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There has been considerable recent interest in the nuclear equation of state 
and how it may be determined in relativistic nucleus-nucleus collisions. In these 
collisions extremely high temperatures are reached and compression to densities 
several times that of normal nuclear matter are predicted. This affords us the 
unique opportunity to study, in a somewhat controlled manner, the behavior of 
nuclear matter under these extreme conditions. If the observables that are mea­
sured in experiments can be related in a quantitative way to state variables of the 
system then the equation of state can be extracted. This relation plays a very 
important role in understanding the formation and collapse of supernovae [1] and 
the stability and structure of neutron stars [2]. Furthermore, it can be used to test 
and constrain field theoretical approaches [3,4] to nuclear matter and to help to 
better understand the dynamics of high energy nucleus-nucleus collisions. 

In this presentation the relationship between the nuclear equation of state and 
relativistic nucleus-nucleus collisions will be discussed with an emphasis on how to 
extract the former. That a high density state of the collision should exist will be 
shown. One observable, namely the pion multiplicity, will be shown to survive the 
succeeding stages of the collision process to provide information on the equation 
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of state at high densities. The resulting equation of state will be presented and 
discussed in the light of recent theoretical developments. 

Relativistic N ucleus-Nucleus Collisions and the Nuclear Equation of 
State 

In the collision of two heavy nuclei at velocities approaching the speed of light 
three distinct stages of the reaction are predicted. On the microscopic level as 
the two nuclei collide, binary nucleon-nucleon collisions will initially dominate. As ' 
the nuclei continue to interpenetrate, successive nucleon-nucleon collisions occur in 
the overlap region. In macroscopic terms this results in conversion of part of the 
energy of relative motion into internal energy and an increase in the temperature 
a.nd density in the overlap region. This first stage of the collision is the compression 
stage. The dynamics of the collision process can easily be seen in predictions of the 
intranuclear cascade model [51 shown in Fig.l for central collisions of 1.0 Ge V In 
La + La. Plotted logarithmically are the a) baryon density, b) number of baryon­
baryon collisions per unit time, and c) number of produced particles (pions + delta 
resonances) in the system as a function of time in the collision. The number of 
created particles reflects part of the energy that is transformed from relative motion 
into other degrees of freedom. All three variables in Fig.1 are observed to increase 
rapidly during the compression stage. At a somewhat later time, in the middle of 
the collision process, the baryon density becomes relatively constant for a period 
of time before rapidly decreasing exponentially. This plateau in density represents 
the second stage of the collision, namely the high density state. At this time the 
baryon-baryon collision rate peaks at approximately 90 collisions per fmlc and the 
number of created particles in this model reaches a maximum. The exponential 
decrease in density, the rapid decrease in the collision rate, and a saturation of the 
a.bundance of produced particles characterizes the third stage - expansion. 

The equation describing the energy of a system of particles can be written 
schematically as 

E(p, T) = ET(p, T) + W(p) , (1) 
where E(p, T) is the total center-of-mass energy, ET(p, T) the thermal excitation 
energy, and W(p) the energy associated with the potential degrees of freedom. 
The p and T represent the density and temperature of the system, respectively. 
To obtain the equation of state the pressure of the system is found by taking the 
partial derivative of the above equation with respect to the density at constant 
entropy S 

P(p, T) = p' (aE~, T)) . 
p <18=0 

(2) 

This yields 

P( T) = 2 ((aET(p, T)) (dW(P))) 
p, p a + d() , 

P dS=O P 
(3) 

where the partial derivative term is the thermal pressure and the second term is 
the compression. This second term which describes the response of the potential 
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energy to changes in density is often referred to as the nuclear equation of state, 
as will be done here. Several of the state variables introduced above and necessary 
to describe the system can be related to physical observables which are accessible, 
to some degree, in relativistic nucleus-nucleus collisions. These are listed below: 

STATE VARIABLES OBSERVABLES 

ET(p, T) abundance of produced particles 
(pion multiplicities) 
(strange particle yields) 

S(p, T) ratios of various types of particles 
(deuteron/proton ratios) 

P(p, T) distributions of particles in phase-space 
(asymmetric or radial flow) 

How can the equation ofstate dW{p)/dp be determined? In the following it will 
be shown that a high density state exists in these collisions facilitating a descrip­
tion in terms of state variables. Furthermore, this state has observables associated 
with the state variables which should survive the succeeding expansion stage of the 
collision. Specifically, the pion multiplicity will be used to determine the thermal 
energy content of the system and along with the total energy in Equ.l will provide 
information on W(p) to yield the equation of state. The relationship between other 
possible observables such as flow and the dip ratios to the equation of state will 
be discussed in two other presentations [6,7] of this meeting. 

Pion Production in Relativistic Nucleus-Nucleus Collisions 

The sensitivity of the pion production in relativistic nucleus-nucleus collisions to 
the nuclear equation of state was initially pointed out by several authors [8,9,10,11]. 
The first quantitative results on the sensitivity of pion production to the compress­
ibility of nuclear matter were calculated [10] using hydrodynamics and are shown 
in Fig.2a. A significantly lower number of pions are predicted when a stiff (higher 
compressional energy at a given baryon density) nuclear equation of state is as­
sumed. Furthermore, in the presence of a density isomer a sharp rise in the number 
of pions produced as a function of incident energy was predicted as seen in Fig.2b. 
A subsequent measurement [12] of the negative pion multiplicity < nll'- > for cen­
tral collisions in the Ar + KCI system at incident energies of 360 to 1800 Me V In 
is shown in Fig.3. The energy-dependence of the < nll'- > is linear with no sharp 
deviations which might suggest the presence of density isomers. Recent results [13] 
at an incident laboratory energy of 3.6 GeV In for Ne + Ne show a continuation 
of this linear dependence to higher energies. Of more general importance is the 
determination of what can be learned from these measurements about the nuclear 
equation of state. In order to be able to extract a functional relationship between 
state variables of the system, like pressure and density, a better understanding of 
the dynamic behavior of the collision is necessary. In particular, the degree to 
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which thermal and chemical equilibrium are reached and maintained during a high 
energy nucleus-nucleus collision will determine whether the pion multiplicity can 
in fact be used to extract information on the nuclear equation of state. 

Thermal and Chemical Equilibrium 

The extent to which thermal and chemical equilibrium is reached in relativistic 
nucleus-nucleus collisions has been estimated by several authors [14,15,16,17] us­
ing statistical thermodynamics. Thermal equilibrium may be viewed simply as an 
equipartition of the available energy into the various degrees of freedom. Chemical 
equilibrium occurs when the reaction rates for formation and breakup of a con­
stituent are equal, thereby establishing the abundances of the various species in 
the system. At Bevalac energies (E,a6 '" 2 GeV In) the system can be considered to 
be a gas of nucleons, delta-particles, and pions. The rates governing the approach 
to equilibrium are determined by successive collisions on the microscopic level be­
tween these constituent particles. The rate equations [15,16,17] can be solved to 
yield the chemical equilibration time constant 

2 equ 
PI1. (4) 

where P~ and PN are the delta and nucleon densities in equilibrium. The time 
constant for chemical equilibrium is governed by the inelastic reaction N N +-+ 

N ~ rate. The < (7NN+-+NI1.V > is the thermal energy average of the cross section 
for N N +-+ N ~ times the relative velocity v of the particle pair. The thermal 
equilibration time constant can be calculated in a similar way by using the total 
cross section rather than the inelastic one. This will inherently yield a shorter 
equilibration time for thermal equilibrium than for chemical equilibrium since (7tot > 
(7NN+-+NI1.. If requ is less than the lifetime of a given state of the system ~r.tate, then 
equilibrium is possible. 

As a first estimate of the extent of chemical equilibrium in the high density stage 
a collision of an equal mass system at 1 GeV /n is considered. Representative values 
[15,16,17] are temperature T;;; 100 MeV, p~u ;;; 0.2pN :: 0.6po with PN ;;; 3po and 
Po the normal nuclear density, and < (7NN+-+NAV >:: 1.5x102s /mss-I. Th.e chemical 
equilibration time constant is found to be 

(5) 

and the thermal time constant 

(6) 

These should be compared to the lifetime of the high density stage which from the 
cascade calculation is 

~rp(Ar + KG/) ~ 4/m/c ;;; 1.3 x 10-2s,s , 
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for Ar + KCl and 

~rp(La + La) ~ S/rnle = 2.6 x 10-23
8 , 

\, 

(8) 

for La + La. Since the time scales to reach equilibrium in both systems are smaller 
than the lifetime of the high density stage, namely 

rthermal < '['chemical < ~ r p , (9) 

both thermal and chemical equilibrium should ezist lor medium to heavy mass sys· 
tems at the end 01 the high density stage. 

Once equilibrium among the nucleons, deltas and pions is established in the 
high density stage the system can be described in terms of statistical thermody­
namics using state variables and observables. However, effects of the expansion 
phase upon these variables and observables must be considered to be able to de­
termine which survive to provide viable information on the system at high density. 
The expansion can, in principle, proceed along any path between isoergic (constant 
energy) and isentropic (constant entropy). Isoergic expansion, which is assumed 
in most thermal models - most notably the fireball model [IS] - is accompanied by 
a slow decrease in the temperature of the system and an increase in the number 
of produced particles, in this case pions and deltas. During isentropic expansion 
the system will shrink in momentum space to counteract its growth in position 
space. This can be 'considered as radial flow, where the temperature drops rapidly 
as randomly-directed kinetic energy is converted into radial collective motion, ac­
companied by a decrease in the pion and delta abundances. Isentropic expansion 
is assumed in the hydrodynamic models and has been observed [19] in the cascade 
calculations. The central density in the cascade calculations decreases exponen­
tially during expansion with a characteristic time of 10-23 s as shown in Fig.1. An 
estimate of the equilibration times for the two extreme cases of expansion can be 
made. Assuming that the expansion proceeds along a path somewhere between 
isoergic and isentropic, the chemical equilibration time constant from EquA at 
P = 0.7po is 

3 10-23 2 1'0-22 
X 8 < rchemical < x 8 , (10) 

both limits being much longer than the characteristic time' of expansion 10-23 8. 

Chemical equilibrium among nucleons, delta" and pion, cannot be maintained to 
late times in the ezpansion proceBB [20]. The pion degree of freedom, which is the 
total number of pions and deltas in the system, will freeze-out at an earlier time 
closer to the end of the high density stage. This is contrary to the assumptions made 
in the fireball [IS] and hydrodynamic [21] model calculations where the freeze-out 
densities were assumed to be between p = (0.5 -+- 1.0)Po. 

The thermal equilibration time constant can be determined in a similar manner 
using Equ.4 where the large {ftrN+-+tl. will dominate the reaction processes. The time 
constants for the limiting cases at p = 0.7 Po are 

(11) 
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where the shortest time is for isoergic expansion and the longer one for isentropic 
expansion. Therefore, thermal equilibrium oJ the nucleons, deltas, and pions should 
continue on into the ezpansion phaBe. For reasonable assumptions about the ex­
pansion mechanism the equilibration times can be summarized by 

Tthermal ~ ~Te~"a".ion < Tehemieal • (12) 

The pion spectra (temperatures)[22] and source sizes taken from pion-interferometry 
measurements [23] will reflect the thermal freeze-out in the later stages of expan­
sion, while the total pion multiplicity after decay of the remaining deltas is estab­
lished by chemical freeze-out near the end of the high density stage. 

In light of identifying other prospective observables of the high density stage 
it is informative to estimate the equilibration times associated with nuclear cluster 
formation and strange particle production. Being produced-particles like pions and 
deltas, the strange particles may reflect the early stage or the high density stage 
of the collision. The nuclear clusters would not be expected to form until late in 
the reaction when nuclear densities have fallen below Po and clusters could finally 
coexist among nucleons. However, in this case they still could reflect the entropy 
[24] of the system if chemical equilibrium were to exist among the nuclear particle 
species. The ratios of various nuclear clusters would then determine the entropy in 
the late stages of the reaction and the high density stage as well if the expansion 
were indeed isentropic. Taking values from Ref. [16] , it is found that 

-2S (2 1) 
Tdu.fer ~ 1 x 10 8 ~ ~T 3" ~ 3' Po • (13) 

These values suggest that cluster equilibrium is possible but somewhat question­
able, particularly for light nucleus-nucleus systems, noncentral collisions, and high 
incident energies. In all three of these cases the estimated equilibration time would 
be an underestimate. 

The cross sections that govern strange particle production at Bevalac energies 
are small, approximately 15 I'barns. This results in very long equilibration times 
[17] for strange particle production 

(14) 

Thus, one would not expect chemical or thermal equilibrium for the strange par­
ticles. In fact, since the cross sections are so small the additional energy provided 
by the Fermi motion would favor production primarily in the compression stage 
where binary nucleon-nucleon collisions dominate. 

Pion Multiplicity as a Probe of the Nuclear Equation of State 

The pion multiplicity can now be used to determine the thermal energy content 
of the system in the high density stage assuming the ideal case of chemical and 
thermal equilibrium where chemical freeze-out occurs at the end of the high density 
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stage [201. The total excitation energy per baryon in the center of mass for a system 
at temperature T and density p can be written as 

E - mN = EB(T)+ < nil' > EII'+ < nA >< m* > +W(p, T = 0) + Ejlow, (15) 

where the left-hand side is the beam c.m. kinetic energy per nucleon. The first three 
terms on the right are the thermal energy contained in baryons, pions and resonance 
mass excess m*. The fourth term is the nuclear matter energy at T = 0 and density 
p while the last term is the flow kinetic energy at p. All terms on the right side 
are taken per baryon. The nuclear matter energy can now be extracted assuming 
that the pion multiplicity is established at the time of maximum compression in 
the high density stage when the flow kinetic energy is zero. The flow kinetic energy 
should appear later as the potential energy is reconverted to kinetic energy in ·the 
expansion [21,251. Therefore, at the time of maximum density Equ.15 becomes 

(16) 

and 
Ec = W (p, T = 0) - Wo , (11) 

where f is the incident kinetic energy in the c.m., ET the thermal energy, Ec the 
compressional energy, and Wo the binding energy of ground state nuclear matter. 
Each term in Equ.16 is determined per participant baryon. The Fermi degeneracy 
energy contribution to W(p, T = 0) will be ignored in order to extract the equation 
of state from Equ.16 in a direct and simple manner. The compressional energy Ec 
will only contain potential energy contributions with all the kinetic energy resident 
in the thermal energy ET term. The equation of state will be determined, within 
the limitations of the present model, by considering the thermal energy as the only 
source of pion and resonance production. By so doing the compressional energy 
can be extracted knowing the incident energy in the c.m. The limitations of this 
approach have recently been examined by Sano [261. 

The compressional en'ergy will be determined by a comparision of the observed 
pion multiplicity with models which only contain thermal energy and ignore the 
nonthermal component Ec. In a previous approach [211 the intranuclear cascade 
model was used and in this presentation a relativistic chemical model [11,281 con­
taining fermions and bosons will be used to calculate the .thermal energy contri­
bution. The presence of compression in the collision simply offsets the thermal 
energy scale with respect to the beam energy f as seen in Equ.16. The total pion 
multiplicity determined from experiment at an energy f will determine ET and 
therefore Ec(f). The compressional energy Ec(f) can be plotted as a function of 
baryon density ponce p(f) is known. The cascade dependence of p(f) is plotted 
in Fig.4. For the chemical model the baryon density is calculated assuming shock 
compression by using the relativistic Rankine-Hugoniot relation [81 

P "Yc.m. 
Po = (1 - PoE/(f,j/2P) . 

(18) 

The pi Po is the baryon density associated with the shock compression of a medium 
at rest in the center of mass where "Yc.m. is the beam Lorentz factor with respect 
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to the c.m. frame for incident laboratory kinetic energy per nucleon E,a6. The 
P is the pressure of the medium which can be related to the temperature T and 
W(p,T = 0) by 

P = p2dW(p) + pT . 
dp 

(19) 

In this approximation the usual sum over the partial pressures of the constituent 
N,~ and 1(' gases is replaced by the term pT. This corresponds to a classical 
approximation to the N, ~ pressure and ignores the pressure due to thermal 1("S 

which is a small correction at the high temperatures considered [11,29]. Equations 
16-19 were solved self-consistently using € and pI Po as input into the chemical model 
[28] and comparing the output < nll' > with the experimental < nll' .> to extract 
ET and thus Ec. The temperature used in Equ.19 comes from the chemical model. 
This procedure of using the chemical model with Rankine-Hugoniot compression 
is, in essence, a simple hydrodynamic model. 

In order to make a reasonable comparison between the experimental pion mul­
tiplicities and the chemical model predictions which assume shock compression, 
collisions at small impact parameters must be selected. This can be accomplished 
by extrapolating the minimum bias data to zero impact parameter as shown in 
Fig.5. An event-by-event determination of the negative pion multiplicity was made 
as a function of the number of protons participating in the reaction for Ar + KC] 
at incident energies of 0.57 to 1.8 Ge V /n using the streamer chamber at the Be­
valac. The results for energies from 1.0 to 1.8 GeV /n are presented. Since the 

_ < nll'- > is observed to rise linearly with the number of protons (and therefore 
nucleons) participating in the reaction, an extrapolation to the limit where al1 
protons (neu trons) participate is straghtforward. The limiting values of < nll'- > 
corresponding to total disintegration of both incident nuclei represent those for 
zero impact parameter collisions and occur at the arrow Q = ZAr + ZKCl in Fig.5. 
The isobar model is then used to obtain the total pion multiplicity per baryon 
< nll'- > from < nll' >~ 3 < nll'- >. This procedure enables the extraction of the 
pion multiplicities for truly head-on collisions independent of experimental trigger 
biases. 

The results of the pion multiplicity comparisons as a function of energy are 
shown in Fig.6. The cascade model predictions, made previously [27], and those 
of the chemical model are in fairly close agreement. Both clearly overpredict the 
experimentally observed pion multiplicities. The resulting compressional energies 
represented by the horizontal arrows are similar in both models. Note, however, 
that neither the cascade nor the experiment may have reached perfect equilibrium 
and that corrections due to surface effects may still be necessary. 

Pion multiplicities have also been measured for the heavier system U9 La + 
139La at incident energies of 534, 739, 992 and 1166 MeV /n in a central trigger 
mode corresponding to impact parameters b ~ O.25bmaz • Extrapolation to zero 
impact parameter is much more difficult for this heavy system than for the Ar + 
KCI system. A 384 element forward scintillator array was used in addition to the 
streamer chamber to distinguish the number of participants in the events. This 
work is still in progress and a comparison with the chemical model is not yet possi­
ble. However, a comparison can be made between the central trigger data and the 
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cascade model as in Ref.[27] to extract preliminary compressional energies. The 
trigger cross section and the geometric model are used to determine the impact 
parameter range of the experiment for use in the cascade. The resulting negative 
pion multiplicities are shown in Fig.7 for the central trigger data (b ~ 0.25bmaz ) 

and the cascade. Similar data for the Ar + KCI system at b ~ 0.33bmaz are also 
presented in Fig.7. The absolute value of the pion multiplicity is noticably larger 
for the heavier system bu t the ratio of pions to participants cannot yet be deter­
mined as stated above. Following the prescription of Ref.[27] the compressional 
energy is simply the length of the horizontal arrows. The results of the cascade 
and chemical model analyses for the Ar + KCI data at zero impact parameter and 
the preliminary cascade model analysis of the La + La data at (b.~ 0.25bmaz ) 

are presented in Fig.8. The extracted compressional energies as a function of the 
baryon density are plotted for the three different cases. The reSUlting points for 
the different approaches suggest an equation of state which is fairly stiff by the 
standards of field theoretical models [3,4] which have been used to describe the 
behavior of nuclear matter at normal density. 

Discussion and Conclusions 

It is important to note that the two models used to extract the equation of 
state have quite different assumptions about the mean free paths of the particles 
in the system. The cascade model has a long mean free path (>'m/p ~ R) and 
the chemical model with shock compression a short mean free path (>'m/p <:: R) 
assumption relative to the size R of the system. The similarities of the results 
perhaps reflects the fact that equilibrium is reached in both approaches during the 
high density stage and that the chemistry that produces the pions is similar in both 
cases. Furthermore, either the pion production is insensitive to the dynamics of 
the compression and expansion stages or the dynamics in the two approaches are 
in fact very similar. Recent results from Ref.[26] shed some light on this subject. 
Displayed in Fig.9 are shock compression curves (for various assumptions about the 
equation of state) of the baryon density as a function of incident energy in nucleus­
nucleus collisions. Also plotted are cascade points (crosses) for the Ar + Ca system. 
The ideal gas (curve 1) yields the highest densities, almost a factor of two higher 
than any other. So the cascade is not an ideal gas. However, when all' Enskogg­
corrected [30] ideal gas calculation (curve 2) is made the results agree very well 
with the cascade predictions. Thus, the finite range of the hadronic forces which 
is incorporated in the cascade via the scattering mechanism and cross sections 
accounts for this difference and the cascade in fact does reach shock densities. 
The other curves in Fig.9 correspond to the densities for various equations of state 
which include compressional energy. Presented in Fig.IO are the predictions for the 
pion to participant ratio as a function of energy for these same shock compression 
models and the cascade model. All the equations of state overpredict the pion yield 
except for the quadratic form with incompressibility constant K = 800 Me V. In 
these calculations the system is also treated as a degenerate Fermi gas with the 
Fermi degeneracy energy included. 
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A similar hydrodynamics calculation (31) employing the quadratic form of the 
equation of state yields a fit to the pion to participant ratio for K ~ 300 MeV. 
The predictions of this model are presented in Fig.ll for several incompressibility 
constants. It seems necessary for these approaches to use a quadratic form rather 
than a linear form of the equation of state to be able to fit the data. A linear 
form will not generate enough compressional energy. In fact, it should be pointed 
out that the value of the incompressibility constant is determined at P = Po. The 
actual parametrizations of the equation of state can vary such that the incompress­
ibility constant alone is meaningless without stating the form. Nevertheless, the 
two aforementioned calculations [26,31) yield similar qualitative conclusions ( the 
equation of state is very stiff) but different quantitative results (incompressibilities) 
for identical parameterizations of the equation of state. 

Another approach, using the Boltzmann equation [32] with a Skyrme force, 
comes very close to predicting the pion to participant ratio as a function of energy. 
This is seen in Fig.12 where the cascade and Boltzmann equation predictions are 
displayed along with the Ar + KCI data. The predictions are still slightly higher 
than the observed ratios. This equation of state is somewhat stiffer than the 
previous hydrodynamic calculation [31], but softer than that of Sano [26]. Both 
studies found that an increasing amount of compressional energy was necessary to 
decrease the pion yield. 

In summary, both chemical and thermal equilibrium rate calculations and cas­
cade model analyses suggest that chemical freeze-out of the pion-like degree of 
freedom occurs at the onset of expansion. The pion multiplicity observed in the fi­
nal state should then reflect the conditions of the high density stage where chemical 
and thermal equilibrium are expected to occur. A schematic hydrodynamic model 
consisting of chemical and thermal equilibrium and shock compression was used to 
describe the high density stage. This model and the intranuclear cascade model 
were independently compared to the pion production data in order to determine 
the compressional energy of the system at various incident energies. It is necessary 
to stress the assumptions made in this approach. The ~ow kinetic energy, if present 
in the high density stage, was ignored and all the kinetic energy was considered to 
be thermalized and available for pion production. Also, any dilute surface effects 
due to the finite size of the nuclear system, and medium corrections [33] to the 
specific heat of the N, ~ and 11' gas were ignored. Corrections for such effects, if 
present, would tend to lower the extracted compressional energies and soften the 
equation of state. Furthermore, the role of the Fermi degeneracy energy [26] has 
been disregarded in extracting the compressional energies in both the cascade and 
chemical model calculations. The resulting compressional energies should only be 
considered as a first estimate of the nuclear equation of state at high densities with 
more refined theoretical calculations necessary to identify the effects of possible 
corrections and to specify the precise form of the equation of state. In any case 
it appears that the equation of state is fairly stiff and rises rather linearly above 
densities of 3po in agreement with recent field theoretical calculations [3,41. 

We would like to thank M. Gyulassy and H. Stocker for interesting and helpful 
discussions, and for the use of their material prior to publication. We especially 
wish to thank G.D. Westfall for the thermal model results. 
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Figure Captions 

1. Predictions of the intranuclear cascade model [5] for central collisions (b ~ 
3.4 fm.) of 1.0 Ge V / n 139 La + 139 La. The time dependence in units of 
fm/c is presented on a semi-logarithmic scale for the (a) baryon density in 
units of normal nuclear density Po, (b) number of baryon-baryon collisions 
per unit time and (c) the instantaneous number of pions + delta resonances 
(scale on right). Also displayed as a bar in (c) is the prediction of a simple 
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chemical model for the equilibrium abundance at the predicted maximum 
cascade density. 

2. Mean pion multiplicity < nll' > per nucleon as a function of incident energy 
predicted by the hydrodynamic model of Ref.[10]. (a) Results of a soft 
(Ko = 100 MeV) and a stiff (Ko = 300 MeV) nuclear equation of state are 
shown. (b) Results of a calculation with a density isomer in the equation 
of state. Curve a is the normal nuclear matter curve (Ko = 300 MeV) and 
curves band c have secondary minima in the equation of state at p = SPo 
with binding energies Bl = 0 and -140 MeV, respectively, as depicted in 
the insert. 

3. The energy dependence of the mean negative pion multiplicitY < nll'- > for 
central collisions of Ar + KCl from Ref. [12]. Above 100 MeV c.m. energy 
the data can be fitted by a straight line. 

4. Maximum density as a function of incident energy predicted by the cascade 
model for Ar + KCl. The circles represent the mean density weighted by 
the 1(' + d production rate. 

S. The mean negative pion mUltiplicity observed in Ar + KCl reactions at 1.0, 
1.2, 1.4, 1.6 and 1.8 GeV /n as a function of the observed number of proton 
participants Q from Ref. [201. Only the interpolating lines are shown except 
for 1.0 and 1.8 GeV In. 

6. The multiplicity of pions plus deltas per participant plotted as a function of 
c.m. energy (lower axis) and laboratory energy (upper axis) for Ar + KCl. 
The solid curves are the experimental points for zero impact parameter. The 
dashed and dotted curves are the Cugnon cascade and the chemical model 
results for the < nll' + n6, > per participant dependence on the thermal 
energy (ET) and the triangles are the predictions of the Yariv-Fraenkel [34] 
cascade. The horizontal arrows represent the values of the compressional 
energy per nucleon Ee determined at each experimental point as described 
in the text. 

7. The mean 1('- mUltiplicity as a function of incident energy for central colli­
sions of Ar + KCI (open triangles) with b :;., O.33bmcu: and La + La (solid 
triangles-preliminary) with b ,!s 0.25bm cu: assuming a geometrical model for 
the trigger cross section. The corresponding cascade model calculations are 
drawn as open and solid circles, respectively. The horizontal arrows repre­
sent the compressional energy deduced from a comparison with the cascade 
model. 

8. Values of the ground state nuclear matter energy W(p, T = 0) presented as 
a function of th~ density in units of normal nuclear matter density Po. The 
points are derived from the Ar + KCl minimum bias data extrapolated to 
zero impact parameter using the cascade (triangles) and chemical models 
(circles) independently. Also shown are preliminary points from the La + 
La central trigger data using the cascade (boxes). Only statistical errors 
are given. 

9. The baryon density as a function of the c.m. kinetic energy per nucleon 
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assuming shock compression (curves 1-5) from Ref.[26] and for the cascade 
(crosses). Curve 1 is the result for an ideal gas. Curve 2 is an ideal gas 
with Enskogg correction. Curves 3 and 4 include a quadratic form of the 
potential with K = 250 and 800 MeV, respectively, and curve 5 corresponds 
to a linear form with K = 800 Me V. 

10. The pion to participant ratio as a function of c.m. energy. The curves are 
labeled as in Fig.9. The solid circles are the data points extrapolated to zero 
impact parameter for Ar + KCl. Curve S corresponds to an interpretation 
[26] of the empirical equation of state derived from the chemical model 
analysis. 

11. The pion to participant ratio predicted by a hydrodynamic model [31] 
as a function of energy for several incompressibility constants assuming 
a quadratic form of the equation of state. 

12. Predictions for the negative pion multiplicity using a Boltzmann equation 
approach [32] and a cascade model. Also shown are the data[12]. 
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