
UC Davis
UC Davis Previously Published Works

Title
Population genomic diversity and structure at the discontinuous southern range of the 
Great Gray Owl in North America

Permalink
https://escholarship.org/uc/item/6tn8p3v8

Journal
Conservation Genetics, 21(4)

ISSN
1566-0621

Authors
Mendelsohn, Beth
Bedrosian, Bryan
Love Stowell, Sierra M
et al.

Publication Date
2020-08-01

DOI
10.1007/s10592-020-01280-8

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6tn8p3v8
https://escholarship.org/uc/item/6tn8p3v8#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Vol.:(0123456789)1 3

Conservation Genetics 
https://doi.org/10.1007/s10592-020-01280-8

RESEARCH ARTICLE

Population genomic diversity and structure at the discontinuous 
southern range of the Great Gray Owl in North America

Beth Mendelsohn1 · Bryan Bedrosian2 · Sierra M. Love Stowell1 · Roderick B. Gagne1 · Melanie E. F. LaCava1,3 · 
Braden L. Godwin1 · Joshua M. Hull4 · Holly B. Ernest1,3 

Received: 22 September 2019 / Accepted: 12 May 2020 
© Springer Nature B.V. 2020

Abstract
Species’ distributions are often discontinuous near the edge of the range where the environment may be more variable than 
the core of the range. Range discontinuity can reduce or cut off gene flow to small peripheral populations and lead to genetic 
drift and subsequent loss of genetic diversity. The southern extent of the Great Gray Owl (Strix nebulosa) range in North 
America is discontinuous, unlike their northern core range across the boreal forests. We sampled owls from five different 
locations on the periphery of the range across the western US (Wyoming, Idaho, California, northern Oregon, and southern 
Oregon) to investigate genetic population structure and genetic diversity. Using a reduced-representation genomic sequencing 
approach to genotype 123 individuals at 4817 single nucleotide polymorphic loci, we identified four genetically differentiated 
populations: California, southern Oregon, northern Oregon, and Wyoming and Idaho grouped together as a single Rocky 
Mountain population. The four genetically differentiated populations of Great Gray Owls identified in this study display 
high differentiation and low genetic variation, which is suggestive of long-term isolation and lack of connectivity, potentially 
caused by range discontinuity. The populations that lack habitat connectivity to the rest of the breeding range (i.e. those in 
California and Oregon) had lower genetic diversity than the Rocky Mountain population that is connected to the core of the 
range. These factors and other risks (such as disease and human-caused mortality) heighten susceptibility of these range-
edge populations to future habitat and climate changes, genetic diversity erosion, and potential extinction vortex. For these 
reasons, protecting and monitoring this species on the southern edge of their range is vital.

Keywords Conservation genomics · Nucleotide diversity · Population structure · Raptor · Single nucleotide polymorphism · 
Strix nebulosa

Introduction

Populations that exist on the periphery of the core of a spe-
cies’ range often exist in habitats with more variable biotic 
and abiotic factors (Kubisch et al. 2004), leading to distri-
butions that are discontinuous near their edges (Saunders 
et al. 1991; Crooks et al. 2017). This separation from the 
core population can influence evolutionary processes such 
as gene flow, genetic drift, and natural selection, and can 
contribute to extinction vortices (Gilpin and Soulé 1986) 
for populations with discontinuous range-edge distributions. 
Gene flow between disconnected areas of a range can be 
obstructed by distance and lack of suitable connecting habi-
tat between them. The resulting isolation can cause small 
population sizes and make genetic drift a dominant force in 
diminishing genetic diversity and creating genetically differ-
entiated populations (Eckert et al. 2008; Athrey et al. 2012; 
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Tan et al. 2018). Low genetic diversity affects natural selec-
tion by reducing the potential for future adaptation (Rob-
ertson 1960; Johansson et al. 2007). Further, small isolated 
populations are more likely to experience inbreeding, which 
can result in inbreeding depression where the expression of 
harmful alleles decreases the fitness of individuals (Charles-
worth and Willis 2009).

When faced with changes in their environment, species 
benefit from standing genetic diversity needed for adapta-
tion, survival, and reproduction, particularly for populations 
at periphery of a range. In wild populations, the function 
of genetic variation in adaptive potential involves a com-
plex combination of factors (Mills and Allendorf 1996). 
Some discontinuous populations can retain genetic diver-
sity through mechanisms such as dispersal and de novo 
mutations, offsetting the negative genetic effects of being 
separated (Harrisson et al. 2012; Assis et al. 2013; Walsh 
et al. 2016; Bay et al. 2018). Local adaptations that occur 
near the limits of the species’ habitat on the range-edge can 
be important to the overall adaptive potential of the species 
if the environment becomes more extreme throughout the 
range (Provan and Maggs 2012; Rehm et al. 2015; Bay et al. 
2018). Especially when combined with other threats such as 
habitat destruction, climate change, or disease, decreased 
genetic diversity can contribute to extirpation of isolated 
populations (Frankham et al. 2017; Funk et al. 2018).

In the western United States, the Great Gray Owl (Strix 
nebulosa) has a discontinuous distribution on the southern 
extents of its range (Fig. 1) because they breed only in large 
stands of older-aged forests (Bull and Duncan 1993; Dun-
can and Hayward 1994; Wu et al. 2015). The core of their 
range lies in western Canada and extends south into Wash-
ington, Idaho, Montana, and Wyoming, becoming increas-
ingly fragmented as the northern boreal forest transitions 
to montane forest and borders on sagebrush and desert in 
Oregon and California (Bull and Duncan 1993). Great Gray 
Owls are vagile raptors with the potential to disperse long 
distances, but the question of whether dispersal of individu-
als maintains gene flow between geographically separated 
areas remains largely unknown. Demographic data suggest 
that Great Gray Owl nest productivity has declined in some 
areas (Franklin 1988), however complementary genetic data 
describing population structure and evolutionary potential 
are lacking. A study employing microsatellite loci found 
genetic differentiation among owls in the Sierra Nevada, 
southern Oregon, northern Oregon, Idaho, and Alberta (Hull 
et al. 2010). Their findings led to the listing of Strix nebu-
losa yosemitensis as an endangered subspecies in California 
(Hull et al. 2014; California Department of Fish and Wildlife 
2017). Low genetic diversity on the periphery of the range in 
California, northern Oregon, and southern Oregon compared 
to the core of the range in Alberta has also been documented 
(Hull et al. 2010).

Understanding population structure, diversity at genomic 
levels, and evolutionary potential are relevant to conserva-
tion status and management decisions about Great Gray 
Owls and their habitat. We generated genomic data for Great 
Gray Owls on the southern periphery of their breeding range 
in the western US. This study constitutes the first genomic 
work on Great Gray Owls and the first genetic analysis that 
includes Wyoming, which represents the southern extent of 
the species range in the Rocky Mountains and is impacted 
by habitat loss. Our goal was to extend genetic knowledge of 
the species by combining samples we collected from western 
Wyoming with samples collected by Hull et al. (2010) in 
central California, southern Oregon, northern Oregon, and 
eastern Idaho. We address two major questions in this study: 
(1) how are Great Gray Owls genetically structured across 
their discontinuous range edge? and (2) what are the levels 
of genome-wide genetic diversity across the southern range? 
We hypothesized that genetic diversity and population dif-
ferentiation would be affected by range discontinuity. Given 
the distribution in the southern part of the Great Gray Owl 
breeding range (Fig. 1), we predicted that limited dispersal 
resulting from range discontinuity would cause higher dif-
ferentiation and lower genetic diversity in the isolated parts 
of the range (i.e. California, northern Oregon, and southern 
Oregon) than parts of the range connected to the range core 
(i.e. Wyoming and Idaho).

Methods

Sampling and study area

We obtained 152 samples from five locations in western 
North America collected between 1992 and 2017 (Fig. 1, 
Appendix Table 4): southern Sierra Nevada Range in Cali-
fornia (CA), southern Cascade Range in Oregon (ORS), 
Blue Mountain Range in northeastern Oregon (ORN), 
southeastern Idaho (west side of Teton Range) (ID), and 
northwest Wyoming (east side of Teton Range) (WY). Sam-
ples from western Wyoming were from owls either captured 
at nests sites as fledglings or associated with location data 
from telemetry from an ongoing study investigating their 
home range size and habitat selection (pers. data). Blood 
was collected from the brachial vein and stored in Long-
mire’s buffer solution (Longmire et al. 1997) or EDTA tubes 
and stored at −20 °C after transport. California, northern 
Oregon, southern Oregon, and Idaho samples are described 
in Hull et al. (2010).

Laboratory methods

DNA was extracted using Qiagen DNeasy Blood & Tis-
sue kits (Qiagen, Valencia, CA, USA), with the following 



Conservation Genetics 

1 3

Fig. 1  Range map: The southern part of the Great Gray Owl breeding 
range in the western US. Dark gray outline delineates areas of doc-
umented breeding range in detail and does not include occurrences 
outside of the breeding season. The red points represent unique sam-
pling locations, and the number of individuals sampled (by location) 
is California (CA) = 28, Idaho (ID) = 14, northern Oregon (ORN) = 8, 

southern Oregon (ORS) = 10, Wyoming (WY) = 92. The map was 
compiled from other studies and eBird observations (Franklin 1988; 
Bull and Duncan 1993; Sullivan et  al. 2009; Thiemann and Fuller 
2015; Wu et al. 2016). The inset map depicts the entirety of the Great 
Gray Owl North American range in dark gray (BirdLife International 
2016), with our sampling locations in red
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modifications for blood stored in Longmire’s buffer: 
12–36 h digestion times, 1–2 extra washes with AW1 and 
AW2 salt buffers, and doubled elution volumes. DNA was 
quantified using Qubit Fluorometer 3.0 (Invitrogen, Carls-
bad, CA). To confirm adequate starting fragment sizes for 
high throughput (next generation) sequencing (NGS), we 
assessed a subset of DNA extracts across locations and 
years using gel electrophoresis. We found moderate deg-
radation in some samples, likely from keeping samples at 
ambient temperatures for too long in the field. We normal-
ized DNA to a target concentration range of 30–100 ng/
μl by concentrating DNA with vacuum centrifugation in 
a SpeedVac Concentrator (Thermo Scientific, Waltham, 
MA) and ethanol precipitation (Sambrook and Russell 
2006) or dilution in molecular grade water.

Reduced representation sequencing methods such as 
restriction-site associated DNA sequencing facilitate the 
identification of single nucleotide polymorphisms (SNPs) 
across the genome of many individuals for relatively low 
cost (Kraus and Wink 2015; Andrews et al. 2016; Toews 
et al. 2016b). We prepared two double digest restriction-
site-associated DNA sequencing (ddRAD) sequencing 
libraries (pools of enriched DNA fragments ligated with 
sequencing adapters) according to Parchman et al. (2012). 
Briefly, we first digested the genomic DNA with two 
restriction enzymes—EcoRI and MseI (New England Bio-
Labs, Ipswich, MA). Then we ligated Illumina sequencing 
adapters with overhangs matching the MseI and EcoRI cut 
sites (Sigma, St. Louis, MO) to the product. The EcoRI 
adapters included an 8–10 base pair barcode giving each 
sample a unique identifying sequence (minimum of 4 base 
difference between barcodes). These target fragments were 
amplified with Illumina PCR primers by polymerase chain 
reaction in duplicate reactions for each sample on ther-
mal cyclers SimpliAmp (Applied Biosystems, Foster City, 
CA) with 30 cycles of 98 °C for 20 s, 60 °C for 30 s, 72 
°C for 40 s, and a final extension of 72 °C for 10 min. 
We included an extra PCR step ensure double stranded 
DNA fragments (Parchman et al. 2012). Following PCR, 
all samples were pooled together. The pooled product was 
cleaned and concentrated with AMPure beads (Beckman 
Coulter, Brea, CA). We isolated DNA fragments between 
350 and 450 bp with a Pippin Prep and 2% agarose gel 
(Sage Science PR00551, Beverly, MA) and verified size 
selection on Fragment Analyzer (Advanced Analytical, 
Santa Clara, CA). To increase sequencing coverage, we 
divided the samples between two sequencing libraries with 
replicates within each library and between libraries. The 
DNA libraries were sequenced in 2 lanes of 150 bp single-
end reads on an Illumina HiSeq 4000 at The University 
of Texas at Austin Genomic Sequencing and Analysis 
Facility.

Quality filtering, variant calling and genotyping

We filtered the raw sequence data and discarded potential 
contaminants (Escherichia coli, PhiX control, adapter and 
primer dimers) using Bowtie2 (Langmead and Salzberg 
2012). We used Trimmomatic (Bolger et al. 2014) to trim 
bases when the Phred quality score fell below 20 (99% 
accuracy) within a 4 bp sliding window and at the ends of 
reads (Illumina Inc 2000).

To demultiplex pooled libraries into individual sam-
ples by unique barcodes, we used a custom Perl script 
(DRYAD https ://doi.org/10.5061/dryad .1rn8p k0qm). This 
script allows and corrects for one mismatch in the bar-
code and removes the adapter sequences from the reads, 
leaving only genomic DNA sequences. We then concat-
enated sequences from intra- and inter-library replicates 
for unique individuals (DRYAD https ://doi.org/10.5061/
dryad .1rn8p k0qm).

Since a reference whole genome for the Great Gray Owl 
was not available, we assembled sequences de novo (Will-
ing et al. 2011). To do so, we created a synthetic reference 
from our data using the cd-hit-est package in CD-HIT to 
cluster sequences, as this has been shown to be the most 
accurate approach for de novo assembly of double digest 
genomic sequencing (Li and Godzik 2006; Fu et al. 2012; 
LaCava et al. 2019). We used the sequences from all indi-
viduals and a 0.95 sequence identity threshold, resulting in 
1,099,773 unique contigs (DRYAD https ://doi.org/10.5061/
dryad .1rn8p k0qm). We verified our de novo reference by 
alignment to the Barn Owl (Tyto alba) genome using Bow-
tie2, which had an average 59% alignment rate. We removed 
29 individuals with fewer than 400,000 reads, leaving 
216,736,964 total reads across 123 individuals.

Reads from remaining individuals were mapped to the de 
novo reference using the BWA MEM algorithm (Li and Dur-
bin 2009). The average assembly rate per individual was 97% 
and a total of 211,644,065 reads aligned. We filtered for sites 
with minimum base and mapping quality scores (Q-score) 
of 20, kept a max-depth of 100 reads per site per individual, 
and omitted insertions and deletions with samtools mpileup 
(Li 2011). We called biallelic SNPs with a Q-score of 20 
or higher using bcftools (Danecek et al. 2016) resulting 
in 222,753 sites. These sites were thinned using vcftools 
(Danecek et al. 2011) to one SNP per 136 bp sequence read. 
In addition, we removed SNPs with a minor allele frequency 
less than 0.05, missing data in more than 25% of individuals, 
or a minimum read depth per site per individual less than 3. 
We converted the variant calls to genotype likelihoods and 
genotype point estimates (weighted average) using custom 
Perl scripts (DRYAD https ://doi.org/10.5061/dryad .1rn8p 
k0qm). We checked for private SNPs in each library with 
PopGenReport package in R (Adamack and Gruber 2014; 
Gruber and Adamack 2015).

https://doi.org/10.5061/dryad.1rn8pk0qm
https://doi.org/10.5061/dryad.1rn8pk0qm
https://doi.org/10.5061/dryad.1rn8pk0qm
https://doi.org/10.5061/dryad.1rn8pk0qm
https://doi.org/10.5061/dryad.1rn8pk0qm
https://doi.org/10.5061/dryad.1rn8pk0qm
https://doi.org/10.5061/dryad.1rn8pk0qm
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Population structure analysis

Unless otherwise specified, we did not remove known 
related individuals from analyses, as they are a natural 
component of populations (Waples and Anderson 2017; 
Hendricks et al. 2018). To visualize potential genetic clus-
ters, we performed Principal Component Analysis (PCA) 
in custom R code (R Core Team 2017) using a genetic 
covariance matrix calculated from the point estimates of 
individual’s genotypes (DRYAD https ://doi.org/10.5061/
dryad .1rn8p k0qm). We plotted the principal component 
vectors (PCs) that accounted for the majority of variance 
between individuals. For all PCAs, we used a subset of 
78 putatively unrelated individuals after removing 45 
Wyoming individuals identified as full- or half-siblings 
or parent–offspring from the field data, to prevent skew-
ing the axes with first-degree relatives and to even out 
sample sizes among locations (McVean 2009). California, 
northern Oregon, southern Oregon, and Idaho samples did 
not contain any known relatives. To assign individuals to 
genetic clusters, we used structure 2.3.4 (Pritchard et al. 
2000). We parallelized the runs by implementing struc-
ture using StrAuto (Chhatre and Emerson 2017) on the 
University of Wyoming Teton Computing Environment 
Intel x86_64 cluster (Advanced Research Computing 
Center 2018). Our model included the options for admix-
ture and correlated allele frequencies. For each value of 
K = 1–8 (possible number of clusters), we ran 20 inde-
pendent iterations with a burn-in of 100,000 steps, fol-
lowed by a run of 1,000,000 Markov chain Monte Carlo 
(MCMC) steps to verify consistency and convergence of 
model parameters. We used structure harvester 0.6.94 
(Earl and vonHoldt 2012) and Clumpak (Kopelman et al. 
2015) to compile and visualize results. To infer the most 
likely number of genetic clusters, we used delta K (ΔK) 
(Evanno et al. 2005) and the probability of K (Pritchard 
et al. 2000). To plot results, we modified the function 
structurePlot from the StrataG package in R 2.0.2 (Archer 
et al. 2017).

We explored isolation-by-distance by calculating the geo-
graphic distance between all pairs of putatively unrelated 
samples (78) in fossil in R (Vavrek 2011) and plotting this 
against the genetic covariance matrix created for the PCA 
and tested the Pearson’s correlation using a Mantel test. We 
calculated population-specific Hudson’s  FST (Hudson et al. 
1992) in R using a custom function for all pairs of sampling 
locations and for all loci (DRYAD https ://doi.org/10.5061/
dryad .1rn8p k0qm). This method for calculating  FST meas-
ures the proportion of genetic divergence between subpopu-
lations due to isolation and is highly correlated Weir and 
Cockerham’s and Nei’s  FST and provides a reliable estimate 
of differentiation with uneven sample sizes (Bhatia et al. 
2013).

Genetic diversity analyses

We used theta (θ) to estimate genome-wide nucleotide diver-
sity. Theta estimates the amount of neutral variation at loci 
assuming an idealized Wright-Fisher population, and can be 
interpreted as the average number of mutations in the whole 
population per site per generation (Hahn 2018). Watterson’s 
theta (θw) (Watterson 1975) and theta pi (θπ) (Tajima 1989; 
Korneliussen et al. 2013) were calculated in angsd (Kor-
neliussen et al. 2014). θπ is defined as the average number of 
heterozygous sites for pairwise combinations of sequences, 
whereas θw uses the total number of heterozygous sites 
adjusted to the sample size (Hahn 2018). angsd uses a proba-
bilistic approach to compute genotype likelihoods, the prob-
ability of the data given the genotype (Korneliussen et al. 
2014), to account for uncertainty, and handles missing and 
low read data (Durvasula et al. 2016). We input nucleotide 
sequences from all 152 individuals from 5 locations that 
were sequenced, selecting for reads with mapping and base 
quality scores above 20.

Results

Quality filtering, variant calling, and genotyping

Our final dataset contained 4,817 biallelic SNPs (DRYAD 
https ://doi.org/10.5061/dryad .1rn8p k0qm). After filtering, 
we discarded 29 samples from the SNP dataset, leaving 123 
individuals from 5 locations (CA = 22, ORN = 8, ORS = 9, 
ID = 11, WY = 73). All individuals had genotype data 
at > 50% of SNPs, and all SNPs had data in > 75% of individ-
uals. Average depth of coverage per SNP per individual was 
12.3. After minor allele filtering, we found 69 total private 
alleles, 51 in California and 18 in Wyoming. Polymorphism 
was lowest in northern Oregon (71% of SNPs), followed by 
southern Oregon (76%), California (78%), Idaho (82%), and 
Wyoming had the highest polymorphism at 92%. Almost all 
loci were shared between libraries, with only 1 private SNP 
in library 1, and 7 in library 2.

Population structure

Principal components analysis of 78 owls among five different 
sampling locations suggested four genetic clusters (Fig. 2). 
Samples from Idaho and Wyoming formed one cluster, sam-
ples from California formed a second distinct cluster, while 
northern Oregon and southern Oregon formed the third and 
fourth clusters (northern and southern Oregon had no overlap 
on the first PC axis). The first axis explained the majority 
of the variation (70.4%) among genetic clusters. A separate 
PCA of individuals from Wyoming and Idaho did not provide 
evidence of substructure (Appendix Fig. 1 in Supplementary 

https://doi.org/10.5061/dryad.1rn8pk0qm
https://doi.org/10.5061/dryad.1rn8pk0qm
https://doi.org/10.5061/dryad.1rn8pk0qm
https://doi.org/10.5061/dryad.1rn8pk0qm
https://doi.org/10.5061/dryad.1rn8pk0qm
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Materials). Despite the 30-year interval between sampling in 
Wyoming and Idaho, we did not detect differentiation between 
the locations that would have indicated genetic drift occurred 
over that time span. Great Gray Owls have a longevity of 
13–30 years and generally do not breed until their third or 
fourth year of life, so we did not expect the sampling gap to 
be a problem (Bull and Duncan 1993).

Structure analysis best fit individuals into 3 genetic 
groups (K = 3): California, northern/southern Oregon, and 
Wyoming/Idaho (Fig. 3a, Appendix Fig. 2a in Supplemen-
tary Materials). We additionally implemented a hierarchical 
analysis, since the ΔK method can miss fine substructure 
(Evanno et al. 2005), and uneven small sample sizes com-
bined with strong structure between California and Wyo-
ming could have been masking substructure (Puechmaille 
2016). Also, at K = 4, the model had minor modes, a fur-
ther indication for hierarchical population structure. We ran 
Structure again on (1) a subset of only individuals from 
northern Oregon, southern Oregon, and California (Fig. 3b), 
and (2) a subset with only individuals from northern Oregon 
and southern Oregon (Fig. 3c). For northern Oregon, south-
ern Oregon, and California together, Δ K showed K = 2 as 
optimal, while the probability of K was highest at K = 3, 
suggesting more substructure (Appendix Fig. 2b in Sup-
plementary Materials). Further analysis of northern and 

Fig. 2  Principal component analysis: PCA showing samples cluster-
ing into 4 separate groups based on genotype point estimates at 4817 
SNPs. 78 individuals from 5 sampling locations: California (CA) 
n = 22, Idaho (ID) n = 11, northern Oregon (ORN) n = 8, southern 
Oregon (ORS) n = 9, Wyoming (WY) n = 28. The first 2 PC axes 
explain 77% of the variation between individuals. Subsequent PC 
axes accounted for little further difference (PC3 = 2.6%, PC4 = 0.7%, 
PC5 = 0.7%). The clusters correspond to geographical location of the 
samples

Fig. 3  Hierarchical structure 
analysis. Each vertical bar 
represents an individual owl, 
organized by sampling loca-
tion: California (CA), south-
ern Oregon (ORS), northern 
Oregon (ORN), Idaho, (ID) and 
Wyoming (WY). Colors rep-
resent group membership. The 
proportion of each color in a bar 
represents the probability that 
the individual came from each 
of the groups. a structure best 
fits all 123 individuals into 3 
genetic clusters (K = 3). Results 
for K = 2 to 4 are shown, with 
K = 4a for the first minor 
mode (7/20 runs) and K = 4b 
the major mode (10/20 runs) 
(3/30 runs were a second minor 
mode, not shown). b Subset of 
individuals from California, 
northern Oregon, and southern 
Oregon cluster best into 2 or 3 
genetic groups (K = 2 or K = 3). 
c Subset of individuals from 
northern Oregon and south-
ern Oregon cluster best into 2 
genetic groups (K = 2), strongly 
delineated by sampling location. 
K = 3 also had high probability
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southern Oregon revealed distinct genetic structure between 
them (Fig. 3c), best assigning individuals to two clusters 
(Appendix Fig. 2c in Supplementary Materials). Visually, 
the models appear to differentiate between northern and 
southern Oregon individuals. Structure does not distinguish 
between discrete or continuous allele frequencies but shows 
that southern Oregon has intermediate allele frequencies to 
northern Oregon and California.

Population differentiation measured by pairwise  FST was 
greatest between California and Idaho (0.16) (Table 1).  FST 
between Idaho and Wyoming was an order of magnitude 
lower than between any other locations (0.032), indicating 
that these two locations were substantially less differenti-
ated. Northern and southern Oregon had an  FST of 0.12, 
indicating high differentiation between these two locations. 
An incremental change in  FST was observed that loosely 
reflected the distance between the locations: lower values 
correspond to locations that are closer together geographi-
cally, and values increase as distance increases.

We found a significant negative correlation between geo-
graphic distance and genetic covariance using all pairwise 
combinations of 78 putatively unrelated individuals across 
5 locations (Mantel test, r = − 0.91) (Fig. 4).

Genetic diversity

Diversity statistics are reported in Table 2. Mean nucleo-
tide diversity for each location was between 0.31 × 10–3 
and 0.48 × 10–3 for Watterson’s theta (θw) and between 
0.40 × 10−3 and 0.43 × 10−3 for theta pi (θπ) (Table 2). 
Wyoming had the highest nucleotide diversity for both 
metrics, while the four other locations had consistently 
lower values. Further, the locations separated from the rest 
of the range (California, northern Oregon, and southern 
Oregon) had a higher mean genetic covariance and higher 

variance around the mean than Idaho and Wyoming (Lev-
ene’s test, F-value = 67.7, DF = 5, p < 2.2 × 10−16) (Fig. 5). 
55% of loci were fixed in at least one sampling location. 
76 SNPs were polymorphic in only one sampling location: 
53 in California and 23 in Wyoming.

Table 1  Pairwise comparisons of genetic differentiation of Great 
Gray Owls (Strix nebulosa) between 5 sampling locations measured 
by Hudson’s  FST: California (CA) n = 22, northern Oregon (ORN) 
n = 8, southern Oregon (ORS) n = 9, Idaho (ID) n = 11, Wyoming 
(WY) n = 73. All pairs of localities except ID and WY are highly dif-
ferentiated

CA ORN ORS ID WY

CA – 0.14 0.11 0.16 0.15
ORN – – 0.12 0.13 0.12
ORS – – – 0.13 0.13
ID – – – – 0.032
WY – – – – –

Fig. 4  Isolation-by-distance: Genetic similarity decreases as genetic 
distance increases. The black line represents negative correlation 
between geographic distance (km) and genetic covariance. Points 
represent pairwise comparisons between 78 individuals across 5 loca-
tions: California (CA), Idaho (ID), northern Oregon (ORN), southern 
Oregon (ORS), and Wyoming (WY). Colors correspond to origin of 
samples within each pair. Pairwise comparisons between samples 
from different origins are depicted by dual-colored points with one 
color from each location. Single color points (near distance of zero) 
are within-location pairs

Table 2  Genetic diversity values for the Great Gray Owl (Strix neb-
ulosa) sampled in 5 locations: California (CA), northern Oregon 
(ORN), southern Oregon (ORS), Idaho (ID), and Wyoming (WY). 
Wyoming has higher nucleotide diversity, measured by Watterson’s 
theta (θw) and theta pi (θπ), and lower mean covariance (i.e. genetic 
similarity) than other locations. Sample size (N) of θ includes all 
individual’s nucleotide sequences, whereas N for covariance includes 
individuals after variant filtering. Mean covariance is reported with 
standard deviation

N θw (× 10–3) θπ (× 10–3) N Covariance

CA 28 0.34 0.41 22 0.077 ± .021
ORN 8 0.33 0.41 8 0.066 ± .033
ORS 10 0.31 0.40 9 0.060 ± .035
ID 14 0.31 0.40 11 0.040 ± .010
WY 92 0.48 0.43 28 0.036 ± .008
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Discussion

Population structure

Genomic analysis along the southern edge of their range in 
western North America revealed that Great Gray Owls are 
not panmictic across their range, but rather occur in iso-
lated populations. Our evidence shows three main genetic 
clusters of California, Wyoming/Idaho, and Oregon, with 
substructure in the Oregon cluster corresponding with 
north and south sampling locations. Thus, we propose four 

genetic populations: California, Wyoming/Idaho, northern 
Oregon, and southern Oregon. Wyoming and Idaho appear 
to be part of a single interbreeding population. Northern 
and southern Oregon are substantially delineated into 
separate genetic groups, with more differentiation than 
between California and southern Oregon, and almost as 
differentiated as California is to Wyoming/Idaho, our two 
most distinct populations (Table 1). Southern Oregon has 
allele frequencies intermediate between California and 
northern Oregon, as supported by its geographic location 
(Fig. 1) and the pattern of isolation-by-distance (Fig. 4). 
Breeding of Great Grey Owls in central Oregon has been 
documented in the Ochoco and Malheur National Forests 
(Thiemann and Fuller 2015) (Fig. 1). This region is geo-
graphically located between our northern and southern 
Oregon sites and may provide opportunities for gene flow, 
however samples from Central Oregon were not available 
for our study.

The California population has been proposed as a sepa-
rate subspecies based on genetic, morphological and habi-
tat data (Hull et al. 2014). We provide further genomic 
evidence supporting the distinctiveness of Sierra Nevada 
subspecies Strix nebulosa yosemitensis in California. 
The sub-structuring we identified between northern and 
southern Oregon suggests these Great Gray Owls may also 
qualify as distinct subspecies, although additional morpho-
logical and habitat analysis will be needed to support this 
suggestion. In comparison to other bird populations that 
are considered separate species and subspecies,  FST values 
between Great Gray Owl populations are high (Table 3). 
Although we observed that genetic differentiation was 
higher with greater geographic distance between individu-
als, the absence of breeding pairs in the expanses between 
the four populations indicates there may be environmental 

Table 3  FST for various bird populations calculated from SNP data

Red-shafted (Colaptes auratus cafer), Yellow-shafted flickers (C. a. auratus) and Gilded flickers (C. chrysoides) from Aguillon et al. (2018), 
Gunnison Sage-Grouse (Centrocercus minimus), Greater Sage-Grouse (Centrocercus urophasianus) and Bi-state Sage-Grouse from Oyler-
McCance et  al. (2015), Yellow-rumped warbler (Setophaga spp.) from Toews et  al. (2016a). Microsatellite analysis of the Northern Spotted 
(Strix occidentalis caurina) and California Spotted (S. o. occidentalis) owls from Miller et al. (2017) (recognizing that microsatellites are more 
variable and have higher mutation rates than SNPs, which could manifest as higher  FST)

Population 1 Population 2 FST Classification

Great Gray Owls in California Great Gray Owls in Wyoming 0.15 Populations (proposed)
Great Gray Owls in northern Oregon Great Gray Owls in southern Oregon 0.12 Populations (proposed)
Great Gray Owls in Idaho Great Gray Owls in Wyoming 0.03 Same population (proposed)
Red-shafted flicker Yellow-shafted flicker 0.02 Subspecies
Red-shafted flicker Gilded flicker 0.12 Species
Greater Sage-Grouse Gunnison Sage-Grouse 0.49 Species
Greater Sage-Grouse Bi-state Sage Grouse 0.09 Possible subspecies
Yellow-rumped warbler Non-hybridizing Yellow-rumped warbler taxon 0.08–0.26 Species
Yellow-rumped warbler Hybridizing Yellow-rumped warbler taxon 0.02–0.06 Hybridizing species
Northern Spotted owl California Spotted owl 0.06 Subspecies

Fig. 5  Genetic covariance boxplot: Different locations differ sig-
nificantly in genetic covariance (i.e., genetic similarity, measured by 
calculating the Pearson’s covariance of the difference in each indi-
vidual’s genotype from mean genotype at each locus. Fragmented 
populations (California (CA), northern Oregon (ORN), southern 
Oregon (ORS)) have both higher mean covariance and variance than 
Wyoming (WY) and Idaho (ID). Black horizontal bars represent the 
median, boxes represent the interquartile range, the width of boxes 
scales to sample size, whiskers are the maximum and minimum, and 
circles are potential outliers
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obstacles causing the discontinuous shape of the range 
and preventing dispersal, rather than a continuous gradient 
of isolation-by-distance where distance is the only factor 
preventing panmixia. The degree of differentiation further 
indicates that it is likely caused by long-term isolation, 
possibly as far back as glacial refugia, and exacerbated by 
the effects of genetic drift.

Limited dispersal caused by the discontinuous distri-
bution of high-quality breeding habitat in the American 
West may be contributing to isolation of the populations. 
The genomic evidence from our study shows that dispersal 
across range gaps is rare in Great Gray Owls, as gene flow is 
insufficient to remove signatures of genetic differentiation. 
Successful long-distance dispersal would likely have created 
connectivity between populations, as one successful disper-
sal per generation can prevent population differentiation and 
loss of genetic diversity (Spieth 1974; Wang 2004). Telem-
etry studies of Great Gray Owls have been limited in their 
ability to detect long-distance dispersal, although breeding 
dispersal distances of 450–700 km have been documented 
in Canada and Alaska across contiguous habitat (Duncan 
1992; Nero and Copland 1997), while less than 30 km in 
Oregon have been documented (Bull et al. 1988; Bull and 
Henjum 1990). In contrast, barn owls, which have a continu-
ous range across North America and have been reported to 
disperse up to 160 km (natal dispersal) (Marti 1999), have 
little genetic structure across their entire North American 
range (Huang et al. 2016). Similarly, Northern spotted owls 
in Oregon and Washington have been reported to disperse 
up to 111 km (Forsman et al. 2002) and show no significant 
genetic differentiation (Haig et al. 2004), whereas regional 
groups of fragmented Mexican spotted owl populations show 
significant genetic differentiation (Haig et al. 2004).

Genetic diversity

Great Gray Owl genetic diversity was lower in more iso-
lated populations (California, northern Oregon, and southern 
Oregon) than in connected parts of the range (Wyoming and 

Idaho). Wyoming showed higher genetic diversity than any 
of the other locations and is on a peninsular part of the range 
that likely has more gene flow through connectivity to the 
more genetically diverse core of the range in Canada (Hull 
et al. 2010). Wyoming also has a larger estimated breeding 
population than California or Oregon, making it less suscep-
tible to the effects of genetic drift that lead to diversity loss 
in small populations. The lower genetic diversity in Califor-
nia, northern Oregon, and southern Oregon is also reflected 
in higher individual genetic covariance, meaning individuals 
are genetically similar to one another, as would be expected 
in isolated populations with small population sizes (Fig. 5). 
Idaho showed low nucleotide diversity comparable to the 
isolated populations, but covariance similar to Wyoming, 
which could suggest that Idaho has a smaller breeding popu-
lation than Wyoming or less connectivity to the core of the 
range. The high levels of  FST between all populations also 
reflect low genetic diversity within populations, caused by 
isolation and genetic drift (Meirmans 2006).

Great Gray Owls in the western US have low levels of 
genetic diversity overall compared to some other avian 
species (Fig. 6). Avian genome diversity is commonly on 
the order of  10−3 to × 10−2, and many species reported θπ 
from 1.0 to 5.0 × 10−3 (Ellegren 2013). In comparison, θπ 
for Great Gray owls was an order of magnitude lower at 
0.4 × 10−3. Although genetic diversity alone does not neces-
sarily represent adaptive variation, it does provide a metric 
for assessing adaptive potential in stressful environments 
(Funk et al. 2018).

Using genomic markers increases the resolution and accu-
racy of genetic diversity and population structure analyses 
(Narum et al. 2013; Benestan et al. 2016; Oyler-McCance 
et al. 2016). Measures of genetic diversity from genomic data 
provide more accurate estimates of genome-wide diversity 
than measures of heterozygosity that are commonly reported 
from microsatellite analyses (Fischer et al. 2017). We recom-
mend that researchers using genomic sequence data report 
θ for genetic diversity statistics to make comparisons across 
species more meaningful. Although nucleotide diversity can 

Fig. 6  Genetic diversity scale: Great Gray Owl nucleotide diversity 
(θπ) is low compared to other avian species that reported nucleotide 
diversity and used similar methods: Black-footed Albatross (Phoe-
bastria nigripes) π = 0.0006–0.00065 from ddRAD (Dierickx et  al. 
2015), hihi (Notiomystis cincta) π = 0.00095 from RADseq (de 
Villemereuil et  al. 2019), Striped-Tit Babbler (Mixornis gularis) 

π = 0.0025 from ddRAD (Tan et al. 2018), Firefinches (Lagonosticta) 
π = 0.0025 from ddRAD (DaCosta and Sorenson 2016), little green-
bul (Andropadus virens) π = 0.0036 from RADseq (Zhen et al. 2017), 
western House Finch (Haemorhous mexicanus) π = 0.0050–0.0054 
from ddRAD (Shultz et al. 2016). Owl photo credit: B.M
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vary across the genome (Dutoit et al. 2016., Ellegren 2013), 
making it possible that reduced-representation methods 
introduce an ascertainment bias by sub-sampling the genome 
(Arnold et al. 2013), our sequence data represents approxi-
mately 12% of the genome analyzed, which is a greater por-
tion than can be analyzed using microsatellites.

Conservation

Breeding raptors are generally considered good indicators of 
biodiversity and environmental change (Burgas et al. 2014; 
Ibarra and Martin 2015), and populations of the Great Gray 
Owl identified through genetic data that warrant conser-
vation could serve as a flagship species to help safeguard 
other less well-known species of the southern boreal forest. 
Threats to Great Gray Owl breeding range stemming from 
climate change (Siegel et al. 2014; National Audubon Soci-
ety 2015; Schuetz et al. 2015) include increases in stand 
replacing fires (Westerling et al. 2003), insect outbreaks 
(Bentz et al. 2010), and changes in snowpack and prey avail-
ability (Mysterud 2016). As forecast warming temperatures 
cause potentially substantial range contractions and habitat 
loss for species such as the Great Gray Owl, northern, high 
elevation forest birds’ distributions will likely move north-
ward in latitude and upwards in elevation (Hitch and Leberg 
2007; Langham et al. 2015; Siegel et al. 2014). These range 
shifts could signify the loss of important local adaptations 
and genetic diversity harbored in genetically distinct range-
edge populations and decrease the evolutionary potential of 
species (Ralston and Kirchman 2013; Rehm et al. 2015).

Understanding population structure, genetic diversity, and 
evolutionary potential are relevant to conservation status 
and management decision making for Great Gray Owls and 
their habitat. Despite the expectation that Great Gray Owls 
could disperse across range gaps, our results indicate that 
the discontinuous Great Gray Owl range in the western US 
is also genetically disparate. The peripheral areas assessed 
here are effectively functioning as separate populations and 
should be managed and protected accordingly. The genetic 
differentiation of these populations highlights that even spe-
cies capable of dispersal over long distances can become 
isolated and have low genetic diversity. Our finding of higher 
genetic diversity in the population with more suitable breed-
ing habitat connecting it to the core of the range indicates 
that preserving those breeding grounds could help prevent 
low genetic diversity. Genetically isolated populations are 
at risk for further genetic diversity loss due to genetic drift 
or stochastic events, making them more susceptible to rapid 

environmental changes. Continued monitoring of these 
populations and preservation of existing connectivity and 
breeding habitat will contribute to the persistence and over-
all evolutionary potential of the Great Gray Owl across their 
circumboreal range.
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