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Abstract 
What factors affect whether learners adopt a new problem-
solving strategy? Potential factors include learners’ 
evaluations of alternative strategies and the degree of similarity 
between their existing strategy and the alternatives. A first step 
in answering this question is investigating how people evaluate 
strategies. This exploratory study investigated how people 
evaluate strategies for solving algebraic word problems, and 
how these evaluations vary as function of individual 
differences. Undergraduates rated three strategies on six 
dimensions and judged each pair of strategies for similarity. 
Factor analysis showed that evaluations could be reduced to 
two constructs: efficiency and intuitiveness. We calculated 
factor scores for each participant for each strategy. Efficiency 
did not predict similarity ratings on its own, but it did interact 
with Need for Cognition. These results suggest stable learner 
characteristics and moment-to-moment evaluations of 
strategies influence judgments about strategy similarity.  

Keywords: strategy change; problem solving; instruction 

Introduction 

Why do people shift from using one problem-solving strategy 
to using another? Explaining why people change their minds 
is fundamental for theories of learning (Siegler, 2000). One 
factor that has been shown to promote strategy change is 
exposure to alternative strategies (e.g., Booth, Lange, 
Koedinger & Newton, 2013; Brown & Alibali, 2018; Fyfe & 
Rittle-Johnson, 2016), a common occurrence in classrooms. 
Thus, understanding how exposure to alternatives leads to 
strategy change is also relevant for educational practice. 

Past research has focused on two broad classes of factors 
in explaining patterns of strategy change. Some studies have 
focused on characteristics of the learners, such as their level 
of ability or achievement within the target domain (e.g., 
Torbeyns, DeSmedt, Ghesquiere & Verschaffel, 2009), their 
encoding of problem features (e.g., Siegler, 1976), or their 
confidence in their existing strategies (e.g., Brown & Alibali, 
2018). Other studies have focused on features of the context 
in which a new strategy is presented, such as whether the 
context is more abstract or more situated (e.g., Bassok & 
Holyoak, 1989), or whether the strategy is associated with a 
specific person. For example, Riggs, Alibali, and Kalish 
(2015; 2017) presented middle-school students and adults 
with a novel strategy for solving a specific type of algebraic 
problems. For some of the participants, the novel strategy was 
introduced as tied to a specific person (e.g. “Molly’s 

strategy”), and for others, it was not. Both middle-school 
students and adults were more likely to use the novel strategy 
when it was not tied to a specific person. 

Past work demonstrates that the likelihood of strategy 
change depends on characteristics of the learners and on the 
way in which alternative strategies are presented. In this 
research, we consider an additional factor: how learners 
perceive the novel strategies to which they are exposed. We 
suggest that learners’ evaluations of particular strategies also 
influence their likelihood of strategy change. More 
specifically, we expect that the degree to which learners view 
a novel strategy as a good alternative to their current 
approach affects how likely they are to adopt that novel 
strategy. From this perspective, it is important to understand 
how learners evaluate different strategies, and to determine 
the features or dimensions that people use to distinguish 
“good” strategies from “bad” strategies.  

Past research provides some limited information about the 
dimensions that people consider when evaluating strategies. 
For example, in a previous pilot study, we asked child 
participants to explain their ratings of how “smart” various 
strategies were (for a partial analysis of these data, see Alibali 
& Prather, 2007). We found that participants invoked a range 
of dimensions, including the accuracy of the strategy, the 
difficulty of applying the strategy, and the overall “goodness” 
or appropriateness of the strategy. Other past research has 
shown that adults tend to prefer strategies that they view as 
efficient (e.g., Walsh & Anderson, 2009). In the present 
study, we considered a range of dimensions along which 
people could evaluate strategies. 

It is also of interest to understand whether participants view 
strategies as “similar” to one another. Participants may be 
more willing to adopt a strategy that they view as largely 
similar to one they are currently using, and less willing to 
adopt a strategy that they view as “far out” or unusual. Thus, 
in addition to evaluations of individual strategies, we also 
sought information about how similar participants viewed 
pairs of strategies. 

Constant Change Problems 
We address these issues in the domain of constant change 

problems, which are algebraic problems in which a rate 
changes constantly from the beginning to the end of an 
interval of time or space, as in the following example: 
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Fuel is pumped into the fuel tank of an airplane for a 
period of 13 minutes. The rate at which it is pumped 
increases steadily over the interval from 30 gallons per 
minute to 186 gallons per minute. How many gallons are 
pumped into the tank over the 13-minute interval? 
 

These problems are well-suited for studying strategy change 
because there are multiple strategies that can be used to find 
the correct answer. In this study we focused on three 
strategies, the Discrete, Gauss, and Area strategies. 

For the problem shown above, the Discrete strategy 
involves finding the constant by which the rate changes 
minute to minute, using this constant to calculate the number 
of gallons pumped into the tank in each minute, and adding 
these numbers together. We refer to this strategy as the 
Discrete strategy because it treats the change in rate as 
occurring in discrete increments. The Discrete strategy is the 
most common strategy used to solve constant change 
problems by college undergraduates (Riggs et al., 2015). 
Although it yields the correct answer when implemented 
correctly, it is error prone and time consuming. 

The Gauss strategy involves adding the initial and final rate 
and multiplying the sum by half of the time period (e.g., 
(𝟑𝟎 + 𝟏𝟖𝟔)	× 	𝟏𝟑

𝟐
). This strategy is less common than the 

discrete strategy, but it is an efficient and accurate way to 
solve constant change problems. 

The Area strategy involves creating a geometric model of 
the problem (see Figure 1) and finding its area using either an 
algebraic formula (i.e., for the area of trapezoid) or using 
integration. Spontaneous use of this strategy is rare among 
college students. Although this strategy yields the correct 
answer, it may be perceived as complex because it involves 
drawing a model of the problem. The Area strategy may also 
be viewed as less intuitive because the link between the area 
of a diagram and the amount of fuel pumped into the tank 
may not be readily apparent to all learners.  

 

 
Figure 1. Sample drawing for the Area strategy. 

Individual Differences 
Past research has suggested that individual differences in 
ability and experience influence people’s strategy choices. 
These factors may influence strategy choice by affecting 
strategy evaluations. In this research, we examine whether 
patterns of strategy evaluations and similarity judgements 
vary as a function of participants’ mathematics ability and 
their inclination to engage in effortful cognitive activities, 
termed their Need for Cognition (hereafter, NfC, Cacioppo & 

Petty, 1982). We expected that mathematics ability might 
influence participants’ understanding of the target strategies, 
and NfC might influence their evaluations of features of the 
strategies such as complexity. Some research also suggests 
that NfC is related to participants’ willingness to adopt new 
strategies (Menendez, Brown & Alibali, 2017). 

Current Study 
In brief, the goal of this exploratory study was to investigate 
how people evaluate different strategies. This study is a first 
step in determining how people’s perceptions of strategies 
influence strategy change. We presented participants with 
constant change problems and introduced each of the 
strategies described above. Participants were asked to rate 
each strategy along six dimensions: goodness, commonness, 
complexity, length, easiness to remember, and intuitiveness. 
Finally, participants were asked to judge how similar or 
different the target strategies were from one another.  

Our first goal was to determine whether these six 
dimensions could be consolidated into a smaller number of 
factors. If this were the case, the resulting factor structure 
could give insight into the dimensions that participants find 
relevant when evaluating strategies. A second goal was to 
investigate potential relations between these factor scores and 
similarity ratings. Are strategies that differ more in their 
factor scores rated as more different from one another than 
strategies that are more similar in factor scores? Finally, we 
examined whether this relation changed as a function of 
individual differences in NfC and mathematics ability. 

Method 

Participants 
Participants were 32 undergraduate students (20 female, 12 
male) from a large Midwestern university; they received 
extra credit in Introductory Psychology in exchange for 
participation. The sample was 66% Caucasian, 25% Asian or 
Asian-American, 6% Native American or Pacific Islander, 
and 3% Hispanic or Latinx. Undergraduates completed the 
study individually in a laboratory setting and provided 
written consent at the outset of the session.  

Materials 
In the first part of the experiment, each participant was 
presented with two constant change problems. For each 
problem, participants saw worked examples of three different 
strategies, one at a time. For each strategy, participants made 
six different ratings. Thus, this part of the computerized 
survey included a total of 36 rating questions. 

Each strategy was presented on its own page. For each 
strategy, participants were asked to rate how good, common, 
complicated, and easy to remember the strategy was. In 
addition, participants rated how long it would take to 
implement the strategy and the degree to which the strategy 
made sense. All ratings were made on a continuous slider 
scale from 1 (e.g., not at all) to 5 (e.g., very much). No other 
anchors were given.  
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To minimize demands, participants first completed the 

ratings for all three strategies for the first constant change 
problem, before moving to the next problem. The order in 
which participants saw the first and the second problem was 
counterbalanced. Within problems, the order in which the 
strategies were presented was randomized for each 
participant and was independent of the order on the previous 
problem. The order of the rating questions was fixed for all 
problems, strategies and participants. 

After rating each strategy for each of the two problems, 
participants were asked to explicitly compare the strategies. 
We used the same two problems and strategy descriptions as 
in the strategy rating section of the survey. For this section, 
one strategy was presented on the left and one on the right. 
Participants rated similarity on a continuous slider scale that 
ranged from 1 (not similar at all) to 5 (very similar). Each 
comparison was presented on its own page and participants 
were not allowed to go back after leaving a page.  

For the similarity ratings, the order in which the problems 
were presented was counterbalanced and participants had to 
complete all comparisons before moving to the next problem. 
The three comparisons were: Discrete vs. Gauss, Area vs. 
Discrete, and Gauss vs. Area. The order in which the strategy 
comparisons were presented was randomized and the order 
for the second problem did not depend on the first.  

Participants also reported demographic information, 
including SAT/ACT math scores, and completed a NfC scale 
(Cacioppo & Petty, 1982). We transformed SAT/ACT scores 
into percentile scores for analysis, using records from 2015 
(when most participants would have taken the tests). 

Procedure 
Students participated in this study individually. They first 
completed the computer-based survey that requested strategy 
ratings and comparisons, and they then reported demographic 
information and competed the NfC scale. The study took 
approximately 30 minutes to complete.  

 
Results 

Strategy Ratings 
Each participant was asked to rate each of three strategies on 
six dimensions: how good the strategy is, how much sense 
the strategy makes, how common the strategy is, how easy 
the strategy is to remember, and how long it takes to use the 

strategy. We conducted a series of linear mixed effects 
models to examine differences in strategy ratings. We used 
non-orthogonal contrasts for strategy type and re-centered 
appropriately to evaluate all strategy comparisons. Average 
ratings for each of the strategies on each of the dimensions 
can be seen in Table 1. 

We first considered participants’ ratings of how good each 
strategy was. On average, participants rated the Discrete 
strategy as better than both the Gauss strategy, B = -1.09, F(1, 
30.59) = 12.62, p < .01 and the Area strategy, B = -0.82, F(1, 
32.05) = 8.95, p < .01. Participants rated the Gauss strategy 
and the Area strategy similarly, B = 0.26, F(1, 30.66) = 0.86, 
p = .36. Thus, participants viewed Area and Gauss as equally 
good, but viewed both as significantly worse than Discrete.  

Next, we considered participants’ ratings of how much 
sense each strategy made. On average, participants rated the 
Discrete strategy higher than the Gauss strategy, B = -1.13, 
F(1, 31.03) = 15.30, p < .001, and higher than the Area 
strategy on this dimension, B = -0.82, F(1, 38.02) = 16.00, p 
< .001. Participants’ ratings of Gauss and Area were 
comparable, B = 0.31, F(1, 32.45) = 1.37, p = .25. Thus, 
participants thought that the Discrete strategy made more 
sense than either of the other strategies.  

Third, we considered participants’ ratings of how common 
the strategies were. On average, participants rated the 
Discrete strategy as more common than both Gauss, B = -
0.81, F(1, 32.18) = 9.04, p < .01, and Area, B = -1.26, F(1, 
34.36) = 23.87, p < .001. Participants also rated Gauss as 
more common than Area, B = -0.5, F(1, 30.84) = 4.25, p < 
.05. In sum, participants viewed the Discrete strategy as the 
most common, the Area strategy as the least common, and 
the Gauss strategy as in between.  

Next, we considered participants’ ratings of complexity.  
Participants rated the Discrete strategy as more complex than 
Gauss, B = -0.59, F(1, 30.93) = 6.03, p = .02, but no different 
in complexity than Area, B = -0.31, F(1, 32.27) = 1.67, p = 
.21. Participants rated Area and Gauss as similarly complex, 
B = 0.28, F(1, 32.79) = 2.07, p = .16. In sum, participants 
viewed Gauss as less complex than Discrete, but no other 
comparisons were significant.  

Next, we considered participants’ ratings of how easy to 
remember each strategy was. Overall, participants did not 
differentiate among the strategies on this dimension. 
Participants rated the Discrete strategy similarly to both the 
Gauss strategy, B = 0.12, F(1, 31.68) = 0.23, p =.63, and the 
Area strategy, B = 0.003, F(1, 33.16) = 0.0002, p = .99. 
Participants also rated the Area strategy as comparable to the 

Table 1.  Mean ratings (and SD) for each strategy. For each column values with different subscripts indicate 
significant differences. Across rows, subscripts have no meaning.        

  Goodness Makes sense Commonness Complexity Easiness to 
remember 

Length 

Discrete 3.79 (0.88) a 3.94 (0.75) a 3.55 (0.88) a 2.89 (0.89) a 3.41 (0.83) a 3.25 (0.88) a 

Gauss 2.70 (1.10) b 2.80 (1.09) b 2.75 (1.00) b 2.27 (0.86) b 3.54 (1.03) a 2.19 (0.91) b 

Area 2.94 (1.04) b 3.08 (1.03) b 2.28 (1.02) c 2.60 (1.00) a,b 3.37 (0.94) a 2.67 (0.79) c 
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Gauss strategy, B = -0.11, F(1, 30.29) = 0.29, p = .60. 
Finally, we examined participants’ ratings of how long 

each strategy would take to implement. Participants believed 
that the Discrete strategy would take longer than Gauss, B = 
-1.05, F(1, 30.11) = 17.01, p < .001 and longer than Area, B 
= -0.62, F(1, 33.28) = 8.66, p < .01. Participants also thought 
the Area strategy would take longer than Gauss strategy, B = 
0.44, F(1, 32.70) = 4.86, p = .03. In sum, participants viewed 
the Gauss strategy as taking the least amount of time to 
implement, and the Discrete strategy as taking the longest.  

Factor Analysis 
We averaged participants’ ratings for each dimension across 
problems and strategies. We conducted an exploratory factor 
analysis on these six composite scores in order to determine 
the underlying factor structure of participants’ ratings. An 
examination of the scree plot suggested a two-factor solution.  
We extracted two factors using a maximum likelihood 
estimator. We first allowed the factors to correlate using a 
promax rotation. We found that the factors were correlated (r  
= -.42). However, allowing the factors to correlate led to a 
Heywood case. Using a varimax rotation, which forces the 
factors to be orthogonal, eliminated this issue, so we 
proceeded with this model. 

 
As seen in Table 2, five of the six rating categories loaded 

on only one of the two factors. The only rating category that 
loaded onto more than one factor was whether the strategy 
made sense. We did not consider this to be an issue because 
the factor loading was much higher for one factor than the 
other. Complexity, easiness to remember, and length all 
loaded onto the first factor. Goodness, commonness, and the 
degree to which the strategy made sense all loaded onto the 
second factor. The two-factor solution suggests that 
participants consider two dimensions when evaluating 
mathematical strategies. The first factor reflects the efficiency 
of the strategies, including how complex and easy to 
remember the strategy seems and the amount of time 
participants believe would be needed to implement the 
strategy. The second dimension reflects the intuitiveness of 
the strategies; it included the degree to which the strategy 
makes sense, is common, and is “good.” These two factors 
explained 61% of the variance in participants’ ratings. 

Individual Differences 
We next created factor scores for each strategy for each 
participant. This meant that each participant had 6 factor 
scores (one for each strategy for intuitiveness and efficiency). 

We then examined correlations between factor scores for 
each strategy and Need for Cognition. Participants with 
higher NfC scores had lower efficiency scores for the 
Discrete strategy (r = -0.38, p < .05) and the Gauss strategy 
(r = -0.41, p < .05), but not for the Area strategy (r = -0.12, 
ns). None of the correlations of NfC with intuitiveness scores 
were significant. We also examined correlations between 
factor scores and participants’ math percentile scores. None 
of these correlations were significant.  

Predicting Similarity Ratings 
Participants rated the Discrete and Gauss strategies as the 
most similar (M = 2.82, SD = 1.10), followed by the Discrete 
and Area strategies (M = 2.79, SD = 1.07).  Participants rated 
the Gauss and Area strategies as the least similar (M = 2.44, 
SD = 1.10). We wanted to explore whether participants’ 
similarity ratings were related to how efficient and intuitive 
they perceived each strategy to be. We were also interested 
in how individual differences might moderate these relations. 
To address these issues, we first calculated difference scores 
for each pair of strategies from the factor scores (e.g., 
Efficiency (Discrete) – Efficiency (Area)), yielding an 
efficiency difference score and an intuitiveness difference 
score for each strategy comparison. We took the absolute 
value of these difference scores, so that higher values indicate 
that participants thought that the two strategies differed more 
in that dimension. We then used these difference scores to 
predict participants’ similarity ratings for each pair of 
strategies. 

We analyzed these data using a linear mixed effects 
model. We predicted participants’ similarity ratings for each 
comparison on the basis of their efficiency difference, their 
intuitiveness difference, NfC, math percentile, and the 
specific strategy comparison (Discrete vs. Area, Discrete vs. 
Gauss, or Gauss vs. Area). We allowed NfC and math 
percentile to interact with the efficiency difference and 
intuitiveness difference. We also included by-subject random 
intercepts and by-subject random slopes for strategy 
comparison, efficiency difference, and intuitiveness 
difference. The model specification was as follows:  
Strategy Similarity ~ Strategy comparison + Efficiency Difference * 
NfC + Intuitiveness Difference * NfC + Efficiency Difference * math 
percentile + Intuitiveness Difference * math percentile + (1 + 
Strategy comparison + Efficiency Difference + Intuitiveness 
Difference| Subject) 

 
This analysis revealed an interaction between NfC and 

efficiency difference on similarity ratings, c2(1, N = 32) = 
5.53, p = .0187. Although the related simple effects were not 
significant, as seen in Figure 2, participants with low NfC 
tended to rate strategies as less similar if they perceived them 
to be different in efficiency. In contrast, participants with 
high NfC tended to rate strategies as more similar if they 
perceived them to be different in efficiency. No other effects 
were significant, all p’s > .05. 

 

Table 2. Factor loadings of strategy ratings. 
  Efficiency Intuitiveness 
Complexity 1 -0.05 
Easiness to remember -0.75 0.26 
Length 0.37 -0.09 
Makes Sense -0.36 0.68 
Goodness -0.22 0.97 
Commonness -0.02 0.56 
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Figure 2. Similarity ratings as a function of absolute 
differences in efficiency factor scores and Need for 
Cognition. Higher values on the y-axis indicate greater 
similarity. Dots are colored based on Need for Cognition. 
The dark line indicates predicted values for participants 
who scored high on the Need for Cognition scale (1 SD 
above the mean). The light line indicates predicted values 
for participants who scored low on the Need for Cognition 
scale (1 SD below the mean). Shaded regions represent 
95% CIs. A 0 on the x-axis indicates that participants 
thought of the two strategies as equal in efficiency. 

Discussion 
This research examined how participants evaluated different 
strategies for solving constant change problems. We found 
that participants viewed the Discrete strategy as the most 
common, as making the most sense, and as better than the 
Gauss and Area strategies. Additionally, we found that 
participants rated strategies along two primary dimensions, 
which we characterized as intuitiveness and efficiency.  

Participants in this study judged the Discrete strategy to be 
the most common, which accurately reflects the “ground 
truth”, as the Discrete strategy was the most commonly used 
strategy in previous studies of constant change problems 
(e.g., Riggs et al., 2015). However, participants also saw 
limitations of this strategy, noting that it was complex and 
took a long time to implement, relative to the other strategy 
options. The Discrete strategy was rated highly on all of the 
intuitiveness variables and relatively low on efficiency. If 
participants notice the drawbacks of this strategy, then why 
is it used so frequently?   

One possibility is that participants may value intuitiveness 
over efficiency. This is a rational choice in situations in which 
it is important to solve problems correctly. In such situations, 
a strategy that seems likely to result in a correct answer but 
that may be laborious may be preferable to a strategy that is 
easy but unlikely to result in a correct answer. 

However, valuing intuitiveness over efficiency might also 
deter learners from adopting new ways to solve problems. If 
someone does not care about efficiency, they might choose to 
shift only to a more intuitive strategy, and not to a more 
efficient one. Valuing intuitive strategies over all else can be 
problematic when the most intuitive strategies are not correct. 
In the domain of mathematics, this issue has been studied in 
children solving equivalence problems (e.g., 3 + 4 + 6 = 3 + 
__), a type of math problem with which children often 
struggle (McNeil, 2007; Perry, Church, & Goldin-Meadow, 
1988). Children often solve equivalence problems using a 
strategy that is intuitive given their past experience with 
arithmetic (adding all the numbers), but that does not yield a 
correct answer on these particular problems (McNeil, 2008). 
The current study suggests that it may be especially difficult 
for children to abandon such incorrect but intuitive strategies. 
Empirical findings support this view. Abandoning such 
strategies is a complicated process, often requiring feedback 
or extensive practice (McNeil, Fyfe, Petersen, Dunwiddie, & 
Brletic-Shipley, 2011). 

We found that participants considered efficiency in 
evaluating the similarity of pairs of strategies, but the relation 
varied depending on participants’ level of Need for 
Cognition. For participants with low Need for Cognition, 
similar efficiency seemed to be a basis for overall judgements 
of similarity, but this was not the case for participants with 
high Need for Cognition. More generally, the findings 
suggest that individual differences may influence the 
dimensions that people view as important when evaluating 
strategies and judging their similarity. 

The implications of this study extend beyond the domain 
of mathematics. Some research suggests that people’s 
intuitive theories about the world are often wrong (see 
Shtulman, 2017). Recent studies have shown that even 
experts continue to endorse intuitive, but incorrect, theories 
under certain circumstances (Coley, & Tanner, 2015; 
Shtulman, & Harrington, 2016; Shtulman, & Valcarcel, 
2012). The present work study suggests that may be precisely 
the intuitiveness of these theories that may make conceptual 
change difficult. 

The contributions of this study should be understood in 
the context of its limitations. First and most important, our 
sample size was small, so our conclusions are necessarily 
tentative. 

Second, we did not measure participants’ own strategy 
use before or after their ratings. Our aim was to assess how 
people think about different strategies to see if this could 
inform research on strategy change. We view this work a first 
step towards understanding how perceptions of strategies 
influence strategy use and strategy change. In future work, 
we plan to test whether learners’ own perceptions of various 
strategies are related to their willingness to adopt new 
strategies. 

Third, we included only correct strategies in the current 
study. This was an intentional choice in order to identify 
differences in factors other than correctness along which 
people evaluate strategies. Future research should investigate 
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whether the same factor structure is found for incorrect 
strategies. It is possible that when rating incorrect strategies, 
learners base their judgments on other factors. In future 
research, it would also be of interest to examine differences 
in evaluations of intuitive but incorrect strategies and 
counterintuitive but correct strategies. Such work would help 
establish whether people value correctness or intuitiveness 
more highly.  

Finally, there was a great deal of individual variation in 
people’s perceptions of strategies. Although some individual 
difference characteristics, such as Need for Cognition, were 
related to participants’ evaluations of strategies, others, such 
as performance on standardized math tests, were not. Future 
research should further investigate what types of individual 
differences—such as prior knowledge, confidence, attitudes 
towards mathematics, or participants’ own strategy use when 
solving these problems—influence strategy evaluations.  

In sum, we found that participants judged strategies along 
two primary dimensions: intuitiveness and efficiency. The 
strategy that scored highest on the intuitiveness ratings (the 
Discrete strategy) is the same strategy that prior research had 
identified as the most commonly used. This study has 
potential theoretical implications for research on strategy use 
and conceptual change, as well as practical implications for 
teachers and others who may wish to encourage learners to 
change the ways that they solve problems. 
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