

REVIEW OF PARTICLE PROPERTIES: SUPPLEMENT TO 1974 EDITION

Particle Data Group

VLADIMIR CHALOUPKA and CLAUDE BRICMAN CERN, 1211 Genève 23, Switzerland
ANGELA BARBARO-GALTIERI, DENYSE M. CHEW, ROBERT L. KELLY, THOMAS A. LASINSKI, ALAN RITTENBERG, ARTHUR H. ROSENFELD, THOMAS G. TRIPPE, FUMIYO UCHIYAMA, and GEORGE P. YOST
Lawrence Berkeley Laboratory, University of California
Berkeley, California 94720, USA

NAOMI BARASH-SCHMIDT
Brandeis University, Waltham, Massachusetts 02154, USA

MATTS ROOS
Department of Nuclear Physics, University of Helsinki Helsinki 17, Finland

For Reference

April 1975
Not to be taken from this room
(Next complete edition, April 1976, to be published in Reviews of Modern Physics)

Reprinted from Reviews of Modern Physics 47, 535 (1975), by kind permission of the Editor

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Review of particle properties: Supplement to 1974 edition

Particle Data Group
Vladimir Chaloupka and Claude Bricman
CERN, 1211 Genève 23, Switzerland

Angela Barbaro-Galtieri, Denyse M. Chew*; Robert L. Kelly, Thomas A. Lasinski ${ }^{\dagger}$, Alan Rittenberg, Arthur H. Rosenfeld, Thomas G. Trippe, Fumiyo Uchiyama, and George P. Yost

Lawrence Berkeley Laboratory, ${ }^{\ddagger}$ University of California, Berkeley, California 94720
Naomi Barash-Schmidt
Brandeis University, Waltham, Massachusetts 02154
Matts Roos
Department of Nuclear Physics, University of Helsinki, Helsinki 17, Finland

Abstract

This supplement to the 1974 edition of "Review of Particle Properties," Particle Data Group [Phys. Lett. 50B, No. 1 (1974)], contains an announcement concerning the postponement of the usual Review, a list of Errata, and a tabulation of the experimental results on the newly discovered mesons.

For several reasons, outlined below, the Particle Data Group has decided to postpone the next regular edition of the "Review of Particle Properties" until April 1976, at which time it will appear in Reviews of Modern Physics. In this supplement we present a brief list of errata to the 1974 edition, ${ }^{1}$ and, because of the importance of the recently discovered mesons, we also give addenda to the Data Card Listings containing entries for these particles on! ${ }^{\text {. }}$. Two mini-reviews in the Listings discuss various aspects of these mesons.
Our reasons for delaying the regular edition are primarily the following: (1) Apart from the excitement generated by the new mesons, there has been somewhat of a shift in the last 2-3 years from experiments studying particle properties to those studying interaction propertics. This dimi-

[^0]nution in new particle data, especially data of a dramatic nature (again with the exception noted above), leads us to believe that this time we can wait two years for a complete update. (2) In line with the shift in emphasis to interactions, the Berkeley members of the Group have been developing a data storage and retrieval system into which we plan to put all experimental data which we can extract from physics documents (journal articles, preprints, reports, theses, etc.). The primary usage of this system, at least initially, will be for such interaction properties as cross sections, angular and momentum distributions, polarization measurements, and density matrix elements. We are currently in the process of putting together our initial data base and are aiming to produce, as the first output of our system, an "Index of Particle Physics Data". ${ }^{2}$ This Index will enable the user to locate articles on the basis of beam, target, momentum and, to a limited extent, reaction final state and properties measured. Since this project is presently occupying most of the time of the Berkeley Group, publishing the Review this year would significantly delay the Index. (3) Finally, the recent substantial increases in printing costs also contributed to the decision to postpone publication.

[^1]
ERRATA

Following is a list of errata in the 1974 edition of Review of Particle Propperties [Phys. Lett. 50B, No. 1 (1974)]. Two page numbers are given for each item; the first is for the Review itself, and the second is for the associated 1974 Particle Properties Data Booklet.

In the Physical and Numerical Constants Table (p. 15/35), the line defining an atmosphere should read:

$$
1 \text { atmosphere }=1033.2275 \text { dynes } \mathrm{cm}^{-2}=1.01325 \text { bar. }
$$

In the Relativistic Kinematics Table (p. 21/51), equations 20-1 and 21-1 should read:

$$
\begin{gather*}
\gamma=\frac{s+m_{b}^{2}-m_{a}^{2}}{2 m_{b} \sqrt{s}}=\frac{m_{b}+E_{a}^{1 a b}}{\sqrt{s}} \tag{20-1}\\
\eta=\frac{\sqrt{\Delta\left(s, m_{a}^{2}, m_{b}^{2}\right)}}{2 m_{b} \sqrt{s}}=\frac{P_{i n c}}{\sqrt{s}}
\end{gather*}
$$

In the Particle Detectors, Absorbers, and Ranges section, the Atomic and Nuclear Properties of Materials Table (p. 30/74-75) has several errors; as a result we reproduce the entire table, including updated values where they were available.

In the Electromagnetic Relations section (p. 31/76), ε and μ are defined to be the relative permittivity and permeability, respectively, for both CGS and MKSA units. To convert the MKSA formulas to more standard notation, where ε and μ are defined to be absolute, substitute

$$
\varepsilon \text { for } \varepsilon E_{0}, \text { and } \mu \text { for } \mu \mu_{0}
$$

Atomic and Nuclear Properties of Materials*

*) Table revised January 1975 by J. Engler and F. Mönnig. For details and references, see CERN NP Internal Report 74-1.
a) σ of neutrons ($\approx \sigma$ of protons) at 20 GeV from Landolt-Bornstein, New Series I, Vol. 5. Energy dependence for all nuclei $\approx 1 / 2$ percent/GeV (from 5-25 GeV).
b) $L_{\text {coll }}=A /(N . \sigma)$. In the absorption length the elastic scattering is subtracted.
c) From W.H. Barkas and M.J. Berger, Tables of Energy Losses and Ranges of Heavy Charged Particles, NASA-SP-3013 (1964).
d) From Y.S. Tsai, Pair Production and Bremsstrahlung of Charged Leptons, SLAC-PUB-1365 (1974), Table III.6.
e) Values for solids, or the liquid phase at boiling point, except where noted. Values in parentheses for gaseous phase STP ($0^{\circ} \mathrm{C}, 1$ atm.). except where noted.
f) Density variable.
g) Gas at $20^{\circ} \mathrm{C}$.
h) Density may vary about $\pm 3 \%$, depending on operating conditions.
i) Values for typical working condition with H_{2} target: 50 mole percent, $29^{\circ} \mathrm{K}, 7 \mathrm{~atm}$.
j) Values for typical chamber working conditions: Propane $\sim 57^{\circ} \mathrm{C}, 8-10 \mathrm{~atm}$. Freon $13 \mathrm{B1} \sim 28^{\circ} \mathrm{C}, 8-10 \mathrm{~atm}$.
k) Typical scintiliator; e.g. PILOT B and NE 102A have an atomic ratio $\mathrm{H} / \mathrm{C}=1.10$.
l) Values for typical construction: 2 layers $50 \mu \mathrm{~m} \mathrm{Cu} / \mathrm{Be}$ wires, 8 mm gap, 60% argon; 40% isobutane or $\mathrm{CO}_{2} ; 2$ layers $50 \mu \mathrm{~m}$ Mylar/ Aclar foils.
m) Standard shielding blgcks, typical composition $0_{2} 52 \%$, Si $32.5 \%, \mathrm{Ca} 6 \%, \mathrm{Na} 1.5 \%, \mathrm{Fe} 2 \%, \mathrm{Al} 4 \%$ plus reinforcing iron bars. Attenuation length $\ell=115 \pm 5 \mathrm{~g} / \mathrm{cm}^{2}$, also valid for earth (typical $p=2.15$) from CERN-LRL-RHEL Shielding exp. UCRL 17841 (1968).
n) Used in Cerenkov counters, value at $26^{\circ} \mathrm{C}$ and 1 atm . Indices of refraction from E.R. Hayes, R.A. Schluter, and A. Tamosaitis, ANL- 6916 (1964).

In the following, we shall briefly review the experiments bearing on the recently-discovered $J / \psi(3100)$ and $\psi(3700)$ particles, as well as a peak in the $e^{+} e^{-}$total cross section; tentatively labeled $\mathrm{X}(4100)$ (whose resonant nature has not yet been established).

As of March 1975, the best known of these particles is the $J / \psi(3100)$. A summary of the experiments relevant to this particle is given in Table I. It has been observed in the $e^{+} e^{-}$mass spectrum produced in p -Be collisions at the AGS (AUBERT 74), and in $\mathrm{e}^{+} \mathrm{e}^{-}$, charged hadronic, and also $\mu^{+} \mu^{-}$decay modes
formed at SPEAR (AUGUSTIN 74). It has also been observed in $e^{+} e^{-}$collisions at ADONE (BACCI 74), at DORIS (BRAUNSCHWEIG 74,75; CRIEGEE 75), and at SPEAR (FORD 75), in photoproduction at FNAL (KNAPP1 75), in n-Be collisions at FNAL (KNAPP2 75), and in photoproduction using a mixture of real and low- q^{2} virtual photons at SLAC (DAKIN 75). A Wisconsin-SLAC collaboration has also observed production of the $J / \psi(3100)$, as well as the $\psi(3700)$, in a bremsstrahlung beam of peak energies ranging from 13.5 to 21.5 GeV (Univ. of Wisconsin-SLAC collaboration, private communication).

TABLE I. List of Experiments Bearing on the $J / \psi(3100)$ Meson.

[^2]
Data Card Listings

NEW HEAVY MESONS

Evidence bearing on the hadronic nature of the $J / \psi(3100)$ comes from the observation of a large forward photoproduction cross section. Using vector dominance arguments one derives a total cross section for $J / \psi(3100)$ on nucleons over a large energy range of the order of 1 mb (ANDREWS 75, DAKIN 75, KNAPPl 75, MARTIN 75). Although this cross section is an order of magnitude smaller than the corresponding cross sections of the well-known vector mesons, it is large enough to suggest that the $J / \psi(3100)$ is probably a hadron.

A preliminary assignment of $I^{G}\left(J^{P}\right) C=0^{-}\left(I^{-}\right)-$ may be made based on the following arguments: A study of the decay angular distribution into lepton pairs (BRAUNSCHWEIG 74, LYNCH 75), and an observed 3-standard-deviation interference effect with QED in the $\mu^{+} \mu^{-}$decay mode (LYNCH 75) suggest that the $J / \psi(3100)$ has the same JPC quantum numbers as a photon, provided parity is conserved in this decay. Non-observation of $2 Y$ decays (BRAUNSCHWEIG 75 , FORD 75) supports this interpretation. The observation of a $\bar{\Lambda}$ decay mode (SLAC-LBL collaboration, private communication), even though the branching fraction appears to be small, indicates isospin zero, provided the $J / \psi(3100)$ is a hadron and the decay to \bar{M} is not electromagnetic. If $I=0$ and $C=-1, G-$ parity must be negative. Support for this assignment comes from the fact (LYNCH 75) that the relative rates for the decay into an odd $v s$ even number of pions is consistent with the assumption that G is conserved in the former and violated in the latter. A natural interpretation, not yet confirmed, is that the $J / \psi(3100)$ is produced in $e^{+} e^{-}$annihilation via a single time-like photon in the direct channel.

The second particle, the $\psi(3700)$, has been observed in $e^{+} e^{-}$collisions at SPEAR (ABRAMS 74) and at DORIS (CRIEGEE 75), with cross sections of the same order of magnitude as the $J / \psi(3100)$. It is therefore likely that its formation also takes place via onephoton annihilation, and its quantum numbers would therefore be those of the photon, $J^{P C}=1^{--}$. No direct evidence for this assignment exists yet. The decay $\psi(3700) \rightarrow J / \psi(3100)+2 \pi$ (LYNCH 75, ABRAMS 75) suggests that the G-parity is the same as for the $J / \psi(3100)$. 'If $\mathrm{GC}=+1$, then I is even.

The $x(4100)$ has been observed as a broad enhancement in the $e^{+} e^{-}$total cross section at SPEAR (AUGUSTIN 75). Although the interpretation is still unclear; if it is in fact a resonance, then its large width
suggests that it is hadronic. Further, as in the case of the $\psi(3700)$, if one-photon annihilation is responsible for the effect, the quantum numbers would then be those of the photon, $J^{P C}=1^{--}$.

Note added in proof: after this mini-review was completed, an additional paper, BOYARSKI 75 , was received. The results of this paper, which support the above préliminary assignments of the $J / \psi(3100)$ quantum numbers, are included in the following Listings.

Extracting Resonance Widths from $e^{+} e^{-}$Colliding Beam Formation Experiments

In an $e^{+} e^{-}$colliding beam formation experiment, the true shape of an observed resonance is distorted primarily by the effects of (1) soft-photon processes, and (2) beam energy spread due to processes such as quantum fluctuations in emission of synchrotron radiation. The spread in energy due to (2) may usually be approximated by a Gaussian distribution, the effect of which vanishes rapidly at energies sufficiently removed from resonance. The major effect of (l) is a decrease in the effective c.m. energy for some fraction of the collisions, because of the emission of bremsstrahlung by the electron or positron before annihilation. Hence, though the nominal beam energy may be well above the resonance region, a certain fraction of the collisions occur at or near resonance. This gives rise to the well-known high-mass radiative tails of the $J / \psi(3100)$ and $\psi(3700)$ resonances. These radiative processes, taken all together, can decrease the peak cross section for a narrow resonance by 50% or more, depending on the mass and the observed width.

Because of these effects, perhaps the most reliable means for determining resonance widths is to use a method based on the area under the line shape. This method, familiar in nuclear physics, minimizes the sensitivity to the details of the beam energy spread. Corrections for the radiative processes, which depend on the limits of integration of the areas, still need to be made. This discussion assumes the resolution is adequate to allow a reasonable separation of signal from background (which itself is subject to radiative processes).

For formation of a resonance of mass M in $e^{+} e^{-}$ collisions, with subsequent decay via channel i,

$$
\sigma_{i}(W)=\sigma_{0} \frac{\Gamma e^{\Gamma} / 4}{(M-W)^{2}+\Gamma^{2} / 4}
$$

where W is the total center of mass energy; Γ, Γ_{e}, and Γ_{i} are the total width and partial widths for coupling to $e^{+} e^{-i}$ and channel i, respectively; and a Breit-Wigner line shape with energy-independent partial widths is assumed. The quantity σ_{0} is given by

$$
\sigma_{0}(w)=\frac{4 \pi(2 J+1)}{w^{2}},
$$

where J is the spin of the resonance. For a narrow resonance, the area under the resonant line is given by

$$
A_{i}=\frac{\pi}{2} \frac{\Gamma e^{\Gamma} i}{\Gamma} \sigma_{0}(M)
$$

independent of the energy resolution of the apparatus (but after correction for reduction in peak height and radiative tail caused by soft-photon processes). This area is tabulated in the Data Card Listings in the section labeled Integrated Channel Cross Sections. Substituting for σ_{0}, we have

$$
\frac{\Gamma e^{I^{\prime}} i}{\Gamma}=\frac{M^{2}}{2(2 J+1) \pi^{2}} A_{i}
$$

Determination of the area for different decay channels thus makes it possible to determine the various partial widths.

This mini-review is based largely on "Notes from the SLAC Theory Workshop on the $\psi^{\prime \prime}$, ed. R. Pearson, SLAC-PUB-1515 (1974). We also wish to thank J. D. Jackson of LBL, Y.-S. Thai of SLAC, and M. Chanowitz of LBL for fruitful discussions.

Note on the Data Card Listings

The closing date for data for the following Listings was March 28 , 1975. We recognize that, because of the intense interest in, and activity relating to, the new mesons, some of the values tabulated may already be superseded by the time of publication of this supplement. We hope, nevertheless, that these Listings will at least serve as a starting point for those studying the new particles. As always we urge the reader to refer to the original articles for all details.

The meaning of the columns and the various abbeviations appearing below can be found in the Illustrative Key in the 1974 edition of the Review. Several new abbreviations for measurement techniques (or detectors) have been introduced this year; they are

ALEC	Electronic detector -a combination of chambers, counters, etc.
DASP	bESY double-arm spectrometer
PLUS	DESY PLUTO detector
SAG	SPEAR magnetic detector
SPEC	Spectrometer

combination of chambers combination of chambers, DESY double-arm spectrometer DESY PLUTO detector

Spectrometer

$J / \psi(3100) \quad 70$ J/PSI $13600, J P G I$ CONSISTENT WITH 1-OI

70 JAPSI(3100) WIDTH (KEN)
THESE VALUES (A AS WELL AS THE PARTIAL WIDTHS GIVEN BELOW) ARE ASSUMPTIONS THAT JP=1-AND THAT THE TOTAL WIDTH IS THE SUM OF THE HADRON, (E+ E-), AND (MU+ MUT WIDTHS. UNLESS OTHERWISE NOTED,
RADIATIVE CORRECTIONS ARE ASSUMED INCLUDED (SEE JACKSON 74 AND RADIATIVE CO
YENNIE 751.

70 J/PSI(3100) PARTIAL DECAY MODES

70 J/PSI(3100) PARTIAL WIDTHS (NEVI
see note above on total width.

$2 / 75 *$
$2 / 75 *$
$2 / 75 *$
$2 / 75 *$
$3 / 75 *$
$2 / 75 *$
$2 / 75 *$
$2 / 75 *$
$2 / 75 *$
$2 / 75 *$
$2 / 75 *$
$2 / 75 *$
$2 / 75 *$
$2 / 75 *$
$3 / 75 *$
$3 / 75 *$
$2 / 75 *$
$3 / 75 *$
$3 / 75 *$
$2 / 75 *$
$2 / 75 *$

2/75**

 $2 / 75 * *$ $3 / 75 *$ $3 / 75 *$

[^0]: * On leave of absence from University of Paris VI, Paris, France.
 \dagger Presently at Stanford Iinear Accelerator Center, Stanford, California 94305 , USA.
 \ddagger The Berkeley Particle Data Center is jointly supported by the U.S. Energy Research and Development Administration, the Office of Standard Reference Data of the National Bureau of Standards, and the National Science Foundation.
 ${ }^{1}$ Particle Data Group: V. Chaloupka, C. Bricman, A. BarbaroGaltieri, D. M. Chew, R. L. Kelly, T. A. Lasinski, A. Rittenberg, A. H. Rosenfeld, T. G. Trippe, F. Uchiyama, N. Barash-Schmidt, P. Söding, and M. Roos, Physics Letters 50B, No. 1 (1974).

[^1]: ${ }^{2}$ Particle Data Group, "Index of Particle Physics Data", LBL-90 (to be issued).

[^2]: ${ }^{a}$ These are only probable $\mu^{+} \mu^{-}$events; they are called "collinear events which are not $e^{+} e^{-}$.
 ${ }^{\text {b }}$ Upper limits only.
 ${ }^{c}$ No conclusion drawn, however, on the existence of a narrow resonance.

