interpretable in T satisfies the conclusion of the previous proposition. We show a converse,
which may be of independent interest. That is, if T is not nfcp, then it defines a theory T ′

such that, for some T ′-definable relation R, T ′R is not well-defined. Since this converse is not
necessary for our main results, we will focus on proving the predicate version. The following
is Theorems II.4.2 and II.4.4 of [97]:

Fact 2.2.3. A theory T is nfcp if and only if T is stable and T eq eliminates ∃∞.

Lemma 2.2.4. A theory is nfcp if and only if it is stable and, for any formula φ(x, y, z)
(where x, y, z are tuples of variables) and M |= T , the set of a ∈ M so that {φ(x,m, a) :
m ∈ M} is consistent, is definable.

Proof. (⇒) The property nfcp implies stability by the previous fact. It is immediate from
nfcp that there is some k so that for a ∈ M, {φ(x,m, a) : m ∈ M} is consistent if and only
if it is is k-consistent, so consistency of this set is in fact definable.

(⇐) By the previous fact, it suffices to show that T eq eliminates ∃∞. Let E be a definable
equivalence relation on tuples x and ψ(x, a) a formula in T ; it suffices to show that having
infinitely many E-inequivalent realizations x of ψ(x, b) is a definable property of b. For
φ(x, y, z) =: ψ(x, z) ∧ (ψ(y, z) → ¬(xEy)), and b ∈ M, consistency of {φ(x,m, b) : m ∈ M}
is the same thing as saying that, for any finite collection of realizations of ψ(x, b), there is
some realization that is E-inequivalent to any realization in this collection. This is of course
the same thing as ψ(x, b) having infinitely many E-inequivalent realizations. But by the
assumption, consistency of {φ(x,m, b) : m ∈ M} is a definable property of b.

The following generalizes the arguments from (iv) → (i) of Theorem 6 of [90], as well as
Proposition 2.11 of [20].

Lemma 2.2.5. Suppose that in T it fails that for any formula φ(x, y, z), the set of a so that
{φ(x,m, a) : m ∈ M} is consistent, is definable. Then there is a theory T ′ definable in T ,
and R definable in T ′, so that T ′R does not exist.

Proof. (Predicate version) Our strategy will be to encode a definable family of families of
sets, containing families that are n-consistent but not n+1 consistent for each n, as a unary
predicate. Let T ′ be the theory of models M |= T together with an additional sort S1 for
pairs (m1,m3) ∈ M and another sort S2 for singletons m2 ∈ M , together with the same
definable relations as in T eq. (So S1 can be identified with the set of pairs of elements of the
home sort.) Let φ(x, y, z) witness the failure of the above property, and let R(x, y) express
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that if x = (m1,m3) ∈ S1 and y = m2 ∈ S2 that M |= φ(m1,m2,m3). We show that T ′R is
not well-defined.

Suppose it is well-defined. Let M ′
n |= T ′ and bn ∈ M ′

n (the home sort) so that
{φ(x,m, bn) : m ∈ M ′

n} is n-consistent but not n + 1-consistent. Expand M ′
n to a model of

TR so that {φ(x,m, bn) : m ∈ P (M ′
n)} is n + 1-inconsistent. Find an extension Mn ⊇ M ′

n

with Mn |= TR; then for Pn the S2-points of P (Mn), {φ(x,m, bn) : m ∈ Pn} is n-consistent
but not n + 1-consistent. In fact, any ⌊n

2
⌋ formulas of {φ(x,m, bn) : m ∈ Pn} must have

at least n
2
realizations, as the other formulas can be used to distinguish the realizations2.

By the n+ 1-inconsistency, there can be no point of the form (x, bn) ∈ S1 in P (Mn). So by
compactness, we can find a model M |= TR and b ∈ M so that {φ(x,m, b) : m ∈ M} has
infinitely many realizations, but there is no point of the form (x, b) ∈ S1 in P (M). This is
a contradiction, since M is existentially closed; we can in fact find a point a /∈ M realizing
{φ(x,m, b) : m ∈ M} in an L-elementary extension and label (a, b) with P to get a model
of TR.

(Equivalence relation version) This is essentially the same proof; just instead of consid-
ering the domain of P , get bn,Mn and a particular equivalence class in place of P (Mn) with
the desired properties, then apply compactness so that there is b,M and a new equivalence
class in place of P (M) that gives us a contradiction.

To characterize nfcp within general theories in terms of generic structures, we show the
following:

Lemma 2.2.6. Suppose that T is unstable. Then there is a theory T ′ definable in T , and R
definable in T ′, so that T ′R does not exist.

One obstruction to the existence of a model companion is automorphisms of an ordered
set. This strategy was used in [58] to show that the theory of a (necessarily SOP) unstable
NIP structure with an automorphism did not have a model companion; then the result was
improved to the general SOP case in [59]. We follow the arguments from these papers.

Proof. (Predicate version) Let φ(x, y) be unstable, and suppose without loss of generality
that there is an indiscernible sequence of singletons {ai}i∈ω so that |= φ(ai, aj) if and only
if i ≤ j. Consider the theory T∗ of models M |= T expanded by a unary predicate P whose
domain is linearly ordered by φ(x, y) together with a binary relation R(M) ⊆ M2 so that
the restriction of R to P (M)× P (M) is the graph of a partial order-automrphism of P (M)
with respect to φ(x, y). In a suitable power T ′ of T , the requirements on this structure can
all be encoded by a universal axiom of the form ∀x̄(δ(x̄)∧

∧n
i=1 P

′(xi)) → R′(x̄) for R′ some
L-definable relation and P ′ a unary predicate (in the power) representing the additional
structure. Therefore, T ′

R will be interdefinable with T∗ in a natural way, so it suffices to show
that T ∗ does not have a model companion.

2A similar observation was made in the proof of Theorem 7.3 of [26], also as a strategy of getting infinitely
many realizations for a set of formulas.
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Suppose this model companion T ∗ exists. We argue as in the proof of Theorem 3.1 of
[58]. Let σ be the partial order-automorphism defined on P 2 by R. Let L∗

c be the language
of T ∗ together with additional constant symbols {ci}i∈ω+1. Let T

∗
c be the L∗

c-theory formed
from T ∗ by additionally requiring that

(a) {ci}i∈ω+1 be an L-indiscernible φ(x, y)-increasing sequence within P , and
(b) σ(ci) is (defined and) equal to ci+1 for i ∈ ω.
First, we see that T ∗

c ⊢ ∃x(P (x) ∧ φ(c0, x) ∧ φ(x, cω) ∧ σ(x) = x).
To see this, letM be a model of T ∗

c . In an L-elementary extensionM ′, find by indiscerni-
bility some c greater, in the sense of φ(x, y), than all of the ci for i ∈ ω, but less than any
element of P (M) greater than all of the ci for i ∈ ω. In other words, fill the right cut of P (M)
determined by the increasing sequence {ci}i∈ω. Extend the additional structure only to de-
clare that c ∈ P (M ′) and σ(c) is defined and equal to c; then since the cut determined by the
increasing sequence {ci}i∈ω must be closed under σ where it is defined on P (M), σ remains
a partial order-automorphism on P (M ′). So M |= ∃x(P (x)∧ φ(c0, x)∧ φ(x, cω)∧ σ(x) = x)
by existential closedness.

Let (T ∗
c )n be the theory T ∗ together with

(a)n {ci}i∈[n]∪{ω} is an L-indiscernible φ(x, y)-increasing sequence within P , and
(b)n σ(ci) is defined and equal to ci+1 for i < n.
By compactness, (T ∗

c )n ⊢ ∃x(P (x) ∧ φ(c0, x) ∧ φ(x, cω) ∧ σ(x) = x) for some n. For a
contradiction, it remains to construct a model of (T ∗

c )n where ∃x(P (x)∧φ(c0, x)∧φ(x, cω)∧
σ(x) = x) is not satisfied. But it is easy to construct a model of (T ∗

c )n where, in addition
to these requirements, σ(cn) is defined and equal to cω. And this cannot satisfy ∃x(P (x) ∧
φ(c0, x) ∧ φ(x, cω) ∧ σ(x) = x).

(Equivalence relation version) Similar to the predicate version; in the above T ′
R, the infor-

mation of R,P is now encoded as a particular E-equivalence class, which we can distinguish
by selecting a representative.

Combining Proposition 2.1 with lemmas 2.3 through 2.5, we characterize existence of
these model companions as a classification-theoretic dividing line:

Theorem 2.2.7. A theory T is nfcp if and only if for every theory T ′ definable (interpretable)
in T and relation R definable in T ′, (T ′)R exists. Otherwise it is fcp.

Poizat, in his analysis of belles paires in [90], treats only the stable case. Not only does
our result generalize those of Poizat to TR; it gives a full characterization of nfcp in terms
of model companions, ruling out the unstable case.

We now return to the set-up for our main result, 2.1.2. We are interested in using the
complexity of TR to classify when ¬R is geometrically equivalent to the graph of a group
operation in the sense described in the statement of 2.1.2. (The negation is required for this
construction to be nontrivial.) The following class of ternary relations, first defined in [29]
for general n-ary relations, includes all relations without no trivial reason not to arise from
a group in this sense.



CHAPTER 2. GENERIC EXPANSIONS AND THE GROUP CONFIGURATION
THEOREM 48

Definition 2.2.2. ([29]) A definable ternary relation R is fiber-algebraic if whenever |=
R(ā), any coordinate of ā is algebraic over the other two.

When ¬R is a fiber-algebraic definable ternary relation, TR is well-defined even when T
eliminates ∃∞, and is not necessarily nfcp. Since the weakly minimal theories considered in
our main result are nfcp ([43], as observed by [34]), we will show this in the appendix.

It is essential to our main result that TR admit quantifier elimimination up to finite
covers. When ¬R is a fiber-algebraic ternary relation, this is easy.

Lemma 2.2.8. Let the L-definable ternary relation R be such that ¬R fiber-algebraic, and
let C ⊆ A,B be substructures of models of TR, algebraically closed in the sense of L. Then
there is a model D of TR containing A and B as substructures, with A ∩B = C.

Proof. We may assume that (the reducts to L of) A, B and C are substructures of some
model M |= T , with A ∩ B = C. In the predicate version, we expand M to a L-structure
extending A and B as follows: P (M) = P (A)∪P (B). In the equivalence relation version, we
let E(M) be the finest equivalence relation extending E(A) and E(B), so A/E∩B/E = C/E
and each element of M\(A ∪B) is isolated. It remains to show M |= TR.

We can assume without loss of generality that m̄ is a triple with one coordinate in B\C
and the other two in A and must show that M |= R(m̄) if the coordinates of m̄ belong to
P (M), or to a single E(M)-equivalence class. But this is clear, as the one coordinate cannot
be algebraic over the other two.

(Note that when an element is isolated in its own E-class as an element of a set, when
that set is identified with a subset of a model of TR, it is not isolated within that model.)

Proposition 2.2.9. Let the L-definable ternary relation R be such that ¬R fiber-algebraic,
and assume the equivalence relation version of TR is well-defined. Let A and B be substruc-
tures of models of TR, algebraically closed in the sense of L. Then if qftpLE (A) = qftpLE (B),
tpLE (A) = tpLE (B). The algebraic closure in the sense of L and LE coincide, so TR has quan-
tifier elimination up to finite covers and the completions of TR are determined by E(acl(∅)).

The same holds for the predicate version, replacing LE with LP

Proof. Follows from the previous lemma by the standard arguments.

2.3 Conant-independence

We first give an overview of classification theory beyond the simple theories; some of this
discussion will be for motivation. We will consider relational expansions of the NSOP1

theories first formally introduced in [40], a class which contains all simple theories.

Definition 2.3.1. A theory T is NSOP1 if there does not exist a formula φ(x, y) and tuples
{bη}η∈2<ω so that {φ(x, bσ↿n)}n∈ω is consistent for any σ ∈ 2ω, but for any η2 ⊵ η1 ⌢ ⟨0⟩,
{φ(x, bη2), φ(x, bη1⌢⟨1⟩)} is inconsistent. Otherwise it is SOP1.
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The main stability-theoretic tool for studying NSOP1 theories is Kim-independence, a
notion introduced by Kaplan and Ramsey ([52]) that coincides with forking-independence in
simple theories. Recall that a global type p(x) is invariant over a modelM if whether φ(x, b)
belongs to p for φ(x, y) a fixed formula without parameters depends only on the type of the
parameter b over M and not on the specific realization of that type, and that an infinite
sequence {bi}i∈I , is an invariant Morley sequence over M if there is a fixed global type p(x)
invariant over M so that bi |= p(x)|M{bj}j<i

for i ∈ I.

Definition 2.3.2. A formula φ(x, b) Kim-divides over M if there is an invariant Morley
sequence {bi}i∈ω starting with b (said to witness the Kim-dividing) so that {φ(x, bi)}i∈ω is
inconsistent. A formula φ(x, b) Kim-forks over M if it implies a (finite) disjunction of
formulas Kim-dividing over M . We write a |⌣

K

M
b, and say that a is Kim-independent from

b over M if tp(a/Mb) does not include any formulas Kim-forking over M .

For example, in the algebraically closed fields with a generic additive subgroup G from
[37], A |⌣

K

M
B is given by the “weak independence” A |⌣

ACF

M
B and G(acl(MA)+acl(MB)) =

G(acl(MA))+G(acl(MB)). Analogously to simplicity, there is the following characterization
of NSOP1 theories:

Fact 2.3.1. ([52]) Let T be NSOP1. Then for any formula φ(x, b) Kim-dividing over M ,
any invariant Morley sequence over M starting with b witnesses Kim-dividing of φ(x, b) over
M . Conversely, suppose that for any formula φ(x, b) Kim-dividing over M , any invariant
Morley sequence over M starting with b witnesses Kim-dividing of b over M . Then T is
NSOP1.

It follows that Kim-forking coincides with Kim-dividing in any NSOP1 theory.

It is standard (Proposition 3.20 of [52]) that |⌣
K satisfies extension: if M ⊆ B ⊆ C and

a |⌣
K

M
B then there is a′ ≡B a with a′ |⌣

K

M
C.

Fact 2.3.2. ([28], [52]) The theory T is NSOP1 if and only if |⌣
K is a symmetric relation

over models.

Definition 2.3.3. Let n ≥ 3. A theory T is NSOPn (that is, does not have the n-strong
order property) if there is no definable relation R(x1, x2) with no n-cycles, but with tuples
{ai}i∈ω with |= R(ai, aj) for i < j. Otherwise it is SOPn.

Note that NSOP1 ⊆ NSOP3 and for 3 ≤ n < m, NSOPn ⊊ NSOPn ([101]); it is
open whether the former inclusion is strict. We also have the following property extending
simplicity:

Definition 2.3.4. A theory T is NTP2 (that is, does not have the tree property of the second
kind) if there is no array {bij}i,j∈ω and formula φ(x, y) so that there is some fixed k so that,
for all i, {φ(x, bij)}j∈ω is inconsistent, but for any σ ∈ ωω, {φ(x, biσ(i))}(i)∈ω is consistent.
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The following generalization of Kim-independence beyond the NSOP1 case, Conant-
independence, was introduced in Chapter 1. There, any theory where Conant-independence is
symmetric was shown to be NSOP4, and Conant-independence was characterized in most of
the known examples of NSOP4 theories, leaving open the question of whether all NSOP4 the-
ories, in analogy with NSOP1 theories and Fact 2.3.2, have symmetric Conant-independence.

Definition 2.3.5. Let M be a model and φ(x, b) a formula. We say φ(x, b) Conant-divides
over M if for every invariant Morley sequence {bi}i∈ω over M starting with b, {φ(x, bi)}i∈ω
is inconsistent. We say φ(x, b) Conant-forks over M if and only if it implies a disjunction of
formulas Conant-dividing over M . We say a is Conant-independent from b over M , written
a |⌣

K∗

M
b, if tp(a/Mb) does not contain any formulas Conant-forking over M .

Note that by Fact 2.3.1, Conant-independence really does coincide with Kim-
independence in NSOP1 theories.

Finally, an additional property is required to complete our classification-theoretic account
of generic expansions. It is related to the dividing order from [113], and implies that Conant-
forking coincides with Conant-dividing.

Definition 2.3.6. We say a theory T has the strong witnessing property if forM ≺ M there
is some sufficiently saturated M1 ≻M (lying in a, say, a very large elementary extension of
M) with the following property:

For b ⊂ M1, tp(b/M) is an M-invariant type such that, if a Morley sequence in that
type witnesses Kim-dividing of a formula φ(x, b) over M , then any any Morley sequence in
tp(b/M) witnesses Kim-dividing of φ(x, b) over M .

The following is Theorem 1.3.15 (relying on the the arguments of [32] and Chapter 3),
Theorem 1.3.16 (using the argument of [32]), and Theorem 1.6.2 (though the arguments of
Theorem 4.4 of [32], based on arguments originally due to [85] will suffice in this case):

Fact 2.3.3. Let T have the strong witnessing property, and let Conant-independence be
symmetric over models. Then T is NSOP4 either simple or TP2, and either NSOP1 or
SOP3.

We now give a general context for relational expansions of NSOP1 theories with free
amalgamation. Let T be a theory with quantifier elimination in a language L and let L∗ be
a relational expansion of L. Let T∗ be a L∗-theory expanding T . We assume that its model
companion T ∗ exists. We assume (1), and either (2) or (2’).

(1) Quantifier elimination up to finite covers: Let A, B be algebraically closed in the
sense of T and have the same quantifier-free L∗-type. Then they have the same L∗-type.

(2) Let A,B be algebraically closed sets in T and M |= T with M ⊆ A,B. Suppose
A |⌣

K

M
B, and expand acl(AB) to a L∗-structure restricting to a model of (T∗)∀ (the theory

of substructures of T∗) on A and B, and with no new relations from L∗ other than those
entirely lying in A or B (that is, with A and B freely amalgamted over M .) Then this
expansion of acl(AB) is another model of (T∗)∀.
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(2′) The language L∗ consists of L together with an additional binary relation symbols E.
Let A,B be algebraically closed sets in T andM |= T withM ⊆ A,B. Suppose A |⌣

K

M
B, and

expand acl(AB) to a L∗-structure restricting to a model of (T∗)∀ (the theory of substructures
of T∗) on A and B, and such that A/E∩B/E =M/E and each element of acl(AB)/(A∪B)
is isolated in its own E-equivalence class. Then this expansion of acl(AB) is another model
of (T∗)∀.

When R is an fiber-algebraic definable ternary relation in T , and TR exists, TR satis-
fies both (1), and either (2) (predicate version) or (2’) (equivalence relation version). The
property (1) is Proposition 2.2.9, and the property (2) follows from the proof of Lemma
2.2.8.

Example 2.3.4. In every known NSOP1 theory including the simple theories, every type
over a set has a nonforking extension; under this condition, [39] extend Kim-independence to
types over arbitrary sets. (See Example C.2 of [72]). Then, defining the free amalgamation
property (2), (2’) over arbitrary sets analogously, quantifier elimination (1) follows from
either of these properties.

We would like to characterize Conant-independence under these assumptions. The use
of “base monotone” versions of the chain condition or the independence theorem in NSOP1

theories to develop the theory of independence in generic expansions of those theories is not
new; see [71] and [72]. While the “algebraically reasonable chain condition” from [71] suffices
for the case where ¬R is a fiber-algebraic definable ternary relation, we use the following
result of [53] to indicate the full reach of the inheritance of Kim-independence as Conant-
independence under expansions. Recall that a Morley sequence in any ternary relation |⌣

∗

over A is an A-indiscernible sequence {bi}i∈I so that bi |⌣
∗
A
b<i.

Fact 2.3.5. ([53], Proposition 6.5) Let T be NSOP1 and M ′ |⌣
K

M
b with M ≺ M ′. Let

I = {bi}i<ω be an invariant Morley sequence over M starting with b. Then we can find
I ′ ≡Mb I with M ′ |⌣

K

M
I and I ′ an |⌣

K-Morley sequence over M ′.

We show that I ′ has the necessary “algebraic reasonability” properties. See Theorem
2.21 of [71] for a related result proven using similar techniques, and Theorem C.15 of [72] for
a result that would work in place of these facts in the case where |⌣

K is defined over sets
(Example 2.3.4).

Fact 2.3.6. In the above fact, let I ′ = {b′i}i<ω. Then for any i < ω acl(MI ′) ∩ acl(b′iM
′) =

acl(b′iM).

Proof. By compactness, it suffices to prove this when we replace ω with some large κ
(say, κ > 2|T |+|acl(M ′b)|). Assume without loss of generality that i = 0; that is, we show
acl(MI ′) ∩ acl(b′0M

′) = acl(b′0M). Suppose acl(Mb′0, . . . , b
′
n) meets acl(M ′b′0) outside of

acl(Mb′0). Let {b̄′j}j<κ = {b1+(jn) . . . b1+(jn+(n−1))}j<κ be the concatenation into blocks of size
n of the sequence {b′i}1≤i<κ. Then acl(Mb′0b̄

′
j) will, by indiscernibility of I ′ over M , meet

acl(M ′b′0) outside of acl(Mb′0). But the acl(Mb′0b̄
′
j) will meet pairwise only in acl(Mb′0). So
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it is impossible for each of the acl(Mb′0b̄
′
j) to meet acl(M ′b′0) outside of acl(Mb′0), as κ is too

large, a contradiction.

We finally need the following fact, a strengthening of Kim’s lemma, Fact 2.3.1:

Fact 2.3.7. ([53], Fact 5.1) Let T be NSOP1, and let φ(x, b) Kim-divide over M, and let
{bi}i<ω be an |⌣

K-Morley sequence starting with b. Then {φ(x, bi)}i<ω is inconsistent.

We now characterize Conant-independence in T ∗, when T ∗ satisfies both (1), and (2) or
(2’).

Proposition 2.3.8. Let T be any NSOP1 theory. Under assumptions (1) and (2) on the
model companion T ∗ of an expansion–quantifier elimination up to finite covers, and the free
amalgamation property–Conant-independence is the relation |⌣

T over models of T ∗ inherited
from the underlying Kim-independence of T (so in particular, is symmetric.) Moreover, T ∗

has the strong witnessing property.
Under assumption (2’), the same is true, but where the relation |⌣

T is defined so that

A |⌣
T

M
B if and only if A |⌣

K

M
B in T , and acl(AM)/E ∩ acl(BM)/E =M/E.

Proof. We first show one direction of the implication:

Claim 2.3.9. In T ∗, if a |⌣
K∗

M
b then a |⌣

T

M
b.

Proof. Suppose that a |⌣
K∗

M
b but a ̸ |⌣

T

M
b. We first show the following claim:

Subclaim 2.3.10. Let {bi}i<ω be an invariant Morley sequence over M in the sense of T ∗.
Then it is an |⌣

K-Morley sequence in the sense of T .

Proof. Invariant Morley sequences are not preserved under taking reducts, but invariant
Morley sequences in a finitely satisfiable type are; we make use of this point.

It suffices to show that, if we assume that tpL∗
(c/Md) extends to an M -invariant global

type, then c |⌣
K

M
d in the sense of T . It follows from the assumption that there is an

invariant Morley sequence {di}i<ω over M starting with d in an M -finitely satisfiable type,
that is indiscernible over Mc in the sense of T ∗. It is then indiscernible over Mc in the sense
of T , and is an M -invariant Morley sequence in an M -fintely satisfiable type in the sense of
T . Therefore, by Fact 2.3.1, c |⌣

K

M
d in the sense of T .

Now with (2) by a ̸ |⌣
T

M
b and 2.3.7, there is a formula φ(x, b) ∈ tpL(a/Mb) so that, for any

|⌣
K Morley sequence {bi}i∈ω in the sense of L starting with b, {φ(x, bi)}i∈ω is inconsistent.

But by the subclaim, every invariant Morley sequence in the sense of L∗ is in particular such
a sequence. So φ(x, b) Conant-divides over M , contradiction.

With (2’), we have the additional case that acl(aM)/E ∩ acl(bM)/E ̸= M/E. So in
(T ∗)eq, acl(aM)∩ acl(bM) ̸=M , and there is a stable formula in tp(a/Mb) dividing over M .
So it divides over M with respect to every invariant Morley sequence, and a ̸ |⌣

K∗

M
b
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The following will essentially give the other direction:

Claim 2.3.11. Let a |⌣
T

M
b and I = {bi}i∈ω be a Morley sequence over M with respect to the

free amalgamation given in (2) or (2’), invariant over M in the sense of L and starting with
b. Then there is some I ′ ≡L∗

Mb I indiscernible in the sense of L∗ over Ma (with a |⌣
T

M
I ′.)

Proof. By the discussion following Fact 2.3.1, |⌣
K and thus |⌣

T satisfies the extension

property. Noting that |⌣
T is also symmetric, we can find some L-elementary extension

M ′ of M containing Ma so that M ′ |⌣
T

M
b. So by replacing a with M ′, we may assume

a =M ′ |= T is an L-elementary extension of M . (It could even have been an L∗-elementary
extension, but we do not need this.) Note that M ′ |⌣

T

M
b implies M ′ |⌣

K

M
b in the sense of

T . So in the reduct to T , we can choose I ′ = {b′i}i∈I as in Fact 2.3.5; that is, some I ′ ≡L
Mb I

with M ′ |⌣
K

M
I and I ′ an |⌣

K-Morley sequence over M ′, in the sense of T .

We will find an expansion of aclL(M
′I ′) satisfying (T ∗)∀ so that aclL(I

′M) ≡L∗−qf
Mb

aclL(IM) and so that each aclL(b
′
iM

′) realizes qftpL∗
(aclL(bM

′)). By the fact that T ∗ is
the model companion of (T ∗)∀, we can then take I ′ to lie in a monster model of T ∗. Then
by (1)–quantifier elimination up to finite covers–I ′ ≡L∗

Mb I and each b′i realizes tpL∗
(b/M ′).

This will be enough, as we then can extract an M ′-indiscernible sequence in the sense of L∗

by Ramsey and compactness.
Since the acl(b′iM

′) form an |⌣
K-Morley sequence over M ′, if (2) holds, by repeated

applications of (2) we can expand the structure on aclL(M
′I ′) so that qftpL∗

(acl(b′iM
′)) =

qftpL∗
(acl(bM ′)), and introduce no further relations. If (2’) holds, by repeated applications of

(2’), we can expand the structure on aclL(M
′I ′) so that qftpL∗

(acl(b′iM
′)) = qftpL∗

(acl(bM ′)),
and take the finest equivalence relation satisfying this requirement. In either case, (2) or (2’)
will have told us that aclL(M

′I ′) has been expanded to a model of (T∗)∀. By construction,
each aclL(b

′
iM

′) realizes qftpL∗
(acl(bM ′)).

So it remains to show that aclL(I
′M) ≡L∗−qf

Mb aclL(IM). By 2.3.6,
⋃ω

i=0 aclL(M
′b′i) ∩

aclL(IM) = M . Under (2), this means that, by not introducing any relations outside
of the aclL(M

′b′i), we introduced no relations on aclL(IM) that were not already on
one of the acl(Mb′i). So the aclL(Mb′i), which by construction have the same quantifier-
free type in L∗ as the aclL(Mb′i), are in fact freely amalgamated over M . Therefore,
aclL(I

′M) ≡L∗−qf
Mb aclL(IM). Under (2’), since M ′ |⌣

T

M
b, M ′/E ∩ aclL(Mb′i)/E = M/E.

So because aclL(Mb′i)/E ∩ aclL(Mb′j)/E ⊆ aclL(M
′b′i)/E ∩ aclL(M

′b′j)/E = M ′/E,
aclL(Mb′i)/E ∩ aclL(Mb′j)/E = M/E. Moreover, (

⋃ω
i=0 aclL(M

′b′i)) ∩ aclL(IM) = M shows
that, isolating each element of aclL(I

′M ′) outside of
⋃ω

i=0 aclL(M
′b′i), we have isolated each

element of aclL(I
′M) outside of

⋃ω
i=0 aclL(Mb′i). So again, the aclL(Mb′i), are in fact freely

amalgamated over M .

Now we show the strong witnessing property. A Morley sequence with respect to free
amalgamation overM , invariant overM in the sense of L, will by quantifier elimination also
be invariant over M in the sense of L∗. So it suffices to show that if such a Morley sequence
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witnesses dividing of an L∗-formula φ(x, b) over M , then every invariant Morley sequence
in the sense of L∗ witnesses dividing of φ(x, b) over M . Suppose not. Then there is some
invariant Morley sequence in the sense of L∗ J = {bi}i<ω starting with b with {φ(x, bi)}i<ω

consistent. By Ramsey and compactness, choose a realizing this set, so that J is indiscernible
over Ma. Then tp(a/Mb) contains no formulas Conant-dividing over M . So by the proof
of Claim 2.3.9, a |⌣

T

M
b. By Claim 2.3.11, this contradicts the fact that φ(x, b) divides with

respect to a free amalgamation Morley sequence, invariant over M in the sense of L.
By the strong witnessing property, Conant-forking coincides with Conant-dividing. Since

the Morley sequences considered in Claim 2.3.11 are invariant over M in the sense of L∗, it
follows from that claim that |⌣

T implies |⌣
K∗

. With Claim 2.3.9, this gives |⌣
T = |⌣

K∗

By the previous proposition and 2.3.3, we get the following corollary.

Corollary 2.3.11.1. Let T be any NSOP1 theory. If the model companion T ∗ of an expan-
sion satisfies both (1), and (2) or (2’), it is either simple or TP2, and is either NSOP1 or
strictly NSOP4; moreover, |⌣

K∗
= |⌣

T .

If T ∗ is NSOP1, this implies |⌣
K = |⌣

K∗
= |⌣

T . On the other hand, if |⌣
K = |⌣

T , then

|⌣
K is symmetric, so T ∗ is NSOP1 by Fact 2.3.2.
In the case where T ∗ = TR, our main result will be to characterize the NSOP1 case. We

will use the Kim-Pillay characterization of NSOP1, from [52], to obtain an abstract criterion
for T ∗ to be NSOP1 in terms of |⌣

T .

Fact 2.3.12. Let T be any theory.
(1a) Let |⌣

K∗
be symmetric and satisfy the independence theorem: for a1 |⌣

K∗

M
b1,

a2 |⌣
K∗

M
b2, b1 |⌣

K∗

M
b2, and a1 ≡L∗

M a2, there is some a |⌣
K∗

M
b1b2 with a ≡Mbi ai for i = 1, 2.

Then T is NSOP1.
(1b) If T is NSOP1, then |⌣

K∗
= |⌣

K satisfies the independence theorem.

(2) Let T be NSOP1. Then T is simple if and only if |⌣
K∗

= |⌣
K satisfies base mono-

tonicity: a |⌣
K

M
B and M ⪯M ′ ⊆ B implies a |⌣

K

M ′ B.

Proof. (1a) follows from the definition of |⌣
K∗

, and Theorem 9.1 of [52]. (We did not actually
need symmetry here, and could have given a proof using 2.3.1.) (1b) is Theorem 6.5 of [52].
(2) is Proposition 8.8 of [52].

Note that, when T is stable and TR is well-defined, |⌣
T is base-monotone in the predicate

version. So from Corollary 2.3.11.1 and Fact 2.3.12, we get the following:

Lemma 2.3.13. Let T be weakly minimal and let R be a ternary relation definable in T .
Assume ¬R is fiber-algebraic. Then the equivalence relation version of TR is NSOP1 if and
only if |⌣

T satisfies the independence theorem. Otherwise, TR is TP2 and strictly NSOP4.
For the predicate version of TR, this is the same, but replace “NSOP1” with “simple.”
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We will use this criterion in the proof of our main result, Theorem 2.1.2, to translate the
classification-theoretic properties of TR into properties of T .

We conclude by showing that in the equivalence relation version, TR, when NSOP1, is
usually strictly NSOP1.

Proposition 2.3.14. (Equivalence relation version) Let T be weakly minimal and let R be a
ternary relation that is definable in T , and assume that ¬R is fiber-algebraic. Suppose that in
T there are a, b, A so that acl(Aab) ̸= acl(Aa) ∪ acl(Ab) (i.e. T has nontrivial pregeometry).
Then TR is not simple.

Proof. Let |⌣ be forking-independence in T . First of all, let us choose M |⌣A
ab so that M

can be expanded to a model of TR. By properties of forking in weakly minimal theories, we
still have acl(Mab) ̸= acl(Ma) ∪ acl(Mb), so we can assume M = A can be expanded to a
model of TR.

Now chooseM ′ |⌣M
a containing b so thatM ′ can be expanded to a model of TR elemen-

tarily extendingM . Choose some c ∈ acl(Mab)\acl(Ma)∪acl(Mb). Again by the properties
of forking, c ∈ acl(aM ′)\acl(aM) ∪M ′.

Now choose d |⌣M
M ′a. So a |⌣M

M ′d by properties of forking.

Choose someM ′′ ⊇ acl(adM ′) withM ′′ |= T . ExpandM ′′ to an LE-structure by defining
E as follows:

• On M ′, E is defined so that (M ′, E(M ′)) is a model of TR elementarily extending M

• All elements of M ′′\M ′ are isolated in their own E-class, except for a, d, which are in
their own class of size 2.

Since there are no E-equivalence classes with three distinct elements that are not entirely
inside M ′, which is a model of TR, M ′′ is a model of TR. So it can be identified with a
substructure of a model of TR.

Now a |⌣M
dM ′ and acl(aM)/E ∩ acl(dM ′)/E = M/E by construction. So a |⌣

T

M
dM ′.

On the other hand c/E ∈ (acl(aM ′)/E∩acl(dM ′)/E)\M ′/E. So a ̸ |⌣
T

M ′ dM
′ and |⌣

T is not

base monotone. So by Fact 2.3.12.2, TR is not simple.

In fact, in the equivalence relation version, when TR is simple, so T does not satisfy the
hypothesis of this proposition (is geometrically trivial), |⌣

E must be stationary. So in the
equivalence relation version, if TR is simple, TR is stable.

2.4 The group configuration theorem

We now prove the main result of this chapter, 2.1.2. Throughout this section, we assume the
hypotheses of this theorem: T is weakly minimal theory with quantifier elimination, R is a
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ternary relation definable in T , and ¬R is fiber-algebraic. So because T is nfcp, Proposition
2.2.1 says that TR exists.

We first state the basic amalgamation property for algebraically closed sets in stable
theories. This is just the classical independence theorem in the model companion of theories
with a generic predicate or equivalence relation.

Fact 2.4.1. ([20], [71]). Let T be a stable theory with quantifier elimination in the language
L, and let L∗ be an expansion of L by a predicate symbol P or a binary relation symbol E.
For M |= T and 1 ≤ i ̸= j ̸= k ≤ 3, j < k, let pi(Xj, Xk, Xjk) be quantifier-free L∗(M)-types
over M consistent with diagT (M), so that for A′

i, A
′
j, A

′
jk |= pi(Xj, Xk, Xjk), A

′
i, A

′
j, A

′
jk are

algebraically closed sets in the sense of L, A′
jk = aclL(A

′
jA

′
k)\(A′

j ∪A′
k), A

′
j |⌣M

A′
k (forking-

independence in the sense of T ), and if the expansion is by E, A′
j/E∩A′

k/E =M/E. Assume
compatibility of these pairs: for 1 ≤ i ̸= j ̸= k ≤ 3, pi|Xj

= pj|Xk
. Then in a monster model

of T , there are forking-independent A1, A2, A3 over M , and there is an interpretation of P
or E on aclL(A1A2A3) so that for 1 ≤ i ̸= j ̸= k ≤ 3, j < k, aclL(AjAk) |= pi, and moreover
A1/E ∩ aclL(A2A3)/E =M/E when the expansion is by E.

Proof. In the expansion by P , this is just the content of 2.7 of [20] (which was proven for
simple theories). In the expansion by E, this is the content of Theorem 4.5 of [71] (which
was proven for NSOP1 theories), where L′ in the statement of that theorem is taken to be
L together with a symbol for a unary function to a new sort.

Lemma 2.4.2. In the previous fact, if the expansion is by P , the interpretation of P can be
chosen to contain no points of aclL(A1A2A3)\

⋃
1≤j<k≤3 aclL(AjAk). If the expansion is by

E, each point of that set can be assumed isolated in its own E-class.

Proof. If we change the interpretation of P or E outside of aclL(AjAk), so that this re-
quirement is met, this does not change the fact that aclL(AjAk) |= pi, nor that A1/E ∩
aclL(A2A3)/E =M/E.

(Note that in [20], this is part of the proof of the previous fact, while in [52], it is stated in
the proof that the map can indeed be defined arbitrarily outside of

⋃
1≤j<k≤3 aclL(AjAk).)

We first prove the following lemma, reducing the classification-theoretic properties of
the expansion TR to the structure of the original weakly minimal theory T . As usual in a
stability-theoretic context, independence, denoted |⌣, is forking-independence in the sense
of T .

Lemma 2.4.3. The theory TR is SOP3 if and only if in T , there are algebraically closed
A ⊆ A1, A2, A3, the Ai independent over A, and a1, a2, a3 with |= ¬R(a1, a2, a3), so that for
1 ≤ i, j, k ≤ 3 distinct, ai ∈ acl(AjAk)\(Ai ∪ Aj)

Proof. (⇒) First suppose TR is SOP3. So |⌣
T , by Lemma 2.3.13, does not satisfy the

independence theorem. So for 1 ≤ i, j, k ≤ 3 distinct, j < k, there are compatible types
pi(Xj, Xk) in T

R of |⌣
T -independent pairs over some M |= TR that do not have a common
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realization by A′
1, A

′
2, A

′
3 with A′

1 |⌣
T A′

2A
′
3. Let M |= T , A1, A2, A3 ⊇ M , together with an

interpretation of P or E on acl(A1A2A3) be obtained as in the previous lemma, from the
types corresponding to pi(Xj, Xk) by quantifier elimination up to finite covers (Proposition
2.2.9). In the rest of this proof, let i, j, k range over distinct 1 ≤ i, j, k ≤ 3

Suppose that acl(A1A2A3) together with this interpretation P (acl(A1A2A3)) or
E(acl(A1A2A3)) of P or E satisfies (TR)∀ (is a substructure of a model of TR). Then
A1, A2, A3 could be identified by a common realization A′

1, A
′
2, A

′
3 of the pi(Xj, Xk) with

A′
1 |⌣

T A′
2A

′
3, a contradiction. So acl(A1A2A3) together with the additional structure does

not satisfy (TR)∀.
To witness this, there are distinct a1, a2, a3 belonging to P (acl(A1A2A3)), or belonging to

the same E(acl(A1A2A3))-equivalence class, so that |= ¬R(a1, a2, a3). Relabeling, it suffices
to show that each of the three ai belongs to precisely one of the three acl(AjAk). Because
each of those pairs do satisfy the quantifier-free type of a model of (TR)∀, a1, a2, a3 cannot
all belong to the same acl(AjAk). Because on acl(A1A2A3)\

⋃
1≤j<k≤3 acl(AjAk), there are

no points of P or each point is isolated in its own E-class, none of a1, a2, a3 belong to
acl(A1A2A3)\

⋃
1≤j<k≤3 acl(AjAk). Finally, it remains to show that no two of a1, a2, a3 can

belong to acl(AiAj), while a third belongs to a different acl(AiAk) but not to Ai. Because
in T , Aj |⌣Ai

Ak, the third cannot be algebraic over the other two, as then it would belong

to acl(AiAj) ∩ acl(AiAk) = Ai. But then |= R(a1, a2, a3) must hold, as one of the ai is not
algebraic over the other two.

(⇐) Now assume the second condition. By Lemma 2.3.13, it suffices to show that the
independence theorem fails for |⌣

T . By taking some M |= T , that can be expanded to a
model of TR, independently from A1A2A3 over A, and replacing Ai with acl(MAi), we can
assume A =M is a model of T that can be expanded to a model (M,E(M)) or (M,P (M))
of TR. In the equivalence relation case, fix some m ∈M , and expand each of the acl(AiAj)
so that the additional structure extends that on M , and ak lies in the same equivalence class
asm, while each point of acl(AiAj)\M besides ak is isolated in its own class. In the predicate
case, instead add no point of acl(AiAj)\M to the intepretation of P , besides ak. Because
ak is not algebraic over M , either of these constructions give a model of (TR)∀. So these
expansions of acl(AiAj) determine, by the quantifier elimination up to finite covers in TR,
LE or LP -types pk(Xi, Xj) over the expansion of M in TR for i < j. Because ak /∈ Ai ∪ Aj,
no nontrivial new structure was added to one of the Ai in any pair, other than that on M .
So these types agree on the Xi, by the quantifier elimination up to finite covers. And by
construction, each is realized by a |⌣

T -independent pair. So a failure of the independence

theorem for |⌣
T would be implied, if we can show that these types cannot by jointly realized

in TR by a triple that is forking-independent in the sense of T .
We claim that an obstruction to this joint realization would occur if

tpL(A1A2A3/M) ⊢ ∀x1x2x3
∧

j ̸=i ̸=k,j<k

φi(Xj, Xk, xi) → ¬R(x1, x2, x3)

for φi(Aj, Ak, xi) a L-formula isolating tpL(ai/AjAk). Indeed, a joint realization in TR of
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the pk(Xi, Xj) that is a forking-independent triple in the sense of T over M , A′
1, A

′
2, A

′
3,

must satisfy tpL(A1A2A3/M), by stationarity. Therefore, it must satisfy the formula on the
right. But because the A′

1, A
′
2, A

′
3 jointly realize the pk(Xi, Xj), for i, j, k there must be some

a′i |= φi(A
′
j, A

′
k, xi) belonging to the E-class of m, or to the interpretation of P . So a′1, a

′
2, a

′
3

must all belong to the same equivalence class or to the interpretation of P . But by the
formula on the right, |= ¬R(a′1, a′2, a′3). This contradicts the axioms of TR.

So it remains to show that

A1A2A3 |= ∀x1x2x3
∧

j ̸=i ̸=k,j<k

φi(Xj, Xk, xi) → ¬R(x1, x2, x3)

For i, j, k, suppose a′′i satisfies φi(Aj, Ak, xi) and let σi be an automorphism of acl(AjAk)
over AjAk sending ai to a

′′
i . The independence theorem in TA, Theorem 3.7 of [20] does

not say these automorphisms have a common extension–only that some conjugates of these
automorphisms do. But the proof of that theorem does in fact show that compatible auto-
morphisms of the algebraic closures of pairs in an independent triple, indeed have a common
extension. Since this is not stated explicitly, we review the proof of everything we need;
we work in T . For our purposes, it suffices to show for each i, j, k that σi as above, so an
automorphism of acl(AjAk) over AjAk with σi(ai) = a′′i , can be chosen so that it extends
to an automorphism σ̃i of the monster model M |= T that is the identity on acl(AiAj) and
acl(AiAk). Indeed, then we can compose all three of the σ̃i together, to get an automor-
phism extending each of the σi. Because ai ≡L

AjAk
a′′i , we will get the desired automorphism

σ̃i of M over acl(AiAj)acl(AiAk) with σ̃i(ai) = a′′i , as long as the orbit of ai over AjAk is
the same as that of ai over acl(AiAj)acl(AiAk). Now the latter orbit, in the sense of T eq,
belongs to dcl(acl(AiAj)acl(AiAk))∩acl(AjAk). Now recall the claim of Theorem 3.7 of [20],
namely that dcl(acl(AB)acl(AC)) ∩ acl(BC) = dcl(BC) for A,B,C independent sets in a
stable theory. This claim implies that dcl(acl(AiAj)acl(AiAk)) ∩ acl(AjAk) = dcl(AjAk).
But since the orbit of ai over acl(AiAj)acl(AiAk) is then in dcl(AjAk), all of the conjugates
of ai over AjAk must belong to the orbit of ai over acl(AiAj)acl(AiAk), so the orbit of ai
over acl(AiAj)acl(AiAk) must coincide with the orbit of ai over AjAk.

So there is an automorphism σ of M extending σ1, σ2, σ3. So |= ¬R(a1, a2, a3) implies
|= ¬R(σ(a1), σ(a2), σ(a3)), so |= ¬R(σ1(a1), σ2(a2), σ3(a3)), so |= ¬R(a′′1, a′′2, a′′3).

This is the main technical lemma required for the group configuration theorem. To prove
it, we use properties of forking in weakly minimal theories throughout.

Lemma 2.4.4. In the previous lemma, we can further require that U(Ai/A) = 1 for 1 ≤ i ≤
3, in the sense of T .

Proof. Throughout this proof we refer to T and use the notation of the previous lemma. It
suffices to find some A ⊆ D ⊂ A1 ∪A2 ∪A3 with U(Ai/D) = 1 so that the second condition
of that lemma is satisfied replacing each Ai with acl(AiD). We do this by handling A1, A2

and A3 successively.
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We begin with the following observation: relative to a given set, if b1, . . . , bn is an indepen-
dent sequence and a ∈ acl(b1, . . . bn), there is some least S ⊆ {b1, . . . , bn} so that a ∈ acl(S).
Because if S1, S2 ∈ acl(b1, . . . bn) are two minimal such sets, then they are independent over
S1 ∩ S2, so a ∈ acl(S1) ∩ acl(S2) = acl(S1 ∩ S2), contradicting minimality.

Choose 1 ≤ i, j, k ≤ 3 distinct. We can assume Ai = aclA(b1, . . . , bn) for b1, . . . , bn
independent over A. The b1, . . . , bn are thus independent over Aj and Ak since Aj |⌣M

Ai,
Ak |⌣M

Ai. By the observation above, let Sj, Sk ⊆ {b1, . . . , bn} be respectively the least so
that aj ∈ acl(AkSj) and ak ∈ acl(AjSk). We claim that Sj∩Sk ̸= ∅. Otherwise, as Ai, Aj, Ak

are independent over M , and b1, . . . , bn are an independent subset of Ak, AkSj |⌣A
AjSk.

Therefore, aj ∈ acl(AkSj) |⌣AjAk
acl(AjSk) ∋ ak, so aj |⌣AjAk

ak. Now aj ∈ acl(AiAk)\Ak

and Ai |⌣Ak
Aj, so aj /∈ acl(AjAk). But because |= ¬R(a1, a2, a3), aj is algebraic over

acl(AjAk)ak ⊇ Aaiak. So aj and ak are dependent over acl(AjAk), contradicting aj |⌣AjAk
ak.

This proves our claim that Sj ∩ Sk ̸= ∅.
Now let A′ = aclA({b1, . . . bn}\{b}) for some b ∈ Sj ∩ Sk. Then U(Ai/A

′) = 1. By
choice of Sj and Sk, ak ∈ acl(AiAj)\(Ai ∪ acl(A′Aj)) and aj ∈ acl(AiAk)\(Ai ∪ acl(A′Ak)).
By the same reasoning used to show aj /∈ acl(AjAk) above, ai /∈ acl(AiAj) ∪ acl(AiAk), so
ai ∈ acl(acl(A′Aj)acl(A

′Ak))\(acl(A′Aj) ∪ acl(A′Ak)).
So replace A with A′ ⊆ Ai Aj with acl(A′Aj) and Ak with acl(A′Ak). Now repeat what

we have done for Ai for each of Aj and Ak.

We are now in a position to prove Theorem 2.1.2. First, suppose G is a rank-one con-
nected group type-definable over a parameter set A defining R, which we can assume to
be algebraically closed. Let (a, b, c) be a generic of the graph of its operation. Then a and
b are independent generics of G over A and c = ab. Then (as in the construction of a
group configuration from an actual group; see [11] for an overview) we can find independent
algebraically closed sets A1, A2, A3 containing A with ai ∈ acl(AjAk)\(Ai ∪ Aj); just find
independent generics d1, d2, d3 of G over A so that a = d1d

−1
2 , b = d2d

−1
3 and c = d1d

−1
3 .

Now note that, by replacing a1, a2, and a3 by elements individually interalgebraic over A,
we preserve ai ∈ acl(AjAk)\(Ai ∪ Aj), so by Lemma 2.4.3, TR is not simple.

In the other direction, suppose TR is not simple. Then we get ai, Ai as in Lemmas 2.4.3,
2.4.4. To summarize, we have A1, A2, A3, a1, a2, a3 of rank one over A, ai ∈ acl(AjAk)\(Ai ∪
Aj), A1, A2, A3 forming an independent triple over A, and a1, a2, a3 forming a dependent
triple over A, since |= ¬R(a1, a2, a3).

Since they are all of rank one over A, we know from the properties of forking in weakly
minimal theories that a1, a2, a3 together with, for i, j, k distinct, each of ai, Aj, Ak, form the
lines of a group configuration (recall Figure 1 above). The conclusion follows from the group
configuration theorem, Theorem 2.1.1.

Example 2.4.5. We given an example of a simple unstable theory T of SU-rank 1 and
ternary relation R definable in T satisfying the group condition of Theorem 1.3, but with
TR still simple. Let T0 be the theory of two-sorted structures consisting of a vector space
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V over a finite field and a two-to-one map F from a set S to V , with a symmetric ternary
relation U relating, for any three distinct fibers of F , exactly one point in each of the fibers. It
has a model companion T which can be seen to be supersimple of SU-rank 1 with the evident
quantifier elimination. Now let R(x1, x2, x3) be defined on S by ¬(F (x1) = F (x2) +F (x3)∧
U(x1, x2, x3)) ∧

∧
1≤i,j,≤3 ¬(F (xi) = F (xj)). The independence theorem still holds in TR,

which exists (see the appendix), for the relation a |⌣
a

M
b given by acl(aM) ∩ acl(bM) =M .

However, there is a group configuration theorem for certain simple theories ([13]), and
the left-to-right direction of Lemma 4.1 as well as Lemma 4.2 only require SU-rank one and
not the additional assumption of stability, so when TR exists, but is not simple, we may still
get a characterization of R in terms of groups.

2.A Appendix: existence of TR for fiber algebraic

ternary relations

In Proposition 2.2.1, we show that TR exists whenever T is nfcp. When T only eliminates
∃∞, TR still exists in the case where ¬R is an algebraic ternary relation. This may be useful
for generalizing the results of this chapter to case of T unstable.

Proposition 2.A.1. Let T eliminate the quantifier ∃∞and let R be the negation of an
algebraic ternary relation definable in T . Then TR exists.

Proof. (Predicate version) Let M |= TR and let ψ(y, x1, . . . , xn) be a formula of L0. As in
the proof of Theorem 2.4 of [20], we can assume that ψ(y, x1, . . . , xn) implies that x1, . . . , xn
are distinct, and it suffices to find, for any 1 ≤ k ≤ n, some LP -formula ρ(y) independently
of M so that M |= ρ(m) if and only if there is some a ∈ N for N |= TR an extension of M
such that a does not meet M and such that N |= ψ(m, a) ∧

∧k
1 P (ai) ∧

∧n
k+1 ¬P (ai); then

the ∀y(ρ(y) → ∃xψ(y, x)) will still axiomatize when M is existentially closed.
We can assume that for 1 ≤ i ≤ j ≤ k and σ ∈ S3, there is a constant kijσ so that for

any m, ψ(m, a) implies that ¬R(σ(ai, aj, x)) has exactly kijσ solutions, since every formula
ψ(y, x1, . . . , xn) can be written as a disjunction of formulas with this property. Consider the
condition ρ(m) on m ∈ M requiring that for 1 ≤ i ≤ j ≤ k and σ ∈ S3 there are some

0 ≤ lijσ ≤ kijσ and e1ijσ, . . . , e
lijσ
ijσ ∈ M\P (M), distinct for fixed ijσ so that the following

condition τ(m, e) holds:
There is some M ≺L N and a1 . . . an ∈ N\M and, for 1 ≤ i ≤ j ≤ k and σ ∈ S3,

f 1
ijσ . . . f

kijσ−lijσ
ijσ ∈ N\M , distinct for fixed ijσ and distinct from all of the a1, . . . , ak, so that

N |= ψ(m, a), for all 1 ≤ i1, i2, i3 ≤ k, N |= R(ai1 , ai2 , ai3), and for fixed 1 ≤ i ≤ j ≤ k and

σ ∈ S3, N |= ¬R(σ(ai, aj, a)) for a any of the e1ijσ, . . . , e
lijσ
ijσ or f 1

ijσ . . . f
kijσ−lijσ
ijσ .

It follows from the following claim, used implicitly in [20], that τ(m, e) is a definable
condition in L:

Claim 2.A.2. For φ(x, y) any L-formula, the set of a ∈M so that there is b in an elementary
extension of M not meeting M with |= φ(b, a) is definable in L
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Proof. By elimination of ∃∞, we can apply Lemma 2.3 of [20], which says that the set of
a ∈M , so that there is b in an elementary extension ofM not meeting acl(a) with |= φ(b, a),
is definable. But it is well-known that for any a, b and a ∈ M there is always b′ ≡a b with
acl(b) ∩M = acl(a). So the set we have defined is in fact our desired set.

Because τ(m, e) can be expressed definably in L, ρ(m) can be expressed definably in LP .
We claim that ρ(m) is as desired. First suppose there is some a ∈ N for N |= TR an extension
of M such that a does not meet M and such that N |= ψ(m, a) ∧

∧k
1 P (ai) ∧

∧n
k+1 ¬P (ai).

Then we can let e1ijσ, . . . , e
lijσ
ijσ enumerate the solutions in M to ¬R(σ(ai, aj, x))–note that

they must belong to M\P (M)–and let f 1
ijσ . . . f

kijσ−lijσ
ijσ enumerate the solutions in N\M

to ¬R(σ(ai, aj, x))–note that they must be distinct from the a1, . . . , ak. Now suppose ρ(m)

holds. It remains to expand N to a model of TR extending M so that N |=
∧k

1 P (ai) ∧∧n
k+1 ¬P (ai). Note that the ai are distinct; add just the a1, . . . , ak to the domain of P ,

and no other new elements, to form P (N). We must show that (N,P (N)) |= TR; that
is, for a triple n ∈ P (N), N |= R(n). This is clearly the case if all of the coordinates
over n lie in N/M , and also if they all lie in M , as we assume that for 1 ≤ i1, i2, i3 ≤ k,
N |= R(ai1 , ai2 , ai3). If two of the coordinates of n are ai and aj for 1 ≤ i ≤ j ≤ k, and
another coordinate lies in M , then N |= R(n) still holds as all kijσ of the solutions to any of

the ¬R(σ(ai, aj, x)) must either be one of the f 1
ijσ . . . f

kijσ−lijσ
ijσ that are not in M ∪ a or one

of the e1ijσ, . . . , e
lijσ
ijσ that are not in P (N). Finally, if exactly two of the coordinates of n lie

in M , then N |= R(n) as the other coordinate cannot be algebraic over the two that belong
to M .

(Equivalence relation version) Similar.
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Chapter 3

On NSOP2 theories

3.1 Introduction

One of the most exciting areas of research in modern model theory is the classification along
various dividing lines of non-simple but otherwise tame theories, especially NSOPn theories
for 1 ≤ n ≤ 3. The first two of these properties, introduced in [40], require the nonexistence
of certain trees:

Definition 3.1.1. A theory T is NSOP1 if there does not exist a formula φ(x, y) and tuples
{bη}η∈2<ω so that {φ(x, bσ↿n)}n∈ω is consistent for any σ ∈ 2ω, but for any η2 ⊵ η1 ⌢ ⟨0⟩,
{φ(x, bη2), φ(x, bη1⌢⟨1⟩)} is inconsistent. Otherwise it is SOP1.

Definition 3.1.2. A theory T is NSOP2 if there does not exist a formula φ(x, y) and tuples
{bη}η∈2<ω so that {φ(x, bσ↿n)}n∈ω is consistent for any σ ∈ 2ω, but for incomparable η1 and
η2, {φ(x, bη1), φ(x, bη2)} is inconsistent. Otherwise it is SOP2.

The property NSOP3 is introduced in [101] as part of a family of notions NSOPn for
n ≥ 3:

Definition 3.1.3. A theory T is NSOPn (that is, does not have the n-strong order property)
if there is no definable relation R(x1, x2) with no n-cycles, but with tuples {ai}i∈ω with |=
R(ai, aj) for i < j. Otherwise it is SOPn.

Fact 3.1.1. ([101], [40]) Simple theories are NSOP1, and NSOPn theories are NSOPm for
n ≤ m.

In [102] it is shown that T ∗
feq, the model companion of the theory of parametrized equiv-

alence relations, is NSOP1 but not simple; a limited number of further examples have since
been found by various authors. Yet the main problem, posed by Džamonja and Shelah in
[40], has remained unsolved:

Problem 3.1.2. Are all NSOP3 theories NSOP2? Are all NSOP2 theories NSOP1?
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In this chapter we answer the latter question in the positive:

Theorem 3.1.3. All NSOP2 theories are NSOP1.

One reason for the significance of this problem comes from Shelah and Usvyatsov’s pro-
posal in [102] to characterize classes of theories both internally in terms of the structure
of their sufficiently saturated models, and externally in terms of orders on theories. The
NSOP2 theories have a deep external characterization: under the generalized continuum hy-
pothesis, Džamonja and Shelah [40] show that maximality in the order ◁∗, an order related
to the Keisler order, implies a combinatorial property related to SOP2, which Shelah and
Usvyatsov then show in [102] to be the same as SOP2; later, Malliaris and Shelah in [81]
show the equivalence between SOP2 and ◁∗-maximality under the generalized continuum
hypothesis. On the other hand, NSOP1 theories can be characterized internally not only
in terms of trees, but through the theory of independence, in analogy with stability theory.
It is well known that simple theories are characterized as those theories where forking and
dividing behave in certain ways as they do in stable theories; for example, symmetry of
forking characterizes simple theories. In [52], Kaplan and Ramsey show that Kim-forking,
or forking witnessed by invariant Morley sequences, is the correct way of extending the
theory of forking to NSOP1 theories from simple theories. By relaxing the requirement of
base monotonicity, they extend the Kim-Pillay characterization of simple theories in terms
of the existence of abstract independence relations to NSOP1 theories, and, more concretely,
characterize NSOP1 theories by the symmetry of Kim-independence, by the independence
theorem for Kim-independence, and by a variant of Kim’s lemma in simple theories, asserting
that Kim-dividing of a formula, rather than dividing, is witnessed by any invariant Morley
sequence. Our result that NSOP1 theories coincide with NSOP2 theories therefore shows
a surprising agreement between dividing lines related to Keisler’s order and dividing lines
related to independence.

We outline the chapter and give a word on the strategy for the proof. In section 3, we
develop in general theories a version of a construction used by Chernikov and Kaplan in
[27] to study forking and dividing in NTP2 theories. In [1], Adler initiated the study of
abstract relations between sets in a model, generalizing some of the properties of forking-
independence, coheirs, and other concrete relations from model theory, and provided a set
of potential axioms for these relations1. We notice that the construction of Chernikov and
Kaplan can be relativized to relations between sets satisfying certain axioms, obtaining new

1Other than Adler’s work in [1] and Conant’s work on free amalgamation theories in [32], an additional
observation which ultimately led us to the proof of this result is found in [36], where d’Elbée proposes the
problem of explaining the apparent ubiquity of additional independence relations with no known concrete
model-theoretic independence relations in NSOP1 theories, such as strong independence existing alongside
Kim-independence in the theory ACFG (introduced as part of a more general class in [37]) of algebraically
closed fields with a generic additive subgroup. He observes that just as in the case of free amalgamation
of generic functional structures in [71] or generic incidence structures in [33], these stronger independence
relations can be used to prove the equivalence of forking and dividing for complete types in many known
NSOP1 theories. Before proving Theorem 1.6, we gave some very weak axioms (including stationarity, a
feature of the examples considered by [36]) for abstract relations between sets over a model, which appeared
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relations between sets from old ones, and iterate this construction to obtain a canonical class
of coheirs in any theory.

In section 4, we study this canonical class of coheirs in NSOP2 theories. Before the
development of Kaplan and Ramsey’s theory of Kim-independence in NSOP1 theories in
[52], Chernikov [25] proposed finding a theory of independence for NSOP2 theories, and the
proof of our main result comes from our efforts to answer this proposal. Just as in [27],
Chernikov and Kaplan’s construction gives maximal classes in the dividing order of Ben
Yaacov and Chernikov [113], we show that in NSOP2 theories our variant of this construction
gives minimal classes in the restriction of this order to coheir Morley sequences, proving
an analogue of Kim’s lemma. As a by-product of this construction, we also initiate the
theory of independence in a class related to the NATP theories of Ahn and Kim [3], the
study of which was further developed by Ahn, Kim and Lee in [4], showing that under this
assumption Kim-forking and Kim-dividing coincide for coheir Morley sequences. (See [69]
for the question of finding an analogue for NSOP1 theories of the role that NTP2 theories
play relative to simple theories, and developing Kim-independence in that analogue; that
Kim-forking coincides with Kim-dividing for coheir Morley sequences in a related class gives
us preliminary evidence that NATP completes this analogy.)

In section 5, we investigate behavior similar to NSOP1 theories in NSOP2 theories. We
introduce the notion of Conant-independence, which will generalize the relation A |⌣

a

M
B

defined by acl(MA)∩acl(MB) =M in the free amalgamation theories introduced by Conant
[32] (based on concepts used to study the isometry groups of Urysohn spheres in [106]); see
the following section. While it will end up coinciding with Kim-independence in our case, we
studied a version of Conant-independence in a potentially strictly NSOP1, potentially SOP3

generalization of free amalgamation theories in Chapter 1. Conant-independence in NSOP2

theories can be defined as Kim-independence relative to canonical Morley sequences, just as
|⌣

a is Kim-independence relative to free amalgamation Morley sequences (as in lemma 7.7
of [32]); it can also be defined by forcing Kim’s lemma on Kim-independence, requiring a
formula to divide with respect to every Morley sequence instead of just one, as suggested
in tentative remarks of Kim in [60] in his discussion of strong dividing in subtle theories.
We show that many of Ramsey and Kaplan’s arguments on Kim-independence in NSOP1

theories in [52] can be generalized to Conant-independence in NSOP2 theories, including a
chain condition, symmetry and a weak independnece theorem. (But as is apparent in [32]
and Chapter 1, similar behavior can occur in a SOP3 theory, which is why the following
section is essential to the proof of our main result.)

In section 6, we conclude the proof of Theorem 3.1.3. One consequence of Conant’s free
amalgamation axioms (say, the freedom, closure and stationarity axioms, in Defintion 2.1 in
[32]) is the following:

to be very common in NSOP theories including strictly NSOP1 theories and NSOP4 theories, and proved
that theories with such a relation could not be NSOP2; instead of considering Morley sequences in canonical
coheirs as in the below, we used |⌣-independent sequences for the abstract relation |⌣, in the sense of
Definition 7.5 of [32]. Note also that the property quasi-strong finite character considered below is a property
of the examples in [36].
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Let |⌣ denote free amalgamation and A1 |⌣
a

M
B, A2 |⌣

a

M
C, and B |⌣M

C with A1 ≡M

A2. Then there is some A |⌣
a

M
BC with A ≡MB A1 and A ≡MC A2.

We will have shown in the prior section that Conant-independence is symmetric, and
that a similar fact holds, roughly, when replacing free amalgamation with canonical coheirs
and |⌣

a with Conant-independence. Conant shows in [32] that modular free amalgamation
theories must either be simple or SOP3 (see [42] for a related result on countably categorical
Hrushovski constructions), starting with a failure of forking-independence to coincide with
|⌣

a (because forking-independence cannot be symmetric unless a theory is simple) and using
the above fact to build up a configuration giving SOP3. Starting, analogously, with the
assumption that an NSOP2 theory T is SOP1, so Kim-dividing independence is not symmetric
and therefore fails to coincide with Conant-independence, we simulate Conant’s construction
of an instance of SOP3. In short, we show that a NSOP2 theory is either NSOP1 or SOP3.
But a NSOP2 theory is of course not SOP3, so it must be NSOP1.

3.2 Preliminaries

We let a, b, c, d, e, A,B,C denote sets, potentially with an enumeration depending on context,
and x, y, z,X, Y, Z denote tuples of variables. We let M denote a sufficiently saturated model
of a theory T and let M denote an elementary submodel. We write AB to denote the union
(or concatenation) of the sets A and B, and write I, J , etc. for infinite sequences (or
sometimes trees) of tuples or an infinite linearly ordered set.

Relations between sets
Roughly following the axioms for abstract independence relations in [1], as well as others

that are standard in the literature, we define the following axioms for relations A |⌣M
B

between sets over a model:
Invariance: For all σ ∈ Aut(M), A |⌣M

B implies σ(A) |⌣σ(M)
σ(B).

Full existence: For M ⊆ A,B ⊆ M, there is always some A′ ≡M A with A |⌣M
B.

Left extension: If A |⌣M
B and A ⊆ C, there is some B′ ≡A B with C |⌣M

B′.
Right extension: If A |⌣M

B and B ⊆ C, there is some A′ ≡B A with A′ |⌣M
C.

Left monotonicity: If A |⌣M
B and M ⊆ A′ ⊆ A, then A′ |⌣M

B
Right monotonicity: If A |⌣M

B and M ⊆ B′ ⊆ B, then A |⌣M
B′

(We will refer to the two previous properties, taken together, as monotonicity.)
Symmetry: If A |⌣M

B then B |⌣M
A

Coheirs and Morley sequences
A global type p is a complete type over M. For p ∈ S(A) for M ⊆ A, we say p is

finitely satisfiable over M or a coheir extension of its restriction to M if every formula in p
is satisfiable in M . Global types p finitely satisfiable in M are invariant over M : whether
φ(x, b) belongs to p for φ a formula without parameters, depends only on the type of the
parameter b over M . We write a |⌣

u

M
b to denote that tp(a/Mb) is finitely satisfiable in

M . We let a |⌣
h

M
b denote b |⌣

u

M
a. The relation |⌣

u (over models) is well-known to satisfy
all of the above properties other than symmetry. We say {bi}i∈I , for I potentially finite,
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is a coheir sequence over M if bi |⌣
u

M
b<i for i ∈ I. We say a coheir sequence {bi}i∈I , for

I infinite, is moreover a coheir Morley sequence over M if there is a fixed global type p(x)
finitely satisfiable in M so that bi |= p(x)|{Mbj}j<i

for i ∈ I. The type of a coheir Morley
sequence over M (indexed by a given set) is well-known to depend only on p(x), and coheir
Morley sequences are known to be indiscernible; the type of a coheir sequence overM depends
only on the global coheirs over M extending the tp(bi/Mb<i).

NSOP1 theories and Kim-dividing
In this chapter we use nonstandard terminology: Kim-dividing, etc. are defined in terms

of Morley sequences in invariant types over M rather than finitely satisfiable types over M
in [52]. The reason why we do this is that |⌣

u is known to satisfy left extension. This will
do us no harm for our main result, though when we briefly consider Kim-forking in some
NATP theories, we will note the nonstandard usage.

Definition 3.2.1. A formula φ(x, b) Kim-divides over M if there is an coheir Morley
sequence {bi}i∈ω starting with b so that {φ(x, bi)}i∈ω is inconsistent (equivalently, k-
inconsistent for some k: any subset of size k is inconsistent). A formula φ(x, b) Kim-forks
over M if it implies a (finite) disjunction of formulas Kim-dividing over M . We write
a |⌣

Kd

M
b, and say that a is Kim-dividing independent from b over M if tp(a/Mb) does not

include any formulas Kim-dividing over M .

The following follows directly from Proposition 5.2 of [28]; see also Proposition 3.22 of
[52] (where the evident argument for the version for invariant types is given) and Theorem
5.16 of [52] for the full symmetry characterization of NSOP1.

Fact 3.2.1. Symmetry of |⌣
Kd implies NSOP1.

NSOP2 theories
A characterization of SOP2 as k-TP1 was proven by Kim and Kim in [64], where they

also introduce the notion of weak k-TP1, prove that it implies SOP1, and conjecture that it
also implies SOP2:

Definition 3.2.2. The theory T has weak k-TP1 if there exists a formula φ(x, y) and tuples
{bη}η∈ω<ω so that {φ(x, bσ↿n)}n∈ω is consistent for any σ ∈ ωω, but for pairwise incomparable
η1 . . . , ηk ∈ ω<ω with common meet, {φ(x, bηi)}ki=1 is inconsistent.

Later, Chernikov and Ramsey, in Theorem 4.8 of [28], claim to show that weak k-TP1

implies SOP2, but their proof is incorrect; the embedded tree {bη}η∈ω<ω in the proof of that
theorem is not actually strongly indiscernible over the parameter set C. In an earlier version
of this chapter, we used this result. In this section, we will introduce an equivalent form of
SOP2 that will suffice for our argument, and use the same method as [28] to give a proof
that will work to show this equivalence despite failing for weak k-TP1.

Definition 3.2.3. (Proposition 2.51, item IIIa, [102]). A list η1, . . . , ηn ∈ ω<ω is a de-
scending comb if and only if it is an antichain so that η1 <lex . . . <lex ηn, and so that, for
1 ≤ k < n, η1 ∧ . . . ∧ ηk+1 ◁ η1 ∧ . . . ∧ ηk.
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So for example, all descending combs of length n have the same quantifier-free type
in the language {<lex,◁,∧} as the descending comb ⟨0⟩n−1 ⌢ ⟨1⟩, . . . ⟨1⟩; meanwhile,
⟨00⟩, ⟨01⟩, ⟨10⟩, ⟨11⟩ is an example of a lexicographically ordered antichain that is not a
descending comb.

Definition 3.2.4. (Definitions 11 and 12, [105]) For tuples η, η′ ∈ ω<ω of elements of
ω<ω, we write η ∼0 η′ to mean that η has the same quantifier-free type in the language
{<lex,◁,∧} as η′. For (bη)η∈ω<ω a tree-indexed set of tuples and η = η1, . . . , ηn ∈ ω<ω an
n-tuple of elements of ω<ω, we write bη =: bη1 . . . bηn, and call (bη)η∈ω<ω strongly indiscernible
over a set A if for all tuples η, η′ ∈ ω<ω of elements of ω<ω with η ∼0 η

′, bη ≡A bη′.

Fact 3.2.2. (Theorem 16, [105]; see [96] for an alternate proof) Let (bη)η∈ω<ω be a tree-
indexed set of tuples, and A a set. Then there is (cη)η∈ω<ω strongly indiscernible over A so
that for any tuple η ∈ ω<ω of elements of ω<ω and φ(x) ∈ L(A), if |= φ(bη′) for all η′ ∼0 η,
then |= φ(cη).

Definition 3.2.5. The theory T has k-DCTP1 if there exists a formula φ(x, y) and tuples
{bη}η∈ω<ω so that {φ(x, bσ↿n)}n∈ω is consistent for any σ ∈ ωω, but for any descending comb
η1 . . . , ηk ∈ ω<ω, {φ(x, bηi)}ki=1 is inconsistent.

Lemma 3.2.3. For any k > 1, a theory has SOP2 if and only if it has k-DCTP1.

Proof. (⇒) The property 2-DCTP1 follows directly from Fact 4.2, [28].
(⇐) We follow the proof of theorem 4.8 of ([28]), which is incorrect for the claimed

result. Let {bη}η∈ω<ω witness DCTP1 with the formula φ(x, y). By fact 3.2.2, we can assume
{bη}η∈ω<ω is strongly indiscernible (as paths and descending combs are preserved under ∼0-
equivalence), and will produce a witness to SOP2. Let ηi = ⟨0⟩i ⌢ ⟨1⟩ (so that, say, ηn, . . . , η0
will form a descending comb), and let n be maximal so that

{φ(x, bηi⌢⟨0⟩α) : i < n, α < ω}
is consistent; by consistency of the paths, n will be at least 1, and by inconsistency of
descending combs of size k, n will be at most k. Let C = {bηi⌢⟨0⟩α : i < n − 1, α < ω}.
We see that, say, µ = ⟨0⟩n−1 sits strictly above the meets of any two or more of the ηi
for i < n − 1 in the order ◁, and is incomparable to and lexicographically to the left of
ηn−2 when n > 1, so the appropriately tree-indexed subset {cη}η∈ω<ω of {bη}η∈ω<ω consisting
of those bη with µ ⊴ η (that is, where cη = bµ⌢η) really is strongly indiscernible over C.
By strong indiscernibility of {bη}η∈ω<ω and the fact that {φ(x, bηi⌢⟨0⟩α) : i < n, α < ω} is
consistent, {φ(x, c⟨0⟩⌢⟨0⟩α) : i < n, α < ω} ∪ {φ(x, c) : c ∈ C} is consistent; let d realize it,
and by Ramsey, compactness and an automorphism over C, we can assume {c⟨0⟩⌢⟨0⟩α}α<ω is
indiscernible over dC. On the other hand, for p(y, z) = tp(d, {c⟨0⟩⌢⟨0⟩α}α<ω/C), we see that
p(y, {c⟨0⟩⌢⟨0⟩α}α<ω)∪p(y, {c⟨1⟩⌢⟨0⟩α}α<ω) is inconsistent, by strong indiscernibility of {bη}η∈ω<ω

and inconsistency (by maximality of n) of {φ(x, bηi⌢⟨0⟩α) : i ≤ n, α < ω} (noting that, say,
p(y, {c⟨0⟩⌢⟨0⟩α}α<ω) contains {bηi⌢⟨0⟩α : i < n − 1, α < ω}). This is exactly what the “path
collapse lemma,” Lemma 4.6 of [28], tells us that we need to obtain SOP2.
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Though the proof of Theorem 4.8 of [28] is incorrect, that theorem (albeit, not a “local”
version) will be a corollary of our main result, Theorem 3.1.3, and the result of [64] that
weak k-TP1 implies SOP1. (Note that SOP2 is just weak 2-TP1).

Corollary 3.2.3.1. (to Theorem 3.1.3) For any k, a theory has weak k-TP1 if and only if
it has SOP2.

3.3 Canonical coheirs in any theory

The following section will require no assumptions on T . Iterating a similar construction to
the one used by Chernikov and Kaplan in [27] to prove the equivalence of forking and dividing
for formulas in NTP2 theories, we will contruct a canonical class of coheir extensions in any
theory. This class will end up satisfying a variant of the “Kim’s lemma for Kim-dividing” in
NSOP1 theories (Theorem 3.16 of [52]) when considered in a NSOP2 theory.

Proposition 3.3.1. Let T be any theory. Consider relations |⌣ between sets over a model

that are stronger that |⌣
h, satisfy invariance, monotonicity, full existence and right exten-

sion, and satisfy the coheir chain condition: if a |⌣M
b and I = {bi}i∈ω is a coheir Morley

sequence starting with b, then there is some I ′ ≡M I with a |⌣M
I ′ and each term of I ′

satisfying tp(b/Ma). There is a weakest such relation |⌣
CK.

The “weakest” clause is not necessary for the main result, but we include it anyway to
show our construction is canonical.

We start by relativizing the notions of Kim-dividing, Kim-forking, and quasi-dividing
(Definition 3.2 of [27]) to an M -invariant ideal on the definable subsets of M.

Definition 3.3.1. Let I be an M-invariant ideal on the definable subsets of M. A formula
φ(x, b) I-Kim-divides over M if there is a coheir Morley sequence {bi}i∈ω starting with b so
that for some k, the intersection of some (any) k-element subset of {φ(M, bi)}i∈ω belongs
to I. We say φ(x, b) I-Kim-forks over M if it implies a (finite) disjunction of formulas
I-Kim-dividing over M . We say φ(x, b) I-quasi-divides over M if there are b1, . . . , bn with
b ≡M bi so that ∩n

i=1φ(M, bi) ∈ I.
We say φ(x, b) ⊢I ψ(x, c) if φ(M, b)\ψ(M, c) ∈ I.

The proof of the following lemma is adapted straightforwardly from the proof of the
“broom lemma” of Chernikov and Kaplan (Lemma 3.1 of [27])2. For the convenience of the
reader we give a simplified proof of the modified version; note that this version is just a
rephrasing in terms of ideals of Lemma 4.19 in [26]:

2Alex Kruckman, in a personal communication with the author, discussed an alternative to this proof
for showing the properness of the ideal corresponding to the independence result of |⌣

CK
, with the broom

lemma as a corollary, which works for invariant Morley sequences as well as coheir Morley sequences; it is
based on unpublished work of James Hanson on the concept of “fracturing,” a generalization of quasi-forking
and quasi-dividing.
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Lemma 3.3.2. (“I-broom lemma”) Suppose

α(x, e) ⊢I ψ(x, c) ∨
N∨
i=1

φi(x, ai)

with φi(x, ai) I-Kim-dividing over M with respect to P (x) and c |⌣
u

M
a1 . . . aN . Then there

are some e1, . . . em with ei ≡M e so that
∧m

i=1 α(x, ei) ⊢I ψ(x, c). In particular, I-Kim-forking
implies I-quasi-dividing over M .

Proof. We need the following claim:

Claim 3.3.3. Let a1, . . . , an begin a coheir Morley sequence in a global type q finitely sat-
isfiable over M . Let a ≡M ai and let b be any tuple. Then there are b1, . . . , bn so that
b1a1, . . . , bnan begin a coheir Morley sequence and biai ≡M ba. (The same is true for Coheir
morley sequences themselves, rather than just their initial segments).

Proof. Left extension for |⌣
u gives a global type r finitely satisfiable over M extending both

q and tp(ab/M). Now take a coheir Morley sequence in r and apply an automorphism. The
parenthetical is similar.

Now we can prove the lemma by induction on N . Write
∨N−1

i=1 φi(x, ai) as φ(x, b), and
let a = aN . Let p be a global coheir extension of tp(c/Mba). Let (ai)ni=1 be such that
ai |⌣

u ai−1, . . . , a1 and ai ≡M a for 1 ≤ i ≤ n and ∧n
i=1φN(x, a

i) ⊢I ⊥. By the claim,
find b1, . . . bn so that aibi |⌣

u ai−1bi−1 . . . a1b1 and aibi ≡M ab for 1 ≤ i ≤ n. Then we can
assume c |= p|Maba1b1...anbn . From c |⌣

u

M
a1b1 . . . anbn, together with aibi |⌣

u ai−1bi−1 . . . a1b1

for 1 ≤ i ≤ n, it is easy to check cai+1bi+1 . . . anbn |⌣
u

M
aibi for 0 ≤ i ≤ n, and therefore

cbi+1 . . . bn
u

|⌣
M

bi

for 0 ≤ i < n.
Now for 1 ≤ i ≤ n we have caibi ≡M cab. Let eica

ibi ≡M ecab for 1 ≤ i ≤ n. Then

∧
α(x, ei) ⊢I ψ(x, c) ∨

n∨
i=1

φ(x, bi) ∨
n∧

i=1

φN(x, a
i)

But by choice of the ai,

∧
α(x, ei) ⊢I ψ(x, c) ∨

n∨
i=1

φ(x, bi)

Now for 1 ≤ i ≤ n, because bi ≡M b, φ(x, bi) will be of the form
∨N−1

j=1 φj(x, a
′
j) for φj(x, a

′
j)

I-Kim-dividing over M . So, as the first of n steps, we can apply cb2 . . . bn |⌣
u b1 and the

inductive hypothesis on N to find some conjunction β(x, e) of conjugates of
∧
α(x, ei) (which

will therefore be a conjunction of conjugates of α(x, e)) so that
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β(x, e) ⊢I ψ(x, c) ∨
n∨

i=2

φ(x, bi)

Repeating n− 1 more times, we are done.

We now begin our construction. The following terminology comes from the notion of
strong finite character (used in e.g. [28]).

Definition 3.3.2. Let |⌣ be an invariant relation between sets over a model. We say that |⌣
satisfies quasi-strong finite character if for p, q complete types over some model M , {a, b |=
p(x) ∪ q(y) : a |⌣M

b} is type-definable.

Definition 3.3.3. Let |⌣ be an invariant relation between sets over a model satisfying mono-
tonicity, right extension and quasi-strong finite character, and fix a complete type P (x) over
a model M .

(1) A set of formulas {φi(x, bi)}i∈I is h |⌣-inconsistent with respect to P (x) if there is no
a |= P (x) with a |⌣M

{bi}i∈I and |= φi(a, bi) for all i ∈ I.

(2) A formula φ(x, b) h |⌣-Kim-divides with respect to P (x) if there is a coheir Morley
sequence {bi}i∈ω starting with b so that {φ(x, bi)}i∈ω is h |⌣-inconsistent with respect to P (x).

(3) A formula h |⌣-Kim-forks with respect to P (x) if it implies a disjunction of formulas
h |⌣-Kim-dividing with respect to P (x).

(4) A formula φ(x, b) h |⌣-quasi-divides over M with respect to P (x) if there are b1, . . . , bn
with bi ≡M b and {φ(x, bi)}ni=1 h

|⌣-inconsistent with respect to P (x).

Lemma 3.3.4. (1) The sets defined by formulas φ(x, b) so that {φ(x, b)} is h |⌣-inconsistent

with respect to P (x) form an M-invariant ideal I |⌣
P (x).

(2) A set {φi(x, bi)}i∈I is h |⌣-inconsistent with respect to P (x) if and only if some finite

subset is (so its conjunction defines a set in the ideal I |⌣
P (x).)

Proof. For (1), it suffices to show (a) that if |= ∀x(φ(x, b) → ψ(x, c)), and ψ(x, c) is h |⌣-
inconsistent with respect to P (x), then φ(x, b) is h |⌣-inconsistent with respect to P (x),
and (b) that if both φ(x, b) and ψ(x, c) are h |⌣-inconsistent with respect to P (x) then so
is φ(x, b) ∨ ψ(x, c). For (a), suppose otherwise; then there is some realization a of P (x)
with |= φ(a, b) and a |⌣M

b. By right extension, we can assume a |⌣M
bc. But then |=

ψ(a, c), and by right monotonicity, a |⌣M
c, contradicting that ψ(x, c) is h |⌣-inconsistent

with respect to P (x). For (b), suppose otherwise; then there is some realization a of P (x)
with |= φ(a, b) ∨ ψ(a, c) and a |⌣M

bc; without loss of generality, |= φ(a, b), and by right

monotonicity, a |⌣M
b, contradicting that φ(x, b) is h |⌣-inconsistent with respect to P (x).

The proof of (a) also gives us the fact that a set {φi(x, bi)}i∈I is h |⌣-inconsistent with respect

to P (x) if some finite subset is (so its conjunction defines a set in the ideal I |⌣
P (x)). To complete
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(2), we show the “only if” direction. If {φi(x, bi)}i∈I is h |⌣-inconsistent with respect to P (x)
then there is no realization a of P (x) ∪ {φi(x, bi)}i∈I with a |⌣M

{bi}i∈I . But the set of
realizations a of P (x) that satisfy a |⌣M

{bi}i∈I is, by quasi-strong finite character, type-
definable. So by compactness, there must be some finite I0 ⊆ I so there is no realization a of
P (x)∪{φi(x, bi)}i∈I0 with a |⌣M

{bi}i∈I . But if there is a realization a of P (x)∪{φi(x, bi)}i∈I0
with a |⌣M

{bi}i∈I0 , then we can even get a |⌣M
{bi}i∈I by right-extension, so {φi(x, bi)}i∈I0

will be as desired.

Corollary 3.3.4.1. For all formulas, h |⌣-Kim-forking with respect to P (x) implies h |⌣-
quasi-dividing with respect to P (x).

Proof. By Lemma 3.3.4, h |⌣-Kim-dividing with respect to P (x) is just I |⌣
P (x)-Kim-dividing.

Apply Lemma 3.3.2 to I |⌣
P (x).

Lemma 3.3.5. If a formula φ(x, b) is h |⌣-inconsistent with respect to P (x), then it is h |⌣-
inconsistent with respect to any complete type Q(x, y) extending P (x). So the same is true
for h |⌣-Kim-dividing and h |⌣-Kim-forking.

Proof. Suppose otherwise. Then there is a realization ac of Q(x, y)∪{φ(x, b)} with ac |⌣M
b.

So by left monotonicity, a |⌣M
b, but a realizes P (x) ∪ {φ(x, b)}, a contradiction.

We are now in a position to study derived independence relations:

Definition 3.3.4. Let |⌣ be an invariant relation between sets over a model satisfying mono-

tonicity, right extension and quasi-strong finite character. Then we define a |⌣
′
M
b to mean

that tp(a/Mb) does not contain any formulas h |⌣-Kim-forking with respect to tp(a/M).

Lemma 3.3.6. Suppose |⌣ is an invariant relation between sets over a model satisfying
monotonicity, right extension, quasi-strong finite character, and full existence. Then so is
|⌣

′.

Proof. Invariance is obviously inherited from |⌣. Quasi-strong finite character is by con-

struction and right extension is also standard from the construction: if a |⌣
′
M
b but, for some

c ∈ M there is no a′ ≡Mb a with a |⌣
′
M
bc, then tp(a/Mb) must imply a disjunction of formu-

las with parameters inMbc h |⌣-Kim-forking with respect to P (x); some formula in tp(a/Mb)
must then imply this disjunction, which will then h |⌣-Kim-fork with respect to P (x), con-
tradicting a |⌣

′
M
b. Right monotonicity is by definition. Left monotonicity is Lemma 3.3.5.

It remains to show full existence; the proof is a straightforward generalization of the proof of
Lemma 3.7 of [27]. By right extension, it suffices to show that b |⌣

′
M
M for any tuple b (the

“existence” property that is implied by full existence). Suppose otherwise; then tp(b/M)
contains a formula φ(x,m) for m ∈ M that h |⌣-Kim-forks over M . By Corollary 3.3.4.1,

φ(x,m) h |⌣-quasi-divides over M . Since m ∈ M , this just means that φ(x,m) ∈ I |⌣
tp(b/M).

But since φ(x,m) ∈ tp(b/M), this contradicts full existence for |⌣.
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The next observation is required to produce a relation with the coheir chain condition:

Lemma 3.3.7. Let |⌣ be as in Lemma 3.3.6 and suppose a |⌣
′
M
b. Then for I = {bi}i∈ω

a coheir Morley sequence starting with b, there is I ′ ≡M I with a |⌣M
I ′ and each term of

I ′ satisfying tp(b/Ma). In particular, |⌣
′ implies |⌣, so h |⌣-Kim-forking implies h |⌣

′
-Kim-

forking.

Proof. Suppose otherwise: then for q = tp(a, b/M), ∪i∈ωq(x, bi) is h
|⌣-inconsistent with re-

spect to tp(a/M), so by part (2) of Lemma 3.3.4, some finite subset must be h |⌣-inconsistent
with respect to tp(a/M). This gives us a formula in q(x, b) that h |⌣-Kim divides with respect
to tp(a/M), a contradiction.

Note that |⌣
h satisfies the assumptions of Lemma 3.3.6. Now define inductively, |⌣

(0) =

|⌣
h, |⌣

(n+1) = ( |⌣
(n))

′
. Let |⌣

CK =
⋂∞

i=0 |⌣
(n). Then because h |⌣

(n)

-Kim-forking im-

plies h |⌣
(n+1)

-Kim-forking, and a |⌣
CK

M
b means that tp(a/Mb) does not contain a h |⌣

(n)

-Kim-
forking formula for any n, right extension and quasi-strong finite character are standard.
Monotonicity and invariance follows from monotonicity and invariance of the |⌣

(n). By

right extension for |⌣
CK, full existence for |⌣

CK would follow from the existence property

b |⌣
CK

M
M for any b, but this just follows from full existence for each of the |⌣

(n). Finally, the
coheir chain condition follows from Lemma 3.3.7 together with quasi-strong finite character
for the |⌣

(n) and compactness.

It remains to show that |⌣
CK is the weakest relation implying |⌣

h and satisfying these
properties. Let |⌣ be some other such relation and assume by induction that |⌣ implies

|⌣
(n) Assume a |⌣M

b; we show a |⌣
(n+1)

M
b. Suppose otherwise; by right extension for |⌣,

we can assume tp(a/Mb) contains a formula φ(x, b) that h |⌣
(n)

-Kim-divides with respect to
tp(a/M). Let I = {bi}i∈ω be a coheir Morley sequence starting with b witnessing this. Then

by the coheir chain condition for |⌣, there is some a′ with a′ |⌣M
I, so in particular a′ |⌣

(n)

M
I

by induction, and with a′bi ≡M ab for i ∈ ω, so in particular with a′ satisfying {φ(x, bi)}i∈ω,
a contradiction.

This completes the proof of Proposition 3.3.1.

Remark 3.3.8. If M′ ≻ M is a very large (sufficiently saturated) model, then |⌣
CK as

computed in M′ restricts to |⌣
CK as computed in M. We can see that |⌣

CK has this

property as it is true for |⌣
h and is preserved by going from |⌣

(n) to |⌣
(n+1). However, it

is also immediate that invariance, monotonicity, full existence and right extension, and the
coheir chain condition are preserved on restriction.

3.4 Canonical coheirs in NSOP2 theories

The goal of this section is to prove a version of “Kim’s lemma for Kim-dividing” for canonical
Morley sequences in NSOP2 theories.
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Lemma 3.4.1. Let p(x) be a type over M . Then it has a global extension q(x) so that for
all tuples b ∈ M, if c |= q|Mb, then b |⌣

CK

M
c. So in particular, q is a global coheir of p(x).

Proof. In a very largeM′ ≻ M, full existence and invariance for |⌣
CK, and an automorphism,

gives us a realization c′ of p(x) with M |⌣
CK

M
c′. Now take q(x) to be tp(c′/M), and the lemma

follows by monotonicity on the left.

Definition 3.4.1. We call q(x) as in Lemma 3.4.1 a canonical coheir, and a coheir Morley
sequence in it a canonical Morley sequence.

Theorem 3.4.2. Let T be NSOP2. Suppose a canonical Morley sequence witnesses Kim-
dividing of a formula φ(x, b) over M . Then there is a finite bound (depending only on φ(x, y)
and the degree of Kim-dividing witnessed by the canonical Morley sequence) on the length of a
coheir sequence {bi}ni=1 over M of realizations of tp(b/M) so that {φ(x, bi)}ni=1 is consistent.
In particular, every coheir Morley sequence starting with b witnesses Kim-dividing of φ(x, b)
over M .

To start, we introduce the notion of a coheir tree in a general theory T .

Definition 3.4.2. Let p be any type over M . We say that a tree (bη)η∈ω≤n of realizations of
p is a coheir tree in p if

(1) for each µ ∈ ω<n, ({bη}η⊵µ⌢⟨i⟩)
∞
i=0 (the sequence consisting of the subtrees above a

fixed node) is a coheir Morley sequence over M .
(2) there are global coheir extensions q0, . . . , qn of p so that for each µ ∈ ωn−m, bµ |=

qm|{bη}η▷µ.

The key lemma of this section allows us to construct coheir trees in any theory so that
sequences of nodes with common meet are canonical Morley sequences. Abusing the language
by nodes, paths, etc. we often refer to the tuples which they index; the term “descending
comb” will have a similar meaning in a tree of finite height or a set of subtrees as it does in
ω<ω.

Lemma 3.4.3. Let p(x) be any type overM . Let q(x) be a canonical coheir extension of p(x).
Let b0, . . . , bn be a coheir sequence over M of realizations of p. Then there is a coheir tree
indexed by ω≤n, any path of which, read in the direction of the root, realizes tp(b0 . . . bn/M),
and descending comb of which, read in lexicographic order, begin a canonical Morley sequence
in q(x).

Proof. We need the following claim:

Claim 3.4.4. If a |⌣
CK

M
b and I is a coheir tree in tp(b/M), then there is some I ′ ≡M I with

a |⌣
CK

M
I ′ (so in particular I ′ |⌣

u

M
a) each term of which satisfies tp(b/Ma).
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Proof. Let I = {bη}η∈ω≤n ; we find I ′ = {b′η}η∈ω≤n as desired. The proof is by downward
induction on k: suppose {b′η}η⊵ζn−k

is already constructed, and we construct {b′η}η⊵ζn−(k+1)
.

First, {b′η}η▷ζn−(k+1)
comes directly from the chain condition. Second, by left extension for

|⌣
u, find some copy J of {b′η}η▷ζn−(k+1)

over M with J |⌣
u

M
{b′η}η▷ζn−(k+1)

and some arbitrary
term of J satisfying the conjugate to M{b′η}η▷ζn−(k+1)

of tp(bζn−(k+1)
/M{bη}η▷ζn−(k+1)

) (that
is, qk+1(x)|M{b′η}η▷ζn−(k+1)

from Definition 3.4.2). Then use the chain condition to find some

J ′ ≡M{b′η}η▷ζn−(k+1)
J with J ′ ≡Ma {b′η}η▷ζn−(k+1)

and a |⌣
CK

M
{b′η}η▷ζn−(k+1)

J ′. Finally, using

monotonicity on the right, discard all the terms of J ′ other than the one corresponding to
the chosen term of J , to obtain b′ζn−(k+1)

.

Now by induction, it suffices to show this for a coheir sequence b0 . . . , bn+1 assuming
In = (bη)η∈ω≤n is already constructed for b0 . . . , bn. First, we find a long coheir sequence
{I in}αi=0 of realizations of tp(In/M) so that each node of Iγn satisfies q(x)|M{Iin}i<γ

; then
having taken it long enough, we can find a coheir Morley sequence {I in}ωi=0 with the same
property, preserving the condition on descending combs. (Any descending comb inside of
these copies will either lie inside of one copy of In, so will of course begin a descending
Morley sequence inside of q(x) by the induction hypothesis, or will consist of a descending
comb inside one copy I in followed by an additional node of a later copy Ijn for i < j, which
will indeed continue the Morley sequence in q(x) begun by the previous nodes.) Suppose
{I in}i<γ already constructed; taking a = {I in}i<γ in the above claim and b |= q(x)|M{Iin}i<γ

,
we can choose Iγn to be the I ′ given by the claim.

Now let qn+1 be a global extension, finitely satisfiable inM , of tp(bn+1/Mb0 . . . bn). Then
we take b |= qn+1(x)|M{Iin}∞i=0

as the new root, guaranteeing the condition on paths. Now
reindex accordingly.

We can now prove Theorem 3.4.2. Let q(x) be a canonical coheir extension of tp(b/M)
and k the degree of Kim-dividing for φ(x, b) witnessed by a canonical Morley sequence in
q(x). Let {bi}ni=0 be a coheir sequence overM of realizations of tp(b/M) so that {φ(x, bi)}ni=0

is consistent. Then the coheir tree given by the previous lemma gives the first n + 1 levels
of an instance of k-DCTP1: the k-dividing witnessed by canonical Morley sequences in q(x)
gives the inconsistency condition for descending combs of size k, and the consistency of
{φ(x, bi)}ni=0 gives the consistency of the paths. So if n is without bound, we must have
k-DCTP1 for φ(x, y) by compactness, and thus SOP2 by lemma 3.2.3. This concludes the
proof of 3.4.2.

We have some applications of this proof to a notion related to the NATP theories in-
troduced by Ahn and Kim in [3], and studied in greater depth by Ahn, Kim and Lee in
[4], assuming the NATP analogue of lemma 3.2.3. The result for NATP theories would be
interesting because while NSOP1 theories are NATP [3], as Ahn, Kim and Lee have shown
in [4], there are examples of NATP SOP1 theories. The following is the original definition
from [3]:
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Definition 3.4.3. The theory T has NATP (the negation of the antichain tree property)
if there does not exist a formula φ(x, y) and tuples {bη}η∈2<ω so that {φ(x, bσ↿n)}n∈ω is 2-
inconsistent for any σ ∈ 2ω, but for pairwise incompararable η1, . . . , ηl ∈ 2<ω, {φ(x, bηi)}li=1

is consistent.

In [4], Ahn, Kim and Lee define a theory to have k-ATP if the above fails replacing 2-
inconsistency with k-inconsistency, and show that for any k ≥ 2, a theory fails to be NATP
(that is, has 2-ATP) if and only if it has k-ATP. That is, they show the analogue for NATP
theories of results of Kim and Kim in [64] on NSOP2 theories, but of not those claimed by
Chernikov and Ramsey in [28], nor of the above Lemma 3.2.3. One might ask whether, for
any k, the following definition is equivalent to the failure of NATP:

Definition 3.4.4. The theory T has k-DCTP2 if there exists a formula φ(x, y) and tuples
{bη}η∈2<ω so that {φ(x, bσ↿n)}n∈ω is k-inconsistent for any σ ∈ 2ω, but for any descending
comb η1 . . . , ηl ∈ 2<ω, {φ(x, bηi)}li=1 is consistent.

If so, then the following applies to NATP theories:

Theorem 3.4.5. Let T be a theory so that, for all k ≥ 2, T does not have k-DCTP2. Let
M be any model and b any tuple. Then there is a global type extending tp(b/M), finitely
satisfiable in M , so that for any formula φ(x, y) with parameters in M , if coheir Morley
sequences in this type do not witness Kim-dividing of φ(x, b), no coheir Morley sequence
over M starting with b witnesses Kim-dividing of φ(x, b) over M .

This follows from the same construction. The following corollary is standard; see Corol-
lary 3.16 of [27] for a similar argument:

Corollary 3.4.5.1. If, for all k ≥ 2, T does not have k-DCTP2, then Kim-forking (with re-
spect to coheir Morley sequences) coincides with Kim-dividing (with respect to coheir Morley
sequences).

3.5 Conant-independence in NSOP2 theories

We introduce a notion of independence which will generalize, in the proof of the main result
of this chapter, the role played by |⌣

a in the free amalgamation theories introduced in [32].

The notation |⌣
K∗

comes from the related notion of Kim-independence from [52], |⌣
K ; a

similar notion involving dividing with respect to all (invariant) Morley sequences is suggested
in tentative remarks of Kim in [60].

Definition 3.5.1. Let M be a model and φ(x, b) a formula. We say φ(x, b) Conant-divides
over M if for every coheir Morley sequence {bi}i∈ω over M starting with b, {φ(x, bi)}i∈ω is
inconsistent. We say φ(x, b) Conant-forks over M if and only if it implies a disjunction of
formulas Conant-dividing over M . We say a is Conant-independent from b over M , written
a |⌣

K∗

M
b, if tp(a/Mb) does not contain any formulas Conant-forking over M .
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Note that this definition differs from the standard definition of Conant-independence
given in Chapter 1, in that it uses coheir Morley sequences rather than invariant Morley
sequences. In [70] Alex Kruckman and the author show how to carry out this proof with the
standard Conant-independence. We may also dualize Theorem 3.10 of [66].

Proposition 3.5.1. In any theory T , Conant-forking coincides with Conant-dividing for
formulas, and |⌣

K∗
has right extension.

Proof. We see first of all that Conant-dividing is preserved under adding and removing
unused parameters: it suffices to show that if |= ∀xφ(x, a) ↔ φ′(x, ab) then φ(x, a) Conant-
divides over M if and only if φ′(x, ab) Conant-divides over M . Let {aibi}i∈ω be a coheir
Morley sequence starting with ab witnessing the failure of Conant-dividing of the latter;
then {ai}i∈ω witnesses the failure of Conant-dividing of the former. Conversely, let {ai}i∈ω
be a coheir Morley sequence starting with a witnessing the failure of Conant-dividing of
φ(x, a); then by Claim 3.3.3 and an automorphism there are {bi}i∈ω so that {aibi}i∈ω is
a coheir Morley sequence starting with ab, and this will witness the failure of Conant-
dividing of φ′(x, ab). The result is now standard, following, say, the proof in [52] of the
analogous fact for Kim-dividing under Kim’s lemma. Suppose φ(x, b) Conant-forks over M
but does not Conant-divide over M ; by the above we can assume it implies a disjunction of
the form

∨n
i=1 φi(x, b) where φi(x, b) Conant-divides over M . Let {bi}i∈ω be a coheir Morley

sequence starting with b witnessing the failure of Conant-dividing, so there is some a realizing
{φ(x, bi)}i∈ω. Then by the pigeonhole principle, there is some 1 ≤ k ≤ n so that a realizes
infinitely many of the φk(x, bi). By an automorphism this contradicts Conant-dividing of
φk(x, b).

Right extension is standard and exactly as in Lemma 3.3.6: if a |⌣
K∗

M
b but there is

no a′ ≡Mb a with a′ |⌣
K∗

M
bc, then tp(a/Mb) must imply a disjunction of formulas with

parameters in Mbc Conant-forking over M ; some formula in tp(a/Mb) must then imply this
disjunction, which will then Conant-fork over M , contradicting a |⌣

K∗

M
b.

The following is immediate from Theorem 4.3:

Corollary 3.5.1.1. Let T be NSOP2. Then a formula Conant-divides (so Conant-forks)
over M if and only if it Kim-divides with respect to some (any) canonical Morley sequence.

We develop the theory of Conant-independence in NSOP2 theories in analogy with the
theory of Kim-independence in NSOP1 theories.

Proposition 3.5.2. (Canonical Chain Condition): Let T be NSOP2 and suppose a |⌣
K∗

M
b.

Then for any canonical Morley sequence I starting with b, we can find some I ′ ≡Mb I
indiscernible over a; any such I ′ will satisfy a |⌣

K∗

M
I ′.

Proof. This is similar to the proof of, say, the analogous fact about Kim-independence in
NSOP1 theories (Proposition 3.21 of [52]). The existence of such an I ′ follows from the
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previous corollary by Ramsey and compactness. To get a |⌣
K∗

M
I ′, let I ′ = {bi}i∈ω; it suf-

fices to show a |⌣
K∗

M
b0 . . . bn−1 for any n. But {binbin+1 . . . bin+(n−1)}i∈ω is a coheir Morley

sequence over M starting with b0 . . . bn−1, each term of which satisfies {b0 . . . bn−1/Ma}, so
a |⌣

K∗

M
b0 . . . bn−1 follows.

Theorem 3.5.3. Let T be NSOP2. Then Conant-independence is symmetric.

Proof. Suppose otherwise, so for some a, b ∈ M, a |⌣
K∗

M
b but b is Conant-dependent on a

overM . We use a |⌣
K∗

M
b to build trees as in the proof of symmetry of Kim-independence for

NSOP1 theories (the construction is Lemma 5.11 of [52].) Specifically, what we want is, for
any n, a tree (In, Jn) = ({aη}η∈ω≤n , {bσ}σ∈ωn), infinitely branching at the first n + 1 levels
and then with each aσ for σ ∈ ωn at level n + 1 followed by a single additional leaf bσ at
level n+ 2, satisfying the following properties:

(1) For η ⊴ σ, aηbσ ≡M ab
(2) For η ∈ ω<n, the subtrees above η form a canonical coheir sequence indiscernible over

aη, so by Proposition 3.5.2, aη is Conant-independent over M from those branches taken
together.

Suppose (In, Jn) already constructed; we construct (In+1, Jn+1). We see that the root
a∅ of (In, Jn) is Conant-independent from the rest of the tree, (In, Jn)

∗: for n = 0 this is
just the assumption a |⌣

K∗

M
b, where we allow a∅b∅ = ab, while for n > 0 this is (2). So by

extension we find a′∅ ≡M(InJn)∗ a∅ (so guaranteeing (1)), to be the root of (In+1, Jn+1), with

a |⌣
K∗

M
InJn. Then by Proposition 3.5.2, find some canonical Morley sequence {(In, Jn)i}i∈ω

starting with (In, Jn) indiscernible over Ma′∅, guaranteeing (2), and reindex accordingly.
Now let φ(x, a) ∈ tp(b/Ma) (so φ(x, y) is assumed to have parameters in M) witness the

Conant-dependence of b on a over M and let k be the (strict) bound supplied by Theorem
4.3. We show In gives the first n + 1 levels of an instance of k-DCTP1 for φ(x, y), giving a
contradiction to NSOP2 by compactness and lemma 3.2.3. Consistency of the paths comes
from (1). As for the inconsistency of a descending comb of size k, it follows from (2) (and
the same reasoning as in the proof of Lemma 3.4.3) that a descending comb forms a coheir
sequence, so the inconsistency follows by choice of k.

Note that by constructing a tree of size κ and using an Erdős-Rado version of fact 3.2.2
(see Lemma 5.10 of [52] for a result of this kind for similar kind of indiscernible tree, itself
based on Theorem 1.13 of [45]), we could have assumed the tree we constructed in the
above proof to be strongly indiscernible. It follows that we could have only used that if
a canonical Morley sequence witnesses Kim-dividing of a formula, then so does any coheir
Morley sequence; the statement of Theorem 4.3 is somewhat stronger. (In fact, by using
a local version of the chain condition–if a |⌣

K∗

M
b and |= φ(a, b), then there is some coheir

Morley sequence I = {bi}i∈ω so that bi ≡M b, |= φ(a, bi) for i ∈ ω, and a |⌣
K∗

M
I–we could

have avoided Theorem 4.3 altogether up to this point, but we have not yet found a suitable
replacement for the below “weak independence theorem” that does not require it. We leave
the details to the reader.)
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We next aim to prove a version of the “weak independence theorem.” To formulate this,
we need the following strengthening of Lemma 3.4.1:

Lemma 3.5.4. Let p(x) be a type over M . Then there is some global extension q(x) of p(x)
so that, for all tuples b ∈ M if c ∈ M with c |= q(x)|Mb, then for any a ∈ M there is a′ ≡Mc a
with a′ ∈ M so that tp(a′c/Mb) extends to a canonical coheir of tp(a′c/M) = tp(ac/M). So
in particular, q(x) is a canonical coheir of p(x).

Proof. Working again in a very large M′ ≻ M, find M1 ≡M M with M |⌣
CK

M
M1 using full

existence for |⌣
CK. Find a realization c′′ of p(x) in M1 and let q(x) be its type over M. Now

suppose b ∈ M and c ∈ M with c |= q(x)|Mb, and let a ∈ M. Then there is some a′′ ∈ M1

with a′′c′′ ≡M ac. Because c′′ ≡Mb c, there is some a′ ∈ M with a′′c′′ ≡Mb a
′c. Together

with a′′c′′ ≡M ac, it follows that a′ ≡Mc a. And tp(a′c/Mb) extends to tp(a′′c′′/M), which it
remains to show is canonical. But by right monotonicity, M |⌣

CK

M
a′′c′′, so the result follows

by left monotonicity (see also the proof of Lemma 3.4.1).

Definition 3.5.2. We call q(x) as in Lemma 3.5.4 a strong canonical coheir, and a coheir
Morley sequence in it a strong canonical Morley sequence.

The proof of the following is as in Proposition 6.10 of [52]:

Proposition 3.5.5. (Weak Independence Theorem) Assume T is NSOP2. Let a1 |⌣
K∗

M
b1,

a2 |⌣
K∗

M
b2, a1 ≡M a2, and tp(b2/Mb1) extends to a strong canonical coheir q(x) of tp(b2/M).

Then there exists a realization a of tp(a1/Mb1) ∪ tp(a2/Mb2) with a |⌣
K∗

M
b1b2.

Proof. We start with the following claim, proven exactly as in [52] but with canonical rather
than invariant Morley sequences:

Claim 3.5.6. There exists some b′2 with a1b
′
2 ≡M a2b2 and a1 |⌣

K∗

M
b1b

′
2.

Proof. It is enough by symmetry of |⌣
K∗

to find b′2 with a1b
′
2 ≡M a2b2 and b1b

′
2 |⌣

K∗

M
a1. If

p(x, a2) = tp(b2/Ma2) (leaving implied, throughout the proof of this claim, any parameters
inM in types and formulas), then by a2 |⌣

K∗

M
b2 and symmetry we have b2 |⌣

K∗

M
a2, so because

a1 ≡M a2 we know that p(x, a1) contains no formulas Conant-forking over M . It suffices to
show consistency of

p(x, a1) ∪ {¬φ(x, b1, a1) : φ(x, y, a1) Conant-forks over M}
Otherwise, by compactness and equivalence of Conant-forking with Conant-dividing, we

must have p(x, a1) ⊢ φ(x, b1, a1) for some φ(x, y, z) with φ(x, y, a1) Conant-dividing over M .
By symmetry, b1 |⌣

K∗

M
a1. So Proposition 3.5.2 yields a canonical Morley sequence {ai1}i∈ω

starting with a1 and indiscernible over Mb1. So

ω⋃
i=0

p(x, ai1) ⊢ {φ(x, b1, ai1)}i∈ω
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But because p(x, a1) contains no formulas Conant-dividing overM and {ai1}i∈ω is a canonical
Morley sequence,

⋃∞
i=0 p(x, a

i
1) is consistent, so {φ(x, b1, ai1)}i∈ω and therefore {φ(x, y, ai1)}i∈ω

is consistent. But this contradicts the fact that φ(x, y, a1) Conant-divides over M .

We now complete the proof of the proposition. Let p2(x, b2) = tp(a2/Mb2) (with pa-
rameters in M left implied); we have to show that tp(a1/Mb1) ∪ p2(x, b2) has a realiza-
tion a with a |⌣

K∗

M
b1b2. So for b′′2 ≡Mb1 b2 with b′′2 |= q(x)|Mb1b′2

, it suffices to show that

tp(a1/Mb1)∪p2(x, b′′2) has a realization a with a |⌣
K∗

M
b1b

′′
2. Using b

′′
2 ≡M b2 ≡M b′2, we find b

′
1

with b′1b
′′
2 ≡M b1b

′
2; using Lemma 3.5.4, we can assume tp(b′1b

′′
2/Mb1b

′
2) extends to a canonical

coheir of its restriction to M . So b′1b
′′
2, b1b

′
2 begins a canonical Morley sequence I over M ,

and by Proposition 3.5.2 and an automorphism, there is some a ≡Mb1b′2
a1 with a |⌣

K∗

M
I

and therefore a |⌣
K∗

M
b1b

′′
2, and with I indiscernible over Ma. By a ≡Mb1 a1 we have that a

realizes tp(a1/Mb1), and by ab′′2 ≡M ab′2 ≡M a1b
′
2 ≡M a2b2 we have that a realizes p2(x, b

′′
2).

3.6 NSOP2 and NSOP1 theories

We are now ready to prove that if T is NSOP2, it is NSOP1. The proof follows Conant’s proof
(Theorem 7.17 of [32]) that certain free amalgamation theories are either simple or SOP3.
As anticipated in Section 5, |⌣

K∗
will play the role of |⌣

a, while (strong) canonical Morley
sequences will play the role of Morley sequences in the free amalgamation relation. This
makes sense, as Lemma 7.6 of [32] shows that |⌣

a is just Kim-independence with respect to
Morley sequences in the free amalgamation relation, while Conant-independence in a NSOP2

theory is Kim-independence with respect to canonical Morley sequences. Similarly to how
Conant uses free amalgamation and |⌣

a to show that a (modular) free amalgamation theory

is either simple or SOP3, we will show by strong canonical types and |⌣
K∗

that if T is
NSOP2, then

T is either NSOP1 or SOP3

and therefore must be NSOP1. (In Chapter 1, we generalize Conant’s work by studying
abstract independence relations in potentially strictly NSOP1 or SOP3 theories, finding a
more general set of axioms for these relations than Conant’s free amalgamation axioms
under which the NSOP1-SOP3 dichotomy holds and showing relationships with Conant-
independence for invariant rather than coheir Morley sequences–note that in Conant’s free
amalgamation theories, this is just |⌣

a.)
We begin our proof.
Assume T is NSOP2 and suppose T is SOP1. Obviously Kim-dividing independence,

|⌣
Kd, implies |⌣

K∗
; the reverse implication would imply that |⌣

Kd is symmetric, contra-

dicting SOP1 by Fact 3.2.1. So there are a |⌣
K∗

M
b with a Kim-dividing dependent on b over

M ; let r(x, y) = tp(a, b/M), and let {bi}i∈N be a coheir Morley sequence over M starting
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with b such that {r(x, bi)}i∈ω is k-inconsistent for some k. The following corresponds to
Claim 1 of the proof of Theorem 7.17 in [32], but requires a different argument; see also [74]
and footnote 1 of Chapter 4, for another argument involving the proof of Proposition 3.14
of [52]:

Claim 3.6.1. We can assume k = 2. More precisely, there are ã, b̃ ∈ M with ã |⌣
K∗

M
b̃

and some coheir Morley sequence {b̃i}i∈N over M starting with b̃ such that, for r̃(x̃, ỹ) =:
tp(ã, b̃/M), {r̃(x, b̃i)}i∈ω is 2-inconsistent.

Proof. In particular there is no realization a′ of {r(x, bi)}i<k with a′ |⌣
K∗

M
b0 . . . bk−1. Let k

∗

be the maximal value of k without this property, and b̃ = b0 . . . bk∗−1. Then {b̃i}i∈ω =
{bik∗ . . . bik∗+k∗−1}i∈N is a coheir Morley sequence starting with b. Let a′ |⌣

K∗

M
b realize

{r(x, bi)}i<k∗ , and let r′(x, y) = tp(a′, b̃/M). Then by maximality and symmetry, there is no
realization a′′ of r′(x, b̃0) ∪ r′(x, b̃1) with b̃0b̃1 |⌣

K∗

M
a′′. So there is no coheir Morley sequence

{a′i}i∈N starting with a′, every term of which realizes r′(x, b̃0) ∪ r′(x, b̃1). But by a′ |⌣
K∗

M
b̃,

symmetry and Proposition 3.5.2, there is some Mb̃-indiscernible canonical Morley sequence
I starting with a so that I |⌣

K∗

M
b̃. So let ã be I and b̃ with b. Since r̃(x̃, b̃) = tp(I/Mb̃)

contains ∪n
i=1r

′(xi, b̃), ã and b̃ are as desired.

Now replace a with ã and b with b̃, as in claim 3.6.1; let ρ(x, y) ∈ r(x, y) = tp(a, b/M)
be such that {r(x, bi)}i∈ω is 2-inconsistent, by compactness. We have b1 |⌣

K∗

M
b0, in analogy

with Claim 2 of the proof of Theorem 7.17 of [32], because b1 |⌣
u

M
b0 and clearly |⌣

u implies

|⌣
K∗

.
Fix a strong canonical coheir extension q(x) of p(x) = tp(b/M). We wish to construct,

by induction, a configuration {b1i b2i }i∈ω with the following properties:
(1) For Jn the sequence beginning with b2i for i < n and then continuing with b1i for i ≥ n,

Jn is a strong canonical Morley sequence in q(x).
(2) For i ≤ j, b1i b

2
j ≡M b0b1

(3) b01 . . . b
1
n |⌣

K∗

M
b20 . . . b

2
n for any n ∈ ω.

Then by a |⌣
K∗

M
b (1) gives consistent sequences of instances of r(x, y), while (2) gives

inconsistent pairs by claim 3.6.1, so we can get an instance of SOP3 from this configuration
exactly as in the argument at the end of the proof of Theorem 7.17 in [32], which we will
reproduce for the convenience of the reader.

We make repeated use of symmetry for |⌣
K∗

throughout. Suppose {b1i b2i }i≤n already
constructed. We start by adding b1n+1, and then add b2n+1. If we take b1n+1 |= q(x)|Mb10b

2
0...b

1
nb

2
n

then (1) and (2) are preserved up to this point, and (3) is preserved by the following claim
(which also holds of Kim-independence in NSOP1 theories):

Claim 3.6.2. If a |⌣
K∗

M
b and tp(c/Mab) extends to anM-invariant type q(x), then ac |⌣

K∗

M
b.

Proof. By Proposition 3.5.2, let I = {bi}i<ω be an Ma-indiscernible canonical Morley se-
quence over M starting with b. Choose c∗ |= q|MIa, so for i < ω, bia ≡Mc∗ b0a = ba. Since
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I = {bi}i<ω form a coheir Morley sequence with bi ≡Mac∗ b for i < ω, ac∗ |⌣
K∗

M
b by 3.5.1, so

ac |⌣
K∗
b as c∗ |= tp(c/ab).

Now by b1 |⌣
K∗

M
b0 and the fact that J0 is still a (strong) canonical Morley sequence up to

this point, we can find a realization b∗ |⌣
K∗

M
b10 . . . b

1
n+1 of {t(b1i , y)}n+1

i=1 for t(x, y) = tp(b0b1/M)
by Proposition 3.5.2 and an automorphism. Take b∗ |= q(x)|Mb20...b

2
n
, so b∗ ≡M b∗; then this to-

gether with (3) allows us to apply Proposition 3.5.5 to the conjugate q1 of tp(b
1
0 . . . b

1
n+1/Mb∗)

under an automorphism taking b∗ to b
∗, and q2 = tp(b10 . . . b

1
n+1/Mb20 . . . b

2
n). This and an au-

tomorphism (over b20 . . . b
2
n, taking the Conant-independent joint realization of q1 and q2 to

b10 . . . b
1
n+1) gives us our desired b

2
n+1 (as the image of b∗ under this automorphism.)

Now having constructed the configuration, let an realize the consistent set of instances
of r(x, y) coming from Jn, and let di = (b1i , b

2
i ), z = (y1, y2), ϕ(x, y) = ρ(x, y1), ψ(x, z) =

ρ(x, y2). As in the proof of Theorem 7.17 of [32], these satisfy the hypotheses of the following
fact:

Fact 3.6.3. (Corrected version of proposition 7.2, [32]3)
Suppose there are sequences {ai}i<ω, {di}i<ω, and ϕ(x, y), ψ(x, y) so that
(i) |= φ(ai, dj) for all i < j and ψ(ai, dj) for all i ≥ j
(ii) for all i < j, φ(x, bi) ∪ ψ(x, bj) is inconsistent
Then T is SOP3.

So T is SOP3.
This concludes the proof of the main result of this chapter.

3Gabriel Conant, in a personal communication with the author ([31]), noted this correction to Proposition
7.2 of [32], and plans to publicize this in a future corrigendum. See also Observation 6.15 of [78] for an earlier
version of this fact, which can also be used here.
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Chapter 4

Properties of independence in NSOP3
theories

4.1 Introduction

A central program in pure model theory is to develop the theory of independence, which origi-
nated within the stable theories, beyond stability and simplicity. This has been successful for
the original notion of forking-independence within NTP2 theories : for example, Chernikov
and Kaplan, in [27], show that forking coincides with dividing in NTP2 theories; Ben-Yaacov
and Chernikov, in [113], give an independence theorem for forking-independence in NTP2

theories that is improved by Simon in [104], and Chernikov, in [26], studies simple types in
NTP2 theories and gives a characterization of NTP2 theories in terms of Kim’s lemma. In
a different direction, Kaplan and Ramsey in [52] extend the original theory of independence
in simple theories to NSOP1 theories by introducing the notion of Kim-independence, de-
scribed as forking-independence “at a generic scale.” Kaplan and Ramsey, in [52], show, using
work of Chernikov and Ramsey in [28], that symmetry of Kim-independence characterizes
the property NSOP1; they also show that the independence theorem for Kim-independence
characterizes NSOP1. To give examples of further consequences of NSOP1 for the theory of
Kim-independence, Kaplan and Ramsey in [53] give a characterization of NSOP1 in terms
of transitivity, Kaplan, Ramsey and Shelah in [54] give a characterization in terms of lo-
cal character; Dobrowolski, Kim and Ramsey in [39] and Chernikov, Kim and Ramsey in
[6] study independence over arbitrary sets in NSOP1 theories. Kruckman and Ramsey, in
[71], prove an improved independence theorem, developed further by Kruckman, Tran and
Walsberg in the appendix of [72]. Kim ([63]) initiates a theory of canonical bases. For ex-
tensions to positive logic, see [38], [51], [5]; see also [17] for extensions of Kim-independence
to NTP2 theories. Beyond NSOP1 and NSOP2, the author in Chapter 3 develops a theory
of independence in NSOP2 theories and uses this to show that every NSOP2 theory is in
fact NSOP1, and Kim and Lee, in [66], use remarks by the author in Chapter 3 to develop
Kim-forking and Kim-dividing in the NATP theories introduced by Ahn and Kim in [3] and



CHAPTER 4. PROPERTIES OF INDEPENDENCE IN NSOP3 THEORIES 85

further devloped by Ahn, Kim and Lee in [4], as well as the related N-k-DCTP2 theories
introduced by the author in Chapter 3.

However, much remains to be understood about the theory of independence in Shelah’s
strong order hierarchy, NSOPn, for n ≥ 3. In Chapter 1, the author relativizes the theory
of Kim-indpendence in [28], [52] by developing a theory of independence relative to abstract
independence relations generalizing the free amalgamation axioms of [32]; though the the-
ories to which this result applies may be strictly NSOP4 (NSOP4 and SOP3) as well as
NSOP1, NSOP4 is not actually used in the result. The author also observes in the same
chapter using the generalization in Chapter 3 of the arguments of [32] that theories pos-
sessing independence properties with no known NSOP4 counterxamples–symmetric Conant-
independence and the strong witnessing property that generalizes Kim’s lemma–cannot be
strictly NSOP3. Conant-independence, which can be described as forking-independence at
a maximally generic scale and is grounded in the strong Kim-dividing of [54], is introduced
in that chapter (based on a similar notion with the same name developed in Chapter 3
to show the equivalence of NSOP1 and NSOP2) as a potential extension of the theory of
Kim-independence beyond NSOP1. There the author shows that a theory where Conant-
independence is symmetric must be NSOP4, and characterizes Conant-independence in most
of the known examples of NSOP4 theories, where it is symmetric. This leaves open the
question of whether Conant-independence is symmetric in any NSOP4 theory, a question
intimately related to the question of whether any NSOP3 theory is NSOP2. In [55], Kaplan,
Ramsey and Simon have recently shown that all binary NSOP3 theories are simple, by de-
veloping a theory of independence for a class of theories containing all binary theories. In
Chapter 5 the author develops the independence relations |⌣

ðn , based on the same idea of

forking-independence at a maximally generic scale, shows that any theory where |⌣
ðn is sym-

metric must be NSOP2n+1+1, and characterizes |⌣
ðn in the classical examples of NSOP2n+1+1

theories, leaving open the question of whether |⌣
ðn is symmetric in any NSOP2n+1+1 theory.

(Demonstrating robustness of the result, the author proves a similar result for left and right
transitivity.) In [81], Malliaris and Shelah initiate a structure theory for NSOP3 theories,
though instead of a theory of independence along the lines of forking-independence or Kim-
independence, they show symmetric inconsistency for higher formulas, a result on sequences
of realizations of two invariant types yielding inconsistent instances of two formulas, rather
than any kind of indiscernible sequence witnessing the dividing of a single formula. Malliaris,
in [78], also investigates the graph-theoretic depth of independence in NSOP3 theories. The
pressing question remains, for n ≥ 3: using the assumption that T is NSOPn (and possibly
some additional assumptions that are not already known to collapse NSOPn into NSOP1),
can we show any properties of T that fit into the program of generalizing the properties of
independence in stable or simple theories, as was done for NSOP1 and NSOP2 theories?

The aim of this chapter is to show that this question is tractable for NSOP3 theories,
whose equivalence with NSOP1 remains open. We prove three results on NSOP3 theories,
two about the NSOP1 “building blocks” of NSOP3 theories and the independence relations
between them in the global NSOP3 structure, and one about NSOP3 theories with symmetric
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Conant-independence. All three of these results truly use NSOP3 in that they fail when
the assumption is relaxed to NSOP4 (and the first two results, though both concerning the
NSOP1 local structure, involve separate uses of NSOP3 in a sense that will become apparent.)
The first and third result will also appear similar to properties known or proposed for NTP2

theories, in contrast to the open question of whether NTP2∩NSOPn coincides with simplicity
for n ≥ 3, which would suggest that NSOPn is much different from NTP2.

We give an outline of the chapter.
In Section 3 we generalize work of Chernikov ([26]) on simple types in NTP2 theories.

As the property N-ω-DCTP2 is a subclass of NATP which is one potential solution X to
[69]’s proposed analogy “simple : NTP2 :: NSOP1 : X,” (Chapter 3, [66]), it is to be
expected that the analogous result for “NSOP1 types” holds for N-ω-DCTP2 theories. What
is not predicted by this analogy is that the same result on NSOP1 local structure holds
in NSOP3 theories. Instead of generalizing the definition of simple types, we introduce a
definition schema for the internal properties of a (partial) type, which is more natural in
that it refers to the global properties of a structure associated with that type. (We could also
have generalized the defintion of simple types to NSOP1 and gotten the same conclusion;
see Remark 4.3.6.) We show that just as Chernikov implicitly showed in ([26]) for internally
simple types in NTP2 theories, the assumption of NSOP3 controls how internally NSOP1

types relate to the rest of the structure:

Theorem 4.1.1. Let T be NSOP3, and p(x) an internally NSOP1 type. Then p(x) is co-
NSOP1.

See Definitions 4.3.1 and 4.3.3. When T is only assumed to be NSOP4, we give an
internally simple type p(x) for which this fails.

We then interpret the proof of this result as well the results of Chernikov in [26] (and their
direct generalization to N-ω-DCTP2) in terms of the characteristic sequences introduced by
Malliaris in [77] to relate “classification-theoretic properties” of a theory to the “graph-
theoretic properties” of hypergraphs, and used by Malliaris in [76] to study Keisler’s order.
Internally to a type p(x), what the ambient theory perceives to be an instance of co-NSOP1

(an instance of NSOP1 with parameters realizing p(x)) is simply a definable hypergraph
making no reference to consistency. Model-theoretic properties of a theory will give control
of the graph-theoretic structure of hypergraphs definable in that theory, similarly to Shelah’s
classic result that an definable bipartite graph with the order property in an NSOP theory
must even have the independence property. Applied in the case where the model-theoretic
properties, such as simplicity and NSOP1, are assumed of the internal structure on p(x), this
will illuminate the proof in [26] of co-simplicity in NTP2 theories and our proof of co-NSOP1

in N-ω-DCTP2 and NSOP3 theories.
In Section 4, we discuss how internally NSOP1 types interrelate within the ambient struc-

ture of a NSOP3 theory, showing that their behavior is similar to how they would interrelate
in a globally NSOP1 theory. By the Kim-Pillay characterization of NSOP1, Theorem 9.1 of
[52], for no reasonable notion of independence could a full independence theorem hold in an



CHAPTER 4. PROPERTIES OF INDEPENDENCE IN NSOP3 THEORIES 87

SOP1 (that is, non-NSOP1) theory. However, we prove an independence theorem between
internally NSOP1 types in NSOP3 theories:

Theorem 4.1.2. Let T be NSOP3, and let p1, p2, p3 be internally NSOP1 types over M . Let
a1 ≡M a′1 ⊂ p1(M), a2 ⊂ p2(M), a3 ⊂ p3(M). If a1 |⌣

K∗

M
a2, a

′
1 |⌣

K∗

M
a3, a2 |⌣

K∗

M
a3, there is

some a′′1 with a′′1 |= tp(a1/Ma2)∪tp(a′1/Ma3). Moreover, a′′1 can be chosen with a2a3 |⌣
K∗

M
a′′1,

a2a
′′
1 |⌣

K∗

M
a3 and a3a

′′
1 |⌣

K∗

M
a2.

Here |⌣
K∗

is Conant-independence, Definition 4.2.3. Motivating this result, in an NSOP1

theory, Conant-independence coincides with Kim-independence, |⌣
K and is symmetric; com-

pare [52], Theorem 6.5, which characterizes NSOP1. (Between tuples of realizations of two
co-NSOP1 types pi, pj it coincides with Kim-diving independence.) While in proving this
result, we apply 4.1.1, it does not just follow from co-NSOP1: we exhibit internally stable
types p1, p2, p3 in an NSOP4 theory T for which this fails. This independence theorem for
internally NSOP1 types in NSOP3 theories is not only of interest to the program of extend-
ing the theory of independence beyond NSOP1 theories; it is also of interest to the question
of whether NSOP3 coincides with NSOP2 = NSOP1. One potential approach to building
a strictly NSOP3 theory (that is, one that is SOP2) is by starting with NSOP2 structures
and somehow combining them to obtain a failure of NSOP1 in the form of a failure of the
independence theorem: this result says that it is impossible to obtain an NSOP3 theory from
such a construction. It may be of interest to ask whether there is any connection between
this result on stability-theoretic independence and Theorem 7.7 of [78], which concerns the
graph-theoretic depth of independence in NSOP3 theories.

In section 5, we consider NSOP3 theories where Conant-independence is symmetric. It is
natural to assume this, as there is no known NSOP4 theory where Conant-independence or
Conant-dividing independence is not symmetric. Simon, in [104], proves an improved inde-
pendence theorem for NTP2 theories, Fact 4.5.1, and poses an existence question, Question
4.5.2, for invariant types with the same Morley sequence in NTP2 theories; an independence
theorem for forking-independence, for invariant types with the same Morley sequence in
NTP2 theories, would follow from a positive answer to this question, by Simon’s result. In
an NSOP3 theory with symmetric Conant-independence, we prove a similar independence
theorem for Conant-independence between finitely satisfiable types with the same Morley
sequence:

Theorem 4.1.3. Let T be an NSOP3 theory, and assume |⌣
K∗

is symmetric. Suppose p
and q are M-finitely satisfiable (global) types with pω|M = qω|M , and let a, b ⊇ M be small
supersets of M with a |⌣

K

M
b. Then there is c |= p(x)|a ∪ q(x)|b with c |⌣

K∗

M
ab.

This fails when T is the model companion of triangle-free graphs, which is NSOP4 with
symmetric (indeed trivial) Conant-independence. We also give an extension of this result
from finitely satisfiable types to Kim-nonforking types when Conant-dividing independence
is symmetric, which has the advantage of exploiting the full force of symmetry for Conant-
independence. While this result is again of interest to the question of extending the theory
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of independence beyond NSOP1 = NSOP2, since there is precedent (see Chapter 3) for using
facts about independence to prove the equivalence of classification-theoretic dividing lines,
it is also of interest to another open question, whether an NSOP3 theory with symmetric
Conant-independence is NSOP1.

One final remark: in Theorem 1.3.15, a strategy was suggested for proving the equivalence
of NSOP3 and NSOP2 by proving two facts that have no known NSOP4 counterexamples,
symmetry for Conant-independence and the strong witnessing property, for all NSOP4 or
even all NSOP3 theories. The results of this chapter suggest a different approach, via finding
properties of independence in NSOP3 theories that distinguish them from NSOP4 theories.

4.2 Preliminaries

Notations are standard. We will need some basic defintions and facts about some standard
relations between sets, as well as some facts about NSOP1 and NSOP3 theories.

Relations between sets
Adler, in [1], defines some properties of abstract ternary relations A |⌣M

B between sets.
In our case, we will assume M is a model, and we will only need to refer to a few of these
properties by name:

Left extension: If A |⌣M
B and A ⊆ C, there is some B′ ≡A B with C |⌣M

B′.
Right extension: If A |⌣M

B and B ⊆ C, there is some A′ ≡B A with A′ |⌣M
C.

Symmetry: If A |⌣M
B then B |⌣M

A.
Chain condition with respect to invariant Morley sequences: If A |⌣M

B and I = {Bi}i<ω

is an invariant Morley sequence over M (see below) with B0 = B, then there is I ′ ≡MB I
indiscernible over MA with A |⌣M

I ′.
We will refer to various relations between sets. For the convenience of the reader, here

is an index of the notation to be used. Kim-independence and Kim-dividing, as well as
Conant-independence and Conant-dividing, will be defined later in this section.

a |⌣
i

M
b if tp(a/Mb) extends to a global M -invariant type

a |⌣
u

M
b if tp(a/Mb) extends to a global M -finitely satisfiable type

a |⌣
f

M
b if a is forking-independent from b over M

a |⌣
K

M
b if a is Kim-independent from b over M

a |⌣
K∗

M
b if a is Conant-independent from b over M

a |⌣
Kd

M
b if tp(a/Mb) contains no formulas Kim-dividing over M

a |⌣
K∗d

M
b if tp(a/Mb) contains no formulas Conant-dividing over M .

We will use |⌣
K+

and |⌣
K+u as ad-hoc notations in proofs; these will be defined in the

course of those proofs.
We give an overview of some basic definitions. A global type p(x) is a complete type over

the sufficiently saturated model M. For M ≺ M, a global type p(x) is invariant over M if
φ(x, b) ∈ p(x) and b′ ≡M b implies φ(x, b′) ∈ p(x). One class of types invariant over M is
the class of types that are finitely satisfiable over M , meaning any formula in the type is
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satisfied by some element of M . We say an infinite sequence {bi}i∈I , is an invariant Morley
sequence over M (in the type p(x)) if there is a fixed global type p(x) invariant over M so
that bi |= p(x)|M{bj}j<i

for i ∈ I. If p(x) is finitely satisfiable overM , we say {bi}i∈I is a coheir
Morley sequence or finitely satisfiable Morley sequence over M . Invariant Morley sequences
over M are indiscernible over M , and the EM-type of an invariant Morley sequence over
M depends only on p(x). For p(x), q(y) M -invariant types, p(x) ⊗ q(y) is defined so that
ab |= p(x)⊗ q(y)|A for M ⊆ A when b |= q(y)|A and a |= p(x)|Ab.

Both |⌣
i and |⌣

u have right extension, but it is sometimes advantageous to work with
coheir Morley sequences rather than general invariant Morley sequences because |⌣

u is also
known to have left extensions.

Kim-indepedence and NSOP1

We assume knowledge of basic simplicity theory and the definition of forking-
independence. An extension of the theory of independence from simple theories to
NSOP1 theories was developed by Kaplan and Ramsey in [52], via the definition of
Kim-independence

Definition 4.2.1. A theory T is NSOP1 if there does not exist a formula φ(x, y) and tuples
{bη}η∈2<ω so that {φ(x, bσ↿n)}n∈ω is consistent for any σ ∈ 2ω, but for any η2 ⊵ η1 ⌢ ⟨0⟩,
{φ(x, bη2), φ(x, bη1⌢⟨1⟩)} is inconsistent. Otherwise it is SOP1.

Definition 4.2.2. ([52]) A formula φ(x, b) Kim-divides overM if there is an invariant Mor-
ley sequence {bi}i∈ω starting with b (said to witness the Kim-dividing) so that {φ(x, bi)}i∈ω
is inconsistent. A formula φ(x, b) Kim-forks over M if it implies a (finite) disjunction of
formulas Kim-dividing over M . We write a |⌣

K

M
b, and say that a is Kim-independent from

b over M if tp(a/Mb) does not include any formulas Kim-forking over M .

Kim-independence in NSOP1 theories behaves, in many ways, like forking-independence
in simple theories.

Fact 4.2.1. ([52]) Let T be NSOP1. Then for any formula φ(x, b) Kim-dividing overM , any
invariant Morley sequence over M starting with b witnesses Kim-dividing of φ(x, b) over M .
Conversely, suppose that for any formula φ(x, b) Kim-dividing overM , any invariant Morley
sequence (even in a finitely satisfiable type) over M starting with b witnesses Kim-dividing
of b over M . Then T is NSOP1.

It follows that Kim-forking coincides with Kim-dividing in any NSOP1 theory.

Fact 4.2.2. ([28], [52]) The theory T is NSOP1 if and only if |⌣
K is symmetric.

The independence theorem for Kim-independence in NSOP1 theories generalizes that of
[65] for simple theories, which in turn generalizes stationarity of forking-independence (the
uniqueness of nonforking-extensions) in stable theories. Part of our argument for the results
of section 4 will require re-proving the independence theorem in the context of co-NSOP1

types. For motivation, we give the original statement:
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Fact 4.2.3. ( Independence theorem, [52].) Let T be NSOP1. Then if a1 |⌣
K

M
b1, a2 |⌣

K

M
b2,

b1 |⌣
K

M
b2, and a1 ≡M a2, there is some a |⌣

K

M
b1b2 with a ≡Mbi ai for i = 1, 2.

Conant-independence
Conant-independence was introduced in a modified form in Chapter 3 to show that

NSOP2 theories were NSOP1. The standard version was defined in Chapter 1, based on
Conant’s implcit use of the concept in [32] to classify modular free amalgamation theories.
It was proposed by the author of this chapter as an extension of Kim-independence beyond
NSOP1 theories.

Definition 4.2.3. Let M be a model and φ(x, b) a formula. We say φ(x, b) Conant-divides
over M if for every invariant Morley sequence {bi}i∈ω over M starting with b, {φ(x, b)}i∈ω
is inconsistent. We say φ(x, b) Conant-forks over M if and only if it implies a disjunction of
formulas Conant-dividing over M . We say a is Conant-independent from b over M , written
a |⌣

K∗

M
b, if tp(a/Mb) does not contain any formulas Conant-forking over M .

In Chapter 1 it is shown that if Conant-independence is symmetric in a theory T , T is
NSOP4. In the same chapter, Conant-indepedence is characterized for most of the known
examples of NSOP4 theories, where it is shown to be symmetric. It is open whether Conant-
independence is symmetric in all NSOP4 theories, or even all NSOP3 theories. It is also open
whether theories with symmetric Conant-independence display the classification-theoretic
behavior characteristic of theories with a good notion of free amalgamation, first studied in
[32] and later improved upon in Chapter 1: either NSOP1 or SOP3, and either simple or
TP2.

Classification theory
In this chapter, we will be interested in NSOP3 theories and how they differ from NSOP4

theories:

Definition 4.2.4. Let n ≥ 3. A theory T is NSOPn (that is, does not have the n-strong
order property) if there is no definable relation R(x1, x2) with no n-cycles, but with tuples
{ai}i∈ω with |= R(ai, aj) for i < j. Otherwise it is SOPn.

We will need nothing about NSOP4, other than that the below counterexamples to our
results on NSOP3 theories are NSOP4, because they are free amalgamation theories; see [32],
Theorem 4.4. We will need the following syntactic fact about NSOP3, proven independently
by Malliaris (Conclusion 6.15, [78]) and Conant ([32], Proposition 7.2 and proof of Theorem
7.17):

Fact 4.2.4. Suppose there is an array {ai, bi}i<ω and formulas φ(x, y), ψ(x, z) with
(1) For m < n, {φ(x, bi)}i≤m ∪ {ψ(x, ai)}m<i≤n is consistent.
(2) For i < j, {φ(x, ai), ψ(x, bj)} is inconsistent.
Then T is SOP3.

Finally NTP2 and N-ω-DCTP1 will play a secondary role in this chapter, but we will
discuss some results on these classes that motivate our main results on NSOP3 theories.
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Definition 4.2.5. A theory T is NTP2 (that is, does not have the tree property of the second
kind) if there is no array {bij}i,j∈ω and formula φ(x, y) so that there is some fixed k so that,
for all i, {φ(x, bij)}j∈ω is inconsistent, but for any σ ∈ ωω, {φ(x, biσ(i))}i∈ω is consistent.

The class NATP was introduced in [3] and further developed in [4] as a generalization
of NTP2; it has been proposed as one possible answer to a question of Kruckman [69], on
what class can be viewed to generalize properties of NIP and NSOP1 theories the same way
NTP2 theories generalize properties of NIP and simple theories. It is still open to what
extent the analogy holds; for example, whether Kim-forking coincides with Kim-dividing
in NATP theories, as forking coincides with dividing in NTP2 theories. However, for N-ω-
DCTP2 theories, introduced in Chapter 3 and further developed in [66], the equivalence of
Kim-forking and Kim-dividing was proven in [66] after being proven for coheir Kim-dividing
and coheir Kim-forking in Chapter 3.

Definition 4.2.6. (Proposition 2.51, item IIIa, [102]). A list η1, . . . , ηn ∈ ω<ω is a de-
scending comb if and only if it is an antichain so that η1 <lex . . . <lex ηn, and so that, for
1 ≤ k < n, η1 ∧ . . . ∧ ηk+1 ◁ η1 ∧ . . . ∧ ηk.

Definition 4.2.7. The theory T has k-DCTP2 if there exists a formula φ(x, y) and tuples
{bη}η∈2<ω so that {φ(x, bσ↿n)}n∈ω is k-inconsistent for any σ ∈ 2ω, but for any descending
comb η1 . . . , ηl ∈ 2<ω, {φ(x, bηi)}li=1 is consistent. If T does not have k-DCTP2 for any k, it
has N-ω-DCTP2.

4.3 Reflection principles for hypergraph sequences

Simple types were defined in [46]; then co-simple and NTP2 types were defined in [26]. We
define co-NSOP1 types and give some equivalent definitions, similarly to Definition 6.7 of
[26]. (When clear from context, when p(x) is an n-type we refer to p(Mn) by p(M).

Definition 4.3.1. A partial type p(x) over M is co-NSOP1 if it satisfies one of the following
equivalent conditions:

(1) There does not exist a formula φ(x, y) ∈ L(M) and tuples {bη}η∈2<ω , bη ⊂ p(M)
so that {φ(x, bσ↿n)}n∈ω is consistent for any σ ∈ 2ω, but for any η2 ⊵ η1 ⌢ ⟨0⟩,
{φ(x, bη2), φ(x, bη1⌢⟨1⟩)} is inconsistent.

(2, 2’) There does not exist a formula φ(x, y) ∈ L(M) and an array {ci,j}i=0,1,j<ω, ci,j ⊂
p(M), so that {φ(x, c0,j)}j<ω is consistent, {φ(x, c1,j)}j<ω is k-inconsistent for some k (2-
inconsistent), and c0,j ≡Mc0,<jc1,<j

c1,j for each j < ω.
(3) Kim’s lemma for Kim-dividing: For M ′ ⪰ M , and φ(x, y) ∈ L(M), if φ(x, b) Kim-

divides over M for b ⊂ p(M), then for every M ′-invariant Morley sequence {bi}i∈ω with
b0 = b, {φ(x, bi)}i∈ω is inconsistent.

Proof. This is essentially proven in Chernikov and Ramsey, [28], and Kaplan and Ramsey,
[52], so we will only give a sketch.
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(1⇔ 2⇔ 2’) Follows from the proof of Proposition 2.4 of [28] uses the proof of Proposition
5.6 of [28]) The part due to [28] shows that if there is a formula φ(x, y) ∈ L(M) and tuples
{bη}η∈2<ω , bη ⊂ p(M) so that {φ(x, bσ↿n)}n∈ω is consistent for any σ ∈ 2ω, but for any
η2 ⊵ η1 ⌢ ⟨0⟩, {φ(x, bη2), φ(x, bη1⌢⟨1⟩)} is inconsistent, then there is an array {ci,j}i=0,1,j<ω,
so that {φ(x, c0,j)}j<ω is consistent, {φ(x, c1,j)}j<ω is 2-inconsistent, and c0,j ≡Mc0,<jc1,<j

c1,j for each j < ω. The other direction due to [52] shows that if there is φ(x, y) and
{ci,j}i=0,1,j<ω, so that {φ(x, c0,j)}j<ω is consistent, {φ(x, c1,j)}j<ω is k-inconsistent for some
k, and c0,j ≡Mc0,<jc1,<j

c1,j for each j < ω, then there is a formula ψ(x, y′) ∈ L(M) (obtained
as a conjunction of instances of φ) and tuples {bη}η∈2<ω , bη ⊂ p(M) so that {ψ(x, bσ↿n)}n∈ω is
consistent for any σ ∈ 2ω, but for any η2 ⊵ η1 ⌢ ⟨0⟩, {ψ(x, bη2), ψ(x, bη1⌢⟨1⟩)} is inconsistent.
And if each bη ⊆ p(M) for p(x) a fixed partial type, the former direction even shows that
we can choose ci,j ⊆ p(M), and vice versa for the latter direction, proving the equivalence in
the co-NSOP1 case.

(3 ⇒ 2). This is basically the proof of Proposition 3.14 of [52]. Assume (2) is false; we
show (3) is false. The equivalence (1 ⇔ 2) does not use anything about the fact that M is a
model, and the failure of (1) to hold is preserved under expanding the language; therefore,
we can fix a Skolemization T Sk of T , and assume that c0,j ≡LSk

Mc0,<jc1,<j
c1,j for each j < ω. By

Ramsey’s theorem and compactness, we can choose {c̄j}j<ω M -indiscnernible in T Sk. Let
M ′ = dclSk(c̄<ωM). Choose non-principal ultrafilters Ui, i = 0, 1, containing ci,<ω, and let
the global types pi(x) = {φ(x, c) : φ(M, c) ∈ Ui}, so that each of the pi are finitely satisfiable
over M . It can be shown from c0,j ≡LSk

Mc0,<jc1,<j
c1,j that p0|M = p1|M ; let b realize this, so

b ⊆ p(M). Then {φ(x, bi)}i<ω will be consistent for {bi}i<ω a Morley sequence in p0, but
{φ(x, b′i)}i<ω will be consistent for {b′i}i<ω a Morley sequence in p1, so Kim’s lemma fails.

(2 ⇒ 3). This is the proof of Proposition 3.15 of [52]. We assume that (3) is false and
show that (2) is false. Let φ(x, b) for b ⊆ p(M) Kim-divide over M ′, winessed by a Morley
sequence in theM ′-invariant type p1. Let Morley sequences in theM ′-invariant type p0 fail to
witness Kim-dividing of φ(x, b) over M ′. Find {c0,i, c1,i}i∈Z so that (c0,i, c1,i)i∈Z |= (p0⊗p1)Z.
Then {c0,i, c1,i}0≤i<ω will be as desired.

While Chernikov ([52], Defintion 6.7) gives an additional characterization of co-simplicity
in terms of symmetry for forking-independence, it requires additional elements of the base
to belong to p(M). Giving a characterization of co-NSOP1 types in terms of symmetry
for Kim-independence would be more complicated, because defining Kim-independence over
arbitrary sets, rather than models, requires additional considerations; see [52]. However,
co-NSOP1 types over M do have a symmetry property over M , which will be useful in the
sequel:

Proposition 4.3.1. (Symmetry) Let p(x) be a co-NSOP1 type over M and a ⊂ p(M). If
a |⌣

Kd

M ′ b, then b |⌣
Kd

M
a.

Proof. Because b is not necessarily contained in p(M) construction of the original tree must
proceed like the proof of Theorem 3.5.3 (based in turn on the proof of Lemma 4.5.11 of [52])
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in taking a specially chosen Morley sequence at each stage, rather than directly following
the proof of Theorem 6.5 of [52]. Though the rest of the proof can be done as in Lemma
4.5.12 and Proposition 5.13 of [52], we give our own exposition, which only requires us to
construct a tree of countable size rather than a much larger tree.

Suppose p(M) is co-NSOP1. We begin with the following claim (which we could have
avoided by following Lemma 4.5.12 and Proposition 5.13 of [52]):

Claim 4.3.2. Let φ(x, c) Kim-divide over M for φ(x, y) ∈ L(M) and c ⊆ p(M). Then there
is a bound depending only on φ(x, y) and tp(c/M) on the size of a set {ci}n0 , ci |= tp(c/M)
for 0 ≤ i ≤ n, so that there areM-finitely satisfiable types p0 . . . pn so that ci |= pi(x)|Mc0...ci−1

for 0 ≤ i ≤ n, and {φ(x, ci)}ni=0 is consistent.

Proof. This proceeds as in the direction (2 ⇒ 3) of the previous definition (again, see
[52], Proposition 3.15). Let p0, . . . , pn be as in the claim, and let Morley sequences
in the M -invariant type q(x) ⊢ tp(c/M) witness Kim-dividing of φ(x, c) over M : for
c̄′ |= qω(x), {φ(x, ci)}i<ω is k-inconsistent for some fixed k. Find {c0,i, c1,i}0≤i≤n so that
(c0,i, c1,i)0≤i≤n |= (pn ⊗ q) ⊗ . . . ⊗ (p0 ⊗ q). Then c0,n . . . c0,0 ≡M c0, . . . cn, so {φ(x, c0,i)}ni=0

is consistent. However, c1,n, . . . , c1,0 |= q(n+1)(x), so {φ(x, c1,i)}ni=0 is k-inconsistent.
Finally, c0,0c1,0 . . . c0,i−1c1,i−1 |⌣

i

M
c0,ic1,i for all 1 ≤ i ≤ n, and c0,i ≡M c ≡M c1,i, so

c0,i ≡Mc0,0c1,0...c0,i−1c1,i−1
c1,i for all 1 ≤ i ≤ n.

Now if n is unbounded (k is fixed) this contradicts Defintion 4.3.1 (2), by compactness.

The following step, where we construct a tree, is where we must deviate from the proof of

Theorem 5.16 of [52]. We use the notation a |⌣
K+u

M
b to denote that there is a coheir Morley

sequence {bi}i<ω over M with b0 = b that remains indiscernible over Ma. We prove some
basic facts about this relation:

Claim 4.3.3. Right extension: The relation |⌣
K+u satisfies right extension: if a |⌣

K+u

M
b,

for any c there is some a′ ≡Mb a with a′ |⌣
K+u

M
bc.

Proof. Let I = {bi}i<ω be a Morley sequence in the M -finitely satisfiable type q(x), b0 = b,
that remains indiscernible over Ma. By left extension for |⌣

u there is some M -finitely
satisfiable type r(x, y) extending q(x) and tp(bc/M). Then there are c′i, i < ω c0 = c,
so that {bici}i<ω is a Morley sequence in r(x, y). By Ramsey’s theorem, compactness and
an automorphism, a′ can then be chosen so that a′ ≡Mb a, indeed so that a′ ≡MI a, and
{bici}i<ω is indiscernible over Ma.

Claim 4.3.4. Chain condition: Let I = {bi}i∈ω be an M-finitely satisfiable Morley sequence

indiscernible over Ma. Then a |⌣
K+u

M
I.

Proof. By compactness there is I ′ = {bi}i∈ω2 so that I ′|ω = I and I ′ is indiscernible overMa.
Then {b′iω . . . b′iω+j . . .}i<ω will be an M -finitely satisfiable Morley sequence starting with I ′

and indiscernible over Ma.
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Assume for contradiction that a |⌣
Kd

M
b with b ⊆ p(M), but a ̸ |⌣

Kd

M
b. We find, for all n,

a tree (In, Jn) = ({aη}η∈ω≤n , {bσ}σ∈ωn), with the first n + 1 levels In forming an infinitely
branching tree, then with each aσ for σ ∈ ωn at level n + 1 followed by a single additional
leaf bσ at level n+ 2, with the following two properties:

(1) For η ⊴ σ, |σ| = n, aηbσ ≡M ab.
(2) For η ∈ ω<n, the subtrees at η form an M -finitely satisfiable Morley sequence indis-

cernible over aη (so for I this sequence of subtrees, aη |⌣
K+u

K
I.)

For n = 0, let a∅ = a, b∅ = b; then (2) follows from the fact that |⌣
Kd easily implies

|⌣
K+u. Assume (In, Jn) already constructed; we construct (In+1, Jn+1). We see by (2)

that for (I∗n, Jn) the nodes of the tree excluding a∅, a∅ |⌣
K+u

M
I∗nJn. By Claim 4.3.3, find

a′∅ ≡MI∗nJn a∅ with a
′
∅ |⌣

K+u

M
InJn, which will be the new root of (In+1, Jn+1). Then find some

M -finitely satisfiable Morley sequence {(In, Jn)i}i∈ω starting with (In, Jn) indiscernible over
Ma′∅, giving the subtrees of (In, Jn) at a

′
∅. From a∅Jn ≡M a′∅Jn ≡M a′∅J

i
n, we will preserve

(1) by indexing accordingly, and from choice of {(In, Jn)i}i∈ω, we will preserve (2) as well.
We now find a contradiction to Definition 3.1.2; this is where, by constructing a much

larger tree, we could have just followed Lemma 4.5.12 and Proposition 5.13 of [52]. By (1),
the paths of each In are consistent: for σ ∈ ωn, {φ(x, aη)}η⊴σ is consistent, realized by bσ. But
by (2), for any k nodes η1, . . . , ηn ∈ ω<ω, forming an antichain so that η1 <lex . . . <lex ηk,
and so that, for 1 ≤ i < k, η1 ∧ . . . ∧ ηi+1 ◁ η1 ∧ . . . ∧ ηi, {aηi}ki=1 form a sequence with
aηi |⌣

i

M
aη1 . . . aηi−1

; by (1), ai ⊆ p(M). So for k the bound from Claim 4.3.2, and ηi with
these conditions (forming a descending comb, Definition 3.2.3), for ηi for 1 ≤ i ≤ k satisfying
the above property, {φ(x, aηi)}ki=1 is k-inconsistent. So by compactness, we can find a tree
{aη}η∈ω<ω with the same consistency and inconsistency properties for φ(x, y) (consistency
along the paths and inconsistency on descending combs of size k), and with bη ⊆ p(M).

We recall the following defintion and fact:

Definition 4.3.2. (Definitions 11 and 12, [105]) For tuples η, η′ ∈ ω<ω of elements of
ω<ω, we write η ∼0 η′ to mean that η has the same quantifier-free type in the language
{<lex,◁,∧} as η′. For (bη)η∈ω<ω a tree-indexed set of tuples and η = η1, . . . , ηn ∈ ω<ω an
n-tuple of elements of ω<ω, we write bη =: bη1 . . . bηn, and call (bη)η∈ω<ω strongly indiscernible
over a set A if for all tuples η, η′ ∈ ω<ω of elements of ω<ω with η ∼0 η

′, bη ≡A bη′.

Fact 4.3.5. (Theorem 16, [105]; see [96] for an alternate proof) Let (bη)η∈ω<ω be a tree-
indexed set of tuples, and A a set. Then there is (cη)η∈ω<ω strongly indiscernible over A so
that for any tuple η ∈ ω<ω of elements of ω<ω and φ(x) ∈ L(A), if |= φ(bη′) for all η′ ∼0 η,
then |= φ(cη).

Now use Fact 4.3.5 to extract a strongly indiscernible tree (cη)η∈ω<ω . Let {cj,i}j=0,1,i<ω =
{c⟨0⟩i⌢⟨j⟩}. Then {cj,i}j=0,1,i<ω is as in Defintion 3.1.2, contradiction.

We could likely have also proven Proposition 4.3.1 in the style of Definition 6.1 of [26]:
use right extension to find an |⌣

Kd-Morley sequence of a over M , indiscernible over b, and
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then developed local character and Kim’s lemma for |⌣
Kd-Morley sequences in the context of

co-NSOP1 types, [54] and [53]. Since these characterizations of co-NSOP1 are not necessary
for our main theorem on internally NSOP1 types, we leave the details to the reader.

Notions such as co-simple and co-NSOP1 types involve interaction of the types with the
rest of the structure. In the other direction, there are the simple types defined in [46], the
NIP and NTP2 types defined in [26], and the fully stable types defined in [103]. We introduce
a new schema for defining the local classification-theoretic properties of a type, which is in
some sense more natural, because it depends only on the corresponding properties for a
structure associated with the type.

Definition 4.3.3. (1) Let p(x) be a partial n-type over M . Let Lp contain an m-ary relation
symbol Rφ for each formula φ(x1, . . . , xm) ∈ L(M) with |xi| = n for i ≤ n. Then Mp is the
Lp-structure with domain p(Mn) and with Rφ(p(Mn)m) = φ(Mmn) ∩ p(Mn)m.

(2) Let P be a property of theories. Then a partial type p(x) is internally P if the theory
of Mp is P.

Remark 4.3.6. If p(x) is not just a partial type, but a formula with parameters in M ,
then the theory of Mp clearly has quantifier elimination. In this case, for p to be internally
simple, NIP, etc. is weaker than for it to be simple or NIP in the sense of [46], [26]. The case
of a definable formula is in fact all we need to find counterexamples in NSOP4 theories to
our results on the internally NSOP1 types of NSOP3 theories. In the case of a general partial
type, we could have have also considered the case where P is a property of formulas and all
quantifier-free formulas of Lp have property P . This defintion would also be weaker than the
corresponding “external” property, and our results should go through even assuming only
the quantifier-free version, by developing the theory of Kim-independence relative to only
the quantifier-free formulas.

Theorem 6.17 of [26] says that simple types are co-simple; in fact, only internal simplicity
is needed. By way of analogy, internally NSOP1 types are co-NSOP1 in ω-NDCTP2 theories;
see below. Beyond this analogy, we find that:

Theorem 4.3.7. Let T be NSOP3, and p(x) an internally NSOP1 type. Then p(x) is co-
NSOP1.

Example 4.3.8. Theorem 4.3.7 becomes false if we relax NSOP3 to NSOP4. Let T be the
model companion of (undirected) triangle-free tripartite graphs, with the partition denoted
by unary predicates P1, P2, P3. Let M be a model and p(x) = {P1(x) ∨ P2(x)}. Then T is
NSOP4, in fact a free amalgamation theory in the sense of Conant ([32]). Moreover, p(x) is
internally NSOP1, in fact, internally simple. The associated theory has quantifier elimination
in the language with unary predicates for P1, P2, Pm denoting xEm for each m ∈M , and a
binary relation symbol for the edge relation between elements of P1 and elements of P2. It is
the model companion of graphs with interpretations for the unary predicates P1, P2 and Pm,
so that P1 and P2 partition the graph and have no edges within them, there are no edges
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within Pm for any m ∈ M , Pm1 and Pm2 are disjoint for m1,m2 ∈ M with M |= m1Em2,
and for i = 1, 2 Pm is disjoint from Pi when M |= Pi(m). In this form, the theory associated
to p(x) can be easily seen to be simple (for example, check that the relation A ∩ B = C
coincides with forking-independence).

However, p(x) is not co-NSOP1: let φ(x, y) =: xEy1 ∧ xEy2. For η ∈ 2<ω, choose
bη = (b1η, b

2
η) with, for any η, ν ∈ 2<ω, biη ∈ Pi, |= ¬biηEm for i = 1, 2 and m ∈ M , and

|= b1ηEb
2
ν if and only if η and ν are incomparable. This is possible, as we create no triangles.

But φ(x, y), bη witness the failure of definition 3.1.1.

We prove Theorem 4.3.7. Again following the arguments of Chernikov and Ramsey [28]
and Kaplan and Ramsey [52], we start by carrying out the arguments of Definition 3.1, (1
⇐ 2’ ⇐ 3 (for 2-Kim-dividing)) internally to Mp. Since the consistency in the defintion of
(1) need not be witnessed by a realization of p(x), we will no longer be dealing with actual
consistency or inconsistency of instances of φ(x, y), but rather the definable relations in Mp

corresponding to this consistency, treated only as a definable hypergraph. This hypergraph
will be part of the characteristic sequence of φ(x, y), introduced by Malliaris in [77].

Suppose p(x) is not co-NSOP1. Let φ(x, y) ∈ L(M), bη ⊆ p(M), η ∈ 2ω be as in Defintion
3.1.1. By compactness, we can replace 2<ω with 2<κ, for large κ. Define Rn(y1, . . . , yn) =:
R∃xφ(x,y1)∧...∧φ(x,yn)(y1, . . . , yn) ∈ Lp. Then Mp |= Rn(bη1 , . . . , bηn) for η1 ◁ . . . ◁ ηn ∈ 2<κ,
but for any η2 ⊵ η1 ⌢ ⟨0⟩, Mp |= R2(bη2 , bη1⌢⟨1⟩).

For a sequence of relations {Rn}n<ω on a set, where Rn is an n-ary relation, call a
sequence {ai}i∈I a clique if for i1, . . . , in ∈ I, (a1, . . . ain) ∈ Rn, and an n-anticlique if for
i1, . . . , in ∈ I, (a1, . . . ain) /∈ Rn. Choose a Skolemization of Mp. We show that there is an
array {ci,j}i=0,1,j<ω, ci,j ∈ Mp, so that {c0,j}j<ω is a clique, {c1,j}j<ω is a 2-anticlique, and

c0,j ≡
LSk
p

c0,<jc1,<j c1,j for each j < ω. We may follow the proof of [28], Proposition 5.6, that we
cited in the direction (1⇒ 2’) of Definition 3.1. We sketch the argument: we will draw the
ci,j from {bη}η∈ωκ . Suppose that, for 1 ≤ i ≤ n ci,0 = bλi

, and ci,1 = bηi are already chosen
to satisfy these properties, with ηj ∧ λj ▷ λi and λi ⊵ (ηi ∧ λi) ⌢ ⟨0⟩, ηi ⊵ (ηi ∧ λi) ⌢ ⟨1⟩, for
1 ≤ i < j ≤ n. Then using the pigeonhole principle, choose nodes λn+1 = λn ⌢ ⟨0⟩κ1 ⌢ ⟨1⟩,
ηn+1 = λn ⌢ ⟨0⟩κ2 ⌢ ⟨1⟩ for κ1 < κ2 < κ so that cn+1,0 = cλn+1 and cn+1,1 = cηn+1 are such

that cn+1,0 ≡
LSk
p

c0,≤nc1,≤n cn+1,1.
We next find a model M of the theory of Mp and M-invariant Morley sequences {bi}i<ω

in the M-invariant type p0 and {b′i}i<ω in the M-invariant type p1, so that b0 = b′0, {bi}i<ω

is a clique, and {b′i}i<ω is a 2-anticlique.1 As in the proof of (3 ⇒ 2) of Definition 3.1, we
follow the proof of Proposition 3.14 of [52]. By Ramsey’s theorem and compactness, we can
choose {c̄j}j<ω indiscernible in the theory of MSk

p . Let M = dclSk(c̄<ω), and let M′ ≻ M
be sufficiently saturated. Choose non-principal ultrafilters Ui, i = 0, 1, containing ci,<ω, and
let the global types pi(x) = {φ(x, c) ∈ M′ : φ(M, c) ∈ Ui}, so that each of the pi are finitely

1It was observed by Hyoyoon Lee, Byunghan Kim, and the other participants of the Yonsei University
logic seminar that the proof of Propsition 3.14 of [52] actually shows that in a SOP1 theory, there is a formula
that 2-Kim-divides for which Kim’s lemma fails. This is the “internal” version of this observation.
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satisfiable over M. It can be shown from c0,j ≡
LSk
p

c0,<jc1,<j c1,j that p0|M = p1|M; let b realize
this. Then we can choose b so that a p0-Morley sequence {bi}i<ω with b0 = b is a clique, and
a p1-Morley sequence {b′i}i<ω with b′0 = b is a 2-anticlique.

Finally, we show, using the technique of Theorem 7.17 of [32], that the Rn have the
compatible order property (SOP3), Definition 3.10 of [77]. By compactness and Fact 4.2.4,
the following will translate into an instance of SOP3 in T , a contradiction. We find an array
c0, . . . , cn, . . . , d0, . . . , dn, . . ., with the following properties:

(1) For m < n, d0, . . . , dm, cm+1, . . . , cn form a Morley sequence in p0, so a clique.
(2) For m < n, cmdn begin a Morley sequence in p1, so ¬R2(cm, dn).
(3) c0, . . . , cn, . . . |⌣

K

M d0, . . . , dn, . . .
Suppose we have constructed c0, . . . , cn, d0, . . . , dn satisfying these properties up to

n. We find cn+1, dn+1. To find dn+1, let d′n+1 |= p0(x)|Md0...dn so d′n+1 |⌣
K

M d0, . . . , dn.

By (3), c0, . . . , cn |⌣
K

M d0, . . . , dn. Finally, if d′′n+1 |= p1(x)|Mc0...cn , by symmetry of

Kim-independence, Fact 4.2.2, c0 . . . cn |⌣
K d′′n+1. So by the independence theorem

(fact 4.2.3) and an automorphism, there is dn+1 |= p0(x)|Md0...dn ∪ p1(x)|Mc0...cn with
c0, . . . , cn |⌣

K

M d0, . . . , dndn+1. Finally choose cn+1 |= p0(x)|Mc0,...cnd0...dn . It remains to show
that this preserves (3). This follows from the following claim:

Claim 4.3.9. For any a, b, c, M , if a |⌣
K

M
b and tp(c/Mab) extends to an M-invariant type

q(x), then a |⌣
K

M
bc.

This follows from Claim 4.5.13 below, using the fact that |⌣
K+

= |⌣
K in the language of

that claim (Kim’s lemma, Fact 4.2.1, and compactness) and symmetry of |⌣
K (Fact 4.2.2).

This concludes the proof of Theorem 4.3.7.
This proof can be viewed as an instance of a more general phenomenon. In this proof, the

Rn are the restriction to pn(M) of the characteristic sequence of φ(x, y), defined by Malliaris:

Definition 4.3.4. ([77] Let φ(x, y) be a formula. The characteristic sequence of φ(x, y) is
the sequence of hypergraphs, on the vertices M|y|, defined by

Rn(a1, . . . , an) =: (a1, . . . , an) |= ∃x ∧n
i=1 φ(x, yi)

On the other hand, within Mp, the Rn are just a sequence of hypergraphs, and do not
describe a pattern of consistency internally toMp. Nonetheless, by showing that a particular
configuration, the compatible order property, arises among the Rn, we get a description of the
complexity of φ(x, y) in the original theory T . In [77], Malliaris introduces some hypergraph
configurations corresponding, via the characteristic sequence, to consistency patterns (in the
sense of [44]) in a first-order formula. We introduce some additional defintions to cover the
case of the tree property, ω-DCTP2, and SOP1; the first of these comes from Observation
5.20 of [77].

Definition 4.3.5. Let R∞ = (V, {Rn}n<ω) be a sequence of hypergraphs on a common set
of vertices V , where Rn is an n-ary edge relation Then R∞ has
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(1) An (ω, ω, 1)-array if there is an array {bij}i,j∈ω so that there is some fixed k so that,
for all i, {bij}j∈ω is a clique, but for any σ ∈ ωω, {biσ(i)}i∈ω is a k-anticlique. (Definition
3.4.2, [77]. By Claim 3.8, [77], TP2 is equivalence to the presence of an (ω, ω, 1)-array in
the characteristic sequence of a formula.

(2) The compatible order property if there are c0, . . . , cn, . . . , d0, . . . , dn, . . . so that for
m < n, d0, . . . , dm, cm+1, . . . , cn form a clique, while for m < n, ¬R2(cm, dn). (Definition
3.10, [77]. In Conclusion 6.15 of [77], SOP3 is shown to be equivalent to the compatible
order property in the characteristic sequence of a formula.)

(3) MTP if there is some fixed k and parameters {bη}η∈ω<ω so that for each path σ ∈
ωω, {bσ|n}n∈ω is a clique, but for each node η ∈ ω<ω, {bη⌢⟨n⟩}n∈ω is a k-anticlique. (In
Observation 5.10 of [77], the failure of a formula to be simple is observed to be equivalent to
MTP in the characteristic sequence.

(4) MSOP1 if there are parameters {bη}η∈2<ω so that {bσ↿n}n∈ω is a clique for any σ ∈ 2ω,
but for any η2 ⊵ η1 ⌢ ⟨0⟩, {bη2 , bη1⌢⟨1⟩} is a 2-anticlique.

(5) ω-MDCTP2 if for some fixed k, there are parameters {bη}η∈2<ω so that {bσ↿n}n∈ω is
a k-anticlique for any σ ∈ 2ω, but for any descending comb η1 . . . , ηl ∈ 2<ω, {x, bηi}li=1 is a
clique.

Remark 4.3.10. The letter M in MTP, MSOP1 and ω-MDCTP2 stands for Malliaris.

Note that these properties are all graph-theoretic in the sense of Malliaris, [77], referring
only to incidence patterns of the edges, rather than their consistency. They are similar
in this sense to stability or NIP, which make no reference to consistency but only ask for
graph-theoretic configurations. In [97], Shelah shows the following:

Fact 4.3.11. Let R(x, y) be an unstable formula, and assume that all Boolean combinations
of instances of R(x, y) are NSOP. Then R(x, y) has the independence property.

Note that the form of this result is as follows: if a graph has one graph-theoretic con-
figuration (instability), and an ambient model-theoretic tameness property (NSOP, indeed
quantifier-free NSOP), then it has a more complicated graph-theoretic configuration (the in-
dependence property). It was Malliaris who first implicitly asked, in the context of strength-
enings of the compatible order property (Remark 7.12, [76]), whether ambient classification-
theoretic properties imply further graph-theoretic complexity gaps for hypergraphs. In the
remainder of this section, we observe that model-theoretic tameness properties of hyper-
graph sequences that refer to consistency, such as simplicity and NSOP1, provide additional
information about their graph-theoretic structure, just as Shelah shows a gap between sim-
plicity and independence in NSOP graphs. We then further observe that the connection
between internal properties of types and external properties of theories, including the afore-
mentioned work of Chernikov on co-simplicity ([26]), can be reinterpreted in terms of these
graph-theoretic complexity gaps for model-theoretically tame hypergraphs.

Proposition 4.3.12. Let R∞ = (V, {Rn}n<ω) be sequence of hypergraphs on a common set
of vertices V , where Rn is an n-ary edge relation.
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(1) If R∞ is simple (in the hypergraph language) and has MTP, it has an (ω, ω, 1) array.
(2) If R∞ is NSOP1 and has MSOP1, then it has ω-MDCTP2 and the compatible order

property.
In fact, for (1), it suffices that no quantifier-free formula has the tree property, and

similarly for (2) and SOP1.

Example 4.3.13. If R∞ is the model companion of the empty theory in the language of
hypergraph sequences (or, say, the theory axiomatizing the basic properties of characteristic
sequences; see [77], Observation 2.4), then it is a simple structure. But it has ω-MDCTP2

and the compatible order property.

Proof. (Sketch) The argument for (1) is extracted from Chernikov’s proof in [26] that simple
types are co-simple. In particular, we notice that the proof Lemma 6.13 of [26] works when
the rows are general indiscnernible sequences, not just Morley sequences, and relies only on
the internal simplicity of a type, not the full definition of a simple type. Suppose R∞ has
MTP, but is simple as a structure in the language of hypergraph sequences. By the proof,
which can be found in a standard reference on simplicity theory such as [62], that formulas
with the tree property fail Kim’s lemma for dividing, there is a modelM of the theory of R∞,
some element b of the monster model, and some indiscernible k-anticlique I = {bi}i∈I starting
with b0 = b, as well as a Morley sequence J = {b′i}i∈ω starting with b′0 = b and forming a
clique. Now suppose, by induction, that for i ≤ n there are are I i = {bij}j<ω with I i ≡M I and
bi0 = b′i (so the I i are anticliques), so that for σ ∈ ωn, {biσ(i)}i≤n ⌢ {b′i}i≥n+1 is a clique, and

so that I≤n |⌣M
b′≥n+1. By properties of independence in simple theories, I≤nb>n+1 |⌣M

b′n+1.

By the chain condition, take In+1 = {bn+1
j }j<ω, I

n+1 ≡M I, with bn+1
0 = b′n+1 so that In+1

is indiscnernible over I≤nb
′
>n+1, and with I≤nb

′
>n+1 |⌣M

In+1. This suffices for the induction.
Now the existence of an (ω, ω, 1)-array follows.

For (2), suppose R∞ is NSOP1 in the hypergraph language, but has MSOP1. Then as in
the proof of Theorem 4.3.7, there is a modelM of the theory of R∞ and there areM -invariant
Morley sequences {bi}i<ω in the M -invariant type p0 and {b′i}i<ω in the M -invariant type p1,
so that b0 = b′0, {bi}i<ω is a clique, and {b′i}i<ω is a 2-anticlique. To show ω-MDCTP1, it
suffices to find a tree {bη}η∈2<ω so that the paths, read downward, are Morley sequences in p1,
and the descending combs are Morley sequences in p0. Formally, the construction will follow
Lemma 3.4.3. Say that a tree {cη}η∈2≤n is a generic tree if for η ∈ 2<n c⊵η⌢⟨0⟩ |⌣

K

M
c⊵η⌢⟨1⟩

(two subtrees at a node are Kim-independent), and cη |= p1(x)|Mc▷η (each node satisfies the
restriction of p1(x) to its subtrees.) We prove the following claim (corresponding to Claim
3.4.4):

Claim 4.3.14. Let {cη}η∈2≤n be a generic tree, and A any set. Then there is some

{c′η}η∈2≤n ≡M {cη}η∈2≤n with c′η |= p0(x)|MA for each η ∈ 2≤n, and with A |⌣
K

M
{c′η}η∈2≤n.

Proof. By induction on n, we may assume this is true for {cη}η⊵⟨0⟩ and {cη}η⊵⟨1⟩. Namely,

fin {c′′η}η⊵⟨0⟩ ≡M {cη}η⊵⟨0⟩ with c
′′
η |= p0(x)|MA for each ⟨0⟩ ⊴ η ∈ 2≤n and A |⌣

K

M
{c′′η}η⊵⟨0⟩,

and similarly, {c′′η}η⊵⟨1⟩ ≡M {cη}η⊵⟨1⟩ with c′′η |= p1(x)|MA for each ⟨1⟩ ⊴ η ∈ 2≤n and
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A |⌣
K

M
{c′′η}η⊵⟨1⟩. Recall that c⊵⟨0⟩ |⌣

K

M
c⊵⟨1⟩ as {cη}η∈2≤n is a generic tree, so by the indepen-

dence theorem and an automorphism, we can find {c′η}η▷⟨⟩ ≡M {cη}η▷⟨⟩ with c
′
η |= p0(x)|MA

for each ⟨⟩ ◁ η ∈ 2≤n and A |⌣
K

M
{c′η}η▷⟨⟩. Finally, by the independence theorem and an

automorphism, find c′⟨⟩ |= p0(x)|MA ∪ p1(x)|M{c′η}η▷⟨⟩ so that A |⌣
K

M
{c′η}η∈2≤n , as desired.

By induction, we construct a generic tree {bη}η∈2<ω so that the paths, read downward,
are Morley sequences in p1, and the descending combs are Morley sequences in p0. Suppose
we have constructed I = {bη}η∈2≤n with these properties. By Claim 4.3.14, we can find

I1 ≡M I ≡M I2 with I1 |⌣
K

M
I2 and for I1 = {b1η}η∈2≤n , I2 = {b2η}η∈2≤n , b2η |= p0(x)|MI1 for

η ∈ 2≤n. The trees I1 and I2 of height n will be the subtrees of our new generic tree of
height n+1. Finally, let b∗ |= q1(x)|MI1I2 be the new root. Reindexing accordingly, we get a
generic tree {bη}η∈2≤n+1 so that the paths, read downward, are Morley sequences in p1, and
the descending combs are Morley sequences in p0. This completes the induction.

Now the compatible order property comes from the proof of Theorem 4.3.7.

We connect this to the internal properties of types. We recall the defintion of co-simplicity
from [26]:

Definition 4.3.6. A type p(x) over A is co-simple if there is no formula φ(x, y), k ≥ 2 and
parameters {bη}η∈ω<ω , bη ⊆ p(M) so that for each path σ ∈ ωω, {φ(x, bσ|n)}n∈ω is consistent,
but for each node η ∈ ω<ω, {φ(x, bη⌢⟨n⟩)}n∈ω is k-inconsistent.

Corollary 4.3.14.1. (1) ([26], Theorem 6.17) In a NTP2 theory, internally simple types
are co-simple.

(2) In an N-ω-DCTP2 theory or an NSOP3 theory, internally NSOP1 types are co-NSOP1

Proof. (1). If p(x) is not co-simple then the restriction R∞ of some charcateristic sequence
to p(M) has MTP. If p(x) is internally NSOP1, then R∞ is simple, so by the previous
proposition it has an (∞,∞, 1) array. So T must have TP2.

(2). If p(x) is not co-NSOP1 then the restriction R∞ of some charcateristic sequence
to p(M) has MSOP1. If p(x) is internally NSOP1, then R∞ is NSOP1, so by the previous
proposition it has ω-MDCTP2 and the compatible order property. So T must have ω-DCTP2

and SOP3.

In other words, the fact that internally NSOP1 types are co-NSOP1 in NSOP3 theories
can be interpreted as saying that in an NSOP3 theory, the graph-theoretic complexity of a
characteristic sequence must be reflected in its model-theoretic complexity in the hypergraph
language.

Remark 4.3.15. For R∞ a hypergraph sequence, define R
(m)
∞ to be the hypergraph sequence

whose vertices are m-tuples of vertices of R∞, and define R
(m)
n ((a11, . . . a

m
1 ), . . . (a

1
n, . . . a

m
m)) =:

Rmn(a
1
1, . . . a

m
1 , . . . a

1
n, . . . a

m
m). For example, if R∞ is the characteristic sequence of φ(x, y),

then R
(m)
∞ is the characteristic sequence of ∧m

i=1φ(x, yi). If we consider hypergraphs up to the
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concatenation operation R∞ 7→ R
(m)
∞ , then we obtain additional information. For example,

we can define MSOP2 = MTP1 to mean that there exists a binary (or infinitely branching; see
[2], recounted in Fact 4.2 of [28]) tree whose paths are cliques and whose incomparable pairs
are 2-anticliques. It follows from the proof of [97], III.7.7, III.7.11 that up to concatenation, a
hypergraph sequence with MTP either has an (ω, ω, 1) array or has MTP1. So by Proposition
4.3.12.2, if R∞ is NSOP1, and has MTP, then up to concatenation it either has MTP or an
(ω, ω, 1) array.

It is also worth noting that if we define MATP to be the existence of a tree so that the
antichains are cliques and the paths are k-anticliques, it follows from the proof of Theorem
4.8 of [3] that up to concatenation, an MSOP1 hypergraph sequence has either MSOP2 or
MATP.

Although it is shown in Chapter 3 that NSOP1 coincides with NSOP2 for theories, we
get additional graph-theoretic information when we assume only the quantifier-free formulas
of R∞ to be NSOP2. Namely, if R∞ has MSOP1, it has MSOP2 up to concatenation. This
follows from the arguments in Chapter 3; we give an overview. If R∞ has MSOP1, there
is a model M and two M -finitely satisfiable Morley sequences, one of which is a clique and
one of which is a 2-anticlique. (That k may chosen to be 2 comes from [74], [52]). Now
Lemma 3.4.3 says that for any coheir p(x) over M and canonical coheir q(x) over M , there
is a tree whose paths are Morley sequences in p(x) and whose descending combs are Morley
sequences in q(x). So if Morley sequences in q(x) are anticliques and Morley sequences in
p(x) are cliques, the descending combs will be anticliques and the paths will be cliques. By
the proof of Lemma 3.2.3 (SOP2 = k-DCTP1), such a tree, up to concatenation, gives an
instance of MSOP2.

So because there exists a finitely satisfiable Morley sequence that is a clique, either R∞
has MSOP2 and we are done, or there is also a canonical Morley sequence that is a clique. At
this point, now that we have an M -finitely satisfiable Morley sequence that is a 2-anticlique
and a canonical Morley sequence that is a clique, we can prove Kim’s lemma for canonical
Morley sequences, symmetry for Conant-independence, and the weak independence theorem
for Conant-independence, all in the quantifier-free context as for NSOP2 theories, and then
use the technique of Conant ([32]) developed in Chapter 3.6 to show the compatible order
property. But up to concatenation, the compatible order property implies MSOP2 ([77],
Observation 3.11).

There are SOP1 formulas φ(x, y) so that ∧n
i=1φ(x, yi) is NSOP2; see [3], §6. Byunghan

Kim asked, at the 2023 BIRS meeting on neostability theory, whether it can be shown that
if a formula is SOP1, a related formula is SOP2. It follows from the above discussion that
if a formula is SOP1, SOP2 must appear in the quantifier-free formulas of its characteristic
sequence.
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4.4 Independence of internally NSOP1 types in NSOP3

theories

In this section, we prove an extension of the independence theorem of Kaplan and Ramsey
([52]) to internally NSOP1 types in NSOP3 theories. We will use Theorem 4.3.7, namely
that internally NSOP1 types in NSOP3 theories are co-NSOP1.

While the theorem does not give a′′1 |⌣
K∗

M
a2a2, a

′′
1 can be chosen so that any two of

a′′1, a2, a3 is Conant-independent from the third, somewhat similarly to Theorem 2.13 of [71].

Theorem 4.4.1. Let T be NSOP3, and let p1, p2, p3 be internally NSOP1 types over M . Let
a1 ≡M a′1 ⊂ p1(M), a2 ⊂ p2(M), a3 ⊂ p3(M). If a1 |⌣

K∗

M
a2, a

′
1 |⌣

K∗

M
a3, a2 |⌣

K∗

M
a3, there is

some a′′1 with a′′1 |= tp(a1/Ma2)∪tp(a′1/Ma3). Moreover, a′′1 can be chosen with a2a3 |⌣
K∗

M
a′′1,

a2a
′′
1 |⌣

K∗

M
a3 and a3a

′′
1 |⌣

K∗

M
a2.

It is of interest that the conclusion does not hold for NSOP4 theories, nor does it follow
from co-NSOP1.

Example 4.4.2. Let T be the model companion of the theory of triangle-free tripartite
graphs, with the partition denoted by P1(x), P2(x), P3(x) as in Example 4.3.8. Recall that
T is NSOP4, and T is a free amalgamation theory in the sense of [32], so a |⌣

K∗

M
b if and

only of a ∩ b ⊆ M ; see Proposition 1.4. Let pi(x) =: Pi(x) for i = 1, 2, 3. Then the pi(x)
are internally stable–the structures Mpi have quantifier elimination in the unary language
of M -definable subsets of Pi(x). Internally stable types are always co-NSOP1: by the proof
of Theorem 4.3.7, if an internally stable type p is not co-NSOP1, then in the theory of Mp,
there is a hypergraph sequence {Rn}, a model M, and Morley sequences {bi}i<ω and {b′i}i<ω

with b0 ≡M b′0 so that {bi}i<ω is a clique and {b′i}i<ω is an anti-clique. But this is impossible
if the theory of Mp is stable, as b0 ≡M b′0 implies {bi}i<ω ≡M {b′i}i<ω when {bi}i<ω and
{b′i}i<ω are Morley sequences in a stable theory.

However, the conclusion of theorem 4.4.1 does not hold. Let a1 ≡M a′1 ⊆ p1(M),
a2 |= p2(M), a3 |= p3(M) with |= a1Ea2, |= a′1Ea3, |= a2Ea3. Then a1 |⌣

K∗

M
a2, a

′
1 |⌣

K∗

M
a3,

a2 |⌣
K∗

M
a3, but tp(a1/Ma2) ∪ tp(a′1/Ma3) is inconsistent.

We prove theorem 4.4.1, beginning with some observations on co-NSOP1 types. First of
all, Conant-independence between co-NSOP1 types is just Kim-dividing independence.

Claim 4.4.3. If b ⊂ p(M) for p(x) a co-NSOP1 type over M , then a |⌣
K∗

M
b if and only if

a |⌣
Kd

M
b.

Proof. If a |⌣
K∗

M
b, then a |⌣

Kd

M
b by Kim’s lemma, Definition 3.1.3. Conversely, if a |⌣

Kd

M
b,

then in particular, by compactness we can choose an M -finitely satisfiable Morley sequence
{bi}i<ω, b0 = b, that is indiscernible over Ma. But then, by Fact 4.5.7 below, formulas
that do not Kim-divide over M by a some M -finitely satisfiable Morley sequence do not
Conant-fork over M , so a |⌣

K∗

M
b.
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Claim 4.4.4. If p(x), q(x) are co-NSOP1 types over M and a ⊆ p(M), b ⊆ q(M), then
a |⌣

K∗

M
b if and only if b |⌣

K∗

M
a.

This follows from Proposition 3.1.

Claim 4.4.5. If b ⊂ p(M) for p(x) a co-NSOP1 type over M , and a |⌣
K∗

M
b, then for any

M-finitely satisfiable type q(x), there is a Morley sequence I = {bi}i<ω in q(x), b0 = b, that
is indiscernible over Ma, and any such Morley sequence will satisfy a |⌣

K∗

M
I.

This is the “chain condition”, Claim 4.3.4, together with compactness. We use Claims
4.4.3-4.4.5 throughout.

Third, we have the weak independence theorem between two co-NSOP1 types, analo-
gously to Proposition 6.1 of Kaplan and Ramsey, [52]:

Claim 4.4.6. Let p(x), q(x) be co-NSOP1 types over M , and let a ≡M a′ ⊆ p(M), b, c ⊆
q(M), a |⌣

K∗

M
b, a′ |⌣

K∗

M
c, c |⌣

u

M
b. Then there is a′′ |⌣

K∗

M
bc with a′′ |= tp(a/Mb)∪tp(a′/Mc).

Proof. The proof is similar to Proposition 6.1 of [52]. By Claims 4.4.4 and 4.4.5 and a |⌣
K∗

M
b,

let I = {ai}i<ω be anM -invariant Morley sequence with a0 = a that is indiscernible overMb.
Again by Claims 4.4.4 and 4.4.5., a′ |⌣

K∗

M
c and a′ ≡M a, for r(x, y) = tp(a′, c), ∪i<ωq(ai, y)

is consistent, so we can choose some c′ |= ∪i<ωr(ai, y). By Ramsey’s theorem, compactness
and an automorphism, we can choose c′ in particular so that I remains indiscernible over
Mbc′. So bc′ |⌣

K∗

M
a, and a |⌣

K∗

M
bc′, with c′a ≡M ca′.

Let s(y) be an M -finitely satisfiable type extending tp(c/Mb), and let c′′ |= s(y)|Mbc′ ,
so c′′ ≡Mb c and c′′ |⌣

u bc′. As c′′ ≡M c, choose b′ with b′c′′ ≡M bc′; by left extension for
|⌣

u, b′ can further be chosen with b′c′′ |⌣
u bc′. Then bc′, b′c′′ begin an M -invariant Morley

sequence J . As a |⌣
K∗
bc′, there is an M -invariant Morley sequence J ′ ≡bc′ J indiscernible

over Ma; using claim 4.4.5, a |⌣
K∗
J ′. Write J ′ = (bc′, b′′′c′′′, . . .). Then c′′′a ≡M c′a ≡M ca′,

c′′′ ≡Mb c
′′ ≡Mb c and a |⌣

K∗
bc′′′. By an Mb-automorphism taking c′′ to c, we obtain a′ as

desired.

Using this weak independence theorem, we can now show the full independence theorem
between two co-NSOP1 types.

Claim 4.4.7. Let p(x), q(x) be co-NSOP1 types over M , and let a ≡M a′ ⊆ p(M), b, c ⊆
q(M), a |⌣

K∗

M
b, a′ |⌣

K∗

M
c, c |⌣

K∗

M
b. Then there is a′′ |⌣

K∗

M
bc with a′′ |= tp(a/Mb)∪tp(a′/Mc).

Proof. We could have followed the proof of Theorem 6.5 of [52], but we offer our own ex-
position. We first show that it suffices to show consistency of tp(a/Mb) ∪ tp(a′/Mc) in the
statement of Claim 4.4.9. Let r(x) be an M -finitely satisfiable type extending tp(A/M).
By Claims 4.4.4 and 4.4.5, we can find I = {ai}i<ω with a0 = a indiscernible over Mb and
I ′ = {a′i}i<ω with a′0 = a′ indiscernible overMb, bothM -finitely satisfiable Morley sequences
in r(x). Then I ≡M I ′. So using the consistency, we can find I ′′ |= (I/Mb) ∪ tp(I ′/Mc),
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which by Ramsey’s theorem and compactness, can be assumed indiscernible over Mbc. So
I ′′ |⌣

K

M
bc by claim 4.4.4, and we can find a′′ in this sequence as desired.

Therefore, suppose a, a′, b, c are as in the statement of the claim, and tp(a/Mb)∪tp(b/Mc)
is inconsistent. By compactness, there are some φ(x, b) ∈ tp(a/Mb) and ψ(x, c) ∈ tp(a/Mc)
with φ(x, b) ∪ ψ(x, c) inconsistent. Let s(y, z) = tp(bc/M). We find b1, . . . , bn . . . ⊂ q(M),
c1, . . . , cn ⊂ q(M) with the following properties

(1) Form < n, bi |⌣
u

M
bi−1 . . . b1 for i ≤ m, and ci |⌣

u

M
ci−1 . . . cm+1bm . . . b1 form ≤ i ̸= n.

Thus by repeated applications of Claim 4.4.9, {φ(x, b1), . . . φ(x, bm), ψ(x, cm+1), . . . , ψ(x, cn)}
is consistent.

(2) For i < j, bicj |= s(y, z), so φ(x, bi)ψ(y, cj) is inconsistent.

(3) b1 . . . , bn . . . |⌣
K∗

M
c1 . . . , cn . . . .

By Fact 4.2.4, this will give us a failure of co-NSOP1, a contradiction. We use the
technique of Conant, [32] (though it is not yet necessary to get SOP3; this technique
is similar to the “zig-zag lemma,” Lemma 6.4, from the original proof of the indepen-
dence theorem in [52]). Assume b1, . . . , bn, c1, . . . , cn already constructed, satisfying these
properties up to n (including cn ≡M c). By repeated instances of Claim 4.4.9 (applied
to q(x), q(x)), and b |⌣

K

M
c, there is b′n+1 |⌣

K c1 . . . cn with b′n+1 |= ∪n
i=1s(y, ci). Again

by Claim 4.4.9, bn . . . b1 |⌣
K∗

M
c1, . . . cn, and an automorphism, we can additionally choose

b′n+1 = bn+1 so that bn+1 |⌣
u

M
b1 . . . bn and bn+1 . . . b1 |⌣

K∗

M
c1, . . . cn. Now choose cn+1 ≡M c

with cn+1 |⌣
u c1 . . . cnb1 . . . bn+1. We get bn+1 . . . b1 |⌣

K∗

M
c1, . . . cn+1, by the proof of Claim

4.5.13.

We first show that the “moreover” clause follows from the conclusion. Let a1 ≡M a′1 ⊆
p1(M), a2 |= p2(M), a3 |= p3(M) be as in the hypotheses of the theorem. As a2 |⌣

K∗
a3,

by Claims 4.4.3 and 4.4.5, there is an M -finitely satisfiable Morley sequence I2 = {ai2}i<ω

with a02 = a2 that is indiscernible over Ma3 and I2 |⌣
K∗
a3. Likewise, there is an M -finitely

satisfiable Morley sequence I3 = {ai3}i<ω with a03 = a3 that is indiscernible over MI2 and
with I2 |⌣

K∗
I3. By a1 |⌣

K∗

M
a2 and an automorphism, we can find a∗1 ≡Ma2 a1 with a

∗
1 |⌣

K∗

M
I2

and I2 indiscernible overMa∗1, so we can assume a1 |⌣
K∗

M
I2 and I2 is indiscernible overMa1.

Similarly, we can assume a′1 |⌣
K∗

M
I3 and I3 is indiscnernible over Ma′1. Fix an M -finitely

satisfiable type q(x) extending tp(a1/M). Then there is a Morley sequence I1 = {ai1}i<ω in
q(x) with a01 = a1, I1 |⌣

K∗

M
I2 and I1 indiscernible over I2. There is also a Morley sequence

I ′1 = {ai1}i<ω in q(x) with a′01 = a′1, I
′
1 |⌣

K∗

M
I3 and I ′1 indiscernible over I3. Since the Morley

sequences were chosen to be in the same M -finitely satisfiable type, I1 ≡M I ′1. So applying
the consistency part of the theorem, we can find {a′′i1 }i<ω = I ′′1 |= tp(I1/MI2) ∪ tp(I ′1/MI3).
For j, k, ℓ < ω a′′j1 a

k
2 ≡M a1a2, a

′′j
1 a

ℓ
3 ≡M a′1a3, a

k
2a

ℓ
3 ≡M a2a3. We apply the following case of

Lemma 1.2.1 [26]:

Fact 4.4.8. Let I ′′1 = {a′′i1 }i<ω, I2 = {ai2}i<ω, I3 = {ai3}i<ω be indiscernible sequences over
M . Then there are mutually indiscernible I ′′′1 = {a′′′i1 }i<ω, I

′′′
2 = {a′′′i2 }i<ω, I

′′′
3 = {a′′′i3 }i<ω,

(i.e. each I ′′′m indiscernible over MI ′′′̸=m) so that for any formula φ(x, y, z) ∈ L(M), if for all
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j, k, l with j1 < . . . < jn < ω, k1 < . . . < kn < ω, ℓ1 < . . . < ℓn < ω, |= φ(a′′j1 , a
k
2, a

ℓ
3), then

for all such j, k, l, |= φ(a′′′j1 , a′′′k2 , a′′′ℓ3 )

Let I ′′′1 = {a′′′i1 }i<ω, I ′′′2 = {a′′′i2 }i<ω, I ′′′3 = {a′′′i3 }i<ω be as in Fact 4.3. Then
a′′′2

0a′′′3
0 |⌣

K∗

M
a′′′1

0, a′′′1
0a′′′2

0 |⌣
K∗

M
a′′′3

0, and a′′′1
0a′′′3

0 |⌣
K∗

M
a′′′2

0, and a′′′1
0a′′′2

0 ≡M a1a2,

a′′′1
0a′′′3

0 ≡M a′1a3, a
′′′
2
0a′′′3

0 ≡M a2a3. So by an automorphism, we find a′′1 as desired
in the “moreover” clause.

We finally show the actual consistency part of the theorem. Let q1(y, z) = tp(a2a3/M),
q2(x, z) = tp(a′1a3/M), q3(x, y) = tp(a′1a2/M). By an automorphism, it sufficies to show
that q1(y, z)∪ q2(x, z)∪ q3(x, y) is consistent. This will require NSOP3; formally, we will use
the technique of Evans and Wong, from Theorem 2.8 of [42]. Call A ⊂ p1(M), B ⊂ p2(M),
C ⊂ p3(M) a generic triple if there are mutually indiscernibleM -invariant Morley sequences
IA = {Ai}i<ω with A0 = A, IB = {Bi}i<ω with B0 = B, IC = {Ci}i<ω with C0 = C; note
that it follows that A, B and C are pairwise Conant-independent.

Claim 4.4.9. Let A, B, C be a generic triple, and b ⊆ p2(M) such that A |⌣
K∗

M
b. Then

there is some b′ ≡MA b with b
′ |⌣

K∗

M
B so that A,Bb′, C form a generic triple.

Proof. Let IA, IB, IC be as in the definition of a generic triple.

Subclaim 4.4.10. There is b′′ ≡M b and Ib′′ = {b′′i }i<ω with b′′0 = b′′ so that {Bib
′′
i }i<ω forms

an invariant Morley sequence over M and IB |⌣
K∗

M
Ib′′.

Proof. Let IB be a Morley sequence in the M -invariant type p(x). Chose an M -invariant
type q(x) extending tp(b/M). By an automorphism, there is Ib′ = {b′i}i<ω so that, for
n < ω, b′nBn . . . b

′
0B0 |= (q(x) ⊗ p(x))(n). So {Bib

′′
i }i<ω is an M -invariant Morley sequence.

Let b′′0 = b′′; then b′′ ≡M b. Finally, we show that IB |⌣
K∗

M
Ib′′ . Suppose by induction that

B0 . . . Bn |⌣
K∗

M
b′0 . . . b

′
n Note that tp(Bn+1/MB0 . . . Bnb

′
0 . . . b

′
n) extends to an M -invariant

type, and tp(b′n+1/MB0 . . . BnBn+1b
′
0 . . . b

′
n) also extends to an M -invariant type. By the

proof of Claim 4.5.13 below, we see that for any sets e, f, g of realizations of a com-
mon co-NSOP1 type over M , if e |⌣

K∗

M
f and tp(g/Mef) extends to an M -invariant type

q(x), then e |⌣
K∗

M
fg. So by two applications of this fact and symmetry (claim 4.4.4),

B0 . . . BnBn+1 |⌣
K∗

M
b′0 . . . b

′
nb

′
n+1. This completes the induction, from which it follows that

IB |⌣
K∗

M
Ib′′ .

Let b′′ be as in the subclaim. As A |⌣
K∗

M
b, for p(X, y) = tp(Ab/M), by claim 4.4.5 and

an automorphism there is A′ |= ∪i<ωp(X, b
′′
i ) with A′ |⌣

K∗

M
Ib′′ . By claims 4.4.4 and 4.4.5,

we can then find {A′
i} = IA′ ≡M IA indiscernible over MIb′′ with A

′
0 = A′ and IA′ |⌣

K∗

M
Ib′′ .

So we have IA′ ≡M IA and IA′ |⌣
K∗

M
Ib′′ , IA |⌣

K∗

M
IB by indiscernibility of IB over IA and

claim 4.4.5, and IB |⌣
K∗

M
Ib′′ by the subclaim. So by the independence theorem between

two co-NSOP1 types (Claim 4.4.7) and an automorphism, there is some {b∗i }i<ω = I∗b′′ with
I∗b′′ ≡MIB Ib′′ and I∗b′′IA ≡M Ib′′IA′ . The sequence {b∗i }i<ω = I∗b′′ will have the following



CHAPTER 4. PROPERTIES OF INDEPENDENCE IN NSOP3 THEORIES 106

three properties: b∗i |= p(Aj, y), so b
∗
i ≡MAj

b, for i, j < ω, {Bib
∗
i }i<ω form an M -invariant

Morley sequence, and b∗i |⌣
K

M
Bi for i < ω. If we extract mutually indiscernible sequences

from IA, IBI
∗
b′′ , IC , finding ǏA, ǏB Ǐ

∗
b′′ , ǏC as in Fact 4.4.8, then IAIBIC ≡M ǏAǏB ǏC , so we

may assume ǏA = IA, ǏB = IB, ǏC = IC and then Ǐ∗b′′ = {b̌∗i }i<ω will also have these three
properties that {b∗i }i<ω = I∗b′′ has. Let b′ = b̌∗0. Then b′ ≡MA b, b′ |⌣

K

M
B and IA, IB Ǐ

∗
b′′ , IC

will be mutually indiscernible M -invariant Morley sequences, so A,Bb′, C form a generic
triple.

Now we find a1, . . . , an, . . . |= tp(a1/M), b1, . . . , bn, . . . |= tp(a2/M), and c1, . . . , cn, . . . |=
tp(a3/M) with the following properties:

(1) For i < j, ajci |= q2(x, z), a
ibj |= q3(x, y), b

icj |= q1(y, z).
(2) For i < ω, ai |⌣

K

M
a1 . . . ai−1, bi |⌣

K

M
b1 . . . bi−1, and ci |⌣

K

M
c1 . . . ci−1

(3) For each n < ω a1 . . . an, b1 . . . bn, c1 . . . cn form a generic triple.
Assume a1, . . . , an, b1, . . . , bn, c1, . . . , cn already constructed, satisfying these proper-

ties up to n. As for i ≤ n, ai |⌣
K

M
a1 . . . ai−1, we can find some b |= ∪n

i=1q3(a
i, y) with

b |⌣
K

M
a1 . . . an, by, say, repeated applications of the independence theorem between two co-

NSOP1 types, Claim 4.4.7 (though could have stated the claim so that we need less than
this). Then letting a1, . . . , an = A, b1, . . . , bn = B, c1, . . . , cn = C, we can choose bn+1 = b′

as in Claim 4.4.9, while will be as desired. Symmetrically, we find cn+1 and an+1.
Now let

Φ(x1, y1, z1;x2, y2, z2) = q2(x
2, z1) ∪ q3(x1, y2) ∪ q1(y1, z2)

By (1) this has infinite chains, so by NSOP3 and compactness it has a 3-cycle: some

(d1, e1, f 1, d2, e2, f 2, d3, e3, f 3)

|= Φ(x1, y1, z1;x2, y2, z2) ∪ Φ(x2, y2, z2;x3, y3, z3) ∪ Φ(x3, y3, z3;x1, y1, z1)

In particular, (d1, e2, f 3) |= q3(x, y)∪ q1(y, z)∪ q2(x, z), as desired. This concludes the proof
of Theorem 4.2.

4.5 NSOP3 theories with symmetric

Conant-independence

In [104], Simon proves the following independence theorem for NTP2 theories, using the
independence theorem for NTP2 theories of Ben Yaacov and Chernikov ([113]).

Fact 4.5.1. Let T be NTP2, and let c |⌣
f

M
ab and b |⌣

f

M
a. Let b′ ≡M b with b′ |⌣

f

M
a. Then

there is some c′ |⌣
f

M
ab′ with c′a ≡M ca and c′b′ ≡M cb.

(In fact, Simon proves a more general version of this over extension bases.) He then poses
the question
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Question 4.5.2. Suppose p and q are M-invariant types in an NTP2 theory with pω|M =
qω|M , and let B,C ⊇ M be small supersets of M . For some/every B′ ≡M B so that
B′ |⌣

f

M
C, is there a |= p(x)|B′ ∪ q(x)|C with a |⌣

f

M
B′C?

This is true for simple theories by the independence theorem for simple theories ([65]),
and for NIP theories because pω(x)|M determines any invariant type p(x) (Proposition 2.36
of [103]); fact 4.5.1 justifies the equivalence of “some” with “any” B′. We show that a
similar property holds for finitely satisfiable types in NSOP3 theories with symmetric Conant-
independence:

Theorem 4.5.3. Let T be an NSOP3 theory, and assume |⌣
K∗

is symmetric. Suppose p
and q are M-finitely satisfiable (global) types with pω|M = qω|M , and let a, b ⊇ M be small
supersets of M with a |⌣

K

M
b. Then there is c |= p(x)|a ∪ q(x)|b with c |⌣

K∗

M
ab

The “some” part, the analogue of a positive answer to Question 4.5.2, will be supplied by
the symmetry of Conant-independence. Then the “every” part, correspnding to Fact 4.5.1,
will follow from NSOP3. Before proceeding, we will show this fails for NSOP4 theories with
symmetric Conant-independence.

Example 4.5.4. The model companion T of the theory of triangle-free graphs has NSOP4

and symmetric Conant-independence; see Chapter 1. If p is a nonalgebraic M -finitely sat-
isfiable type, p|∞M is determined by p|M : By indiscernibility, ¬xiExj ∈ pω(x̄) for i < j, as
¬xiExj ∈ pω(x̄) for all i < j is impossible.

Next, we claim that, if M is countable, for p0(x) ∈ S1(M) the complete type over M
containing ¬p0Em for all m ∈M , there are M -finitely satisfiable types p1 and p2 extending
p0(x), and xEbi ∈ pi(x) for i = 1, 2, bi /∈M , so that there is no m ∈M with b1Em ∧ b2Em.
Let {Si}i∈ω enumerate the set F of subsets ofM defined byM -formulas in p0(x). We choose,
by induction, disjoint anticliques A, B of M , both of which meet each of the Si. Namely,
we construct disjoint anticliques An, Bn for n ∈ ω, so that An ∩ Si ̸= ∅ and Bn ∩ Si ̸= ∅ for
i ≤ n and Ai ⊆ Aj and Bi ⊆ Bj for i ≤ j, and take A = ∪∞

i=0Ai and B = ∪∞
i=0Bi. Suppose

An, Bn already constructed. Since Sn+1 is defined by a conjunction of formulas of the form
x ̸= m and ¬xEm for m ∈ M , and M is a model of the model companion of the theory of
triangle-free graphs, we can find distinct an+1, bn+1 ∈ Sn+1\An∪Bn so that ¬an+1Ea for any
a ∈ An, ¬bn+1Eb for b ∈ Bn, and take An+1 = An ∪ {an+1} and Bn+1 = Bn ∪ {bn+1}. Now
let U1 be an ultrafilter containing F ∪ {A} and U2 be an ultrafilter containing F ∪ {B}. Let
pi(x) = {φ(x, b) ∈ L(M) : φ(M, b) ∈ Ui}. Let b1 ∈ M be such that, for m ∈M , b1Em if and
only if m ∈ A, and similarly for b2 and B. This is possible because A and B are anticliques.
Then p1, p2, b1, b2 are as desired in the claim.

There is an invariant type q extending tp(b1/M) so that, for b′1 |= q(x)|Mb2 , b
′
1Eb2; for

example, we can require that xEb ∈ q(x) if and only if xEb ∈ tp(b1/M) or b |= tp(b2/M).
This gives a consistent type: let a∗ be a node satisfying these relations in a graph extending
M; then there are no triangles involving a∗, a realization of tp(b2/M) in M, and an element
of M , because we chose A and B to be disjoint; there are also no edges between realizations
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of tp(b2/M) in M, because B is nonempty and there are no triangles in M, so there are
no triangles involving a∗ and two realizations of tp(b2/M) in M. Let b′1 |= q(x)|Mb2 ; then
b′1 |⌣

K b2 and b′1Eb2.
But p1(x)|Mb′1 ∪ p2(x)|Mb2 is inconsistent.

We first study theories where Conant-independence is symmetric. Näıvely, one expects
it to follow from compactness that a |⌣

K∗

M
b implies the existence of an Ma-indiscernible M -

invariant Morley sequence starting with b. This näıve argument fails, because the property
of being an invariant Morley sequence of realizations of a fixed complete type over M is not
type-definable. However, the following proposition about theories with symmetric Conant-
independence is enough for our purposes:

Lemma 4.5.5. Suppose |⌣
K∗

is symmetric, and let I = {ai}i∈ω be a coheir Morley sequence
over M with a0 = a that is indiscernible over Mb. Then there is an M-invariant Morley
sequence J = {bi}i∈ω with b0 = b that is indiscernible over Ma.

Proof. The main claim of this proof is the following;

Claim 4.5.6. There exists b′ ≡MI b with b
′ |⌣

i b so that I remains indiscernible over bb′.

Proof. We first show that b |⌣
K∗

M
I. We need the following fact:

Fact 4.5.7. (Fact 1.6.1) Let {ci}i∈I be a coheir Morley sequence over M with c0 = C so
that {φ(x, ci)}i∈ω is consistent. Then φ(x, c) does not Conant-fork over M .

Now suppose φ(x, ā) ∈ tp(b/MI) for ā = a0 . . . an. Then {āi}i∈ω for āi = ani . . . ani+(n−1)

is a finitely satisfiable Morley sequence overM with ā0 = ā so that {φ(x, āi)}i∈ω is consistent,
so by the fact, φ(x, ā) does not Conant-fork overM and b |⌣

K∗

M
I is as desired. (See the proof

of Proposition 3.5.2, or Proposition 3.21 of [52].)
Let q(x̄, b) = tp(I/Mb). By symmetry, I |⌣

K∗

M
b, so for every φ(x̄, b) ∈ q(x̄, b), there is

some b′ ≡M b with b′ |⌣
i

M
b so that {φ(x̄, b), φ(x̄, b′)} is consistent. By compactness, the

condition x |⌣
i

M
b is type-definable over Mb (contrast with the remark on invariant Morley

sequences in the paragraph immediately preceding the proof of the proposition), so there is
b′ ≡M b with b′ |⌣

i

M
b so that q(x̄, b) ∪ q(x̄, b′) is consistent. By an automorphism, we can

assume b′ ≡MI b, and by Ramsey’s theorem and compactness (and an automorphism), we
can assume I ′ is indiscernible over bb′.

We now show by induction that we can find bi for i < κ, κ large, so that b = b0, bi ≡MI b,
bi |⌣

i

M
b<i, and I is indiscernible over Mb0 . . . bλ for λ ≤ κ. Suppose we have found bi for

i < λ and we find bλ: By the claim, there are b′<λ ≡MI bλ with b
′
<λ |⌣

i

M
b<λ and I indiscernible

over b<λb
′
λ. Now let bλ = b′0.

Then by the Erdős-Rado theorem, we can find an MI-indiscernible invariant Morley
sequence sequence J over M starting with B, which will in particular be Ma-indiscernible.
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Remark 4.5.8. Conant-forking is often equal to Conant-dividing at the level of formulas;
for example if |⌣

i satisfies left extension, or T has the strong witnessing property that has
no known counterexamples among the NSOP4 theories (Definition 1.3.5). In particular, we
know of no theories where |⌣

K∗
is symmetric and the relation a |⌣

K∗d

M
b, defined to hold when

tp(a/Mb) has no Conant-dividing formulas, is not symmetric. If we assume the symmetry of
|⌣

K∗d rather than |⌣
K∗

, we can prove lemma 4.5.5 for I an invariant Morley sequence over
M rather than a coheir Morley sequence over M ; the only difference is that we no longer
use Fact 4.5.7 on coheir Morley sequences. If we assume the symmetry of |⌣

K∗d rather than

|⌣
K∗

in Theorem 4.5.3, we can then prove the conclusion when p and q are assumed to be

M -invariant types rather than M -finitely satisfiable types and |⌣
K∗

is replaced with |⌣
K∗d,

getting something closer to the claim of Simon in [104]; the proof will be exactly the same
as the below, except Fact 4.5.7 will not be used.

Lemma 4.5.9. Assume |⌣
K∗

is symmetric. Let p and q be M-finitely satisfiable types
with pω|M = qω|M , and let a, b ⊇ M be small sets containing M . Then there is some M-
invariant type r ⊢ tp(b/M) so that, for any a1 . . . an with ai |= tp(a/M) and b1, . . . bm |=
r(m)(y)|Ma1...an, p(x)|a1,...,an ∪ q(x)|b1,...,bm is consistent.

Proof. (See also the proof of Proposition 3.5.5, or Proposition 6.10, [52].) Let I |= pω|M =
qω|M . By an automorphism, there is an |M | + |a|-saturated model M ′ so that I |= pω|M ′ ,
and also by an automorphism, there is some b′ ≡M b with I |= qω|b′ . By Ramsey’s theorem
and compactness, we can assume I is indiscernible over M ′b′; now let c = c0 for I =
{ci}i∈ω. By lemma 4.5.5, there is an M -invariant type s(X, y) ⊢ tp(M ′b′/M) and a Morley
sequence {M ′

ib
′
i}i∈I withM ′

0b
′
0 =M ′b′ in s(X, y) that is indiscernible overMc. In particular,

p(x)|M ′ ∪ q(x)|b′1,...,b′m,... is consistent, realized by c. Let r(y) = s(X, y)|y; then for b′′1, . . . b
′′
m |=

r(m)(y)|M ′ , p(x)|M ′ ∪ q(x)|b′′1 ,...,b′′m is consistent. Let a1, . . . , an have ai |= tp(a/M) for i ≤ n,

and b1, . . . bm |= r(m)(y)|Ma1,...,an . By |M | + |a|-saturation of M ′, there are a′1, . . . a
′
n ∈ M ′

with a′1, . . . a
′
n ≡M a1, . . . an. Let b′′1, . . . b

′′
m |= r(m)(y)|M ′ . Then p(x)|a′1,...,a′n ∪ q(x)|b′′1 ,...,b′′m

is consistent. But by invariance, a′1 . . . a
′
nb

′′
1 . . . b

′′
n ≡M a1 . . . anb1 . . . bn. So p(x)|a1,...,an ∪

q(x)|b1,...,bm is consistent, as desired.

We are now ready to prove Theorem 4.5.3. First of all, replacing p with pω and q with
qω, we may assume that p|M = q|M is the type of a coheir Morley sequence over M . Now
assume p(x)|a ∪ q(x)|b is consistent, realized by a coheir Morley sequence I. It can be
assumed indiscernible over ab by Ramsey’s theorem and compactness, so ab |⌣

K∗

M
I by the

paragraph immediately following Fact 4.5.7, and I |⌣
K∗

M
ab by symmetry. So it suffices to

show p(x)|a ∪ q(x)|b is consistent. Suppose otherwise, so there are φ(x, a) ∈ p(x)|a and
ψ(x, b) ∈ q(x)|b such that {φ(x, a), ψ(x, b)} is inconsistent. Let s(w, y) = tp(a, b/M), and
let r(y) be as in lemma 4.5.9. Once again, we use Conant’s technique, Theorem 7.17 of [32].
By induction, we will find a1, . . . , an, . . . , b1, . . . , bn, . . . so that

(1) For i < j, ajbi ≡M ab, so {φ(x, aj), ψ(x, bi)} is inconsistent and ai |= tp(a/M) for
each i ≥ 1.
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(2) For n ≤ m, bn+1, . . . bm |= r(m−n)(y)|Ma1...an , so p(x)|a1,...,an ∪ q(x)|bn+1,...,bm and in
particular {φ(x, a1), . . . φ(x, an), ψ(x, bn+1) . . . ψ(x, bm)} is consistent by lemma 4.5.9.

Assume a1, . . . , an, b1, . . . , bn have already been constructed satisfying (1) and (2) up to
n. Then b1, . . . , bn begin an invariant Morley sequence in tp(b/M), so because a |⌣

K

M
b,

∪n
i=1s(w, bi) is consistent, and we can take an+1 to realize it. Then we can take bn+1 |=

r(y)|a1,...,an+1b1...bn .
By 4.2.4, properties (1) and (2) imply SOP3–a contradiction. This proves Theorem 4.5.3.
Symmetry of |⌣

K∗
is not used directly in building the configuration satisfying (1) and

(2); this is in contrast to Chapter 3, where the rows are required to be (coheir) Conant-
independent throughout the construction. We now prove a version of Theorem 4.5.3 for
Kim-nonforking types over M rather than finitely satisfiable or invariant types over M , that
uses the full force of the assumption that the relevant independence relation, in this case
|⌣

K∗d, is symmetric.
By remark 4.5.8, in an NSOP3 theory where Conant-forking coincides with Conant-

dividing and |⌣
K∗

is symmetric, Theorem 4.5.3 holds even if p and q are only assumed to
be M -invariant types with pω|M = qω|M , rather than M -finitely satisfiable types. In this
case, p and q are examples of types, so that for any small A,B ⊇M , there are M -invariant
Morley sequences I = {ai}i∈ω and I ′ = {bj}j∈ω, so that ai |= p(x)|A and bi |= q(x)|B for

i ≥ 0, I ≡M I, and I |⌣
K

M
A (and I |⌣

K

M
B). This assumption can be seen as an analogue of

pω|M = qω|M for Kim-nonforking types over M , and yields the conclusion of Theorem 4.5.3
with respect to |⌣

i:

Theorem 4.5.10. Assume |⌣
K∗d is symmetric and T is NSOP3. Let p(x) be anM-invariant

type, a, b ⊇M be small supersets of M with a |⌣
i

M
b and I, J M-invariant Morley sequences

in p(x) indiscernible over a and b respectively, with I |⌣
K

M
a. Then there is some I ′′ |⌣

K∗d

M
ab

with I ′′ ≡a I and I ′′ ≡b I
′. If |⌣

f (resp. |⌣
K) satisfies the chain condition, the assumption

a |⌣
i

M
b can be relaxed to a |⌣

f

M
b (resp. a |⌣

K

M
b).

Note that |⌣
f is known to satisfy the chain condition in NTP2 theories (Proposition 2.8,

[113]). It is not known whether there are non-simple examples of NSOP3 NTP2 theories.
(Problem 3.16, [26]).

We start with the analogue of lemma 4.5.5.

Lemma 4.5.11. Let M , I, J , a, b, be as in the statement of Theorem 4.5.10, and assume
|⌣

K∗d is symmetric. Let p(X, y) = tp(I, a/M) and q(X, z) = tp(J, b/M). Then there is some
invariant type r |= tp(b/M) so that for a1, . . . , an with ai |= tp(a/M) for i < n beginning an
invariant Morley sequence overM and b1, . . . bm |= r(m)(y)|Ma1...an, ∪n

i=1p(X, ai)∪∪m
i=1q(X, bi)

is consistent.

Proof. Let {Ki}i<κ enumerate the invariant Morley sequences in tp(a/M). Since I |⌣
K

M
a,

{p(X, ai)}i∈ω is consistent for {ai} any invariant Morley sequence in tp(a/M), so by auto-
morphisms, there are {K ′i}i<κ so that for i < κ and K ′i = {a′ij }j∈ω, for j ∈ ω, a′ij ≡MI a. Let
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K ′ = ∪i<κK
′i. By another automorphism, find b′ with b′I ≡ bJ . Then by Ramsey’s theorem

and compactness, I can be assumed indiscernible over K ′b′. By remark 4.5.8, there is an
M -invariant type s(X, y) ⊢ tp(K ′b′/M) and a Morley sequence {K ′

ib
′
i}i<ω with K ′

0b
′
0 =M ′b′

in s(X, y) that is indiscernible over MI.
In particular, for any i ≤ κ, ∪j<ωp(X, a

i
j) ∪∪j<ωq(X, b

′
j) is consistent, realized by I. Let

r(y) = s(X, y)|y; then for b′′1, . . . b
′′
m |= r(m)(y)|K′ , for any i < κ, ∪j<ωp(X, a

i
j) ∪ ∪j≤mq(X, b

′′
j )

is consistent. Let a1, . . . , an begin an invariant Morley sequence over M with ai |= tp(a/M)
for i ≤ n, and b1, . . . bm |= r(m)(y)|Ma1,...,an . Then there are a′1, . . . a

′
n ∈ K ′ with a′1, . . . a

′
n ≡M

a1, . . . an. Let b′′1, . . . b
′′
m |= r(m)(y)|K′ . Then ∪j≤np(X, a

′
j) ∪ ∪j≤mq(X, b

′′
j ) is consistent. But

by invariance, a′1 . . . a
′
nb

′′
1 . . . b

′′
n ≡M a1 . . . anb1 . . . bn. So ∪j≤np(X, aj) ∪ ∪j≤mq(X, bj) is con-

sistent, as desired.

We fix the auxilliary notation a |⌣
K+

M
b to mean that there is an M -invariant Morley

sequence J = {bi}i∈ω with b0 = b that is indiscernible over Ma. By Remark 4.5.8, if |⌣
K∗d

is symmetric then so is |⌣
K+

. We prove the following lemma about |⌣
K+

and |⌣
K :

Lemma 4.5.12. Let d0 |⌣
K+

M
c and d1 |⌣

K

M
c. Then there is d′1 ≡Mc d1 with d0d

′
1 |⌣

K+

c and

d′1 |⌣
i

M
d0.

Proof. (See also the proof of Proposition 3.5.5, or Proposition 6.10, [52].) By d0 |⌣
K+

M
c, let

I = {ci}i∈I with c0 = c be anM -invariant Morley sequence indiscernible over d0. By d1 |⌣
K

M
c

and compactness, there is some d′′1 with d′′1ci ≡M d1ci for i < ω. By Ramsey’s theorem,
compactness, and an automorphism, we can choose d′′1 so that I is indiscernible over d0d

′′
1,

so d0d
′′
1 |⌣

K+

M
I: if I is a Morley sequence in the M -invariant type s, then by compactness,

there is a Morley sequence {Ii}i<ω in sω with I0 = I that is indiscernible over d0d
′′
1 (See

also the paragraph immediately following Fact 4.5.7). So by the paragraph immediately

preceding the statement of the lemma, I |⌣
K+

M
d0d

′′
1, and in particular there is d′0d

′
1 |⌣

i

M
d0d

′′
1

with d′0d
′
1 ≡MI d0d

′′
1; by Ramsey’s theorem, compactness, and an automorphism, we can

choose d′0d
′
1 so that I is indiscernible over d′0d

′
1d0d

′′
1. Then, again, d′0d

′
1d0d

′′
1 |⌣

K+

M
I, so in

particular, d0d
′
1 |⌣

K+

c; also, d′1 ≡Mc d
′′
1 ≡Mc d1.

We are now ready to prove Theorem 4.5.10. Note that if we can find I ′′ so that I ′′ ≡a I
and I ′′ ≡b I

′, then I ′′ can be chosen indiscernible over ab, so ab |⌣
K∗d

M
I ′′, and I ′′ |⌣

K∗d

M
ab. So

it suffices to show p(X, a) ∪ q(X, b) is consistent. Suppose it is inconsistent. Then by com-
pactness, there are some φ(X, a) ∈ p(X, a) and ψ(X, b) ∈ q(X, b) so that {φ(X, a), ψ(X, b)}
is inconsistent. Let s(w, y) = tp(a, b/M) and let r(y) be as in Lemma 5.1. Let κ be large.
By transfinite induction, we will find ai, bi, i < κ so that

(1) For i < j < κ, ajbi ≡M ab, so {φ(x, aj), ψ(x, bi)} is inconsistent and ai |= tp(a/M).
(2) For i < j1 < . . . < jm < κ, bj1 , . . . bjm |= r(m)(y)|Ma≤i

and ai |⌣
i a<i.

(3) For i < κ, a≤i |⌣
K+

M
b≤i.
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Suppose ai, bi already constructed satisfying (1)-(3) for i < λ. We find aλ and bλ. By
a |⌣

i

M
b, or a |⌣

f

M
b or a |⌣

K

M
b and the respective chain condition, since {bi}i<λ is an invariant

Morley sequence in tp(b/M), there is some aλ |= ∪i<λs(w, bi) with aλ |⌣
K

M
b<λ. By Lemma

4.5.12, aλ can then additionally be chosen with aλ |⌣
i

M
a<λ and aλa<λ |⌣

K+

M
b<λ, as desired.

We then choose bλ |= r(y)|a≤λb<λ
, which will preserve (1) and (2); it remains to show (3).

This will follow from the following claim, analogous to Claim 3.6.2:

Claim 4.5.13. For any a, b, c, M , if a |⌣
K+

M
b and tp(c/Mab) extends to an M-invariant

type q(x), then a |⌣
K+

M
bc. (This is true as long as |⌣

K+

is symmetric.)

Proof. It follows that b |⌣
K+

M
a, so let I = {ai}i∈ω be an Mb-indiscernible invariant Morley

sequence over M with a0 = a. By an automorphism, we can choose I so that c |= q|MIb.

By Ramsey and compactness, we can further choose I indiscernible over Mbc, so bc |⌣
K+

M
a

and by symmetry of |⌣
K+

, a |⌣
K+

bc.

Finally, by the Erdős-Rado theorem, we can find {aibi}i<ω indiscnernible over M , satis-
fying (1) and (2) (and (3)). Then {ai}i∈ω will be an invariant Morley sequence over M with
ai |= tp(a/M), so for n ≤ m, by (2) and Lemma 4.5.11, ∪n

i=1p(X, ai) ∪ ∪m
i=n+1q(X, bi) and

therefore {φ(x, a1), . . . φ(x, an), ψ(x, bn+1) . . . ψ(x, bm)} is consistent. This, together with (1),
implies SOP3 by fact 4.2.4 –a contradiction.
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Chapter 5

On the properties SOP2n+1+1

5.1 Introduction

This chapter is on Shelah’s strong order property hierarchy, the properties SOPn introduced
in [101] and extended in [98], [40]. For n ≥ 3, these are defined as follows:

Definition 5.1.1. A theory T is NSOPn (that is, does not have the n-strong order property)
if there is no definable relation R(x1, x2) with no n-cycles, but with tuples {ai}i∈ω with |=
R(ai, aj) for i < j. Otherwise it is SOPn.

For 1 ≤ n ≤ 4, these properties have been developed to various degrees. In [52], Ka-
plan and Ramsey extend the theory of forking-independence in simple theories to Kim-
independence in NSOP1 theories, by modifying the definition of dividing to require an in-
variant Morley sequence to witness the dividing. There, a characterization of NSOP1 is
given in terms of symmetry for Kim-independence, using work of Chernikov and Ramsey
in [28], and also in terms of the independence theorem for Kim-independence. Later work
has continued the development of Kim-independence in NSOP1 theories; for example, see
Kaplan and Ramsey ([53]) for transitivity and witnessing; Kaplan, Ramsey and Shelah ([54])
for local character; Dobrowolski, Kim and Ramsey ([39]) and Chernikov, Kim and Ramsey
([6]) for independence over sets; Kruckman and Ramsey ([71]) and Kruckman, Tran and
Walsberg ([72]) for improvements upon the independence theorem; Kim ([63]) for canonical
bases; and Kamsma ([51]), Dobrowolski and Kamsma ([39]) and Dmitrieva, Gallinaro and
Kamsma ([5]) for extensions to positive logic, as well as the examples, by various authors,
of NSOP1 theories in applied settings. See also Kim and Kim [64], Chernikov and Ramsey
([28]), Ramsey ([94]), and Casanova and Kim ([17]) for type-counting and combinatorial
criteria for SOP1 and SOP2, and Ahn and Kim ([3]) for connections of SOP1 and SOP2 to
the antichain tree property further developed by Ahn, Kim and Lee in [4].

The SOP2 theories were characterized by Džamonja and Shelah ([40]), Shelah and Usvy-
atsov ([102]), and Malliaris and Shelah ([81]) as (under mild set-theoretic assumptions) the
maximal class in the order ◁∗, related to Keisler’s order, and in celebrated work of Malliaris
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and Shelah ([79]), they were shown to be maximal in Keisler’s order, in ZFC. Then in
[83], it was shown that a theory is NSOP2 if and only if it is NSOP1, bringing together
Kim-independence and Keisler’s order. It remains open whether all NSOP3 theories are
NSOP2

Generalizing work of Evans and Wong in [42], showing the ω-categorical Hrushovski
constructions introduced in [41], which have a natural notion of free amalgamation, are either
simple or SOP3, and work of Conant in [32] showing that all modular free amalgamation
theories are simple or SOP3, the author in Chapter 1 isolates two structural properties,
with no known NSOP4 counterexamples, which generalize [42] and [32] and imply that a
theory must be either NSOP1 or SOP3. As a consequence, all free amalgamation theories
are NSOP1 or SOP3. Malliaris and Shelah ([81]) show symmetric inconsistency for higher
formulas in NSOP3 theories, and Malliaris ([78]) investigates the graph-theoretic depth of
independence in relation to SOP3. In [55], Ramsey, Kaplan and Simon show very recently
that all binary NSOP3 theories are simple, by giving a theory of independence for a class of
theories containing all binary theories. Until recently, no consequences of NSOPn were known
for the program of further extending the theory of Kim-independence in NSOP2 = NSOP1

theories to NSOPn for n > 2; then the author, in Chapter 4, shows that types in NSOP3

theories with internally NSOP1 structure satisfy Kim’s lemma at an external level, as well
as an independence theorem, and also shows that NSOP3 theories with symmetric Conant-
independence satisfy an independence theorem for finitely satisfiable types with the same
Morley sequences, related to that proposed for NTP2 theories by Simon ([104]).

Shelah, in [101], gives results on universal models in SOP4 theories. Generalizing a line
of argument from the literature originally used by Patel ([85]), Conant, in [32] (where an
historical overview of this argument can be found), shows free amalgamation theories are
NSOP4. In Chapter 1, the author connects this result to a potential theory of independence
in NSOP4 theories, defining the relation of Conant-independence1:

Definition 5.1.2. Let M be a model and φ(x, b) a formula. We say φ(x, b) Conant-divides
over M if for every invariant Morley sequence {bi}i∈ω over M starting with b, {φ(x, b)}i∈ω
is inconsistent. We say φ(x, b) Conant-forks over M if and only if it implies a disjunction of
formulas Conant-dividing over M . We say a is Conant-independent from b over M , written
a |⌣

K∗

M
b, if tp(a/Mb) does not contain any formulas Conant-forking over M .

By Kim’s lemma (Theorem 3.16 of [52]), this coincides with Kim-independence in NSOP1

theories. Conant-independence gives a plausible theory of independence for NSOP4 theories:

Fact 5.1.1. (Theorem 1.6.2) Any theory where Conant-independence is symmetric is
NSOP4, and there are strictly NSOP4 (NSOP4 and SOP3) theories where Conant-
independence is symmetric. Thus n = 4 is the largest value of n so that there are strictly
NSOPn theories where Conant-independence is symmetric.

1This was originally introduced under a nonstandard definition in [83], to show NSOP2 theories are
NSOP1.
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In Chapter 1, the author characterizes Conant-independence in most of the known ex-
amples of NSOP4 theories, where it is symmetric. This leaves open the question of whether
Conant-independence is symmetric in all NSOP4 theories, giving a full theory of indepen-
dence for the class NSOP4 theories.

However, to our knowledge, other than some examples ([101], [18]; see also [35]), little
has been known about the properties SOPn for n ≥ 5.

The main result of this chapter will be to generalize the interactions betwen SOP4

and Conant-independence to the higher levels of the SOPn hierarchy. As with Conant-
independence, we will move from the forking-independence “at a generic scale” considered
by Kruckman and Ramsey’s work on Kim-independence in ([52], where the phrase is coined),
to forking-independence at a maximally generic scale, grounding our notion of independence
in dividing with respect to every Morley sequence of a certain kind, rather than just some
Morley sequence. There is precedent for this kind of definition in the “strong Kim-dividing”
of Kaplan, Ramsey and Shelah in [54], defined in the context of “dual local character” in
NSOP1 theories and grounding the defintion of Conant-independence.

We will also turn our attention to the fine structure of the genericity in the sequences
that witness dividing, taking into account the variation between different classes of Mor-
ley sequences. For Kim-independence in NSOP1 theories, this fine structure is submerged:
by Corollary 5.4 of [53], Kim-independence in NSOP1 theories remains the same when one
replaces invariant Morley sequences in the genericity with Kim-independence itself. In the
examples of NSOP4 theories where Conant-independence has been characterized, it can also
be seen that Conant-independence remains the same when one replaces invariant Morley
sequences in the definition (Definition 5.1.2) with Conant-nonforking Morley sequences; see
remarks at the end of Section 2 of this chapter. However, in, say, strictly NSOP5 theories,
Conant-independence cannot be symmetric, but a symmetric notion of independence can
be obtained in some examples by replacing the invariant Morley sequences with nonforking
Morley sequences. More generally, we can iteratively obtain different levels of genericity,
the independence relations |⌣

ðn defined in Definition 5.2.3. The main result of this chap-

ter will be to show, within the interaction between the layers |⌣
ðn of genericity and the

approximations SOPk of strict order, the resonance of the exponential function 2n+1 + 1.
We show:

Theorem 5.1.2. Let n ≥ 1. If |⌣
ðn is symmetric in the theory T , then T is NSOP2n+1+1.

Moreover, there exists an SOP2n+1 theory in which |⌣
ðn is symmetric. So k = 2n+1+1 is the

largest value of k so that there is an NSOPk but SOPk−1 theory where |⌣
ðn is symmetric.

Similar results are proven for (left and right) transitivity. As with Conant-independence,
this leaves open the question of whether |⌣

ðn is symmetric in all NSOP2n+1+1 theories, which
would give a full theory of independence throughout the strict order hierarchy.
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In Section 2, we define |⌣
ðn , show some basic properties necessary for our main result,

and give some connections with stability motivating the possibility that symmetry for |⌣
ðn

forms a hierarchy.
In section 3, we characterize |⌣

ðn in the classical examples of NSOP2n+1+1 theories,
including the generic directed graphs without short directed cycles and undirected graphs
without short odd cycles of [100], and the free roots of the complete graph of [18], developed
in [35]. Though |⌣

ðn = |⌣
a will be trivial (and thus symmetric) in these classical examples,

giving us the existence result of our main theorem, it is promising for the full characterization,
Question 5.4.6, that the cycle-free examples and the free roots of the complete graph have
|⌣

ðn = |⌣
a for different reasons. In the cycle-free examples, successive approximations of

forking-independence tend towards larger graph-theoretic distances, while in the free roots
of the complete graph, distances in successive approximations of forking-independence tend
away from the extremes.

In section 4, we show that if |⌣
ðn is symmetric in the theory T , then T is NSOP2n+1+1,

completing our main result. We pose the converse as an open question.

5.2 Definitions and basic properties

We recall the defintion of forking-independence:

Definition 5.2.1. A formula φ(x, b) divides over a model M if there is an M-indiscernible
sequence {bi}i<ω with b0 = b and {φ(x, bi)}i<ω inconsistent. A formula φ(x, b) forks over
a model M if there are φi(x, bi) dividing over M so that |= φ(x, b) →

∨n
i=1 φi(x, bi). We

say that a is forking-independent from b over M , denoted a |⌣
f

A
b, if tp(a/Mb) contains no

formulas forking over M .

We define the relations |⌣
ðn , in analogy with the Conant-independence of Chapter 1.

To give the definition, we need to generalize the notion of Morley sequence to any relation
between sets over a model.

Definition 5.2.2. Let |⌣ be a relation between sets over a model. An |⌣-Morley sequence
over M is an M-indiscernible sequence {bi}i<ω with bi |⌣M

b0 . . . bi−1 for i < ω.

Let a |⌣
u

M
b denote that tp(a/Mb) is M -finitely satisfiable; as elsewhere in the literature,

a finiteley satisfiable or coheir Morley sequence will be a |⌣
u-Morley sequence.

Definition 5.2.3. (1) Let |⌣
ð0, 0-ð-independence, denote forking-independence over a model

M ; a formula 0-ð-divides (0-ð-forks) over M if it divides (forks) over M .
Inductively,
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(2a) A formula φ(x, b) (n+1)-ð-divides over a model M if, for any |⌣
ðn-Morley sequence

{bi}i<ω with b0 = b, {φ(x, bi)}i<ω is inconsistent.2

(2b) A formula φ(x, b) (n + 1)-ð-forks over a model M if there are φi(x, bi) (n + 1)-ð-
dividing over M so that |= φ(x, b) →

∨n
i=1 φi(x, bi).

(2c) We say that a is (n + 1)-ð-independent from b over M , denoted a |⌣
ðn+1

M
b, if

tp(a/Mb) contains no formulas (n+ 1)-ð-forking over M .

It will be useful for our main results to show that n-ð-forking coincides with n-ð-dividing
in general, for n > 1; this is not known to be the case for n = 1, so this case will need to be
handled separately in proving our main results.

Lemma 5.2.1. (1) The relation |⌣
ðn has right-extension for n ≥ 0: if a |⌣

ðn

M
b then for any

c there is a ≡Mb a
′ with a′ |⌣

ðn

M
bc.

(2) The relation |⌣
ðn has left-extension for n ≥ 1: if a |⌣

ðn

M
b then for any c there is

c ≡Ma c
′ with ac′ |⌣

ðn

M
b.

Proof. (1) This is known for n = 0 and follows as in that case in the standard way for
n ≥ 1. Suppose that a |⌣

ðn

M
b, but there were no such a′. Then by compactness, there would

be some formulas φ(x, b) ∈ tp(a/Mb), and φi(x, di) n-ð-forking over M for di ⊆ Mbc, so
that |= φ(x, b) →

∨n
i=1 φi(x, di). By definition of n-ð-forking, for 1 ≤ i ≤ n, there are

φij(x, bij) n-ð-dividing over M so that |= φi(x, di) →
∨ni

j=1 φij(x, bij). Then |= φ(x, b) →∨n
i=1

∨ni

j=1 φij(x, bij), so φ(x, b) n-ð-forks over M , contradicting a |⌣
ðn

M
b.

(2) Suppose that a |⌣
ðn

M
b. LetM ′ ≻M be an (|M |+|T |)+-saturated elementary extension

of M . By (1) there is a′ ≡Mb a with a′ |⌣
ðn

M
M ′. So by replacing a with a′, we can assume

that b =M ′ is an (|M |+ |T |)+-saturated elementary extension of M .
We next show that, for any d with tp(d/M ′) containing no formulas n-ð-dividing over

M , d |⌣
ðn

M
M ′. This argument is standard from the literature. Suppose otherwise. Then

tp(d/M ′) contains a φ(x, b) n-ð-forking over M for b ⊂ M ′. So there are φ(x, bi) n-ð-
dividing over M with |= φ(x, b) →

∨n
i=1 φi(x, bi). By (|M | + |T |)+-saturation of M ′ there

are b′1, . . . , b
′
n ⊂ M ′ with b′1 . . . b

′
n ≡Mb b1 . . . bn. So φ(x, b′i) n-ð-divide over M for 1 ≤ i ≤ n

and |= φ(x, b) →
∨n

i=1 φi(x, b
′
i). By the latter, that φ(x, b) ∈ tp(d/M ′) and tp(d/M ′) is a

complete type over M ′ implies that there is some 1 ≤ i ≤ n with φi(x, b
′
i) ∈ tp(d/M ′), a

contradiction.
Now consider any c. It suffices to find c′a′ ≡M ca with a′ ≡M ′ a and tp(c′a′/M ′) containing

no formulas n-ð-dividing over m. So by compactness, for ψ(y, x) ∈ tp(ca/M) and φ(x, d) ∈
tp(a/M ′) with d ⊆ M ′, it suffices to find c′a′ with |= ψ(c′, a′) ∧ φ(a′, d) so that tp(c′a′/Md)

2It is not immediate that this defintion is independent of adding or removing unusued parameters in
b, though this is corrected by the definition of n + 1-ð-forking. We fix the convention that a formula only
has finitely many parameters. Fixing this convention, it will follow from the results of this section that
n-ð-dividing of a formula φ(x, b) is independent of adding or removing unused parameters in b for n > 1;
this is not known for n = 1.
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contains no formulas φ′(y, x, e) n-ð-dividing over M with e ⊆ d. The formula ∃y(y, x) ∧
φ(x, d) belongs to tp(a/M ′). So by a |⌣

ðn

M
M ′, ∃y(y, x)∧φ(x, d) does not n-ð-divide over M .

By definition of n-ð-dividing, there is an |⌣
ðn−1

-Morley sequence over M , I = {di}i<ω with
d0 = d, so that {∃y(y, x) ∧ φ(x, di)}i<ω is consistent, realized by a′. By Ramsey’s theorem,
compactness, and an automorphism, we choose a′ so that I is indiscernible over Ma′. In
particular, |= ∃yψ(y, a′), so choose c′ so that |= ψ(c′, a′). By another application of Ramsey’s
theorem, compactness and an automorphism, we can choose c′ so that I is indiscernible over
Ma′c′. It remains to show that tp(c′a′/Md) contains no formulas φ′(y, x, e) n-ð-dividing
over M with parameters e ⊆ d. For i < ω there are ei ⊆ di with {ei}i<ω Ma′c′-indiscernible

and e0 = e. By definition of |⌣
ðn−1

-Morley sequence, for i < ω, di |⌣
ðn−1

M
d0 . . . di−1. So

it follows from the definition of |⌣
ðn−1

M
that ei |⌣

ðn−1

M
e0 . . . ei−1 (i.e. |⌣

ðn−1

M
is monotone.)

So {ei}i<ω is an |⌣
ðn−1

M
-Morley sequence over M . Let φ′(y, x, e) ∈ tp(c′a′/Md). Then by

Ma′c′-indiscernibility, {φ′(y, x, ei)}i<ω is consistent, realized by a′c′. So φ′(y, x, e) does not
n-ð-divide over M .

Proposition 5.2.2. For n ≥ 2, n-ð-forking coincides with n-ð-dividing.

Proof. Exactly as in Fact 1.6.1 of Chapter 1, using right- and left-extension for |⌣
ðn−1

, and

the standard arguments. Suppose φ(x, b) n-ð-forks over M . Then φ(x, b) →
∨N

j=1 φj(x, c
j)

for some φj(x, c
j) n-ð-dividing over M . We show that φ(x, b) n-ð-divides over M ; suppose

otherwise. Then by the definition of n-ð-dividing and compactness, there is an |⌣
ðn−1

-

Morley sequence {bi}i<κ, for large κ, i.e. indiscernible over M with bi |⌣
ðn−1

b<i for i <

κ, with b0 = b and {φ(x, bi)}i<κ consistent. By induction we find cji , 1 ≤ j ≤ N , i <

κ, so that {cji}Nj=1bi ≡M {cj}Nj=1b and {cji}Nj=1bi |⌣
ðn−1

M
{cj<i}Nj=1b<i for i < κ. Suppose by

induction that for λ < κ we have found cji , 1 ≤ j ≤ N , i < λ, so that {cji}Nj=1bi ≡M

{cj}Nj=1b and {cji}Nj=1bi |⌣
ðn−1

M
{cj<i}Nj=1b<i for i < λ. Then because bλ |⌣

ðn−1

M
b<λ, by right

extension we could have chosen cji , 1 ≤ j ≤ N , i < λ so that bλ |⌣
ðn−1

M
{cj<λ}Nj=1b<λ. Now

by left extension and an automorphism, find cjλ, 1 ≤ j ≤ N , with {cjλ}Nj=1bλ ≡M {cj}nj=1b

and {cjλ}Nj=1bλ |⌣
ðn−1

M
{cj<λ}nj=1b<λ. This completes the induction. Now by the Erdős-Rado

theorem and an automorphism, we can find c′ji for i < ω, 1 ≤ j ≤ N , so that {c′1i . . . c′Ni bi}i<ω

is an |⌣
ðn−1

-Morley sequence overM with c′10 . . . c
′N
0 b0 = c1 . . . cNb. Now we give the standard

argument to get a contradiction. Each {c′ji }i<ω for 1 ≤ j ≤ N is an |⌣
ðn−1

-Morley sequence

overM with c′j0 = cj. Let a realize {φ(x, bi)}i<κ. For each i < ω, |= φ(x, bi) →
∨N

j=1 φj(x, c
′j
i ),

so |= φj(a, c
′j
i ) for some 1 ≤ j ≤ n. So there is some 1 ≤ j ≤ n so that |= φj(a, c

′j
i ) for

infinitely many i < ω. By an automorphism, {φj(x, c
′j
i )}i<j is consistent. But because

{c′ji }i<ω is an |⌣
ðn−1

-Morley sequence over M with c′j0 = cj, this contradicts n-ð-dividing of
φj(x, c

j) over M .
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While we will not use the results of the rest of this section in the sequel, they will give
some additional motivation to the main results of this chapter and to the open question posed
at the end. We will be interested in the question of when |⌣

ðn has properties analogous to
Kim-independence in NSOP1, including transitivity ([53]) and especially symmetry ([52]).
If the answer to Question 5.4.6 is positive, either of these properties will be equivalent to

NSOP2n+1+1, so in particular symmetry of |⌣
ðn will imply symmetry of |⌣

ðn+1

. However,

even the question of whether symmetry of |⌣
ðn implies symmetry of |⌣

ðn+1

is still open. But
if we strengthen symmetry to an analogue of the stable forking conjecture, a linear hierarchy
starts to emerge.

Definition 5.2.4. A theory T satisfies the stable n-ð-forking conjecture if whenever a ̸ |⌣
ðn

M
b,

there is some L(M)-formula φ(x, y), which is stable as an L(M)-formula, so that |= φ(a, b)
and φ(x, b) n-ð-forks over M .

Remark 5.2.3. Unlike the stable forking conjecture for simple theories, here we require
only that φ(x, y) be stable as a L(M)-formula, not an L-formula. It makes sense to make
this allowance outside of the simple case, as the analogous conjecture about Kim-forking
fails for, say, T feq (see, e.g., [100], [102], [28], [52]), when the stability is as an L-formula, but
the “stable Kim-forking conjecture” is open for NSOP1 theoires when the stability is taken
to be as an L(M) formula.

Note that if a stable formula 1-ð-forks over M , it forks over M , so by basic stability
theory divides with respect to any nonforking Morley sequence; that is, 1-ð-divides over
M . If T satisfies the stable 1-ð-forking conjecture, it follows that if tp(a/Mb) contains no

1-ð-dividing formulas, a |⌣
ð1

M
b.

The first part of this fact is well-known; the second is observed without proof for theories
in [16], but the evident proof works equally well for formulas.

Fact 5.2.4. If a formula φ(x, y) is stable, it is without the tree property and is low: there is
some k so that for {bi}i∈I an indiscernible sequence, {φ(x, bi)}i∈I is inconsistent if and only
if it is k-inconsistent.

The argument for the following is similar to the literature: see, for example, Theorem
5.16 of [52] or Theorem 3.5.3. The construction of the tree is lifted mostly word-for-word
from the proof of Theorem 3.5.3, but we follow the local approach in the paragraph following
the proof of that theorem.

Proposition 5.2.5. If T satisfies the stable n-ð-forking conjecture, then |⌣
ðn is symmetric.

Proof. Assume a |⌣
ðn

M
b but b ̸ |⌣

ðn

M
a. Let φ(x, y) be a stable L(M)-formula with

|= φ(b, a) and φ(x, a) a stable formula n-ð-forking over M ; by Proposition 5.2.2 and
the remarks after Remark 5.2.3, this n-ð-divides over M . We find, for any n, a tree
(In, Jn) = ({aη}η∈ω≤n , {bσ}σ∈ωn), infinitely branching at the first n + 1 levels and then with
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each aσ for σ ∈ ωn at level n + 1 followed by a single additional leaf bσ at level n + 2,
satisfying the following properties:

(1) For η ⊴ σ, |= φ(bσ, aη).

(2) For η ∈ ω<n, the branches at η form an |⌣
ðn−1

-Morley sequence over M indiscernible
overMaη, so by Proposition 5.2.2 and the remarks after Remark 5.2.3, aη is n-ð-independent
over M from those branches taken together.

Suppose (In, Jn) already constructed; we construct (In+1, Jn+1). We see that the root a∅
of (In, Jn) is n-ð-independent from the rest of the tree, (In, Jn)

∗: for n = 0 this is just the
assumption a |⌣

ðn

M
b, while for n > 0 this is (2). So by extension we find a′∅ ≡M(InJn)∗ a∅

(so guaranteeing (1)), to be the root of (In+1, Jn+1), with a
′
∅ |⌣

K∗

M
InJn. Then by applying

a |⌣
K∗

M
InJn to the formulas giving (1), find some |⌣

ðn−1

-Morley sequence {(In, Jn)i}i∈ω with

(In, Jn) ≡M (In, Jn)
i indiscernible overMa′∅, guaranteeing (2) and preserving (1), and reindex

accordingly.
By lowness and n-ð-dividing of φ(x, a) over M , the successors to each node witness k-

dividing of φ(x, a) over M for some fixed k. This together with 1 gives the k-tree property
for φ(x, a), a contradiction.

We now show the linear hierarchy obtained when symmetry of n-ð-independence is im-
proved to the conclusion of the stable n-ð-forking conjecture.

Proposition 5.2.6. If T satisfies the stable n-ð forking conjecture, then |⌣
ðn = |⌣

ðn+1

(so

|⌣
ðn = |⌣

ðm for m ≥ n.)

Proof. It suffices to show that for φ(x, y) a stable formula, if φ(x, b) n-ð-forks over M , so
n-ð-divides over M , then it n+1-ð-divides over M . Let {bi}i<ω be an |⌣

ðn-Morley sequence
over M ; by the definition of n + 1-ð-dividing, it suffices to show that {φ(x, bi)}i<ω is k-
inconsistent. Suppose otherwise. By compactness, extend I = {bi}i<ω to a |⌣

ðn-Morley
sequence {bi}i<ω+ω over M . Then {bi}ω≤i<ω+ω is a (nonforking) Morley sequence over MI
that does not witness dividing of φ(x, bω). So it suffices to show that φ(x, bω) divides over
MI anyway, contradicting the basic properties of stability. By the previous proposition,
|⌣

ðn is symmetric, so I |⌣
ðn

M
bω. Note that φ(x, bη) divides over M . So by lowness, there is

some k so that each |⌣
ðn−1

-Morley sequence over M starting with bω witnesses k-dividing of

φ(x, bη). Now for any formula in tp(bω/MI), by I |⌣
ðn

M
bω there is an |⌣

ðn−1

-Morley sequence
over M starting with bω, each term of which realizes this formula. In sum, for any formula
in tp(bω/MI), there is an M -indiscernible sequence of realizations of this formula witnessing
the k-dividing of φ(x, bω) over M . So by compactness, φ(x, bη) k-divides over MI.

In the next section, we will characterize |⌣
ðn in the classical examples of NSOP2n+1+1

theories, for n ≥ 1; it will be trivial in these examples, so satisfies the stable n-ð-forking
conjecture. Note that, if we start with the analogous stability assumption for Conant-
independence (see Chapter 1), the proof of the previous propositions show that it coincides
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with n-ð-independence for n ≥ 1, and is symmetric. There are no known counterexamples
to the “stable Conant-forking conjecture” for NSOP4 theories. 3

5.3 Attainability/examples

In NSOP1 theories, |⌣
ðn is just Kim-independence for n ≥ 1. Moreover, in the examples of

NSOP4 theories where Conant-independence has been characterized, it coincides with |⌣
ðn

and is symmetric (see the end of the previous section). We now give some proper examples.
These examples will show the attainability of SOP2n+1 as the bound on the levels of the
SOPk hierarchy where |⌣

ðn can be symmetric or transitive.

Example 5.3.1. (Free roots of the complete graph) In [18], Casanovas and Wagner show
that the theory T−

n of metric spaces valued in the set {0, . . . , n} has a model companion
Tn. (More precisely, this is interdefinable with the theory introduced in [18], but we use
the language of metric spaces.) They show that this theory is ω-categorical, eliminates
quantifiers, and has trivial algebraicity, and that it is NSOP but not simple. Later, Conant
and Terry show in [35] that Tn is strictly NSOPn+1. We want to show the following

Theorem 5.3.2. In Tn, if 2
k+1 ≤ n, a |⌣

ðk

M
b if and only if a |⌣

a

M
b =: a∩b =M . Therefore,

there are SOP2k+1 theories where |⌣
ðk is symmetric.

We first show the following lemma:

Lemma 5.3.3. Let C,⊆ A,B be metric spaces valued in {0, . . . , n}. Then there is a metric
space D valued in {0, . . . , n} together with isometric embeddings ιA : A ↪→ D and ιB : B ↪→ D
with ιA|C = ιB|C and with, for a ∈ A\C, b ∈ B\C, and dab =: dD(ιA(a), ιB(b))

(a) dab = mab =: minc∈C(dA(a, c) + dB(b, c)) if mab < n∗ =: ⌈n
2
⌉.

(b) dab = mab =: maxc∈C(|dA(a, c)− dB(b, c)|) if mab > n∗

(c) Otherwise, dab = n∗.

Proof. We may assume A ∩ B = C as sets. So it suffices to define a metric on D = A ∪ B
extending that on A and B and satisfying (a), (b), (c). We claim that for all a ∈ A\C,
b ∈ B\C, mab ≥ mab, so only one of (a), (b), (c) may hold. Suppose otherwise. Then
there are c∗, c

∗ ∈ C with d(a, c∗) + d(b, c∗) < |d(a, c∗) − d(b, c∗)|. But because Tn has
quantifier elimination and trivial algebraicity, the class of finite metric spaces valued in
{0, . . . , n} has the strong amalgamation property, so there is a metric d : {a, b, c∗, c∗}2 →
{0 . . . n} extending the metric on {a, c∗, c∗} and {b, c∗, c∗}. Then d(a, b) ≤ d(a, c∗)+d(b, c∗) <
|d(a, c∗) − d(b, c∗)| ≤ d(a, b), a contradiction. So conditions (a), (b) and (c), together with

3Conant-independence is characterized for some classical examples of NSOP4 theories in Chapter 1.
For the Fräıssé-Hrushovski constructions of finite language, where the author has shown that Conant-
independence coincides with d-independence, the proof of the stable forking conjecture for the simple case
of these structures in [92], [41] should extend to the general case using this characterization.
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the requirement of extending the metric on A and B, give a well-defined function d : D2 →
{0 . . . n}, and it remains to show this is a metric.

Suppose first that a ∈ A\C, b ∈ B\C, and c ∈ C. Then d satisfies the triangle inequality
on {a, b, c} if |d(a, c)− d(b, c)| ≤ d(a, b) ≤ d(a, c) + d(b, c). The first inequality is by (b), (c)
and the second is by (a), (c).

Now suppose without loss of generality that a1, a2 ∈ A\C and b ∈ B\C. It remains to
show the triangle inequality on {a1, a2, b}. By the definition of n∗, this is immediately the
case if d(a1, b) = d(a2, b) = n∗. Otherwise, without loss of generality there are three cases,
where d(a1, b) < n∗ and d(a2, b) > n∗, where d(a1, b) < n∗ and d(a2, b) ≤ n∗, and where
d(a1, b) > n∗ and d(a2, b) ≥ n∗.

In the case where d(a1, b) < n∗ and d(a2, b) > n∗, easily d(a1, b) ≤ d(a2, b) + d(a1, a2).
To show d(a2, b) ≤ d(a1, a2) + d(a1, b), by the strong amalgamation property, there is some
metric d′ on D extending d on A and B. So

d(a2, b) ≤ d′(a2, b) ≤ d′(a1, b) + d′(a1, a2) = d′(a1, b) + d(a1, a2) ≤ d(a1, b) + d(a1, a2)

Note that (b) is used for the first inequality, and (a) is used for the last inequality. Finally,
we show d(a1, a2) ≤ d(a2, b) + d(a1, b), so d(a2, b) ≥ d(a1, a2)− d(a1, b). Note that d(a1, b) =
d(a1, c) + d(b, c) for some c ∈ C. Then by (b), d(a2, b) ≥ d(a2, c) − d(c, b) ≥ (d(a1, a2) −
d(a1, c))− d(c, b) = d(a1, a2)− d(a1, b).

In the case where d(a1, b) < n∗ and d(a2, b) ≤ n∗, we first show d(a1, b) ≤ d(a2, b) +
d(a1, a2) and d(a2, b) ≤ d(a1, b) + d(a1, a2). If additionally, d(a2, b) = n∗, then the first of
these inequalities is immediate, so it suffices to prove the second inequality, as by symmetry
we will have then proven the first inequality when both d(a1, b) < n∗ and d(a2, b) < n∗.
By (a), there is some c ∈ C with d(a1, b) = d(a1, c) + d(b, c), so by (a), (c), d(a2, b) ≤
d(a2, c) + d(c, b) ≤ d(a1, a2) + d(a1, c) + d(c, b) = d(a1, a2) + d(a1, b). Finally, we show in this
case that d(a1, a2) ≤ d(a2, b) + d(a1, b). For any c ∈ C, if d(a2, b) = n∗ this must be because
ma2b ≤ n∗, and if d(a2, b) < n∗, then d(a2, b) = mab ≥ mab, so d(a2, b) ≥ d(a2, c)− d(c, b). So
d(a1, a2) ≤ d(a2, b) + d(a1, b) follows exactly as in the case of d(a1, b) < n∗ and d(a2, b) > n∗.

Finally, if d(a1, b) > n∗ and d(a2, b) ≥ n∗, then d(a1, a2) ≤ d(a1, b)+d(a2, b) is immediate.
We next show d(a1, b) ≤ d(a2, b)+d(a1, a2) and d(a2, b) ≤ d(a1, b)+d(a1, a2). If d(a2, b) = n∗,
then the second inequality is immediate, so it suffices to prove the first inequality, as by
symmetry we will have then proven the second inequality when both d(a1, b) > n∗ and
d(a2, b) > n∗. By (a) there will be some c ∈ C with either d(a1, b) = d(a1, c) − d(b, c) or
d(a1, b) = d(b, c) − d(a1, c). In the case of d(a1, b) = d(a1, c) − d(b, c) by (b), (c), d(a2, b) ≥
d(a2, c)−d(b, c) ≥ d(a1, c)−d(a2, a1)−d(b, c) = d(a1, b)−d(a2, a1), proving the first inequality
in this case. In the case of d(a1, b) = d(b, c)− d(a1, c), again by (b), (c), d(a2, b) ≥ d(b, c)−
d(a2, c) = d(a1, c) + d(a1, b)− d(a2, c) = d(a1, b)− (d(a2, c)− d(a1, c)) ≥ d(a1, b)− d(a1, a2),
proving the first inequality in the other case.
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Remark 5.3.4. Say that in the statement of Lemma 5.3.3, we let n∗ = ⌈n
2
⌉ + 1 instead of

⌈n
2
⌉. Then the above proof works: n∗ can be any constant at least ⌈n

2
⌉, and the only place

that n∗ ≥ ⌈n
2
⌉ is used is in the case where a1, a2 ∈ A\C, b ∈ B\C and d(a1, b) = d(a2, b) = n∗.

In the sequel, we will still let n∗ denote ⌈n
2
⌉

Definition 5.3.1. Let C ⊆ A,B be subspaces of some fixed metric space with values in
{0, . . . , n∗}, with A ∩B = C.

(1) A and B are freely amalgamated over C if the inclusions ιA and ιB satisfy the
conclusion of Lemma 5.3.3.

(2a) For k ≤ n, A and B have distance ≤ n over C if for a ∈ A\C, b ∈ B\C,
d(a, b) ≤ max(k,mab).

(2b) For k ≥ 1, A and B have distance ≥ n over C if for a ∈ A\C, b ∈ B\C, d(a, b) ≥
max(k,mab).

Lemma 5.3.5. Let C ⊆ A,B,D be subsets of a fixed metric space, and 1 ≤ k1 ≤ n∗ ≤ n2 ≤
n. Suppose A∪D and B∪D are freely amalgamated over D, and both A and B have distance
≥ k1 and ≤ k2 from D over C. Then A has distance ≥ min(n∗, 2k1) and ≤ max(k2 − k1, n

∗)
from B over C, and moreover, D has distance ≥ k1 and ≤ k2 from A ∪B over C.

Proof. The second clause is obvious, so we prove the first; let d be the metric. First we show
that A has distance ≥ min(n∗, 2k1) from B over C. Let a ∈ A\C, b ∈ B\C. It suffices to
show that if d(a, b) < min(n∗, 2k1) then there is some c ∈ C with d(a, c) + d(c, b) ≤ d(a, b).
Because d(a, b) < n∗, there is some d ∈ D with d(a, d) + d(b, d) = d(a, b) < 2k1. So
either d(a, d) or d(b, d) must be less that k1. Without loss of generality, d(a, d) < k1.
Then because D and A have distance ≤ k1 over C, there is some c ∈ C with d(a, d) =
d(a, c) + d(c, d). Then d(a, b) = d(a, c) + d(c, d) + d(b, d) ≥ d(a, c) + d(c, b). Next we
show that A has distance ≤ max(k1 − k2, n

∗) from B over C. Let a ∈ A\C, b ∈ B\C.
It suffices to show that if d(a, b) > max(k2 − k1, n

∗), there is some c ∈ C with d(a, b) ≤
|d(a, c)− d(b, c)|. Because d(a, b) > n∗, without loss of generality there is some d ∈ D with
d(a, d) − d(b, d) = d(a, b) > k2 − k1. So either d(a, d) > k2 or d(b, d) < k1. In the case
where d(a, d) > k2, since A has distance ≥ k2 from D over C, there is some c ∈ C so that
either d(a, d) = d(a, c) − d(c, d) or d(a, d) = d(c, d) − d(a, c). If d(a, d) = d(a, c) − d(c, d),
then d(a, b) = d(a, c)− d(b, d)− d(c, d) ≤ d(a, c)− d(b, c). If d(a, d) = d(c, d)− d(a, c), then
d(a, b) = d(c, d)− d(a, c)− d(b, d) ≤ d(c, b)− d(a, c). In the case where d(b, d) < k1, since B
has distance ≥ k1 from D over C, there is some c ∈ C with d(b, d) = d(b, c) + d(c, d). Then
d(a, b) = d(a, d)− d(b, c)− d(c, d) ≤ d(a, c)− d(b, c).

Lemma 5.3.6. Let A and B have distance ≥ n∗ and ≤ n∗ + 1 over C. Then A |⌣
f

C
B.

Proof. Again, let d be the ambient metric. We first show that tp(A/CB) does not contain
any formulas dividing over C. Let I = {Bi}i<ω be a C-indiscernible sequencene with B0 = B.
We can find a function d∗ : (A∪ I)2 → {0, . . . n} so that the bijection from AB to ABi given
by enumeration is an isomorphism, and so that d∗ agrees with d on I. If we show this is a
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metric, then by quantifier elimination, there is I ′ ≡CB I indiscernible over A, showing that
tp(A/CB) does not contain any formulas dividing over C since I was arbitrary. Without
loss of generality, it suffices to show the triangle inequality for d∗ on {b0, b1, a} for b0 ∈ B0,
b1 ∈ B1, a ∈ A, b0 ̸= b1. Suppose first that d∗(b0, a), d

∗(b1, a) ∈ {n∗, n∗ + 1}. Then since
d∗(b0, b1) ≥ 1, the triangle inequality is immediate in all directions. Otherwise, without loss
of generality, d∗(b0, a) is either n

∗ or n∗ + 1, and d∗(b1, a) is either greater than n
∗ + 1 and

equal to maxc∈C(|d(b1, c) − d(a, c)|) or less than n∗ and equal to minc∈C(d(b1, c) + d(a, c)).
In either case, by Lemma 5.3.3 and Remark 5.3.4 applied to C ⊆ A, I, there is a metric on
A ∪ I that agrees with d∗ on {a, b0, b1}, so d∗ satisfies the triangle inequality on {a, b0, b1}.

To show A |⌣
f

C
B, we need the following claim:

Claim 5.3.7. Let the relation A |⌣C
B be defined to hold when A and B have distance ≥ n∗

and ≤ n∗ + 1 over C has right extension: if B ⊆ D there is A′ ≡B A with A′ |⌣C
D.

Proof. By Lemma 5.3.3, we may find A′ ≡B A so that AB is freely amalgamated with D
over B. So it suffices to show that if A is freely amalgamated with D over B and A |⌣C

B,
then A |⌣C

D. We first show that A and D have a distance of ≥ n∗ over C. Suppose
a ∈ A\C, d ∈ D\C, and d(a, d) < n∗. Then there is some b ∈ B (and we can assume
b ̸= d) so that d(a, d) = d(b, d) + d(b, a) Then d(b, a) < n∗ so there is some c ∈ C so
that d(b, a) = d(b, c) + d(a, c). So d(a, d) = d(b, d) + d(b, c) + d(a, c) ≥ d(d, c) + d(a, c), as
desired. We now show that A and D have a distance of ≤ n∗ +1 over C. Suppose a ∈ A\C,
d ∈ D\C, and d(a, d) > n∗ + 1. Then there is some b ∈ B (and we can assume b ̸= d)
so that either d(a, d) = d(b, d) − d(b, a) or d(a, d) = d(b, a) − d(b, d). Assume first that
d(a, d) = d(b, d) − d(b, a). Then as d(a, d) > n∗ + 1, d(b, a) < n∗, so there is some c ∈ C
with d(b, a) = d(b, c) + d(c, a). Then d(a, d) = d(b, d) − d(b, c) − d(c, a) ≤ d(d, c) − d(c, a).
Now assume d(a, d) = d(b, a) − d(b, d). Then as d(a, d) > n∗ + 1, d(b, a) > n∗ + 1, so
there is some c ∈ C with either d(b, a) = d(b, c) − d(a, c) or d(b, a) = d(a, c) − d(b, c). If
d(b, a) = d(b, c) − d(a, c), then d(a, d) = (d(b, c) − d(b, d)) − d(a, c) ≤ d(d, c) − d(a, c). If
d(b, a) = d(a, c)− d(b, c), then d(a, d) = d(a, c)− (d(b, c) + d(b, d)) ≤ d(a, c)− d(d, c). Either
way, this is as desired.

Then if A and B have distance ≥ n∗ and ≤ n∗ + 1 over C, we can assume B is an
|C|+-saturated model by the claim, so the it follows as in the second paragraph of the proof
of Lemma 5.2.1.2 and the fact that tp(A/BC) does not divide over C that A |⌣

f

C
B.

Now suppose 2k+1 ≥ n. First, |⌣
ðk always implies |⌣

a, as |⌣
ð0 implies |⌣

a and if |⌣
ði

implies |⌣
a it is seen that |⌣

ði+1

implies |⌣
a. We now show that |⌣

a implies |⌣
ðk . Let

|⌣
0 = |⌣

a, and for m ≥ 1, let A |⌣
m

C
B indicate that A has distance ≥ min(2m, n∗) and

≤ max(n∗, n − (
∑m−1

i=0 2i)) = max(n∗, n − (2m − 1)) from B over C. Then by repeated

applications of Lemma 5.3.5, where k1 = 2i and k2 = n− (
∑i−1

j=0 2
j) = n− (2i − 1) for i ≥ 0,

if A |⌣
i

C
B there is an |⌣

i+1-Morley sequence {Bj}j<ω over C with B0 = B indiscernible over
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A. Moreover, |⌣
k implies |⌣

f = |⌣
ð0 and has right, and therefore left extension by Lemma

5.3.6 and Claim 5.3.7, as 2k ≥ n∗. So by the proof of Proposition 5.2.2, and the fact that if

A |⌣
k−1

C
B there is an |⌣

k-Morley sequence (and therefore an |⌣
ð0-Morley sequence) {Bj}j<ω

over C with B0 = B indiscernible over A, |⌣
k−1 implies |⌣

ð1 . Suppose inductively that |⌣
k−i

implies |⌣
ði for 1 ≤ i ≤ k. Then by Proposition 5.2.2 and the fact that if A |⌣

k−(i+1)

C
B there

is an |⌣
k−i-Morley sequence (and therefore an |⌣

ði-Morley sequence) {Bj}j<ω over C with

B0 = B indiscernible over A, |⌣
k−(i+1) implies |⌣

ði+1

. So |⌣
a = |⌣

0 implies and is therefore

equal to |⌣
ðk .

This concludes the proof of Theorem 5.3.2, and our discussion of the free roots of the
complete graph.

Example 5.3.8. (Model companion of directed graphs with no directed cycles of length
≤ n.) In Example 2.8.3 of [101], Shelah shows that the theory of directed graphs with no
directed cycles of length ≤ n has a strictly NSOPn+1 model companion Tn. (Note that if
there is a directed cycle of length ≤ n that repeats vertices, there is one that does not repeat

any vertices.) We show again that if 2k ≥ n, then |⌣
ðk coincides with |⌣

a. This will be for
somewhat different reasons than Example 5.3.1, with successive approximations of forking-
independence given by longer directed distances, rather than distances tending away from
the extremes. We will use the same technique as in Theorem 5.3.2, but the proof will be
more intuitive.

Shelah observes that Tn has quantifier elimination in the language with binary relation
symbols Rn(x, y) indicating a path of length n from x to y. We refine this quantifier elimi-
nation. Let n∗ = ⌈n

2
⌉. Then there must be a path of length ≤ n∗ between any two nodes by

existential closedness: if there is not one, one can be added on without creating any cycles
of length ≤ n. Moreover, by the lack of cycles, if there is a path of ≤ n

2
there must be

such a path in only one direction, by the absence of directed cycles of length ≤ n. So if n
is even any pair of distinct nodes a, b has one of 2n∗ = n types, depending on the length
of a minimal path, which will be at most n∗, and the direction of that path; call this the
“directed distance” between a and b. If n is odd, any pair of distinct nodes has one of
2n∗+1 = n types, depending on the length of a minimal path, which will be at most n∗, and
the direction of that path if its length is < n∗; if the length of a minimal path is n∗, a and b
will have an bi-directed distance of n∗, and a and b will otherwise have a directed distance
of < n∗.

The type of a set S of distinct nodes will be determined by the distances between any
two elements of S. We give necessary and sufficient criteria for an assignment of distances
to pairs of nodes in S to be consistent:

(1) If a directed path of length k ≤ n
2
is indicated by a chain of directed distances from a

and b with total length d (i.e. there are a = a0, a1, . . . , am−1, am = b, with a directed distance
of di from ai−1 to ai and d =

∑n
i=1 di ≤

n
2
), then the directed distance from a to b is at most

d.
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(2) Chains of distances distances cannot indicate a directed cycle of length ≤ n (i.e.
a = a0, a1, . . . , am−1, am = a, with a directed (or bi-directed) distance of ai from ai−1 to ai
and d =

∑n
i=1 di ≤ n).

Clearly (1) and (2) are necessary. To show they are sufficient, assume distances are
assigned to pairs in a set S; we will find a modelM containing S realizing those assignments.
For each pair a, b ∈ S, if a directed distance of d (or an bi-directed distance of d = n∗) is
assigned from a to b, draw a path from a to b of length d as well as a path in the opposite
direction of length n+1−d. We show that S together with these new vertices has no directed
cycles of length ≤ n. Suppose it contained such a cycle. That cycle can be partitioned into
the paths added between elements of S. Suppose it contained the longer of the two paths,
of length n− d+ 1, added from, say, b to a. It cannot contain the shorter path, of length d,
between a and b, as then this cycle would be too long. But perhaps there another path that
is even shorter than the directed distance d from a to b, formed out of paths of length less
than d ≤ n∗ between other vertices in S. This cannot happen, by (1). (This also handles
the case where a and b have an bi-directed distance of n∗ when n is odd.) Otherwise, all of
the added paths between elements of S that make up the cycle of length ≤ n, are the paths
of length < n∗ going in the direction of the directed distances. But this cannot happen, by
(2). Call the union of S with the additional paths T , which we have shown has no cycles of
length ≤ n, and find a model M containing T . Then any two nodes in S will have directed
distance in M at most the assigned distance d, as we added the shorter path going in that
direction, but no less than the assigned distance, as we added the longer paths of length
n − d in the other direction, so a new path of length < d in the direction of the directed
distance would create a cycle of length ≤ n.

We next show, as an analogue of Lemma 5.3.3, that sets can be “freely amalgamated:”
if A ∩ B = C with A and B given consistent assignments of distances agreeing on C, then
there is an assignment of distances on C agreeing with that on A and B and so that for
a ∈ A\C, b ∈ B\C, the distance between a and b is the least total length of a chain of
directed distances of total length ≤ n∗ between A and B going through C (i.e., without
requiring a directed distance between a point of A\C and a point of B\C as one of the steps
in the chain), going in the direction of that chain, and is otherwise of length n∗. We first
show that the directed distances already within A∪B (i.e. not between a point of A\C and
a point of B\C) satisfy (1) and (2) (i.e., if a ∈ A then b ∈ A, and if ai ∈ A then ai+1 ∈ A,
and similarly for B.) For (1), we can assume without loss of generality that a and b are in A,
and then the chain can be broken up into parts in A and parts in B each going between two
nodes of C, but all of the parts in B can be presumed to be in C ⊆ A, by (1) on B; having
assumed this, we can then apply 1 on A. For (2), a directed cycle of length ≤ n formed by
chains of directed distances can similarly be broken up into parts in A and parts in B, but
only one of the parts, say in A can have length ≥ n∗, and all of the other parts, by (1) in A
and B, can be presumed in C ⊆ A, contradicting (2) in A. So the direction of the chain of
shortest total length ≤ n∗ between a point of A\C and a point of B\C going through C is
well-defined, by (2) for chains in A∪B going through C, so if such a chain exists we use it as
the definition for the directed distance, and otherwise we choose a distance in an arbitrary
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direction of size n∗.
It remains to show (1) and (2) on the whole of A∪B. For (1), if a, b are not both in A or

both in B, then any directed distance of length ≤ n∗ on a chain from a to b between a point
of A\C and a point of B\C can be replaced with a chain going through C of the same total
length in the same direction, by construction. So any chain of directed distances between a
and b can be replaced by a chain of directed distances of the same total length between a
and b and in the same direction, going through C, so the directed distance between a and b
will be as short or shorter in that direction, by definition. To complete (1) on the whole of
A ∪ B, if a, b both belong to, say, A, then again by construction we can assume a chain of
directed distances to be a chain going through C, and then use (1) for chains going through
C. Finally, for (2), suppose first that the distances indicating a ≤ n cycle are either between
two points of A or B or added between a point of A\C and a point of B\C because of a
chain of the same length and the same direction going through C. Then those distances can
be replaced with those chains, reducing (2) to the case of chains going through C, see above.
Otherwise, one of the distances must be n∗ between a point a ∈ A\C and a point b ∈ B\C,
added because there is no chain going through C of length ≤ n∗. But the rest of the cycle
must be a chain of distances of total length ≤ n∗, each of which, being of length < n∗ can
be replaced with chains going through C, and can thus be assumed a chain of length < n∗

going through C from a to b, a contradiction to the assumption on a and b that caused their
distance to have length n∗.

Say that C ⊂ A,B, sitting in a fixed model, have distance ≥ k over C for k ≤ n∗ if
A ∩ B = C and any a ∈ A\C and b ∈ B\C have distance in the same length and direction
as the directed chain of distances of minimal total length through C in A∪B if that length
is < k, and otherwise have distance of length ≥ k. We show an analogue of Lemma 5.3.5: if
C ⊆ A,B,D with A ∪D and B ∪D freely amalgamated over D as in the above discussion,
and A and B both of distance ≥ k from D over C, then (a) A has distance ≥ min(2k, n∗)
from B over C and (b) A∪B has distance ≥ k from D over C. To show A, if a point a ∈ A\C
and b ∈ B\C have distance of length < min(2k, n∗) (say, going from a to b), then there must
be a chain of length < min(2k, n∗) going through D. This chain can be broken alternately
into parts entirely in A and entirely in B. Using the fact that the chain has length ≤ n∗, all
of the parts except for the first and the last can be assumed entirely in D, and then replaced
by (1) with a single distance between two points in D; that distance and the distance from
the second point in D to B can then be replaced by a single distance, giving a chain of
length 2, going from a to d ∈ D and then to B. One of the two distances, say from a to d,
must have length < k, so there must be a chain of distances with the same total length and
direction from A to D, going through C in A ∪ D. So we can replace the distance from a
to d with a distance from a to c followed by from c to d, and can then replace the distance
from c to d and from d to b with a single distance from c to b, yielding a chain of equal or
shorter length from a to b going through C, as desired. Meanwhile, (b) is obvious.

Next, we show, if A |⌣C
B denotes a distance of≥ n∗ (so, A and B are freely amalgamated

over C; note that this amalgamation is not unique), it implies forking-independence. We first
show it implies dividing-independence: let I = {Bi}i<ω with B0 = B be a C-indiscernible
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sequence. Assign distances on A∪ I to give ABi the same quantifier-free type as AB, and so
the assignment agrees with the actual one on I. It suffices to show this satisfies (1) and (2).
If b ∈ Bi\C and a ∈ A\C, then if there is a chain of distances of length ≤ n∗ in A∪ I going
through C between a and b, then by breaking this chain up into parts in A and parts in I,
and replacing the parts in I with parts in Bi, there is a chain of distances of total length at
least as short going in the same direction in A ∪ Bi through C. So the distance between a
and b in our chosen assignment is the length and direction of the chain of least total length
between a and b in A ∪ I going through C, using the actual assignments on A and I. For
the other pairs a ∈ A\C and b ∈ I\C, a distance of length n∗ is chosen. But in constructing
the free amalgam, we showed that an arbitrary choice of direction for distances of length n∗

(though there will only be a choice when n is even) is allowed for pairs with no path of length
≤ n∗ going through the base. So our chosen assignment is one instance of the construction
of the free amalgam of A and I over C, so in fact satisfies (1) and (2).

It remains to show right-extension for |⌣, which will hold if it is transitive, that is for
C ⊆ A and C ⊆ B ⊆ D, A |⌣C

B and A |⌣B
D implies A |⌣C

D. Suppose that a ∈ A\C,
d ∈ D\C and a and d have a distance < n∗, say, going from a to d. Then there is, as above,
a chain of distances going from, say a to b ∈ B to d, of the same total length. There is also
a chain going from a to c ∈ C to d of the same total length as the distance between a and
d, because that distance is also < n∗, so following that with the distance from d ∈ D ⊆ B
to b ∈ B, we get a chain going through C of the same total length as the distance from a to
b, as desired.

Now let |⌣
0 = |⌣

a, |⌣
i denote a distance of min(2i, n∗) over the base. Exactly as in

Example 5.3.1, we can then show that |⌣
ðk = |⌣

a when 2k+1 ≥ n.

Example 5.3.9. (Model companion of undirected graphs without odd cycles of length ≤ n,
for n odd).

In [101], Shelah shows that the theory Tn of undirected graphs without odd cycles of
length ≤ n, for n odd, has a model companion and is strictly NSOPn+1. (This theory is
further developed in [24].) Again, this theory has quantifier elimination in the language with
binary relations for paths of length k ([101]). Instead of directed distances in the previous
example, we now have the minimal length of a path between two vertices, an undirected
distance which will be ≤ n∗ = ⌈n

2
⌉. A similar analysis to example 5.3.8 will hold in this

theory. Note, however, that because it is never true that n = 2k, Tn in this case cannot be

used to witness that there are SOP2k theories where |⌣
ðk is symmetric.

5.4 Bounds for symmetry and transitivity

We now show that SOP2k+1+1 is required for |⌣
ðk to be symmetric. (See Theorem 1.6.2 for

a related result on NSOP4.) From this and the previous section will follow the second clause
of this theorem:
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Theorem 5.4.1. Assume |⌣
ðn is symmetric for n ≥ 1. Then T is NSOP2n+1+1. Thus

2n+1 + 1 is the least k so that every theory where |⌣
ðn is symmetric is NSOPk.

We state the construction; fix a Skolemization of T . Suppose T is SOP2n+1+1; we show
|⌣

ðn is asymmetric. Let R(x, y) witness this; then there is an indiscernible sequence {c∗i }i∈3Z
so that |= R(ci, cj) for i < j, but there are no (2n+1 + 1)-cycles. Let M = dclSk({c∗i }i∈Z ∪
{c∗2Z+i}i∈Z), and let ci = c∗Z+i for i ∈ Z. For k ≥ 1, let Rk(x, y) =: ∃x0 . . . xn−2R(x, x0) ∧∧n−3

i=0 R(xi, xi+1)∧R(xn−2, y) (so R1(x, y) =: R(x, y) and R2(x, y) =: ∃x0R(x, x0)∧R(x0, y).
We find instances of k-ð-dividing:

Lemma 5.4.2. Let 0 ≤ k ≤ n. Then

Rk(y0, . . . , y2k−1, c0, . . . , c2k) =:
2k−1∧
i=0

R2n−k(ci, yi) ∧R2n−k(yi, ci+1)

k-ð-divides (and therefore k-ð-forks) over M .

Proof. By induction on k. For k = 0, we show that R2n(c0, y) ∧ R2n(y, c1) divides over M ,
specifically by {c2ic2i+1}i<ω. That is, {R2n(c2i, y)∧R2n(y, c2i+1)}i<ω is inconsistent; suppose
it is consistent, realized by c. Then |= R2n(c, c1) ∧ R(c1, c2) ∧ R2n(c2, c). So there is a
(2n+1 + 1)-cycle, a contradiction.

Now suppose the statement holds for 0 ≤ k ≤ n − 1; we prove it is true for k + 1. Let
{cij}i<ω

0≤j≤2k+1 be a sequence with c0j = cj so that {Rk+1(y0, . . . , y2k+1−1, c
i
0, . . . , c

i
2k+1)}i<ω is

realized by c′0, . . . , c
′
2k+1−1

; by the definition of (k + 1)-ð-dividing, it suffices to show that

{cij}i<ω
0≤j≤2k+1 is not an |⌣

ðk-Morley sequence over M . For 0 ≤ i ≤ 2k − 1, in particular

|= R2n−(k+1)(c12i, c
′
2i) ∧R2n−(k+1)(c′2i, c

0
2i+1) ∧R2n−(k+1)(c02i+1, c

′
2i+1) ∧R2n−(k+1)(c′2i+1, c

1
2(i+1))

It follows that |= R2n−k(c12i, c
0
2i+1) ∧R2n−k(c02i+1, c

1
2(i+1)) for 0 ≤ i ≤ 2k − 1. Therefore,

Rk(y0, . . . , y2k−1, c
1
0, . . . , c

1
2i, . . . , c

1
2k+1) ∈ tp(c01 . . . c

0
2i+1 . . . c

0
2k+1−1/Mc10 . . . c

1
2i . . . c

1
2k+1)

Because c10 . . . c
1
2i . . . c

1
2k+1 ≡M c00 . . . c

0
2i . . . c

0
2k+1 = c0 . . . c2i . . . c2k+1 ≡M c0 . . . c2k ,

and Rk(y0, . . . , y2k−1, c0, . . . , c2k) k-ð-divides over M by the induction hypothesis,
Rk(y0, . . . , y2k−1, c

1
0, . . . , c

1
2i, . . . , c

1
2k+1) k-ð-divides over M , so

c01 . . . c
0
2i+1 . . . c

0
2k+1−1

ðk

̸ |⌣
M

c10, . . . c
1
2i . . . c

1
2k+1

and therefore,

c00 . . . c
0
2k+1

ðk

̸ |⌣
M

c10 . . . c
1
2k+1
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So {cij}i<ω
0≤j≤2k+1 is not an |⌣

ðk-Morley sequence over M .

It follows from the case k = n of Lemma 5.4.2 and an automorphism that

{c2i−1}−2n−1<i≤2n−1

ðn

̸ |⌣
M

{c2i}−2n−1≤i≤2n−1

So we have obtained an instance of n-ð independence. When n = 1, so c−1c1 ̸ |⌣
ð1

M
c−2c0c2,

this is one direction of the asymmetry: c−2c0c2 |⌣
ð1

M
c−1c1. To show this, we extend {ci}i∈Z

to an M -indiscernible sequence {ci}i∈Q. Then by construction, {c−(1+i)c1+i}i∈[0,1) (note
c−(1+0)c1+0 = c−1c1) is a finitely satisfiable Morley sequence over M , indiscernible over

Mc−2c0c2. So c−2c0c2 |⌣
ð1

M
c−1c1 follows from the following fact, which is immediate from

Fact 1.6.1 (this is just a standard application of left extension for finite satisfiability, as in
the proof of Proposition 5.2.2):

Fact 5.4.3. Let {bi}i<ω be a finitely satisfiable Morley sequence over M with b0 = b so that
{φ(x, bi)}i<ω is consistent. Then φ(x, b) does not 1-ð-fork over M .

This concludes the NSOP5 case. When n ≥ 2, we may not be able to obtain the desired
finitely satisfiable Morley sequence. However, unlike the case where n = 1, we would not need

anything stronger than an |⌣
ðn−1

-Morley sequence to show that a formula does not n-ð-fork
over M , as opposed to just n-ð-dividing over M , because n-ð-forking already coincides with
n-ð-dividing (Proposition 5.2.2). Still, we do not show that {c2i}−2n≤i≤2n |⌣

ðn

M
{c2i−1}−2n<i≤2n

using an explicit |⌣
ðn−1

-Morley sequence. Rather, let m ≤ 2n−1 be least such that

{c2i−1}−m<i≤m

ðn

̸ |⌣
M

{c2i}−m≤i≤m

Then m > 0. Let ā = {c2i}−m<i<m, b̄ = {c2i−1}−m<i≤m, and c̄ = c−2mc2m. Then b̄ ̸ |⌣
ðn

M
āc̄,

ā |⌣
ðn

M
b̄ by minimality of m and the fact that ab ≡M {c2i−1}−(m−1)<i≤m−1{c2i}−(m−1)≤i≤m−1,

and tp(ab/cM) is finitely satisfiable over M by construction. To show asymmetry of |⌣
ðn

M
, it

remains to show that āc̄ |⌣
ðn

M
b̄. We use the proof technique from Claim 3.6.2. Let φ(x̄, z̄, b̄) ∈

tp(āc̄/Mb̄); we show it does not n-ð-fork over M , for which it suffices that it not n-ð-divide
over M . More explicitly, |= φ(ā, c̄, b̄), so |= φ(ā, ȳ, b̄) ∈ tp(c̄/Māb̄). By finite satisfiability,
there is some m̄ ∈M so that |= φ(ā, m̄, b̄). So φ(x̄, m̄, b̄) ∈ tp(ā/Mb̄). Because ā |⌣

ðn

M
b̄, there

is then some |⌣
ðn−1

-Morley sequence {b̄i}i<ω over M with b̄0 = b̄ so that {φ(x̄,m, b̄i)}i<ω is

consistent. A fortiori, {φ(x̄, z̄, b̄i)}i<ω is consistent. So φ(x̄, z̄, b̄) does not n-ð-divide overM ,
and as φ(x̄, z̄, b̄) ∈ tp(āc̄/Mb̄) was arbitrary, āc̄ |⌣

ðn

M
b̄. This concludes the proof of Theorem

5.4.1.
In all of the examples of the previous section, |⌣

ðn = |⌣
a has the following properties:
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Right transitivity: a |⌣
ðn

M
M ′ and a |⌣

ðn

M ′ b implies a |⌣
ðn

M
b

Left transitivity:
M ′ |⌣

ðn

M
b and a |⌣

ðn

M ′ b implies a |⌣
ðn

M
b

when M ≺M ′ are models. We show:

Theorem 5.4.4. Assume |⌣
ðn is left or right transitive for n ≥ 1. Then T is NSOP2n+1+1.

Thus 2n+1 + 1 is the least k so that every theory where |⌣
ðn is right transitive is NSOPk,

and similarly for left transitivity.

The proof is easier, as to show, say, right transitivity fails, we produce a, b,M0 ≺ M1 ≺
. . . ≺Mk so that a |⌣

ðn

Mi
Mi+1 for 0 ≤ i ≤ k, a |⌣

ðn

Mk
b, but a ̸ |⌣

ðn

M0
b; the dependency a ̸ |⌣

ðn

M0
b

will be a slight modification of the above to produce models, but the instances of indepen-
dence, a |⌣

ðn

Mi
Mi+1, will arise directly from the construction, unlike in the proof for symmetry.

Again, assume R(x, y) gives an instance of SOP2n+1+1. Choose a Skolemization of T and a
T Sk-indiscernible sequence {c∗i }Z+Z×Z+Z so that |= R(c∗i , c

∗
j) for i < j < Z + Z× Z + Z. Let

M0 = dclSk({c∗i }i∈Z ∪ {c∗Z+Z×Z+i}i∈Z). For i ∈ Z × Z, let c′i = c′Z+i. Now Z × Z as a set of
ordered pairs, ordered lexicographically, and define ci = {c(i,j)}j∈Z. Again, it follows from
Lemma 5.4.2 that

{c2i−1}−2n−1<i≤2n−1

ðn

̸ |⌣
M0

{c2i}−2n−1≤i≤2n−1

To make the notation easier, let ai = c2(−2n−1+1+i)−1 for 0 ≤ i < 2n; in other words, ai is
the ith term of {c2i−1}−2n−1<i≤2n−1 . Let bi = c2(−2n−1+i) for 0 ≤ i ≤ 2n. Let a = {ai}0≤i<2n

and b = {bi}0≤i≤2n . Then a ̸ |⌣
ðn

M0
b. For the right transitivity case, it suffices to find M0 ≺

M1 ≺ . . . ≺ Mk so that a |⌣
ðn

Mi
Mi+1 for 0 ≤ i ≤ k = 2n + 1, a |⌣

ðn

Mk
b, despite having shown

a ̸ |⌣
ðn

M0
b. For 0 < i ≤ 2n + 1, let Mi = dclSk({b0 . . . bi−1}). We show that for 0 < i < 2n + 1,

a |⌣
ðn

Mi
Mi+1, and a |⌣

ðn

Mk
b. This follows directly from unwinding definitions and applying to

{c∗i }i∈Z+Z×Z+Z the following claim:

Claim 5.4.5. Let {ei}i∈I be an indiscernible sequence in T Sk, where I is a linear order. Let
J ⊂ I be a set with no greatest element. Let I1, I2 ⊆ I be such that every element of I2
is above every element of J , and no element of I1 is between any two elements of I2. Let
eI2 = dclSk({es}s∈J∪I2), eJ = dclSk({es}s∈J), and let eI1 = {es}s∈I . Then eI1 |⌣

ðn

eJ
eI2 (in T ).

Proof. Wemay assume that any element of I2 between two elements of I2 is itself in I2. Let I−
be the set of elements of I below all of the elements of I2, and I+ the set of elements of I above
all of the elements of I2. Extend {ei}i∈I to {ei}i∈I−+ω×I2+I+ (so that eI2 = {es}s∈J∪{0}×I2) so
that it is still indiscernible in T Sk. For i < ω, let eiI2 = dclSk({es}s∈J∪{i}×I2). Then {eiI2}i<ω

is a finitely satisfiable Morley sequence over eJ with e0I2 = eI2 , because every element of I2 is
above every element of J and J has no greatest element. Moreover, because no element of
I1 is in between any two elements of I2, {eiI2}i<ω is indiscernible over eJeI1 . So eI1 |⌣

ðn

eJ
eI2

by Fact 5.4.3.
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This completes the case of right transitivity. For left transitivity, we must find M0 =

M0 ≺ M1 ≺ . . . ≺ Mk so that for 0 ≤ i ≤ 2n, M i+1 |⌣
nð

M i b, and a |⌣
ðn

Mk b, despite having

shown a ̸ |⌣
ðn

M0
b. For 0 < i ≤ 2n, let Mi = dclSk({a0 . . . ai−1}). Then for 0 ≤ i ≤ 2n,

M i+1 |⌣
u

M i b, and a |⌣
u

Mk b. This completes the case of left transitivity and thus the proof of
Theorem 5.4.4.

We conclude by asking whether the converse holds, giving us a theory of independence
for NSOP2n+1+1 theories:

Question 5.4.6. Does NSOP2n+1+1 imply symmetry of |⌣
ðn? Does it imply transitivity of

|⌣
ðn?

We close this dissertation with a quote from a great Armenian-American cultural critic:

See you in hell.
–Anna Khachiyan



133

Bibliography

[1] Hans Adler. “A Geometric Introduction to Forking and Thorn-Forking”. In: Journal
of Mathematical Logic 9 (2009).

[2] Hans Adler. Strong theories, burden and weight. Preprint. Available at
http://www.logic.univie.ac.at/ adler/docs/strong.pdf. 2007.

[3] JinHoo Ahn and Joonhee Kim. SOP1, SOP2, and antichain tree property. Preprint.
Available at https://arxiv.org/abs/2003.10030. 2020. doi: 10.48550/ARXIV.2003.
10030. url: https://arxiv.org/abs/2003.10030.

[4] JinHoo Ahn, Joonhee Kim, and Junguk Lee. On the Antichain Tree Property.
Preprint. Available at https://arxiv.org/abs/2106.03779. 2021. doi: 10 . 48550 /

ARXIV.2106.03779. url: https://arxiv.org/abs/2106.03779.

[5] Franceso Gallinaro Anna Dimitrieva and Mark Kamsma. Dividing lines between pos-
itive theories. Preprint. Available at https://arxiv.org/pdf/2304.07557.pdf. 2023.

[6] Byunghan Kim Artem Chernikov and Nicholas Ramsey. Transitivity, lowness and
ranks in NSOP1 theories. Preprint. Available at https://arxiv.org/pdf/2006.10486.pdf.
2020,

[7] Bektur Baizhanov and John T. Baldwin. “Local Homogeneity”. In: The Journal of
Symbolic Logic 69.4 (2004), pp. 1243–1260. issn: 00224812. url: http://www.jstor.
org/stable/30041786 (visited on 09/07/2022).

[8] John Baldwin. Perspectives on expansions: Stability/NIP. Presenatation slides, Banff
International Research Station. 2009. Available at
https://www.birs.ca/workshops/2009/09w5113/files/Baldwin.pdf.

[9] John T. Baldwin.Model Theory and the Philosophy of Mathematical Practice: Formal-
ization without Foundationalism. Cambridge University Press, 2018. doi: 10.1017/
9781316987216.

[10] John T. Baldwin and Saharon Shelah. “Model Companions of TAut for Stable T”. In:
Notre Dame J. Formal Log. 42 (2001), pp. 129–142.

[11] Martin Bays. The Group Configuration Theorem.
https://ivv5hpp.uni-muenster.de/u/baysm/misc/groupConfiguration/
groupConfiguration.pdf. 2015.



BIBLIOGRAPHY 134

[12] Itay Ben-Yaacov, Anand Pillay, and Evgueni Vassiliev. “Lovely pairs of models”.
In: Annals of Pure and Applied Logic 122.1 (2003), pp. 235–261. issn: 0168-0072.
doi: https://doi.org/10.1016/S0168-0072(03)00018-6. url: https://www.
sciencedirect.com/science/article/pii/S0168007203000186.

[13] Itay Ben-Yaacov, Ivan Tomasic, and Frank O. Wagner. “The Group Configuration
in Simple Theories and Its Applications”. In: Bulletin of Symbolic Logic 8.2 (2002),
pp. 283–298. doi: 10.2178/bsl/1182353874. url: https://doi.org/10.2178/
bsl/1182353874.

[14] Elisabeth Bouscaren. “Dimensional Order Property and Pairs of Models”. In: Annals
of Pure and Applied Logic 41.3 (1989), pp. 205–231. doi: 10.1016/0168-0072(89)
90001-8.

[15] Samuel Braunfeld and Michael C Laskowski. “Worst-case expansions of complete
theories”. In: Model Theory 1.1 (2022), pp. 15–30.

[16] Steven Buechler. “Pseudoprojective Strongly Minimal Sets are Locally Projective”.
In: The Journal of Symbolic Logic 56.4 (1991), pp. 1184–1194. issn: 00224812. url:
http://www.jstor.org/stable/2275467 (visited on 09/07/2022).

[17] Enrique Casanovas and Byunghan Kim. “More on tree properties”. In: Fundamenta
Mathematicae (2019).

[18] Enrique Casanovas and Frank O. Wagner. “The Free Roots of the Complete Graph”.
In: Proceedings of the American Mathematical Society 132.5 (2004), pp. 1543–1548.
issn: 00029939, 10886826. url: http://www.jstor.org/stable/4097235 (visited
on 04/01/2023).

[19] Enrique Casanovas and Martin Ziegler. “Stable Theories with a New Predicate”.
In: The Journal of Symbolic Logic 66.3 (2001), pp. 1127–1140. issn: 00224812. url:
http://www.jstor.org/stable/2695097 (visited on 09/07/2022).

[20] Z. Chatzidakis and A. Pillay. “Generic Structures and Simple Theories”. In: Annals
of Pure and Applied Logic 95.1-3 (1998), pp. 71–92. doi: 10.1016/s0168-0072(98)
00021-9.
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