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Dirty and perverse:

regulation-induced pollution substitution

Matthew Gibson∗

April 16, 2014

Abstract

Pollution regulations may induce �rm responses that undermine their

e�ectiveness. By regulating air emissions in particular counties, the

Clean Air Act (CAA) gives �rms incentives to substitute: 1) toward

polluting other media, like land�lls and waterways; and 2) toward pol-

lution from plants in other counties. Using EPA Toxic Release Inventory

data, I examine the e�ect of CAA regulation on these types of substi-

tution. Regulated plants increase their ratio of water to air emissions

by 42 percent. In multi-plant �rms, regulation of an average plant in-

creases air emissions at unregulated plants by 17 percent, resulting in a

net emissions increase. (JEL Q53, Q52, H23)

1 Introduction

Not only does air pollution increase mortality (Chay & Greenstone 2003b),

there is growing evidence that it reduces productivity (Gra� Zivin & Neidell

2012) and human capital (Sanders 2012). In the US the central check on
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Andrew Chamberlain, Julie Cullen, Joshua Gra� Zivin, Michael Greenstone, Kelsey Jack,
Mark Jacobsen, Lynn Russell, Je�rey Shrader, Junjie Zhang and participants in the UC
San Diego environmental seminar for invaluable assistance with this project.
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air emissions is the Clean Air Act (CAA). Most welfare analyses of the CAA

have concluded that its bene�ts vastly exceed its costs (EPA 2011). As a

result, researchers have generally ignored the possibility that �rm responses

to the CAA might reduce its e�ectiveness. The CAA regulates particular

pollutants in particular counties, which may create incentives for �rms to

substitute among di�erent forms of pollution. This paper tests two variants

of this hypothesis: 1) Do �rms respond to CAA regulation by polluting other

channels, like land�lls and waterways? (cross-media substitution); and 2)

Do multi-plant �rms substitute toward pollution from other plants? (spatial

leakage).

If one of a county's air pollution monitors exceeds the CAA standard, the

EPA designates the county as �non-attainment.� The state then issues regu-

lations to reduce that county's air pollution, including emissions requirements

for industrial plants. Simple economic theory suggests that �rms will respond

to such regulations by substituting toward unregulated or less-regulated forms

of pollution. The EPA is aware of the potential for substitution and in some

cases has taken steps to mitigate it (EPA 2001). In particular, EPA is cur-

rently developing rules to restrict water emissions from power plants (ENS

2013). The potential for pollution substitution remains, however, in a wide

variety of industries.

Several previous studies have examined the possibility of cross-media sub-

stitution and found little evidence for it. Sigman (1996) tests for substitution

in chlorinated solvent releases by metals and manufacturing plants. The au-

thor �nds no substitution driven by the CAA, but does �nd substitution driven

by hazardous disposal prices. Greenstone (2003) tests for CAA-induced sub-

stitution in releases from the iron and steel industry and �nds no evidence

for it. Gamper-Rabindran (2009) models health-weighted VOC emissions by

chemical manufacturers as a function of CAA non-attainment, proxying for

output changes with employment changes. She �nds no increased emissions

into other media. My approach di�ers in several key respects: 1) motivated

by a simple theoretical model, I use emissions ratios to disentangle output

and substitution e�ects; 2) by estimating in levels rather than di�erences, I
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account for the discrete nature of many abatement decisions; 3) I control for

spatial heterogeneity in regulation; and 4) I pool across industries to improve

statistical power.

Using EPA Toxic Release Inventory (TRI) data, this study tests the substi-

tution hypotheses outlined above by comparing regulated (�treated�) plants in

particulate non-attainment counties to unregulated plants. Both cross-media

substitution and spatial leakage occur and responses can be large. Regulated

plants increase their ratio of water to air emissions by 42 percent. In multi-

plant �rms, particulate regulation of an average plant increases air emissions

at unregulated plants by 17 percent, resulting in a net emissions increase. Not

all substitution responses are harmful; regulated plants increase their ratio of

recycling to air emissions by 47 percent.

Additionally, this study follows the implications of Au�hammer et al (2009),

which �nds that the average monitor-level e�ect of CAA non-attainment is

zero, but that the e�ect on non-attainment monitors is -11 to -14 percent.

This suggests that regulators respond to non-attainment by focusing on prob-

lematic plants, rather than requiring uniform changes across all plants in a

county. I demonstrate that only plants near non-attainment monitors are

treated under the CAA. To my knowledge, previous work has not shown this

pattern at the plant level. My analysis of substitution accounts for this and so

avoids averaging changes at treated plants with null responses from untreated

plants in nonattainment counties.

These �ndings are important not only for air pollution regulation, but for

pollution control policy generally. If �rms substitute among various forms of

pollution, an optimal policy must consider not just a plant's emissions into

a particular medium, but rather a �rm's emissions across all media, in all

locations. Such policy would set a �rm's emissions price for each medium and

location equal to the marginal damage from emissions (leaving no medium or

location unpriced). While the optimal policy might not be feasible, a second-

best policy might nonetheless bene�t from considering possible substitution

responses.

This analysis contributes generally to the literature on regulation in the
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presence of mispriced substitutes (e.g. Campbell 1991). It is the �rst work

to document regulation-induced cross-media pollution substitution. It also

contributes to the literature on pollution leakage. To date this literature has

focused on international trade leakage (Davis & Kahn 2010, Levinson & Taylor

2008) and simulated carbon leakage (Fowlie 2009, Bushnell & Mansur 2011).

Becker and Henderson (2000) �nd the CAA makes �rms more likely to enter

attainment counties, which might be considered a form of leakage. To the

best of my knowledge, mine is the �rst study to �nd evidence of domestic

emissions leakage across existing plants. The �nding that the treatment e�ect

of the CAA varies over space within a county raises questions about spatially

heterogeneous welfare impacts that might form the subject of future research.

Lastly, this study adds to the literature on the costs of the CAA (Walker 2011,

2013).

The rest of the paper is organized as follows. Section 2 provides background

on abatement technology and regulations important to cross-media substitu-

tion. Section 3 discusses a simple theoretical model that informs my estima-

tion. Section 4 describes the data, Section 5 presents estimating equations,

Section 6 presents results, and Section 7 explores their robustness. Section 8

concludes.

2 Background

Under the Clean Air Act, the EPA sets air quality standards for six criteria

pollutants: carbon monoxide (CO), nitrogen dioxide (NO2), particulate mat-

ter (PM), lead (Pb), sulfur dioxide (SO2), and volatile organic compounds

(VOCs). For detailed information on particulate standards, which are the

focus of this paper, see appendix table A2. The agency assigns a �non-

attainment� designation to a county for a particular pollutant if at least one

monitor exceeds the CAA standard in a given year. In what follows, I refer

to a monitor that exceeds the annual standard as a non-attainment monitor.

In my data (described in section 4), PM non-attainment lasts for an average

of approximately 7 years. Conditional on PM non-attainment in at least one
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year, I observe on average 1 entry into non-attainment and .16 exits; most

of these counties remain in non-attainment through 2012, the last year of my

data. For 9 counties I observe two entries into non-attainment.

When a county receives a non-attainment designation, the state in which

it is located must develop a State Action Plan detailing steps that will bring

the county into attainment. These typically include �lowest achievable emis-

sions rates� (LAER) equipment requirements and plant-speci�c emissions lim-

its (Becker and Henderson 2000, 2001; Walker 2013). State and EPA en-

forcement mechanisms include �nes, inspections, and withholding of federal

highway funds (Becker and Henderson 2000, Chay and Greenstone 2005).

2.1 Abatement technologies and variable costs

If abatement costs were entirely �xed or if abatement were costless, plants

would have no incentive to substitute in response. While abatement tech-

nologies do have large �xed costs, they also have substantial operating costs.

Pollution control devices typically require substantial energy and may yield

wastes that require costly disposal. Processes that employ catalysts require

periodic replacement of the catalyst. These variable costs suggest that CAA

non-attainment changes the relative price of air emissions for regulated plants.

I catalog the most common air pollution control technologies below:

� Selective catalytic reduction (SCR): SCR converts nitrogen oxides to

nitrogen and water. The reaction takes place in a titanium or platinum

chamber at a 480-800 degrees Fahrenheit. For a large gas turbine, annual

operation and maintenance costs are approximately 50% of capital cost

(EPA undated, Farnsworth 2011).

� Electrostatic precipitation (ESP): Typically used to abate PM and lead,

electrostatic precipitators create an electrical �eld through which par-

ticles pass, acquiring a charge. The particles then adhere to collecting

electrodes. Particles are periodically removed from the collecting elec-

trodes using vibration or water spray. Wastes are discharged to a land�ll

or reused (EPA undated, Farnsworth 2011).
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� Fabric �lters (a.k.a. �baghouses�): Typically used for PM and lead, fabric

�lters trap particles in tightly woven fabric. Filters require periodic

replacement (Farnsworth 2011).

� Scrubbers (a.k.a. ��ue gas desulfurization�): Liquid or solid absorbing

materials are sprayed into �ue gas. The residue must be collected by

a downstream device such as an electrostatic precipitator (Farnsworth

2011).

� Coal washing: Coal is crushed and washed to reduce its sulfur content

(DOE undated).

� Fuel switching: A plant may be able to switch to a fuel that results in

lower air emissions, e.g. a power plant can switch to low-sulfur coal (DOE

undated). Economic intuition suggests the new fuel must be weakly more

expensive than the old, or the plant would have been using it prior to

abatement.

� Incineration: Incineration is commonly used for VOC abatement. Unlike

most other technologies, incineration is a �nal disposal method that typ-

ically outputs only carbon dioxide and water. Incinerators require the

use of additional fuel (e.g. natural gas) to reach operating temperature,

usually 1200 to 2000 degrees Fahrenheit. Sometimes platinum or metal

oxide catalysts are used to facilitate combustion at lower temperatures,

from 300 to 900 degrees Fahrenheit. EPA estimates that a typical ther-

mal incinerator costs approximately $483,000 and a catalytic incinerator

$889,000. Estimated annual operating costs are $422,000 and $316,000,

respectively (Vatavuk et al 2000).

Many of these options are capital-intensive and will produce abrupt reductions

in emissions once installed. This is one of the reasons I estimate in levels rather

than di�erences, as described in Section 5. SCR and incineration decrease

toxic air emissions but increase carbon emissions. Most of these technologies,

particularly those used to remedy particulate air pollution, produce secondary

waste streams that require disposal.

6



2.2 Pricing of water and land emissions

CAA-induced substitution will reduce welfare only if substitute emissions are

unpriced or underpriced. Such is the case for many TRI pollutants and many

emissions channels. The Safe Drinking Water Act (SDWA) and the Pollutant

Priority List (PPL) for the Clean Water Act do not cover many TRI chemicals

(Gamper-Rabindran 2009). For example, my TRI data contain 580 chemicals.

The PPL lists 126 chemicals (EPA 2013). In addition, two recent Supreme

Court decisions have limited the scope of the CWA. Solid Waste Authority

of Northern Cook County v. U.S. Army Corps of Engineers removed CWA

protection from �isolated� water bodies, including many wetland areas. Ra-

panos v. United States removed CWA protection from waterways that are

not navigable year-round (EPA 2008). (Note that the Mississippi River would

arguably have met such a de�nition in 2012.)

The Resource Conservation and Recovery Act (RCRA) governs many forms

of toxic disposal on land. Coal combustion residuals are currently exempt from

many provisions of the RCRA, though the EPA is attempting to regulate

them (EPA 2010). Some mining and petrochemical wastes are also exempt

(EPA 1999). Regulation of TRI-listed air pollutants that do not fall into one

of the six CAA criteria categories varies by industry. Under the 1990 CAA

Amendments, EPA develops industry-speci�c regulations governing the air

release of 187 toxic chemicals (�air toxics�). EPA �...does not prescribe a speci�c

control technology, but sets a performance level based on a technology or other

practices already used by the better-controlled and lower emitting sources in an

industry� (EPA undated). While the incomplete regulations governing water

and land emissions suggest cross-media substitution may reduce welfare, a full

welfare analysis is beyond the scope of this paper.

3 Theory

The following simple model informs my estimating equations for cross-media

substitution. Suppose there are two pollution inputs. Let A be air emissions
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and W be water emissions. The CAA may be viewed as shift in relative

prices pA
pW

, with the increased price of air emissions having two components: 1)

pecuniary cost, like the variable abatement cost described in section 2.1; and

2) non-pecuniary cost, for example the cost of incurring the displeasure of a

regulator. The object of policy interest is unconditional factor demand W ∗,

incorporating �rms' possible output response to regulation. Suppose a CES

production function, so the �rm problem becomes:

max
A,W

po (cAA
ρ + cWW

ρ)
1/ρ − pAA− pwW

Note that using a CES function assumes constant returns to scale. While

this might be implausible over the whole range of a �rm's technically feasible

output levels, it is reasonable if output responses to the CAA are modest.

The choice of CES does not impose any strong assumptions on the nature of

substitution.

Taking FOCs, one obtains an optimality condition:1(
cA
cW

)(
A∗ρ−1

W ∗ρ−1

)
=
pA
pW

Taking logs gives ratio of unconditional factor demands:

ln

(
W ∗

A∗

)
=

1

ρ− 1
ln

(
cA
cW

)
+

1

ρ− 1
ln

(
pW
pA

)
(1)

If ρ < 1 the inputs are substitutes and the coe�cient on the price ratio

is negative. Treating CAA non-attainment as a decrease in pW
pA
, theory then

predicts an increase in the ratio of water to air pollution W ∗

A∗ .
2

Modeling W ∗ as a function of prices alone will result in biased estimates

because of the omitted variable A∗. Rearranging equation 1 to put A∗ on the

right hand side makes this apparent.

1The use of two inputs here is without loss of generality. In models with more than two
inputs, one obtains an analogous optimality condition for each pair.

2For a model that treats CAA non-attainment as a limit on the quantity of air emissions,
please see Appendix Section 10. The qualitative predications from that model are the same
as those presented here.
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ln (W ∗) =
1

ρ− 1
ln

(
cA
cW

)
+

1

ρ− 1
ln

(
pW
pA

)
+ ln (A∗) (2)

In the context of the CAA, suppose a plant is located in a county that

falls into non-attainment. The plant has two emissions reduction options:

1) substitute toward another form of pollution W ∗ (e.g. by switching fuels

or using existing pollution-control capital more intensively); 2) produce less

output. If the plant does both, the level of W ∗ may fall even though the

ratio W ∗

A∗ has increased. The output reduction disguises the regulation-induced

substitution. Avoiding this confusion requires controlling for A∗, Y ∗ (output),

or both. I model the input ratio, thereby controlling for changes in A∗.

One might worry that this framework will capture a �mechanical� substi-

tution e�ect. After all, if the CAA causes plants in non-attainment counties

to reduce their air emissions and leave water emissions unchanged, the ratio
W ∗

A∗ will increase. But this is actually evidence of substitution, as apparent

from �gure 1. In the left-hand panel, the price of air emissions rises from pA0

to pA1. Holding total cost TC and water emissions �xed, the �rm's new input

bundle is (W1, A1) at lower output Y1. Water emissions are unchanged (by

construction), but air emissions are lower. This change, however, incorporates

both output and substitution e�ects. The right-hand panel removes the out-

put e�ect by drawing a cost line (in green) at the new prices and the original

output level Y0. The input bundle is now (W2, A2), where W2 > W0. Holding

output �xed, water emissions have actually increased.

The preceding discussion assumes a static production technology, with in-

put substitution driven by exogenous price changes. This assumption may

be incorrect if �rms respond to regulation with both technology changes (e.g.

installation of new pollution-control capital) and input substitution. In such a

case both pA
pW

and cA
cW

may change. Under a CES functional form assumption

this does not change the interpretation of my estimates. Factoring equation 1

yields the following.

ln

(
W ∗

A∗

)
=

1

ρ− 1

[
ln

(
cA
cW

)
+ ln

(
pW
pA

)]
(3)
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Given a proxy for the quantity
[
ln
(
cA
cW

)
+ ln

(
pW
pA

)]
, it is still possible to

recover the substitution parameter 1
ρ−1

. If the CES assumption fails, my esti-

mates can no longer be interpreted as the substitution parameter 1
ρ−1

. Instead

they will capture the full e�ect of CAA regulation, which may be a function

of multiple underlying parameters.

4 Data

My plant-level emissions and location data come from the EPA Toxic Release

Inventory (TRI) 1987-2010. TRI records emissions of more than 500 chem-

icals by weight (in pounds or grams). TRI data encompass a broad set of

industries, from electric power to soybeans. The top ten industries by total

TRI-reportable emissions are listed in Table 1.

These data have several shortcomings, discussed in Hamilton (2005). Only

large emitters are required to participate.3 Firms typically report estimates

derived from engineering models, rather than direct measurements. Gamper-

Rabindran (2006) �nds that the location variables are sometimes inaccurate.

Under TRI there are penalties for false reporting, but not high emissions, which

should ameliorate �rm incentives to under-report emissions. The EPA has

�ned �rms up to $27,000 per day for reporting problems in the past (Gamper-

Rabindran 2009).

A subset of TRI chemicals are classi�ed as particulates (PM).4 The TRI

data capture emissions in great detail, distinguishing for example between

3Reporting thresholds have varied over time and by chemical. Typically �rms must
report if they use or process more than 10,000 pounds of a TRI-listed chemical per year.

4Professor Michael Greenstone generously shared his mapping from TRI chemicals to
CAA criteria pollutants. Details are available in Greenstone (2003). These data also include
mappings to lead and VOCs, which I do not employ. I do not analyze lead emissions because
of the small number of treated plants. The VOC mapping is problematic because VOCs are
not directly regulated under the CAA. They are one of two primary precursors (the other
is NOx) of ozone, which is a CAA criteria pollutant. While one would expect ozone non-
attainment to a�ect VOC emissions, the link is much less clear than for particulates, as not
all VOCs contribute substantially to ozone formation. EPA regulates PM10 (particles <10
microns in diameter) and PM2.5 (<2.5 microns in diameter) separately, but the Greenstone
data do not allow me to separately identify these categories. TRI does not include emissions
of CO, NO2, or SO2.
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di�erent types of underground wells. To simplify presentation and analysis I

aggregate up to the categories described in Table 2.

Data on county attainment status come from the EPA Green Book. Monitor-

level data on pollutant concentrations come from the EPA Air Quality System

(AQS) 1993-2010. My analysis is based on the period of overlap between my

TRI and AQS data, 1993-2010. For descriptive statistics see appendix table

A1.

5 Estimation

5.1 Estimating equations

To estimate treatment e�ects on air emissions, I use the following speci�cation,

with i indexing plant and t year.

ln (Ait) = αi + δt + βtreatedit + εit (4)

The dependent variable is the log of a plant's air emissions. The equation in-

cludes plant �xed e�ects and year dummies, with the latter capturing changes

in TRI reporting requirements and secular forces in�uencing emissions. As

discussed in section 5.2 below, the variable treatedit equals 1 for plants that

were within 2km of a non-attainment monitor in year t-1. If CAA regulations

are e�ective in reducing air emissions, I expect estimates of β to be negative.

In addition, to investigate the time pattern of e�ects, I estimate an event-

study speci�cation.

ln (Ait) = αi + δt +
∑
j

τj + εipt (5)

The variables τj are indicators for a time index de�ned relative to treatment.

I include dummies for τ = 3, τ = −2, τ = −1, τ = 0, τ = 1, τ = 2, and τ = 3.

Tau equals 0 in the �rst treated year. This means that if a county violates the

CAA particulate standard in the year when τ = −1, it enters treatment the

following year.
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To test for cross-media substitution, I estimate the following.

ln

(
Wit

Ait

)
= αi + δt + βtreatedit + εit (6)

As before, I include plant �xed e�ects and year dummies. The quantity

ln
(
Wit

Ait

)
is the plant's log emissions ratio, with the numerator emissions into

another medium (e.g. water or land) and the denominator air emissions. The

estimating equation closely parallels the ratio of unconditional factor demands

from equation 1 above. The treatment dummy proxies for the unobservable

shift in the price ratio pW
pA

or, alternatively, the combination of price changes

and technology changes in c1
c2
. If the CAA induces cross-media substitution,

estimates of β will be positive.

To test for within-�rm leakage, I estimate the following speci�cation using

all plants in attainment counties.

ln (Ait) = αi + δt + γmultiplantit + βmultiplantit ∗ other_treatedit + εit (7)

Again I include plant �xed e�ects and year dummies. The variablemultiplantit

is a dummy for being part of a multi-plant �rm. The variable other_treatedit

is a dummy for one or more treated plants within the same �rm and 6-digit

NAICS code. If the CAA induces spatial leakage, estimates of β will be posi-

tive.

5.2 De�ning treatment

Past research on cross-media substitution has typically de�ned treatment as

presence in a non-attainment county, but this conceals important spatial het-

erogeneity. Au�hammer et al (2009) �nd the e�ect of county non-attainment

status on an average monitor is zero, but the e�ect on a non-attainment mon-

itor is negative 11 to 14 percent. This suggests that regulators treat plants

near non-attainment monitors intensively, while treating plants farther away

lightly or not at all. I present evidence in support of this hypothesis. First
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I estimate a simple regression of a plant's air emissions on plant �xed e�ects

and year dummies:

ln (Ait) = αi + δt + εit (8)

In this equation A denotes air emissions, while i indexes plant and t year.

Figure 2 is a local linear regression �t to plant residuals from non-attainment

counties against the distance to the nearest non-attainment monitor. It pro-

vides evidence that regulators indeed treat plants near non-attainment moni-

tors intensively, while treating more distant plants lightly or not at all.

Based on this pattern, I de�ne a variable treatedit = Nonattainit−1 ∗
1
{
Distanceit−1 6 D

}
. That is, I consider a plant treated in year t if in the

prior year its county was in non-attainment and the plant was located �close�

to a nonattainment monitor. Based on Figure 2 I use a threshold distance D of

2km. I use lagged rather than contemporaneous nonattainment status because

status for year t-1 is not known with certainty until the end of the year, so I

expect little e�ect before year t. This treatment variable forms the basis for

all subsequent results.5 This pattern is consistent with a regulator whose ob-

jective function involves minimization of enforcement costs, either pecuniary

or political (Amacher & Malik 1996). The qualitative evidence presented by

Becker and Henderson (2000) on regulator-�rm negotiations is also consistent

with such an explanation.

5.3 Exogeneity of CAA non-attainment

I cannot recover the causal e�ects of CAA regulation unless it is exogenous

to my plant-level outcomes of interest. Past literature has typically argued in

support of this assumption.6 Chay and Greenstone (2003, 2005) document that

PM10 non-attainment counties do not di�er systematically from attainment

5While this pattern holds on average, it need not hold for all industries and pollutants.
Stack height provides one source of heterogeneity. If a plant has tall stacks, it exerts more
in�uence on distant monitors than on those nearby (author's interview notes). In such a
case, even if regulators focus on particular plants, they may not be the plants adjacent to
non-attainment monitors.

6Examples include Henderson (1996), Becker and Henderson (2000), Greenstone (2002),
Au�hammer et al (2011), and Walker (2011).
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counties on observable dimensions (including economic shocks), either in levels

or in changes.

Non-attainment is plausibly exogenous if a given �rm produces a small

portion of the ambient air pollution in a county. For the average plant in a

non-attainment county, this is a tenable assumption. Motor vehicles typically

account for the majority of PM pollution, especially in urban areas. The Cali-

fornia Air Resources Board estimates that 74 percent of PM10 emissions come

from non-point sources like road dust and from residential fuel combustion

(Au�hammer et al 2011).

The spatial heterogeneity documented in Section 5.2, however, calls into

question the exogeneity of CAA regulation for treated plants (plants actually

a�ected by regulation). CAA regulations primarily a�ect plants within two

kilometers of a non-attainment monitor. It might be that past emissions by

a given plant were pivotal in pushing its county above the CAA standard. If

that were the case, CAA regulation would be endogenous to past emissions by

treated plants. For example, if a plant experienced particularly strong demand

for its output in a given year, it might have emitted more air pollution than

usual and pushed the nearby monitor above the CAA standard.

This potential problem provides additional motivation for my use of emis-

sions ratios, rather than emissions levels, in my analysis of cross-media sub-

stitution. If the endogeneity of nonattainment with respect to past emissions

stems from output shocks, then treatment should remain exogenous to emis-

sions ratios. It is still possible, however, that a plant might push its county

into nonattainment because of shocks to emissions ratios. This form of endo-

geneity is perhaps less plausible, but impossible to exclude in principle. For

example, a plant's scrubber might fail in a given year, increasing its ratio of

air to water emissions and pushing its county into nonattainment. The sign

of the bias in such a case would depend on the autocorrelation in the shocks

to emissions ratios. Endogenous past output could also bias my estimates

of CAA treatment e�ects on the level of air emissions. For example, if out-

put shocks were negatively autocorrelated, my estimates might overstate CAA

treatment e�ects. If instead output shocks were positively autocorrelated, it
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might understate them.

Figure 3 investigates the possibility of endogenous entry into treatment

using an event study framework (estimates from equation 5). I de�ne a new

time index τ relative to treatment. A county violates the CAA in year τ = −1

and plants within 2km of a non-attainment monitor enter treatment in the

following year (τ = 0). If the �gure showed either higher air emissions or

a lower ratio of other emissions to air emissions at τ = −1, that would be

evidence of endogenous entry into treatment. Instead the �gure shows the

opposite pattern. Air emissions fall in the �nal pre-treatment year and the

ratio of other emissions to air emissions increases. I attribute this pattern

to �rm expectations of non-attainment. There are two particulate standards,

one based on the annual average at a monitor and another based on the 98th

percentile 24-hour mean. If a county violates the 24-hour standard in year

τ = −1, �rms might plausibly learn about it before the o�cial non-attainment

designation at the end of the year. A �rm might also be able to anticipate

its county violating the annual standard. Any such anticipatory behavior by

�rms will bias the magnitudes of my estimates downward. Note however that

for many plants I observe long pre- and post-treatment periods. By estimating

in levels with 18 years of data, I partially mitigate this bias.

Finally, the importance of location in my analysis raises the potential for

endogeneity springing from monitor placement. The EPA does not place mon-

itors randomly. Indeed EPA rules require monitors, for example, near large

sensitive populations (e.g. asthmatic children; Ra�use et al 2007). For mon-

itors present throughout the study period, plant �xed e�ects should remove

any potential bias from endogenous placement. EPA does sometimes relocate

monitors and introduce new ones over time, however. This creates potential

endogeneity between monitor distance and within-plant variation in emissions

if the EPA's new-monitor placement decisions depend on: 1) plant-level scope

for air emissions abatement; 2) plant-level scope for cross-media substitution;

or 3) plant-level scope for shifting output to other plants within the same

�rm. Of these three potential problems, (1) is the most plausible. Suppose

EPA is more likely to place monitors near high-emitting plants. By virtue
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of their high emissions levels, these plants may have more scope for air emis-

sions abatement. I address this potential problem by analyzing proportional

changes in air emissions.

6 Results

6.1 Air emissions

Table 3 presents my estimate of the CAA treatment e�ect on airborne particu-

late emissions. Treated plants decrease their air emissions by 25 percent. This

is larger than the 11 to 14 percent e�ect on non-attainment monitors reported

by Au�hammer et al (2011) because: 1) plant emissions become diluted as

they mix with surrounding air; and 2) the treated plants in my sample are not

the only factor in�uencing ambient air pollution. Column 2 adds county linear

time trends. This reduces the magnitude of the estimate modestly, from 25 to

20 percent, but it remains statistically signi�cant at the �ve percent level.

Column 3 presents the results from an event-study speci�cation (equation

5). The time pattern suggests that most of the emissions reductions occur

when τ is 0 or 1: the year prior to a non-attainment designation and the

�rst year following a non-attainment designation. (For discussion of the pre-

treatment decline, see section 5.2.) This motivates my use of �xed-e�ects

models in levels elsewhere. Estimates based on changes in treatment status

would be biased toward zero because of the emissions decline at τ = −1. With

a relatively long pre-treatment period, however, a model in levels averages

this pre-treatment decline with other untreated years, partially mitigating the

bias. At approximately -36 percent, the event-study estimates are close in

magnitude to my primary result (-25 percent). Together these results suggest

that treated plants do indeed reduce airborne particulate emissions.

6.2 Cross-media substitution, all industries

Panel A in table 4 shows estimated treatment e�ects from equation 6, by

medium across all industries. The dependent variable is a log emissions ratio,
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with emissions into a given medium (indicated in the column heading) in the

numerator, and air emissions in the the denominator. Positive estimates are

evidence of cross-media substitution. Point estimates for treatment are uni-

formly positive and large in magnitude, especially for on-site forms of disposal.

There is evidence of statistically signi�cant substitution toward onsite water

pollution, recycling, and �onsite other� emissions. �Onsite other� emissions

include waste piles, leaks, and spills.

Panel B in table 4 adds county linear time trends to my model of cross-

media substitution. The estimates for onsite water (45 percent) and recycling

(44 percent) are essentially unchanged from my primary results in panel A.

The estimate for onsite other, however, falls approximately by half and loses

statistical signi�cance.

The large increase in recycling highlights the fact that not all substitution

responses reduce social welfare. The increased water emissions, however, im-

pose social costs. The magnitude of those costs is di�cult to quantify, given

the relative scarcity of well-identi�ed studies on the health and productivity

e�ects of water pollution. Spills and waste piles similarly impose social costs

that are di�cult to estimate. On a net basis, cross-media substitution need

not reduce welfare. Suppose a plant responds to non-attainment by reducing

output and substituting toward water emissions. Gross water emissions may

end up below their initial level. In such a case the CAA may still improve

welfare, but substitution attenuates the gains.

6.3 Cross-media substitution, by industry

It is di�cult to analyze substitution patterns at the industry level due to the

small number of treated plants: recall that not all plants in non-attainment

counties are treated. Moreover not all plants report emissions into all media.

Nonetheless, to illustrate the heterogeneity in substitution responses, Table

6 presents estimates for the three industries with the largest treated sam-

ple sizes: primary metals, wood products, and utilities. (Appendix table A6

presents more disaggregated estimates at the 3-digit NAICS level.) Estimates
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again come from equation 6. In the discussion that follows, note that I cannot

reject the null hypothesis of equal coe�cients in most cases; the evidence of

heterogeneity is merely suggestive. Wood products and utilities show large

decreases in air emissions, 48 and 36 percent respectively, while primary met-

als shows only a 12 percent decrease. Similarly, wood products and utilities

increase their ratios of water to air emissions by 71 and 118 percent, while

primary metals increase this ratio by only 30 percent. These two industries

also increase their use of waste piles by more than 200 percent. Only utilities

increase their ratio of o�site land disposal to air emissions, but the e�ect is

very large at 174 percent. Both wood products and utilities increase their ratio

of recycling to air emissions by much more than does primary metals, again

suggesting the former two industries are more intensively regulated.

6.4 Leakage

Intuition predicts that �rms might respond to treatment of a plant in one

county by shifting output to a plant in another county. Table 8 provides

evidence they do so. Estimates correspond to equation 7. For the average plant

in an attainment county, treatment of another plant within the same �rm and

6-digit NAICS code increases air emissions by 17 percent. Column (2) adds

county linear time trends and the estimate is slightly smaller at 15 percent.

Treating the number of other treated plants as a continuous variable (column

3), estimated leakage is 12 percent per treated plant. With the addition of

county linear time trends in column 4, the estimate is again slightly smaller at

10 percent, and no longer statistically signi�cant. This leakage has associated

health, mortality, and productivity costs. As a robustness check, I estimate

the same model grouping plants by �rm and 2-digit NAICS code and report

results in table A4. Estimates are modestly smaller than in my preferred

speci�cation, though still positive and signi�cant. This is reasonable, as the

coarser classi�cation groups plants that may not be close substitutes for each

other.

The average treated plant in my data is part of a �rm with approximately
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3 plants that are candidates for leakage-driven increases: they share the same

six-digit NAICS code and are located in attainment counties.7 Average air

emissions at eventually treated plants prior to treatment are 4768 pounds,

while average baseline emissions at candidates are 2753 pounds. The estimates

from table 8 imply the following net change in emissions from treating an

average plant. The treated plant reduces emissions by .25 ∗ 1454 = 1192

pounds. The 3 candidate plants together increase emissions by 3∗ .17∗2753 =

1404 pounds. On net, then, CAA treatment of an average plant increases

particulate emissions by 1404 − 1192 = 212 pounds. This result should be

interpreted with several important caveats in mind. First, the TRI data cover

only large plants, which may be more likely to belong to multi-plant �rms and

thus may have more scope for within-�rm leakage. Second, these estimates

describe only TRI-reportable particulate emissions. Third, leakage patterns

might di�er for other CAA-regulated pollutants (e.g. SO2). Fourth, industrial

sources account for approximately 25 percent of particulate emissions in an

average county (Au�hammer et al 2011), so the implied changes in ambient

pollution are much smaller than the emissions changes I estimate at the plant

level.

Leakage reduces the welfare gains from CAA regulation, but need not im-

ply a net welfare loss. Leakage-driven emissions increases occur in attainment

counties, which by de�nition have lower ambient air pollution. In addition,

the average attainment county population is approximately 1/3 of the average

non-attainment county population (author's calculation). Particularly if the

social damage function for air pollution is convex, the net welfare e�ect from

CAA treatment of the plants in my data may be positive. Leakage does present

a potential problem in using di�erence-in-di�erences designs to evaluate the

CAA, as it is a spillover from the treatment group (typically non-attainment

counties) to the control group (attainment counties). The spillovers identi�ed

in table 8 imply that such analyses overstate CAA bene�ts in non-attainment

counties and fail to account for some of the costs in attainment counties. This

provides additional motivation for my use of an emissions ratio, rather than

7This includes plants that are not part of a multi-plant �rm.
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a level, in my analysis of cross-media substitution. To test whether spillovers

in�uence my cross-media results, I estimate my leakage model using an emis-

sions ratio as the dependent variable and report results in appendix table A5.

Estimates are generally near zero and statistically insigni�cant, with one ex-

ception: the estimate for �o�site other� is negative 76 percent. This spillover

will tend to bias my cross-media model toward �nding evidence of substitution

toward the �o�site other� channel. It is also possible that leakage causes my

treatment model to overestimate the air emissions reductions undertaken by

treated plants. To evaluate this possibility, I estimate a variant of my air emis-

sions model (equation 4), controlling for spillovers as in equation 7. Reported

in table A3, the estimates are unchanged.8

7 Additional robustness & placebos

7.1 Cross-media substitution

Table 9 panel A moves from a ratio speci�cation based on equation 1 to a

more �exible speci�cation based on equation 2, with log air emissions on the

right-hand side. This is not my preferred speci�cation because air emissions

are endogenous and likely bias the estimates of the treatment e�ect. Nonethe-

less I include this speci�cation to test the importance of the CES functional

form assumptions that a�ect interpretation of my primary results. The broad

pattern of results is unchanged, with large estimates for on-site media and

recycling, but smaller estimates for o�-site media. Substitution toward onsite

other and recycling remains statistically signi�cant. While estimated substi-

tution toward water remains large and positive at 25 percent, it is no longer

statistically signi�cant.

Panel B shows estimates from a speci�cation without any control for air

emissions. Most estimates remain large and positive. There are statistically

8The potential bias in my main speci�cation would come from the in�uence of the
spillover plants on the estimates for year dummies. The failure to control for spillovers
has no practical import because only a small number of plants are a�ected by spillovers.
Identi�cation of the year dummies comes primarily from plants that do not receive spillovers.
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signi�cant increases in �onsite other� releases (e.g. waste piles) and recycling.

The close agreement between panel A and panel B provides indirect evidence

that false reporting is not a major problem in my setting. A treated �rm might

conceivably have weak incentives to under-report air emissions, even though

TRI data are not used for CAA enforcement. It has no incentives to misreport

non-air emissions. The agreement between panels A and B shows that the

inclusion of an air control has minimal in�uence on estimate magnitudes in

these alternative speci�cations. This suggests that reporting problems are not

driving my results.

7.2 Placebos

In partial equilibrium, treatment should have no e�ect on plants that do not

emit any air pollution. Table 11 tests this hypothesis by estimating a variant

of equation 6 with two changes: 1) the dependent variable is log emissions into

a given medium (the lack of air emissions precludes a ratio); and 2) treatment

is interacted with a dummy indicating zero air emissions. If my model is well

speci�ed, it should �nd no e�ect of CAA regulation on these plants. The

estimates are indeed insigni�cant, with the exception of the one for onsite

land emissions. While the latter is statistically signi�cant, it is negative. If

there were some omitted variable decreasing land emissions at plants near non-

attainment monitors, it would work against �nding cross-media substitution

(it would bias my primary estimates downward).

Table 12 reports results from a placebo test of my leakage model. I con-

struct variables based on placebo �treated� plants: plants within the same

�rm and 6-digit NAICS code that are located in non-attainment counties, but

farther than eight kilometers from the nearest non-attainment monitor. As

these plants are not treated, we should not see increased air emissions by

attainment-county plants in the same �rm and NAICS code. If my leakage

model is capturing, for example, changes in the geographic distribution of

output that happen to be correlated with treatment, this placebo test should

return large positive estimates. Instead the estimates in Table 12 are in the one
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to two percent range and are not statistically signi�cant. This suggests that

the leakage results in table 8 do not spring from an omitted variable problem.

8 Conclusion

The Clean Air Act is the most prominent environmental regulation in the

United States. While economists have long recognized the potential for sub-

stitution responses to single-medium pollution regulation, empirical studies

have found little evidence of such e�ects. The paucity of available data and

the di�culty of controlling for scale have made �rm responses hard to detect.

Using speci�cations motivated by classical �rm optimization theory, this

study provides evidence of regulation-induced pollution substitution in re-

sponse to the CAA. Estimates from 18 years of EPA Toxic Release Inventory

data show that CAA-regulated plants increase their ratio of water to air emis-

sions by 42 percent. In multi-plant �rms, particulate regulation of an average

plant increases air emissions at unregulated plants by 17 percent. This results

in a net emissions increase. Responses of this magnitude plausibly have social

costs and should be considered in policy design. The welfare e�ects of such

substitution present an interesting subject for future research. Additionally,

I document spatial heterogeneity in regulatory intensity, which suggests that

regulators seek to minimize costs (political or pecuniary) in implementing the

CAA.

These �ndings might helpfully inform the design of future pollution control

policy. A theoretically optimal policy, with emissions into every medium and

location priced according to marginal damage, would be di�cult to achieve.

But policy could move toward the �rst-best simply by adjusting prices ac-

cording to county population and ensuring that water and land emissions are

priced approximately at marginal damage.

Such improvements in policy design would have economically signi�cant

consequences. There is growing evidence that air pollution has costly long-run

e�ects on exposed individuals. Isen et al (2014), for example, �nds that in-

utero and early childhood air pollution exposure depresses earnings for workers
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ages 29-31. Given these costs, the returns to improved pollution regulation

may be large.

9 Figures and tables

Figure 1: Pollution changes, holding output �xed
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Table 1: Top ten industries, by TRI-reportable emissions
Rank NAICS code Industry

1 221112 Fossil electric power
2 325188 Inorganic chemicals
3 212231 Pb & Zn mining
4 212234 Cu & Ni mining
5 212221 Au mining
6 331111 Iron & steel
7 325199 Organic chemicals
8 322121 Paper
9 562211 Hazardous waste
10 324110 Petroleum Re�ning
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Table 2: Aggregated TRI emissions categories
Aggregated category Included TRI components

Onsite air Fugitive air, stack air
Onsite water Onsite water
Onsite land Land�lls, impoundment ponds, underground wells
Onsite other Waste piles, leaks, spills
O�site water Public/private water treatment
O�site land Land�lls, impoundment ponds, underground wells
O�site other Residual emissions*, waste brokers, incinerators and storage facilities

Recycled or treated Recycled, recovered, treated

Figure 2: Residual air emissions by distance from nearest non-attainment
monitor
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Underlying residuals from equation 8, a panel model with year dummies and plant �xed e�ects. Fitted line

from a local linear regression. Shaded area is the 95% con�dence interval.
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Figure 3: Event study estimates
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Estimates from equation 5, with point estimates reported in column 3 of table 3. A county violates the

CAA in year tau=-1 and plants within 2km of a non-attainment monitor enter treatment in the following

year (tau=0). Dependent variable is log air emissions. SEs clustered at the county level, which is the level

of exogenous variation. Unit of observation is a plant-year.
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Table 3: E�ect on air emissions

(1) (2) (3)
Onsite air Onsite air Onsite air

Treated -0.251∗∗ -0.201∗∗

(0.111) (0.0990)

Tau=-3 -0.232∗

(0.129)

Tau=-2 -0.0851
(0.115)

Tau=-1 -0.203
(0.158)

Tau=0 (1st treated year) -0.363∗

(0.197)

Tau=1 -0.415∗

(0.213)

Tau=2 -0.362∗

(0.199)

Tau=3 -0.482∗∗∗

(0.178)

County linear trends No Yes No

Year dummies Yes Yes Yes

Plant FEs Yes Yes Yes
Observations 123918 123918 150808

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates in columns 1-2 correspond to equation 4, while estimates in column 3 correspond to equation 5.

Dependent variable is log air emissions. SEs clustered at the county level, which is the level of exogenous

variation. Unit of observation is a plant-year.
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Table 4: E�ect on emissions ratios

Panel A: Main speci�cation
(1) (2) (3) (4) (5) (6) (7)

Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated

Treated 0.420∗∗ 0.614 1.348∗∗∗ 0.180 0.143 0.177 0.468∗∗∗

(0.190) (0.775) (0.382) (0.177) (0.125) (0.288) (0.146)

Year dummies Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes

Observations 30035 14417 6128 35678 51052 27736 56023

Panel B: County linear trends
(1) (2) (3) (4) (5) (6) (7)

Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated

Treated 0.450∗∗ 0.726 0.608 0.177 0.0562 0.136 0.435∗∗∗

(0.176) (0.776) (0.844) (0.137) (0.146) (0.289) (0.136)

County linear trends Yes Yes Yes Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes

Observations 30035 14417 6128 35678 51052 27736 56023
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 6. Dependent variable is log emissions ratio, with the numerator indicated atop the column and the denominator air

emissions in all columns. Speci�cation includes year dummies and plant �xed e�ects. SEs clustered at the county level, which is the level of exogenous

variation. Unit of observation is a plant-year. Observation counts di�er across columns because not all plants report emissions into all media. �Onsite other�

emissions include waste piles, leaks, and spills.
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Table 6: E�ect on emissions ratios, by 2-digit NAICS code

(1) (2) (3) (4) (5) (6) (7) (8)
Onsite air Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated

Primary metals -0.116 0.301 0.131 2.050∗∗∗ 0.269 0.00572 0.167 0.259
(0.156) (0.231) (0.795) (0.393) (0.234) (0.177) (0.356) (0.175)

Observations 64715 13955 3121 2030 25711 28861 16755 41122

Wood products -0.483∗∗∗ 0.705∗ 2.344 2.158∗∗∗ 0.111 0.175 0.176 1.048∗∗

(0.153) (0.389) (2.064) (0.509) (0.222) (0.180) (0.412) (0.410)

Observations 44858 11234 6668 1945 8137 17181 8106 11889

Utilities -0.355 1.180 -0.998 -0.159 1.742∗ 2.036 11.10∗∗∗

(0.426) (0.893) (1.140) (0.593) (0.987) (1.457) (0.286)
Year dummies Yes Yes Yes Yes Yes Yes Yes Yes
Plant FEs Yes Yes Yes Yes Yes Yes Yes Yes

Observations 5410 3213 3319 838 368 2445 1452 1188
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Includes the three 2-digit NAICS industries with the largest treated sample sizes. Column 1 (onsite air) corresponds to equation 4, remaining columns

to equation 6. Dependent variable is log air emissions in column 1, otherwise log emissions ratio, with the numerator indicated atop the column and the

denominator air emissions in all columns. All speci�cations include year dummies and plant �xed e�ects. SEs clustered at the county level, which is the

level of exogenous variation. Unit of observation is a plant-year. Observation counts di�er across columns because not all plants report emissions into all

media. �Onsite other� emissions include waste piles, leaks, and spills.
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Table 8: Leakage e�ect, within �rm & 6-digit NAICS code

(1) (2) (3) (4)
Onsite air Onsite air Onsite air Onsite air

1+ other treated plants 0.172∗∗ 0.146∗

(0.0773) (0.0775)

Count other treated 0.124∗∗ 0.102
(0.0627) (0.0632)

County linear trends No Yes No Yes

Year dummies Yes Yes Yes Yes

Multiplant dummy Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes
Observations 111902 111902 111902 111902

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 7, where �other treated plant� is a treated plant within the same �rm and

6-digit NAICS code. Dependent variable is log air emissions. Speci�cation includes year dummies and plant

�xed e�ects. SEs clustered at the county level, which is the level of exogenous variation. Unit of observation

is a plant-year. Sample restricted to plants in attainment counties.
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Table 9: E�ect on emissions ratios, alternative speci�cations

Panel A: Air emissions on RHS
(1) (2) (3) (4) (5) (6) (7)

Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated

Treated 0.247 0.617 1.002∗∗∗ -0.0615 0.0158 0.128 0.228∗∗

(0.188) (0.691) (0.340) (0.143) (0.140) (0.219) (0.0889)
Log air emissions 0.188∗∗∗ 0.264∗∗∗ 0.259∗∗∗ 0.199∗∗∗ 0.217∗∗∗ 0.160∗∗∗ 0.141∗∗∗

(0.0127) (0.0307) (0.0521) (0.0115) (0.0145) (0.0186) (0.0119)
Year dummies Yes Yes Yes Yes Yes Yes Yes
Plant FEs Yes Yes Yes Yes Yes Yes Yes

Observations 30035 14417 6128 35678 51052 27736 56023

Panel C: No air control
(1) (2) (3) (4) (5) (6) (7)

Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated

Treated 0.207 0.619 0.880∗∗ -0.122 -0.0193 0.118 0.189∗∗

(0.194) (0.666) (0.352) (0.158) (0.156) (0.211) (0.0876)
Year dummies Yes Yes Yes Yes Yes Yes Yes
Plant FEs Yes Yes Yes Yes Yes Yes Yes

Observations 30035 14417 6128 35678 51052 27736 56023
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Panel A estimates correspond to equation 6, but with log air emissions moved to the right-hand side of the equation. Note that air emissions are endogenous,

so this is not my preferred speci�cation. Panel B removes the control for air emissions from the right hand side of the model. Dependent variable is log

emissions, with the medium indicated atop the column and the denominator air emissions in all columns. All speci�cations include year dummies and plant

�xed e�ects. SEs clustered at the county level, which is the level of exogenous variation. Unit of observation is a plant-year. Observation counts di�er across

columns because not all plants report emissions into all media. �Onsite other� emissions include waste piles, leaks, and spills.
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Table 11: Placebo e�ect on emissions levels

(1) (2) (3) (4) (5) (6) (7)
Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated

Treated*no air emissions -0.647 -0.761∗∗∗ 0.171 0.243 0.0984 -0.774 -0.127
(0.454) (0.0474) (0.139) (0.376) (0.294) (0.581) (0.162)

Treated*air emissions 0.273 0.620 0.877∗∗∗ -0.0544 0.0724 0.144 0.172∗

(0.192) (0.666) (0.323) (0.185) (0.154) (0.200) (0.0899)

Year dummies Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes

Observations 34544 16393 7307 51753 69004 39451 85433

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 6, but with 2 changes: 1) the dependent variable is log emissions (not a ratio); and 2) estimates for �Treated*no air

emissions� report the e�ect of placebo treatment (being near a non-attainment monitor) on plants with no air emissions, which should not be a�ected by

the CAA. Estimates for �Treated*air emissions� are for actually treated plants; they are not placebos. The medium is indicated atop the column. All

speci�cations include year dummies and plant �xed e�ects. SEs clustered at the county level, which is the level of exogenous variation. Unit of observation

is a plant-year. Observation counts di�er across columns because not all plants report emissions into all media.
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Table 12: Placebo leakage e�ect, within �rm & 6-digit NAICS code

(1) (2) (3) (4)
Onsite air Onsite air Onsite air Onsite air

1+ other placebo plants 0.0178 0.00797
(0.0491) (0.0494)

Count placebo plants 0.0193 0.0104
(0.0290) (0.0299)

County linear trends No Yes No Yes

Year dummies Yes Yes Yes Yes

Multiplant dummy Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes
Observations 128147 128147 128147 128147

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 7, but using variables based on placebo treated plants: plants within

the same �rm and 6-digit NAICS code, located in non-attainment counties, but farther than 8km from

the nearest non-attainment monitor. Dependent variable is log air emissions. Speci�cation includes year

dummies and plant �xed e�ects. SEs clustered at the county level, which is the level of exogenous variation.

Unit of observation is a plant-year. Sample restricted to plants in attainment counties.
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Appendix for online publication

10 Modeling the CAA as a quantity restriction

Suppose two pollution inputs: A ~ air emissions, W ~ water emissions. Treat

the CAA as an exogenous quantity restriction A on air emissions. The object

of policy interest is unconditional factor demand W ∗, incorporating �rms'

possible output response to regulation. Suppose a CES production function,

so the �rm problem becomes:

max
A,W

po (c1A
ρ + c2W

ρ)
1/ρ − pAA− pwW + λ

[
A− A

]
Taking FOCs, one obtains an optimality condition:(

c1
c2

)(
A∗ρ−1

W ∗ρ−1

)
=
pA + λ

pW

If the constraint does not bind prior to CAA non-attainment, the shadow

price λ is zero. Taking logs gives ratio of unconditional factor demands:

ln

(
W ∗

A∗

)
=

1

ρ− 1
ln

(
c1
c2

)
+

1

ρ− 1
ln

(
pW

pA + 0

)
(9)

Treat CAA non-attainment as a decrease in A such that it binds. This

changes the value of λ from zero to an unknown positive number. The opti-

mality condition then becomes:

ln

(
W ∗

A

)
=

1

ρ− 1
ln

(
c1
c2

)
+

1

ρ− 1
ln

(
pW

pA + λ

)
(10)

If ρ < 1, then the coe�cient on the last term is negative. The positive

shadow price λ causes a decrease in the last term. Theory then predicts an

increase in the ratio of water to air pollution W ∗

A
. This prediction is the same

as the one from the model treating CAA non-attainment as a relative price

change. The crucial di�erence is that under this model, a regression that fails

to control for output will not produce biased estimates if A is truly exogenous.

Rearranging equation 10 yields:
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ln (W ∗) =
1

ρ− 1
ln

(
c1
c2

)
+

1

ρ− 1
ln

(
pW

pA + λ

)
− ln

(
A
)

(11)

If regulators consider plant characteristics when deciding on the constraint A,

however, the potential for bias in a non-ratio speci�cation returns.

11 Additional tables

Table A1: TRI PM descriptive statistics

Mean Stdev Min Max
Onsite air 6327.85 570243.85 0.00 1.10e+08
Onsite water 633.85 12441.29 0.00 3361865.00
Onsite land 34801.68 936337.82 0.00 1.10e+08
O�site other 26081.85 1658407.06 0.00 2.53e+08
O�site water 534.15 27202.02 0.00 6063868.00
O�site land 11437.75 128437.66 0.00 12870510.00
O�site other 3629.44 60310.04 0.00 4371760.00
Recycled or treated 63509.98 668200.67 0.00 1.27e+08
Dist. to nonattain monitor (km) 0.90 4.40 0.00 99.74
PM nonattainment 0.08 0.27 0.00 1.00
Treated 0.01 0.09 0.00 1.00
Observations 197717

Emissions measured in pounds. Unit of observation is a plant-year.
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Table A2: Historical CAA particulate standards
Final rule Type Averaging time Standard (µg/m3) Form

1987 PM10 24hr 150 Not to be exceeded more than once per year on average over a 3-year period

Annual 50 Annual arithmetic mean, averaged over 3 years

1997 PM2.5 24hr 65 98th percentile, averaged over 3 years

Annual 15 Annual arithmetic mean, averaged over 3 years

PM10 24hr 150 Not to be exceeded more than once per year on average over a 3-year period

Annual 50 Annual arithmetic mean, averaged over 3 years

2006 PM2.5 24hr 35 98th percentile, averaged over 3 years

Annual 15 Annual arithmetic mean, averaged over 3 years

PM10 24hr 150 Not to be exceeded more than once per year on average over a 3-year period
Adapted from http://www.epa.gov/ttn/naaqs/standards/pm/s_pm_history.html. Accessed March 19, 2014.
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Table A3: E�ect on air emissions, spillover controls

(1) (2) (3)
Onsite air Onsite air Onsite air

Treated -0.256∗∗ -0.205∗∗

(0.110) (0.0989)

Tau=-3 -0.150
(0.157)

Tau=-2 -0.0574
(0.125)

Tau=-1 -0.189
(0.161)

Tau=0 (1st treated year) -0.341∗

(0.196)

Tau=1 -0.409∗

(0.220)

Tau=2 -0.326
(0.209)

Tau=3 -0.335∗∗

(0.164)

Spillover controls Yes Yes Yes

County linear trends No Yes No

Year dummies Yes Yes Yes

Plant FEs Yes Yes Yes
Observations 123918 123918 123918

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates in columns 1-2 correspond to equation 4, while estimates in column 3 correspond to equation 5,

but with the inclusion of spillover controls from equation 7. Dependent variable is log air emissions. SEs

clustered at the county level, which is the level of exogenous variation. Unit of observation is a plant-year.
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Table A4: Leakage e�ect, within �rm & 2-digit NAICS code

(1) (2) (3) (4)
Onsite air Onsite air Onsite air Onsite air

1+ other treated plants 0.125∗∗ 0.101∗∗

(0.0511) (0.0495)

Count other treated 0.0705∗∗ 0.0581∗

(0.0356) (0.0334)

County linear trends No Yes No Yes

Year dummies Yes Yes Yes Yes

Multiplant dummy Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes
Observations 111902 111902 111902 111902

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 7, where �other treated plant� is a treated plant within the same �rm and

2-digit NAICS code. Dependent variable is log air emissions. Speci�cation includes year dummies and plant

�xed e�ects. SEs clustered at the county level, which is the level of exogenous variation. Unit of observation

is a plant-year. Sample restricted to plants in attainment counties.

43



Table A5: Leakage e�ect on emissions ratios, within �rm & 6-digit NAICS code

(1) (2) (3) (4) (5) (6) (7)
Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated

1+ other treated plants 0.0362 0.0354 -0.0578 -0.144 0.226 -0.760∗∗∗ -0.0306
(0.209) (0.181) (0.260) (0.187) (0.142) (0.221) (0.149)

Year dummies Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes

Observations 27725 13669 5613 31566 46511 24426 50099

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 7, where �other treated plant� is a treated plant within the same �rm and 6-digit NAICS code, but dependent variable is

log emissions ratio. Numerator indicated atop column and denominator is air emissions in all columns. Speci�cation includes year dummies and plant �xed

e�ects. SEs clustered at the county level, which is the level of exogenous variation. Unit of observation is a plant-year. Observation counts di�er across

columns because not all plants report emissions into all media. �Onsite other� emissions include waste piles, leaks, and spills. Sample restricted to plants in

attainment counties.
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Table A6: E�ect on emissions ratios, by 3-digit NAICS code

Onsite air Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated
Primary metals 0.136 0.184 0.148 2.236∗∗ -0.167 -0.0984 0.269 0.116

(0.198) (0.272) (0.832) (0.905) (0.487) (0.280) (0.380) (0.257)
Chemicals -0.387∗ -0.142 4.568 2.757∗∗∗ 0.0138 -0.00659 0.162 1.143∗

(0.200) (0.321) (4.031) (0.626) (0.245) (0.190) (0.466) (0.641)
Fabricated metals -0.310 0.865 0.277 0.427 -0.596 0.287

(0.330) (0.770) (0.280) (0.474) (0.435) (0.244)
Nonmetallic mineral products -0.685∗∗∗ 1.925∗∗∗ 3.567∗∗∗ 0.791∗∗∗ 0.269 -0.0952

(0.206) (0.509) (0.259) (0.237) (0.479) (0.226)
Transportation equipment -0.896∗∗ 1.970 -0.493 0.632∗ -0.130 2.762∗ 1.050

(0.373) (1.991) (0.797) (0.342) (0.554) (1.413) (0.909)
Petroleum and coal -1.370∗∗∗ 2.537∗∗∗ 6.282∗∗ 1.381∗∗ -1.284 0.498

(0.477) (0.505) (3.075) (0.618) (1.518) (0.784)
Utilities -0.355 1.180 -0.998 -0.159 1.742∗ 2.036 11.10∗∗∗

(0.426) (0.893) (1.140) (0.593) (0.987) (1.457) (0.286)
Year dummies Yes Yes Yes Yes Yes Yes Yes Yes
Plant FEs Yes Yes Yes Yes Yes Yes Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Includes the seven 3-digit NAICS industries with the largest treated sample sizes. Column 1 (onsite air) corresponds to equation 4, remaining columns

to equation 6. Dependent variable is log air emissions in column 1, otherwise log emissions ratio, with the numerator indicated atop the column and the

denominator air emissions in all columns. All speci�cations include year dummies and plant �xed e�ects. SEs clustered at the county level, which is the

level of exogenous variation. Unit of observation is a plant-year. Observation counts di�er across columns because not all plants report emissions into all

media. �Onsite other� emissions include waste piles, leaks, and spills.
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