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ABSTRACT OF THE DISSERTATION

Efficient Inference in Open Retrieval Question Answering Systems

by

Muhammad Shihab Rashid

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2024

Dr. Evangelos Christidis, Chairperson

With the latest advances in conversational agents like Siri and Alexa, and Large Language

Models (LLMs) like ChatGPT and PaLM, Question Answering (QA) systems have become

more important. Users submit millions of queries per day and it is up to the system to

provide reliable, to-the-point answers. In this dissertation, we explore various aspects to

improve such QA systems.

First, we tackle the problem of collecting high-quality training data for QA sys-

tems. We especially focus on public frequently asked questions (FAQ) data on the Web.

FAQ chatbots rely on good quality FAQ data but there is no good source of FAQ data avail-

able and collecting them is a tedious task. Given the plethora of such question-answer pairs

on the Web, there is an opportunity to automatically build large FAQ collections for any

domain. Automatically identifying and extracting such high-utility question-answer pairs

is a challenging endeavor, which has been tackled by little research work. Although iden-

tifying general, self-contained FAQs may seem like a straightforward binary classification

problem, the limited availability of training data for this task and the countless domains
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make building machine learning models challenging. We propose QuAX: a framework for

automatically extracting high-utility (i.e., general and self-contained) domain-specific FAQ

lists from the Web. QuAX receives a set of keywords from a user and works in a pipelined

fashion to find relevant web pages and extract general and self-contained questions-answer

pairs.

Second, it is challenging for open retrieval conversational QA (OrConvQA) to

model the history of a user conversation, to better answer the last user question. State-of-

the-art OrConvQA systems use the same history modeling for all three modules (Retriever,

Reranker, Reader) of the pipeline. We hypothesize this as suboptimal. Specifically, we argue

that a broader context is needed in the first modules of the pipeline to not miss relevant

documents, while a narrower context is needed in the last modules to identify the exact

answer span. We propose NORMY, the first unsupervised non-uniform history modeling

pipeline that generates the best conversational history for each module. We further propose

a novel Retriever for NORMY, which employs keyphrase extraction on the conversation

history, and leverages passages retrieved in previous turns as additional context.

Third, with the prevalence of powerful LLMs, LLM-based Reranker modules need

to process a large number of passages to re-rank them given a query. However, LLM

APIs can be very expensive (especially ChatGPT, GPT-4, etc.). We propose EcoRank, a

budget-constrained LLM-based passage re-ranker that intelligently chooses which passages

to spend the budget on, with what prompt strategy, and with which LLM API, within

the given budget. We design an LLM cascading pipeline with a mixture of cheaper and

expensive APIs that achieves the best performance within the given budget.
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Fourth, we focus on the Retriever component of the QA system. Retrieval becomes

particularly challenging if the document corpus is not available or indexed locally and is

accessed via APIs. For example, legal document retrieval systems like PACER, LexisNexis,

etc. charge a fee for retrieving each document. We argue that to improve the retrieval

accuracy, we need to expand by leveraging both feedback from already retrieved relevant

documents and LLMs. We propose ProQE, a progressive query expansion algorithm that

iteratively expands the query by retrieving documents, evaluating them, and updating the

weights of the expanded terms using our novel scoring function.
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Chapter 1

Introduction

With the latest advances in conversational agents like Siri, Alexa, and Large lan-

guage models like ChatGPT, question answering systems are on the rise. Everyday, millions

of queries are submitted and it is up to the system to provide factual and to the point an-

swers. QA systems usually comprise of Retrieval Augmented Generation (RAG) structure,

where the answers are generated from retrieved documents given the query. There are three

components to a RAG pipeline, 1) the Retriever, which retrieves top-k documents given

a query. The second module 2) the Rearanker re-ranks these retrieved documents as the

retriever component may not work perfectly. As there are millions of documents on the

web, many such documents may seem relevant given the query. The reranker makes sure

the top few passages are relevant. The final component 3) the Reader either extracts or

generates the answer from the top few documents.

In this dissertation, we try to improve the training and inference process of such

RAG systems. First, we tackle the problem of collecting high-utility training data. In

1



frequently asked questions (FAQ) we see a scarcity of good quality training data. A data

point which is a question-answer pair is considered high quality if the question is a general

question, meaning that the question should be applicable for all domains and not only for

specific domains. Second, the question should be a self-contained question, meaning, there

should not be any co-references or ellipses. We propose a novel six-staged pipeline QuAX,

which automatically finds QA pairs on the web and classifies them to be either general or

self-contained. Our experimental results show that QuAX performs significantly more than

baselines.

Second, we focus on the conversational question answering problem. In a typical

OrConvQA pipeline, recent works use the same history modeling in all three modules of

the pipeline. We hypothesize this as suboptimal. Specifically, we argue that a broader

context is required at the earlier stages of the pipeline and as we move towards the right,

the historical context should get narrower. We propose the first unsupervised non-uniform

pipeline NORMY that selects the best conversational history to model. Our experimental

results show that NORMY outperforms other SOTA baselines. We also publish a new

dataset called doc2dial-OR to facilitate research for OrConvQA.

Third, we focus on the second module of the pipeline: the Reranker. Recently,

LLMs have been used as text re-rankers and have been shown to perform well. However,

LLMs can be very expensive. Many LLMs are available via APIs, which are hosted by

commercial organizations. They charge a fee for using such APIs. In text re-ranking, this

cost becomes particularly important as businesses need to rerank hundreds of documents

per query every day. As they deal with thousands of queries each day, budget becomes their
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most essential concern. In this chapter, we introduce the problem of budget-aware text-

reranking and propose a suit of budget-constrained models. Our most efficient model called

EcoRank is a two-layer cascading pipeline that jointly optimizes several key decisions: which

prompts to apply, which LLM APIs to use, and how to split the budget between prompts.

Our experimental results show that EcoRank performs better than other strong baselines.

Finally, we focus on the first module of the pipeline, which is the Retriever. A

good retriever is very important to retrieve good quality passages. Query expansion is a

popular method to better retrieve documents. Traditional query expansion methods use

pseudo-relevance feedback to find good keywords to append to the query. However, if the

retrieved passages are not relevant, the expansion terms become noisy. To combat this,

recent studies use LLMs to generate additional content as expansion terms. LLMs are also

prone to hallucinations which may hinder the effectiveness of this approach. Further, all

these work saliently assume that majority of the cost is associated with the LLMs and

almost no cost is associated with the Retriever. We argue that this is not true for several

important problem settings. Especially, when the corpus is not indexed locally and is only

available via APIs, like in different law firms PCER, WestLaw, etc. In real life scenarios,

the dominant cost is the retriever cost. We argue that an effective retriever should be

cost-effective and should utilize the feedback from both retrieved passages and LLMs. We

propose ProQE, which is a progressive query expansion algorithm that iteratively retrieves

passages and expands terms. Our novel weight function puts weights on the expansion

terms from LLM feedback. Further, ProQE is plug-and-play, meaning it can work with any

type of sparse or dense retrieval method.
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Chapter 2

Mining the Web for High-utility

FAQs

2.1 Introduction

Frequently Asked Questions (FAQ) lists provide users with frequently requested

information on a given topic. For example, many healthcare providers offer a FAQ list

on COVID-19, which allows users to obtain relevant information with ease. More im-

portantly, FAQ lists also facilitate many important tasks such as retrieval-based question

answering [105], training generative question answering models [115], augmenting chat-

bot knowledge bases [70], and allowing search engines to provide a short, relevant list of

question-answer pairs when given a search query [106].

1Based on a study of 1,176 questions extracted from 170 FAQ web pages in the mental counseling and
dental health domains.
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at the University of 
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Figure 2.1: Only 18% 1 of FAQ on the Web are general and self-contained; these are the

only questions that are suitable for building general-purpose knowledge-bases.

Reliable FAQ lists are typically created and maintained manually by domain ex-

perts, which is laborious and time consuming. The Web offers a plethora of FAQ lists on

almost every topic; thus, mining the Web for FAQ lists provides a scalable way of acquiring

and curating FAQs.

Automatically mining and curating FAQ lists from the Web is a challenging task

due to the different ways of presenting FAQ lists on the Web, and the inherent noisiness

of the available FAQs. There have been many works on mining FAQ from the Web; for

example, the authors in [87] propose extracting FAQ lists from web pages by identifying

HTML list constructs in web pages and the authors in [46] mine online forums for question-

answer pairs using sequential pattern features and graph-based ranking. Existing FAQ

mining works [14] focus on retrieving FAQ lists, and they neglect filtering out noisy question-

answer pairs.

Although the mere retrieval of large-scale FAQ lists is useful on its own, low utility

FAQ lists may provide incomplete or misleading information. Specifically, for question-

5
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Process HTML

  …… 
    <div class=“y”> 
        <p> “Q: Why do people consider  
using therapy?” 
          <strong> “A: Therapy is a 
partnership…” </strong> 
           </p> 
      </div> 
  ……

Why do people 
consider using 

therapy?

Therapy is a 
partnership 
between…

Does UW Health 
accept credit card?

We accept cash, 
checks, and…

What is the 
treatment?

Prescription 
medications for 

Covid-19…
What is a 

psychiatrist?
A psychiatrist is a 
medical doctor.

Why is therapy 
useful?

To help people 
understand…

Questions Answers

Embedding Layer

Active Learning

Prediction Layer

Why do people consider 
using therapy? general

Does UW Health accept 
credit card? specific

What is the treatment? general

What is a psychiatrist? general

Why is therapy useful? general

Concat

Search & 
Measure KL

Embedding Layer KL Score

Conv. Neural Network

Prediction Layer

Why do people consider 
using therapy? self

What is the treatment? incomplete

What is a psychiatrist? self

Why is therapy useful? self Sentence Encoder

Get Similarity

Multi Layer Perceptron

Why do people consider 
using therapy? ✓

What is a psychiatrist? ✓

Why is therapy useful? ✗

Final Output:

…

…

…

…
…

…

Figure 2.2: Overview of QuAX.

answer pairs to be useful to a wide audience, outside the Web site where the question is

hosted, the questions must be general and self-contained. General questions are those

whose utility is universal. For example, the question “What are the symptoms of COVID-

19?” asks for information that is universally applicable, and thus is of high utility. On the

the hand, questions such as “Is smoking allowed at the University of California?” appear

in contexts where users ask for information that pertain to a certain entity; such questions

have limited utility and thus should not be included in general-purpose FAQ lists (of course

this question is useful for students of the University of California, but our goal is to extract

questions with much wider scope). Self-contained questions are ones that are complete on

their own, in the sense that they do not contain references or ellipses. In contrast, questions

such as “How to control the symptoms of the disease?” require access to a larger context

than the question-answer pair to be useful; consequently, such questions should also be

discarded when building universal FAQ lists.
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It turns out that only a small percentage of FAQ on the web is general and self-

contained and thus are useful for general-purpose knowledge-bases (see statistics in Fig-

ure 2.1). Identifying these questions is challenging because they do not follow a specific

pattern; hence, using static rules to identify such questions is not feasible, and the lack of

high-utility labeled training data makes it difficult to train a classification model. Further-

more, if machine learning models are to be used, such models should be domain-oblivious.

A key requirement of QuAX is that no domain-specific training data should be required.

We propose QuAX: a framework for retrieving general and self-contained FAQ lists

from the Web for a given domain. Figure 2.2 shows an overview of QuAX, which receives

a list of keywords that describe a certain domain (e.g. COVID-19 or Plastic Surgery), and

works in six pipelined steps to produce a high-utility list of FAQ on the given domain as

follows. First, QuAX augments the given list of keywords to include extra terms that would

help retrieve comprehensive yet relevant FAQ pages. Then, the expanded list of keywords is

used to make a Google search to retrieve web pages with relevant information to the given

domain. The retrieved web pages are fed into our FAQ Page Detection module, which

first pre-processes the HTML content of the pages and then uses a CNN based classifier to

identify pages that contain FAQ lists. After that, our QA Extraction module uses HTML

tags to extract the actual question-answer pairs from the given FAQ pages. Our General vs.

Specific module filters out specific questions using a CNN classifier and an active learning

strategy to mitigate the scarcity of training data. Our Self-contained vs. Incomplete module

then filters out incomplete questions using a CNN classifier coupled with a KL-divergence

based feature generator. Finally, our Duplicate Detection module filters out redundant

7



questions using a multilayer perceptron. To train our classifiers, we propose a strategy to

collect and annotate reliable training examples.

We evaluate each module in our pipeline and compare its performance against that

of strong baselines and show that each of our individual modules outperforms the baselines.

Furthermore, we perform case studies with five domains: mental counseling, dental health,

plastic surgery, medical marijuana, and COVID-19. For each domain, we generate a set of

descriptive keywords and pass them through our pipeline, and we show that the resulting

FAQ lists are relevant, general, and self-contained.

In summary, we claim the following contributions in this chapter:

• We propose the first complete pipeline for retrieving comprehensive yet high-utility,

general and self-contained, FAQ lists.

• We collect and annotate training data for training the classifiers in our modules,

published on a public repository.

• We show that an active learning strategy and a KL-divergence based feature extraction

method help mitigate the scarcity of training data in our most critical modules (the

General vs. Specific, and Self-contained vs. Incomplete modules).

• We experimentally evaluate our pipeline and show that our resulting FAQ lists are of

high utility.
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2.2 QuAX System

In this section we describe each module of the QuAX pipeline shown in Figure 2.2.

2.2.1 Keyword Expansion Module

To extract high-utility FAQs, the mined web pages must contain question-answer

pairs that are relevant to the input keywords. Due to the high volume of content on the

web, selecting the right set of keywords can be challenging, this problem is known as search

keyword mining [163]. Using such keywords to search the web for relevant pages may result

in retrieving pages that may not contain question-answer pairs, or that are irrelevant to

the input keywords due to users not having deeper domain knowledge when selecting initial

keywords.

Existing works on keyword expansion [25] enable producing extra keywords that

can improve the relevance of the retrieved pages (such as retrieving relevant twitter posts).

However, such works do not particularly produce keyword expansions that result in re-

trieving pages with question-answer pairs. In our keyword expansion module, we extend

the work in [163] to produce keyword expansions that not only facilitate retrieving more

relevant pages but also contain question-answer pairs.

The authors in [163] present a keyword expansion algorithm that retrieves more

relevant twitter posts by using a double ranking approach. However, it does not take into

consideration the type of content extracted (i.e. faqs). We extend their work as follows:

First, it retrieves web pages using the domain input keywords and ranks the words in the

first k retrieved pages based on their entropy. Then, our module uses the l top-ranking
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words in the resulting vocabulary to do another search. The words in the newly retrieved

paged are ranked again based on their entropy and the the l top-ranking ones in the re-

ranked list are returned as keywords expansions. We repeat these steps for the word ”faq”

separately and concatenate the resulting words with the initial result. The system may

return very common words (e.g., the and of ) from the English vocabulary. To mitigate

this, similarly to [163], we use a Random Words Set (RS), consisting of 400k words, where

the words are taken from 300 random Wikipedia articles. If any word appears frequently

in the random set, it gets a lower entropy score. We use the following formula to compute

entropy:

ew = −
∑
s

f s(w) + λ∑
sf s(w) + |S|λ

log2
f s(w) + λ∑
sf s(w) + |S|λ

, (2.1)

where s ∈ S = {SS, RS}, SS being the Snippets Set (Snippets returned from searching

Google), RS being Random Set. λ and —S— are smoothing parameters in case any word

does not appear in any snippet. They are set to 0.005. Snippet frequency (how many times

a word appears in a snippet) is denoted by f(w).

2.2.2 FAQ Page Detection Module

Since most modern web pages are dynamic, their complex DOM structure makes

classification and information extraction challenging. To overcome this, our FAQ Page

Detection Module first converts dynamic pages into static ones by flattening interactive

elements in a page into a single-layer DOM tree using the boiler-pipe APIs 2 article extractor.

Our module then uses a Convolutional Neural Network (CNN) model with HTML pre-

processing to classify the resulting static HTML pages into FAQ or NOT-FAQ pages. We

2https://boilerpipe-web.appspot.com/
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chose a CNN due to their reported success in text classification tasks [81] and having the

best performance among baseline deep learning techniques. First, our module pre-processes

input HTML pages such that HTML tags which do not usually contain question answer

pairs are replaced with uniform labels (For example, <div> and <a> are replaced with

TAG1) and tags which contain the question answer strings (<h1-4>, <p>) are replaced with

TAG2, and questions marks are replaced with the tag QUESTION MARK. As we we show in

our experimental evaluation, this pre-processing results in improved classification accuracy.

Given the pre-processed pages, our model generates an embedding for each word in an

input HTML page using a pre-trained word2vec [110] and then combines these embeddings

into a feature matrix. Our embedding layer is connected to 5 parallel one dimensional

convolutional layers with a filter size of 200 and ReLU activation. We use a global max

pooling layer to reduce the size of the feature map and a Sigmoid activation function (to

accommodate our classification task) at our last dense layer.

We train our model using training data generated as follows. To generate positive

examples, we use the Google search results for keywords from different domains concate-

nated with the word ‘FAQ’ and use the first 25 pages. We generate negative examples

similarly but with without adding the ‘FAQ’ keyword. We train our model using the Adam

optimizer with binary cross-entropy loss function.

2.2.3 QA Extract Module

Although there are tools for extracting question-answer pairs from FAQ pages,

some of these tools are proprietary [14] and the others require lots of labeled training
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Algorithm 1 QA Extractor

Ensure: UQA: Unclassified QA Pairs

1: for each website w ∈ FW do

2: Dw ← ExtractHTML(w) {Extract DOM structure of web page}

3: if Check1Catg(Dw) is true {Web page falls into category 1} then

4: for each element e ∈ Dw do

5: if element e ∈ {h1, h2, h3, h4} then

6: NHe ← ExtractNextElement(e) {Parse next element in DOM tree}

7: if NHe ∈ {p, div} and length(e) > min Qlength and length(NHe >

min Alength) then

8: Q← Q
⋃

Text(e), A← A
⋃

Text(NHe)

9: else

10: if Check2Catg(Dw) is true {Web page falls into category 2} then

11: Repeat 5-10 for <p> or <div> pair

12: else

13: for each element e ∈ Dw do

14: Ce ← GetAllChildElements(e)

15: for each child element c ∈ Ce do

16: if e ∈ {p, div} and c ∈ {strong, br, a} then

17: Q← Q
⋃

Text(e), A← A
⋃

Text(c)

18: UQA← UQA
⋃
{Q,A}

19: return UQA
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data [75]. Therefore, we built our own algorithm for this task. Our question-answer ex-

traction module is based on Algorithm 1. Our algorithm utilizes the HTML tree structure

of pages; the main insight is that question-answer pairs are usually nested within certain

HTML tags such as <h>, <p>, and <div>.

Algorithm 1 receives a list of FAQ pages as input, and it produces a list of question-

answer pairs. For each page, Algorithm 1 works as follows.

Variable Q and A stores questions and answers extracted from the webpage (line

1). We extract the HTML tree of the webpage using Jsoup and store in Dw (line 3). The

HTML is cleaned using boiler-pipe. Each static cleaned FAQ webpage is usually divided

into following three categories. 1) The questions are in <h> tag and answers are in either

<p> or <div>. 2) Questions and answers are in different <p> or <div>. 3) Questions and

answers are both in same <p> or <div>. Line 4 checks whether the webpage falls in category

1. If yes, then Line 5-8 checks each element in HTML tree, if its a <h> tag then it looks

at the next element of tree (line 7). If the next element is a <p> or <div> and the text

length of the tag is greater than certain threshold, we add the textual content of the tags

in corresponding Q and A (line 9-10). The intuition being, if a question resides in a <h>

block, the subsequent block should contain textual contain which may be considered as the

answer to that question.

If the webpage falls in category 2 (line 12), which means the question does not reside in

<h> block, then we repeat the same process as before for <p> and <div>. The extraction

process becomes trickier when both the question and answer is situated under the same tag.

Usually the question is separated from the answer using tags like <strong>, <br> etc. So
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we check all the child elements (line 18) and if child element contains <br> or <strong> we

put the textual content of parent tag in Q and content of child tag in A.

2.2.4 General vs. Specific Classification

This module identifies general questions given a list of question-answer pairs that

include both general and specific questions. Although this is a straightforward binary text

classification task, the scarcity of training data makes it challenging. Furthermore, the train-

ing data for such a text classifier shall be domain-oblivious for the module to accommodate

any domain. We mitigate the training data scarcity issue using active-learning [16,22, 170]

and we select our training data carefully in such a way that our active-learning classifier

is kept domain-oblivious. We describe our active-learning classifier followed by our data

collection methodology in the rest of this section.

Active-learning has shown good results in text classification tasks where training

data is scarce [16,22]. It is a form of semi-supervised learning that uses self-learning feature.

This technique first learns from a standard automated labeled training data then continues

to learn labels from domain specific unlabeled data that it infers with high confidence. The

predicted unlabeled instances with high confidence are added to the standard model and are

re-trained. The intuition is that such labels resemble human-labeled data and thus allow

the classifier to provide better predictions for data points whose inferred labels’ confidence

is not conclusive. We select the training data points among the unlabeled instances using

uncertainty sampling using modAL framework [52]. This sampling technique uses the pos-

terior probabilities of the resulting labels produced by a model θ to select the labels with the
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Table 2.1: QuAX datasets summary

Module Num. of examples Avg. tokens/instance Description

FAQ Page detection* 250 websites 1,862 HTML of webpages

General vs. Specific* 19,442 sentences 16 Mayo Clinic & Twitter

Self-cont. vs. Incomplete* 1,002 questions 8 FAQ from the web

Duplicate Detection† 404,291 question pairs 23 Labeled question pairs

*Original datasets; Available at: https://github.com/shihabrashid-ucr/quax-dataset

†Available at: www.kaggle.com/c/quora-question-pairs.

highest levels of confidence. We use the equation below to calculate posterior probabilities:

ϕLC(x) = argmax
x

(1− P θ(ŷ|x)) (2.2)

where x is the instance to be predicted and ŷ is the most likely prediction.

To train our base model in this module, we collect training sentences that are

general (i.e., have few instances of ellipsis and co-reference). We collect such data by

extracting random sentences from Mayoclinic articles 3. We collect Specific sentences by

selecting responses to specific user issues from Twitter customer support dataset 4. Such

sentences are specific because they address issues that pertain to specific entities.

2.2.5 Self-contained vs. Incomplete Classification

Given a list of general questions, this module extracts the ones that are self-

contained. We use a CNN classifier and we propose a novel multi-feature extraction method

with KL that is designed to improve our classifier’s ability to distinguish self-contained

3https://www.mayoclinic.org/
4https://www.kaggle.com/thoughtvector/customer-support-on-twitter
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questions. We use the intuition that self-contained questions (i.e., “Can I get COVID-19

from my pets?”) can be answered without knowing any context, which means that the

answers to such questions have a high degree of similarity. We retrieve answers to a given

question using the Google search engine: we issue the question as a query and consider

the first ten snippets as answers, given that these typically provide direct or closely related

answers. We quantify the similarity across answers by calculating the Kullback-Leibler

divergence score [85] (KL) using the following equation:

DKL(P ||Q) = −
∑
x∈χ

P (x)log(
Q(x)

P (x)
), (2.3)

where P and Q are defined over the same probability space χ.

KL divergence is a statistic used to measure the similarity between two probability

distributions and it is typically used in information retrieval to measure similarity across

documents. Here, the probability space χ represents all words occurring in the union of

two lists of snippets. We use term frequencies of each word to calculate the probability of

a word (P (x)) given a snippet. We compute the average pair-wise KL divergence score for

the snippets that answer a question and pass the floating point KL score to our classifier as

a feature in addition to the word embeddings of the input query. We train our model using

manually labeled datasets from five domains. We labeled 200 questions from each domain,

resulting in a total of 1000 training examples. While training, we do not use instances from

the same domain (i.e. we use 800 examples for training for a particular domain). We use

domain-specific data in inference time, ensuring fairness and domain independence.
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2.2.6 Duplicate Detection

Questions such as “What is rhinoplasty?” and “How do you define rhinoplasty?”

are equivalent despite being expressed differently. To produce a higher utility list of

question-answer pairs, we eliminate duplicate questions, where duplicates include questions

that are semantically very similar. Since we need to identify semantically similar questions

even if they have a large string-based distance, record linkage [57] and other string-based

methods are inadequate. Instead, we build a similarity classifier which we train using a

question similarity dataset from a Kaggle duplicate detection competition (dataset details

are in Section 3.4). We use the Google universal sentence encoder to encode our questions

before passing them to a sequential multi layer neural network. The input to the neural

network model are question pairs, which are put through Google sentence embedder of di-

mension 512. The encodings are concatenated and batch normalized to avoid overfitting.

ReLU activation function and ”adam” optimizer are used. For each pair of questions, the

output is a binary 0 or 1 which indicates whether the pair is a duplicate or not.

2.3 Experimental Evaluation

We evaluated our framework on five domains in the healthcare area: mental coun-

seling, dental health, plastic surgery, medical marijuana, and COVID-19. We start with

simple keywords that describe each respective domain (i.e., the domain name succeeded by

the word “faq”), for example “mental counseling faq”, and obtain a list of FAQs using our

framework. Along the way, we evaluate each component independently. We present our

experimental results in the subsequent sections and show that our framework produces a
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list of high-utility FAQs (i.e., general and self-contained question-answer pairs) and that its

modules provide more accurate results than strong baselines that could have been used in

our modules’ place. Since the training data and the evaluation metrics for each module are

different, we present these in each respective subsection.

Datasets. To fully automate high-utility FAQ extraction and tackle the training data

scarcity in the context of our trainable modules, we have created three training datasets for

the modules FAQ page detection, General vs. Specific classification, and Self-contained vs.

Incomplete classification, respectively. For the rest of our trainable modules, we have used

publicly available datasets. Table 2.1 summarizes the datasets we used to train and evaluate

our trainable modules. All examples in the datasets of the FAQ Page Detection and Self-

contained vs. Incomplete modules are labeled manually by annotators. For the General

vs. Specific dataset, the examples are automatically labeled. The original datasets we have

collected and annotated can facilitate further research on high-utility FAQ extraction; we

explain the procedure of collecting our original datasets in each respective subsection.

2.3.1 Keyword Expansion

Competitors. We compare our module to a simple baseline where we use the

input keywords as is, and we also compare it against Double Rank [163] where the authors

presented a re-ranking algorithm of keywords expansion based on entropy.

Evaluation Methodology. We use Precision, which is a standard evaluation

metric in Information Retrieval, to evaluate our keyword expansion module. Precision is
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computed by dividing the total number of ”correct” webpages returned by searching Google

using the keywords by the total number of webpages returned.

We first search Google with expanded keywords and take into consideration the

top 50 returned results from Google. If any returned webpage is a FAQ page and is on

topic then it is a correct result. By ”on-topic” we mean that the content of the webpage

is related to the domain. We produce ground truth by manually evaluating whether each

webpage is precise or not. Similarly to [163], for the values of k and l, we used 10 and 8,

respectively.

Results. We present our results in Table 2.2. In the final column we show results

of our module. We see that, in most cases, our method performs better than the baseline

(Without Keyword Expansion (KE)) and Double Ranking (DR). Only for dental health,

our system performs worse than both the baseline and Double Ranking. For this domain,

the expanded keywords are ”dental health hygiene teeth gums decay”. We see that some

of the keywords here are general and apply to many different domains related to healthcare

like ”hygiene” and ”decay”. Because of this, some of the returned results were articles

regarding hygiene and not FAQ pages. Overall our updated algorithm performs better than

both baseline and Double Ranking ; our module achieves 17% higher precision on average.

2.3.2 FAQ Page Detection

Competitors. We show the performance of many deep learning-based classifiers

including RNN [111], LSTM [67], BiLSTM [176], and Self-BiLSTM [179].
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Table 2.2: Keywords precision

Domain Without KE DR Updated DR

Mental Counseling 0.7000 0.7200 0.8000

Dental Health 0.8200 0.8600 0.7800

Plastic Surgery 0.8400 0.8000 0.9600

Medical Marijuana 0.6400 0.8400 0.7800

Covid 19 0.5200 0.6800 0.7800

Average 0.7000 0.7800 0.8200

Evaluation Methodology. For each domain, the test set includes the top 25

returned FAQ websites and the top 25 returned not-FAQ websites by searching Google

with the expanded keywords. The training set is our proposed dataset which includes 250

labeled HTML pages. While training for a domain, the data points from that domain are

omitted for fair results. We use accuracy and F1 scores in this evaluation.

Results. We see in Table 2.3 that CNN provides significantly better performance

than the rest of the classifiers. The textual content of an HTML page is complex and large;

therefore, convolutional networks can take the best advantage of such complex structure.

We also see from Table 2.4 that our method achieves an average increase of 5% in accuracy

and 6% increase in F1 scores.

2.3.3 QA Extraction

To evaluate this module, we collected 100 different FAQ websites using Google

search and fed them to our algorithm to see whether it is able to extract QA pairs. The 100
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Table 2.3: FAQ page detection accuracy (baselines)

Domain Base (CNN) Base (RNN) Base (LSTM) Base (BiLSTM) Base (SelfBiLSTM)

MC 0.8400 0.6400 0.6200 0.6200 0.6200

DH 0.8800 0.6200 0.5800 0.6000 0.6400

PS 0.8400 0.6000 0.5800 0.5800 0.6200

MM 0.8800 0.6600 0.6000 0.6000 0.6000

CO 0.8600 0.6000 0.5800 0.6200 0.6000

Average 0.8600 0.6240 0.5920 0.6040 0.6160

web pages were taken from a mixture of the domains. Our algorithm was able to successfully

extract 71 webpages out of 100.

2.3.4 General vs. Specific Classification

Competitors. We show the results for several deep learning based text classifiers

(Table 2.5) and then show the effect of integrating our active learning approach in Table 2.6.

Evaluation Methodology. We use our 19,000 training data points to train

our classifier in this module. For general training data set, we need textual content that

are general in nature, meaning there are less number of ellipsis and co-reference and free

from context. We propose Mayoclinic websites articles as the source for our training data

for class: general. We extract 9,325 random sentences from articles chosen at random

about different diseases, medicines from their website and label them as ”general”. Our

training datasets are domain independent due to the nature of the sentences being used as

data points. Finding ”specific” sentences was challenging because most documents on the

web focus on general textual content. We chose the Twitter customer support dataset from
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Table 2.4: FAQ page detection comparison

Domain
CNN QuAX Page Detector

Accuracy F1 Accuracy F1

MC 0.8400 0.8400 0.9000 0.8900

DH 0.8800 0.8650 0.9400 0.9350

PS 0.8400 0.8350 0.8600 0.8500

MM 0.8800 0.8700 0.9200 0.9150

CO 0.8600 0.8500 0.9200 0.9150

Average 0.8600 0.8500 0.9080 0.9010

Kaggle and extracted the tweets sent by customer service agents of any specific organization

and users filing any complaint. We took 10,117 tweets and labeled them as specific. We use

an embedding layer which uses word2vec and projects each sentence into 300 dimensional

vector. We test the model with our extracted QA pairs. We concatenate a question and its

corresponding answer into one string and then test.

Results. We see from Table 2.6 that our active learning approach improves the

performance of CNN (the best performing classifier). The main reason is that, in baseline,

the training dataset does not hold too much information. Because the data points were

automatically extracted and labeled, not all labeled data points can be accurate. Using a

semi-supervised approach like active-learning mimics human-labeled data and thus produces

better results. We observed better results if questions and answers are merged into a single

strings (each pair). Our test set contains around 200 question-answer pairs for each domain.
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Table 2.5: General vs. Specific classification accuracy (baselines)

Domain Base (CNN) Base (RNN) Base (LSTM) Base (BiLSTM) Base (SelfBiLSTM)

MC 0.6670 0.6150 0.5567 0.5690 0.6280

DH 0.7343 0.6640 0.6610 0.6754 0.6670

PS 0.7230 0.6410 0.5830 0.5830 0.6230

MM 0.6338 0.5778 0.5319 0.5322 0.5715

CO 0.7215 0.6730 0.6020 0.6410 0.6678

Average 0.6959 0.6341 0.5869 0.6001 0.6314

2.3.5 Self-contained vs. Incomplete Classification

Competitors. We use supervised deep learning approaches as baselines and show

their results in Table 2.7. We pick the best performing method and integrate our KL method

to show its efficacy.

Evaluation Methodology. We use our proposed training dataset of 1000 man-

ually labeled questions. To ensure fairness, while training for a domain, we do not include

data points from that domain. This shows, our method is domain oblivious. For testing,

we used ∼150 questions from each domain with equal class sizes.

Results. As seen from table 2.8, integrating our KL method into the best per-

forming classifier CNN improves its performance across all domains. Note that even the

best performing classifier struggles to achieve impressive accuracies and F1 scores because

of the limited amount of training data used. However, our contribution shows that using a

multi-feature approach can improve the performance of strong baselines while being domain

independent.
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Table 2.6: General vs. Specific classification comparison

Domain
CNN Active Learning + CNN

Accuracy F1 Accuracy F1

MC 0.6670 0.6560 0.7118 0.7008

DH 0.7343 0.7128 0.7656 0.7474

PS 0.7230 0.7210 0.7830 0.7800

MM 0.6338 0.6042 0.7042 0.6913

CO 0.7215 0.6823 0.7974 0.7567

Average 0.6959 0.6752 0.7524 0.7352

2.3.6 Duplicate Detection

For duplicate detection, we use the 400,000 quora QA pairs dataset to train. Our

duplicate detection module shows 80% accuracy while testing on with Quora dataset.

2.3.7 Entire Framework Evaluation

We present in this subsection the average precision and average recall for our end-

to-end pipeline. To calculate precision for each domain, we divide the number of general

and self-contained questions by the total number of QA pairs generated by the system. To

calculate recall for each domain, we divide the total count of general and self-contained

questions generated by duplicate detection module by the number of all general and self-

contained questions generated by QA extraction module. Our system achieves an average

precision of 78.6% and an average recall of 60.20%. Note that, the goal of a high utility FAQ

extractor should be to not generate false positives. However, missing out on some FAQs,

which results in a relatively low recall, should not be an issue considering huge number
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Table 2.7: Self-contained vs. Incomplete classification accuracy (baselines)

Domain Base (CNN) Base (RNN) Base (LSTM) Base (BiLSTM) Base (SelfBiLSTM)

MC 0.6500 0.5400 0.6000 0.5600 0.5900

DH 0.6230 0.6385 0.5901 0.5081 0.4918

PS 0.5990 0.5990 0.5545 0.6000 0.5545

MM 0.6640 0.6150 0.5983 0.5664 0.5664

CO 0.5324 0.5040 0.4748 0.5100 0.5539

Average 0.6136 0.5793 0.5635 0.5489 0.5513

of FAQ websites on the Web. These results show that our framework manages to obtain

reasonable percentage of high-utility question-answer pairs despite training data scarcity.

2.3.8 Case Studies

We present in this subsection statistics and qualitative analysis of the results of

our framework in the domains we have selected, and we further discuss a sample from the

results in the mental counseling and the COVID-19 domains. Table 2.9 shows the counts

of the results of each module in our framework. We used the top 100 results from Google

and pushed them through our framework. We chose 100 results because Google API has a

limit of 100 results per request. From this table we can make the following observations:

• The total number of general questions is low compared to the total number of QAs

on the web. This shows the importance of classification of general questions to build

knowledge base. It is not enough to extract QAs and use them as knowledge bases.
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Table 2.8: Self-contained vs. Incomplete classification comparison

Domain
CNN KL + CNN

Accuracy F1 Accuracy F1

MC 0.6500 0.6485 0.6853 0.6746

DH 0.6230 0.6012 0.6400 0.6370

PS 0.5990 0.5920 0.6363 0.6300

MM 0.6640 0.6520 0.6923 0.6811

CO 0.5325 0.5240 0.5600 0.5410

Average 0.6137 0.6035 0.6427 0.6327

Table 2.9: Performance of QuAX

Domain No FAQ Total QA GQ Detected SC Detected w/o Duplicates % of High-utility Qstns.

MC 83 776 363 223 219 70

DH 94 559 446 256 251 88

PS 92 783 518 284 277 79

MM 91 617 327 127 127 82

CO 82 855 679 285 282 74

• In each module, low-utility question-answer pairs are filtered out incrementally until

reaching the last step where a list of high-utility question-answer pairs are produced.

• For the COVID-19 domain, the number of general questions detected is very high.

This is because, most questions regarding COVID-19 are general as this is a recent

topic. There are not as many individual organizations that have FAQs about COVID-

19 compared to other domains.
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Table 2.10: Top 10 Extracted Questions

Domain Questions

Mental

Counseling

Why do people consider using therapy?

For what concerns do students seek personal counseling?

What are the different types of mental health professionals?

How long are therapy sessions themselves?

What is psychotherapy?

What behavioral health concerns does UW Health treat?

How does a student know if s/he needs counseling?

What are the Benefits of Telemental Health?

What is the purpose of this website?

What is genetic counseling?

Covid 19

How can you tell the difference between the novel coronavirus and a cold?

What are the symptoms in children?

What is social distancing?

What does it mean that covid-19 is a global pandemic?

What is the state recommending for social distancing?

When are you open for vaccines?

What are the treatments for covid-19?

What is quarantine?

I have been around someone else who was exposed to a person with covid-19. What should I do?

Does health insurance cover covid-19 testing and care?

Table 2.10 shows examples of the generated questions for the mental counseling and the

COVID-19 domains. From Table 2.10, in the mental counseling domain, we see that there

are some questions that are not properly classified. For example, Question 6 ”What behav-

ioral health concerns does UW health treat?”. Although this is a self-contained question,

it talks about information regarding University of Washingtons health system. This is a

specific question but this type of question is difficult for the system to detect. The training
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dataset does not have information regarding ”UW” being a specific organization and thus

it mistakenly classifies it to be a general word. We also see that Question 9 ”What is the

purpose of this website?” is not a self-contained question. This question can be general de-

pending on what ”this website” refers to. If this co-reference is resolved, it will be counted as

a self-contained question. There are some ambiguous questions which can be self-contained

and incomplete simultaneously. For example, Question 4 ”How long are therapy sessions

themselves?” can be a self-contained question if we consider therapy in general. It can also

be an incomplete question because the user does not know which organization’s therapy

session is this question talking about. Ambiguous questions are also harder to detect but

they do not affect the performance of our framework.

Table 2.10 also lists questions from the COVID-19 domain. We see questions

like “What are the symptoms in children?” and “When are you open for vaccines?”. We

know that these questions are asking about COVID-19 because the context is known to us.

However, these sentences themselves are not self-contained. If the sentence was “What are

the symptoms in children for COVID-19?”, it would have been a self-contained question.

Finally, consider Question 9, where we see a question with a given context. In FAQs,

questions with context play an important role and our module was able to extract and

correctly classify these.

2.4 Related Work

The authors in [115] propose a pipeline for producing FAQ by crawling the web.

Although the mentioned work addresses the same problem, the proposed approach is a semi-

28



automated way that integrates users’ feedback and usage mining to improve FAQ lists,

whereas our framework is completely automated. Many works use FAQ lists/knowledge

base/files for the classic task of question answering [66,151]. The authors in [65] proposed a

system where a query matches a FAQ file first and then the answer to the query is matched

with one of the FAQ from that file. The authors in [34] identify missing topics in a FAQ

webpage of an enterprise and suggest additional FAQ by searching the web. Although this

work extracts ranked FAQ for an enterprise, it does not address the task of extracting general

and self-contained question-answer pairs. This work only suggests additional questions

instead of extracting every FAQ and it does not classify the question-answer pairs to be

high utility (general or self-contained). Both specific and incomplete questions are extracted

and suggested. The authors in [75] search the whole web to extract FAQ and then answer

users’ questions by retrieving the appropriate question-answer pairs. Their task is at the

intersection of question answering and FAQ retrieval which is similar to [64, 114]. In their

FAQ retrieval task, they rely on Google search’s ”intitle:faq” which is ineffective compared to

our respective module because it misses pages which do not have ”FAQ” in title. The tasks

of question generation [100, 147] where questions are generated from an input passage and

question answering with FAQ retrieval [78, 105, 144] where appropriate FAQ are retrieved

from a knowledge base of FAQ both resemble our problem but differ in various ways. The

authors in [144] argue that the number of QA pairs in a FAQ page is not enough and they

leverage this issue by using a FAQ list.

We cover next the existing work that is relevant to each individual module in our

framework. For Module 1, the authors in [163] propose a similar algorithm to ours; however,
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their algorithm deals with Twitter data only. Keyword identification from unstructured text

is a common task [25,82] but while searching using retrieved keywords, they do not consider

a specific type of results (e.g., FAQ) to be returned. In our work, the retrieved results are

question-answer pairs. Module 2 focuses on a particular website detection but, to the

best of our knowledge, most existing research has been on malicious or phishing website

detection [15,95]. A work that is relevant to Module 3 is QnA Maker by Microsoft that does

similar task; however, this work is proprietary. In [46], the authors extract question and

answers from online forums. They address the problem of finding QAs from unstructured

content. They extract every kind of QA not only high utility. In [87], the authors present

a list detection algorithm to detect FAQ questions inside a webpage. The limitation of

this work is that the system would require some domain knowledge to differentiate between

FAQ lists and undesirable lists such as product categories. Although Module 4’s task sounds

like it falls under the classical problem of Question Classification [112] (i.e. classifying a

question into factoid, hypothetical, etc.), it is very much different. In this work, we focus

on classifying a frequently asked question into two categories: general and specific. There

has been a profusion of research on text classification, from starting with bag of words to

very deep convolutional networks [47, 77, 177]. Deep learning has also been used in other

NLP tasks such as paraphrasing [150], slot filling [148], and intent detection [149]. Active

Learning has been used in scenarios where labeled data are scarce [16, 22, 170]. We are

tackling a completely new domain where the class labels for classifications are new and

there is no available training data. Even though KL is a popular statistic as an input for

classification problems [36], it has yet to be used as a feature.
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2.5 Conclusions

We have presented a framework for extracting high-utility (i.e., general and self-

contained) questions from the Web. Our framework works in a modular fashion to produce

a final list of question-answer pairs. Within each module, we show that existing machine

learning models are insufficient, either because they assume that large training datasets

are available or because training data for each task is not available altogether. Wherever

needed, we collect and annotate datasets to train our models within each module. We

present extensive experimental evaluation results that show that our models within each

module perform better than strong baselines, and we show that our framework indeed

produces general and self-contained questions.
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Chapter 3

Non-uniform History Modeling for

Open Retrieval Conversational

Question Answering

3.1 Introduction

Conversational Question Answering (CoQA) has recently attracted a lot of atten-

tion due to the widespread adoption of voice assistant platforms such as Siri, Alexa, and

Google Assistant, and the advances in deep learning [39, 137, 174]. Given a text passage

and a conversation, the goal of CoQA is to extract the answer to the last question of the

conversation from the passage.

CoQA is an extension to Question Answering (QA) where the input is just one

question instead of a conversation [86, 132, 159]. However, in practice users do not provide
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an input passage when performing QA or CoQA. This led to the newer problems of Open

Retrieval QA (ORQA) [21, 45, 55] and Open Retrieval Conversational Question Answering

(OrConvQA) [127], where the input is a whole document collection.

State-of-the-art works on OrConvQA (also for ORQA) employ a pipeline of three

modules [58,126,127].

The first one is a Retriever, which retrieves a set of relevant passages from the

collection. Both term-based (TFIDF/BM25) and embedding-based approaches may be

used by the Retriever. A Reranker module then re-ranks the already retrieved documents

to better match the question, and finally, a Reader module extracts an answer span from the

re-ranked documents. Recent advances in transformers have produced pre-trained models

like BERT which are highly effective in reader tasks [54].

A key challenge in CoQA and OrConvQA is that the final user question may have

co-references or ellipses, that is, some terms may refer to terms in the past conversation,

while other useful contexts may be missing from the question. Further, previous (historic)

turns of the conversation may add valuable context to the question being asked. Clearly,

some of the past turns may be more useful than others as context for the last question.

Blindly adding all turns may lead to a noisy history model. Including all turns may also be

infeasible for some models like BERT, which can only support 512 tokens as the query and

passage.

Previous CoQA works propose different approaches to model the conversational

history: some append all history turns to the final query making it a one big query and use

it to retrieve the answer [39,137], or use a backtracking algorithm which selects/disregards
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Who did he star with? 
(LQR: Who did Bing
Crosby star with?) 

q0: What motion pictures
did Bing Crosby star in?

q1: Did he win any awards?

q2: What were the titles for
the seven road to musical

comedies?

q3: What year did Road to
Hong Kong release?

Not every star was available... Bing
Crosby, for example, was not able to

join including Karin Booth...

Neil Patrick Harris, star of popular
TV show said in an interview....

... 

Retriever ReaderConversation History

...director Norman Panama's
Road to Hong Kong (1962)...series

of seven films.. starring Bob Hope.... 
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Figure 3.1: Example of the impact of non-uniform conversational history modeling. Full

Conversational Context (FC) retrieves the most relevant passages in the Retriever module,

while a narrower context, Last Question Rewrite (LQR) predicts the correct answer span

in the Reader module.

a particular history turn using deep reinforcement learning [125], or rewrite the final query

using the context of the whole conversation [109,152,158].

Previous OrConvQA works either use the previous 6 turns [126, 127] or all turns

with predicted answers [58] as context.

Despite the different history modeling approaches of these previous works, they

all use the same history model for all three modules of the pipeline. We hypothesize that

this is suboptimal. Specifically, our hypothesis is that as we move towards the right of

the Retriever→Reranker→Reader pipeline and the number of the input passages (or doc-

uments) decreases, the history context should become shorter and more focused. That is,

the Retriever should have access to broader context to not miss any relevant documents,

whereas the Reader should have little context to help it identify the exact text span that

answers the user question.
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For example, in Figure 3.1 we see that modeling the history with Full Conversa-

tional Context (FC) returns the most relevant passage (top one) which has all the necessary

information needed to answer the query such as movie name Hong Kong, director’s name

Norman Panama, and co-star’s name Bob Hope. In contrast, narrower context – Last Ques-

tion Rewrite (LQR) or No Context (NC) – returns suboptimal passages that do not contain

the answer. Specifically, LQR returns a passage related to the topic of the conversation

(Bing Crosby) but does not contain movie information which is an important context found

in the history, and NC returns a passage that does not contain any relevant information.

Once documents are retrieved, additional context (FC) may act as noise for the Reader

module, whereas more focused context (LQR) is able to extract the right span. FC returns

the wrong answer (Norman Panama) as it gets confused and associates movie name from

the context Road to Hong Kong to a person’s name Norman Panama. As LQR focuses on

starring and Bing Crosby, it identifies the correct answer.

In addition to using the same context, the state-of-the-art pipelines [58, 126, 127]

and history modeling approaches [109,125,158] depend fully on training data to fine-tune the

Retriever, Reranker, and Reader modules. Finding quality training data for various domains

of OrConvQA datasets is challenging. Ideally, a pipeline should be domain-agnostic and

use appropriate history modeling to capture the context. In this chapter, we contribute

in three ways towards solving the OrConvQA problems: (a) we propose NORMY1, the

first unsupervised solution pipeline, (b) we build and publish a new dataset, and (c) we

implement and experimentally compare various state-of-the-art history modeling algorithms

for each of the three modules of the Retriever→Reranker→Reader pipeline.

1Non-UnifORM HistorY Modeling
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Table 3.1: Comparison of selected tasks and datasets on the dimensions of Question An-

swering(QA), Open Retrieval(OR), Conversational (Conv), History Modeling (HM) and

Non-uniform History Modeling (NHM)

Task/Dataset QA OR Conv HM NHM

NQ [86], SQuAD [132] ✓ ✗ ✗ ✗ ✗

TriviaQA [76],

MSMarco [21],DrQA [35] ✓ ✓ ✗ ✗ ✗

CoQA [137],

QuAC [39],ShARC [143] ✓ ✗ ✓ ✗ ✗

HAE [128], RL [125], RW [158] ✓ ✗ ✓ ✓ ✗

OrConvQA [127], d2d [60] ✓ ✓ ✓ ✗ ✗

NORMY[ours] ✓ ✓ ✓ ✓ ✓

Our proposed system, NORMY, uses a non-uniform history context for the three

pipeline modules.

We also propose a novel history modeling algorithm for the Retriever module that

produces improved results over state-of-the-art baselines. Unlike previous approaches where

the passages retrieved in previous turns are discarded, our Retriever algorithm considers past

passages as candidates and proposes a ranking function that combines turn-based decay with

context-based reranking of each passage. This ensures we do not miss an important passage

due to noise being added in later turns. Table 3.1 summarizes the related work landscape,

where we see that none of the previous work addresses all aspects of the problem. Only

NORMY is question answering, open retrieval, conversational, performs history modeling.
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Figure 3.2: The architecture of NORMY. The input is the current question qn, all history

questions qn−1
i , and the document collection D. The Retriever module models the history

using keyphrase extraction per history turn and retrieves passages P0 · · ·Pk using BM25.

Our novel History Aware Decay Scoring module refines all returned passages and outputs

top-k. The Reranker reranks the passages using most recent w turns and Reader uses coref-

erence resolution to rewrite the last query qn and outputs the best answer span combining

all three modules’ scores.

We evaluate our individual modules and the overall pipeline using three varied

datasets. First, we use the ORQUAC dataset [127], which is an extension of the CoQA

dataset [137]. A drawback of this dataset is that it does not portray natural dialogue

conversation, as the chat is limited to asking questions and getting answers. Thus, we

selected the doc2dial [60] dataset for additional evaluation. However, this dataset is not

created for the open retrieval conversational QA task as there are only a small number of

documents as a corpus and the focus was to generate natural language answers and not

text spans. For that, we created an updated doc2dial dataset, which we call doc2dial-Or.

Third, we conduct experiments on ConvMix [40], where the corpus includes single-sentence

37



passages and the history turns contain fewer co-references than previous datasets mentioned.

NORMY outperforms the state-of-the-art in all three datasets.

In summary, we make the following contributions in this chapter:

• We identify the problem of uniform history modeling in conversational QA and propose

the first end-to-end pipeline for OrConvQA that uses non-uniform history modeling.

• We propose NORMY, a new unsupervised non-uniform universal history modeling

pipeline. NORMY employs a novel history modeling approach for the Retriever mod-

ule, which builds on keyphrase extraction principles, and leverages returned passages

from previous history turns.

• We perform an extensive comparison and analysis of various history modeling tech-

niques for each module of the pipeline, on three diverse and structurally different

datasets, and show that using the same modeling is suboptimal.

• We expand the doc2dial dataset for the OrConvQA task and make our full source

code and dataset available to the community 2.

3.2 Problem Definition and Overview of NORMY

Problem Definition. The input to the OrConvQA problem is a question qn, the

conversational history C = q0, · · · , qn−1, and a document collection D. As in previous work,

the history does not contain the answers to the questions, we also assume no access to the

ground truth answers [127]. The output is an answer span an, extracted from one of the

documents in D, which best answers qn. The solution pipeline is shown in Figure 3.2.

2https://github.com/shihabrashid-ucr/normy
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There are two key decisions we have to make for each module. First, pick what

algorithm to employ (e.g. BM25 [140] or BERT [54] and so on) and with what param-

eters. Second, define what conversational context C to input to the algorithm. In this

work, we employ the state-of-the-art algorithm for each module and focus on the choice of

conversational context for each module.

Overview of NORMY. NORMY, as shown in Figure 3.2, generates a different

model of the conversational history for each module of the pipeline. Given the Retriever’s

history model discussed below and the collection, the Retriever selects the top k passages

using BM25. Then, using a history of the last w turns, the Reranker reranks the k passages

using transformer-based similarity measures. Finally, the transformer-based Reader module

models the history by rewriting the final query into a self-contained query, using coreference

resolution, to find the best answer span. The answer span with the highest combined score

from all three modules is the final answer. Note that our whole system is designed in an

unsupervised fashion. There is no training data needed.

3.3 Modules of NORMY

3.3.1 Retriever

The Retriever module retrieves the k most relevant passages from a document

collection D, given a query qn and context C. We considered two types of search algorithms:

classic Information Retrieval BM25-style ranking methods, and dense retriever methods.

Although dense retriever approaches like ORQA [91] and DPR [79] which use encodings of

documents using ALBERT [88], have shown to provide better results, they require training
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data for fine-tuning. Their vanilla pre-trained models without training do not perform as

well as BM25. Further, BM25 is more scalable for large collections. Hence, given that

the main focus of this chapter is history modeling, we picked BM25 for our Retriever.

Specifically, we index the documents using Lucene3. Then we retrieve top k documents

using BM25, which is a term frequency based document ranking algorithm.

History Modeling. NORMY’s Retriever has two key novelties. First, we use a

keyphrase extraction-based candidate selection algorithm to identify the key context from

the whole conversational history. Second, we consider all passages returned by previous

turns alongside passages returned by final turn as candidate passages, and rank them using

history aware decay scoring method to return top k.

Our retrieval algorithm is shown in Algorithm 2. We extend the keyphrase ex-

traction algorithm YAKE [32] to select y best keywords per conversation turn using the

YAKE formula shown in Equation (3.1). YAKE considers features like the casing of the

word, word positions, word frequencies, word relatedness to context, etc. to assign a score

S(b) to each word b.

S(b) =
WRel ·WPos

WCase + (Wfreq/WRel) + (WDifS/WRel)
(3.1)

where WRel is the relatedness to context score, WPos is the word position score, WCase

is the word casing score, Wfreq is the word frequency divided by the sum of mean term

frequency and standard deviation σ, and WDifS is calculated based on how many times a

particular word appears in other sentences. The detailed equations of all the terms can be

found in [32]. We compute the union R(C) of the reformulated questions R(q0) · · ·R(qn) to

3https://lucene.apache.org/pylucene/
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Algorithm 2 NORMYRetriever

Require: Context C, qn

Ensure: SEL: Top k returned passages

1: SEL← [], P ← []

2: for each turn i ∈ 1 · · ·n do

3: R(qi)← Y AKE(qi)

4: R(C)← R(q0) ∪ · · · ∪R(qi)

5: Pi ← Retrievek(R(C)) //top-k by BM25

6: P ← P ∪ Pi

7: for each passage p ∈ Pi do

8: Compute score Srt(p) using Eq. 2

9: SEL← SelectTopk(P ) //based on Srt(p)

10: return SEL

retrieve the top k passages (line 4-5). Each passage returned has a BM25 score assigned to

it.

History-Aware Decay Scoring. After retrieving k passages for the current turn

n, we refine their scores by considering their similarity to the retrieved passages. Further,

we assign less weight to passages returned from previous turns. Specifically, we use a decay

weight λ to update the scores of older passages. The passages returned from previous turns

may be relevant for subsequent modules but they do not share equal weight to passages

returned from current turn n. Next, to assess the relevance of each passage Pnj , {j = 1 · · · k}

from turn n, we compute the average pairwise similarity with passages returned in the

previous turn P(n−1)i, {i = 1 · · · k}. This ensures that the passages returned has relevance
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to the whole conversation. Passages returned from irrelevant conversation turns will be

scored less. To compute the similarity, we use SBERT [138] to produce embeddings of

passages and perform cosine similarity. We update the score of Pnj using this similarity.

Finally, we rank all the passages using updated scores Srt and select top k. The retriever

score of a passage p is shown in Equation (3.2).

Srt(qn, C, p) = max(BM(R(C ∪ qn), p)− λ, 0) ·
k∑

i=1

sim(p, P(n−1)i)/k (3.2)

where BM(.) is the BM25 score of a passage and sim(.) returns semantic similarity between

two passages.

3.3.2 Reranker

The Reranker module reranks the retrieved top k passages using transformer-based

encoders and a neural network to compute passage relevance score. The transformer based

Reranker augments BM25 ensuring an extra layer of passage relevance. As k <<total size

of collection, using a transformer encoder is inexpensive.

A Reranker has been shown to improve the overall performance of the end-to-end

system with little additional cost [68, 127]. However, we show that using the same history

modeling as the previous module or using the context from all history turns do not give the

best results as now we have grounded documents as evidence. Our experimental results show

that using a context with a history window size w works best. The input to the module is the

final query qn, the context C, and k passages retrieved by the Retriever. A reranking score

Srr is assigned to every passage. Encoder. Our Reranker module uses BERT to encode

the input representation. We use the last w history turns before qn and concatenate them
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together to model the history. We then concatenate the retrieved passage pj , j = {1 · · · k}

to the appended history turns to create the final input sequence (qn, C, pj) = [CLS] qn−w

[SEP] · · · [SEP]qn−1 [SEP]qn [SEP]pj . We use the contextualized vector representation of

the input sequence ν[CLS], and use it as input to a fully connected feed-forward layer that

classifies the given passage as either relevant or non-relevant and outputs a classification

score Srr:

ν[CLS] = W[CLS]BERT (qn, C, pj)[CLS] (3.3)

Srr = P (Rel = 1|qn, C, pj)
△
= softmax(ν[CLS]) (3.4)

where ν[CLS] ∈ RT , T is the model embedding dimension, which is 768, and W[CLS] is a

projection of the [CLS] representation to obtain the sequence representation ν[CLS]. We

compute the score for each passage in top k independently and rerank them based on Srr.

3.3.3 Reader

The Reader module inputs the final query qn, the context C and the reranked

passages {p1, p2....pk} and outputs a span from one of the passages as the answer.

History Modeling. As the documents have already been narrowed down using

the conversational context in previous modules, we show that using a history modeling

with full contextual information produces worse results than a history model that uses

less context. This happens due to: 1) The passages already hold the necessary contextual

information from the history, 2) Previous history questions in the context misdirects the

BERT Reader model into predicting incorrect answer spans. The naive idea would be to
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use just the final query as input. However, the final query is prone to co-references and

ellipses as users will not use self-contained utterances in a natural conversation. Thus, we

use a co-reference resolution model to generate a resolved final query qn
′ using the previous

context. We adapt the huggingface neural co-reference model 4 which uses two neural

networks to assign a score to each pair of mentions (or co-references) in the input and their

antecedents [44]. The history turns q0 to qn−1 are concatenated and used to rewrite qn into

qn
′.

Encoder. Our Reader module uses similar BERT architecture as the previous

module to encode the input. The input sequence ”[CLS]qn
′[SEP ]pj” is used to generate a

representation of all tokens in the input. Two sets of parameters, a start vector Ws and an

end vector We are used to compute the score for the m-th token.

ν[m] = BERT ((qn
′, pj))[m] (3.5)

Ss(qn
′, pj , [m]) = Wsν[m] Se(qn

′, pj , [m]) = Weν[m] (3.6)

where Ss is the start score of a token and Se is the end score. The span Reader score Srd

is computed as the maximum score of each token being either the start or end token. The

start token must appear before the end token in the input.

Srd(qn
′, pj , s) = max

[ms],[me]∈(qn′,pj)
Ss(qn

′, pj , [ms]) + Se(qn
′, pj , [me]) (3.7)

where s is the answer span with the start token [ms] and end token [me]. The answer spans

are re-ranked using the combined score of all three modules and the top answer is given as

a prediction.

S(qn, C, pj , s) = Srt(qn, C, pj) + Srr(qn, C, pj) + Srd(qn
′, pj , s) (3.8)

4https://huggingface.co/coref/

44



Table 3.2: Dataset Statistics

ORQUAC doc2dial-OR ConvMix

# Dialogues 771 661 1679

# Questions 5571 4253 2284

# Avg tokens/qstn 6.7 10 6.39

# Avg tokens/ans 12.2 21.6 2.17

# Avg questions/conv 7.2 6.4 5.00

# Passages 11M 11.6M 5.94M

3.4 Experimental Evaluation

3.4.1 Datasets

We use three datasets with different conversation structures. The first dataset:

ORQUAC [127] is an aggregation of three existing datasets: QuAC, CANARD [56], and

Wikipedia corpus that serves as a knowledge source for open retrieval. TheWikipedia corpus

is a collection of 11 million passages that are created from splitting Wikipedia articles into

384 tokens. The second dataset is doc2dial-OR, which was created by us, as an extension of

doc2dial [60] dataset, which consists of natural information-seeking goal-oriented dialogues

that are grounded in documents. doc2dial has more complex questions than ORQUAC,

associated with multiple sections of a document. However, this dataset is only grounded to

480 long documents collected from different government websites, which is not ideal for an

open retrieval task. doc2dial-OR extends doc2dial by having a much larger set of passages

consisting of (a) 11 million Wikipedia passages5, and (b) the 480 documents of doc2dial

5https://dumps.wikimedia.org/enwiki/20191020
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Table 3.3: Retriever Results

Setting
ORQUAC doc2dial-OR ConvMix

MRR R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR R@1 R@5 R@10

No History 0.0312 0.0177 0.0516 0.0649 0.2564 0.2003 0.3320 0.3907 0.1027 0.0696 0.1449 0.186

First Last 0.1174 0.0739 0.1757 0.2249 0.4283 0.3378 0.5523 0.6381 0.1586 0.109 0.2263 0.281

Full History 0.1361 0.0785 0.1748 0.2178 0.4289 0.3376 0.5584 0.6433 0.1605 0.1077 0.2364 0.2911

Fixed window 0.1222 0.0827 0.1744 0.2189 0.4292 0.3378 0.5584 0.6433 0.1605 0.1077 0.2364 0.2911

Backtracking 0.1160 0.0726 0.1742 0.2238 0.4226 0.3301 0.5494 0.6364 0.1696 0.1169 0.2429 0.3104

Rewriting 0.0516 0.0307 0.0814 0.1080 0.2605 0.2031 0.3369 0.3985 0.12 0.0827 0.1654 0.2123

NORMYRet 0.1662 0.1147 0.2367 0.2891 0.4687 0.3809 0.5906 0.6780 0.1757 0.119 0.2513 0.3139

split into 384-token chunks. The second difference between doc2dial-OR from doc2dial is

that we convert free-text ground truth answers to exact text spans from the gold passage

in the dataset, to make it suitable for a span prediction task, as is the case for ORQUAC.

The third dataset is ConvMix [40], which contains documents from heterogeneous sources:

Wikipedia info boxes, tables, and text snippets (passages). They use the Wikipedia dump

from 2022-01-31. To adapt this dataset for our task, we selected the 5.94 million textual

snippets as our collection and the question turns in a conversation where the answer can

be extracted from these text snippets. The dataset statistics are shown in Table 3.2.

3.4.2 Experimental Setup

Competing History Models. To the best of our knowledge, there are no fully

unsupervised non-uniform history modeling approaches. There are supervised systems (Or-

ConvQA [127], WS-OrConvQA [126]) that uses history window of 6 for all the modules.

ConvADR-QA [58] uses all history turns along with their predicted answers as context.

However, they require annotated data to train the modules. We adapt their approaches to
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Figure 3.3: (a) and (b) subgraphs show the impact of number of keywords y and history

window size w for Retriever and Rearanker modules respectively.

an unsupervised setting. There are also conversational closed retrieval systems (RL [125],

RW [158]). We adapt such history modeling methods to an open-retrieval setting. Further,

we also propose some standard history modeling techniques. Thus, we have identified the

following baselines:

1) No History [39]: Where we do not perform any history modeling. The last

question turn is used as input to each individual module.

2) First-Last: We propose an intuitive history modeling baseline, where we define

the history as the combination of the immediately previous user utterance and the first

utterance of the conversation.

3) Full History: With all previous turns concatenated. For the modules where

we use transformer models with token limitation, we prune the earlier tokens if the total

token size exceeds 384. The input sequence is C = [CLS]q0[SEP ]q1 [SEP ] · · · [SEP ]qn

4) YAKE [32]: Keyphrase extraction-based history modeling has not been used

previously in any research work. We extract y keyphrases per history turn and concatenate
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them with the last turn to create the input sequence. The keyphrases are extracted using

a keyword extractor tool built with Python.

5) Backtracking [RL]: We adapt the immediate reward based history selec-

tion proposed by Qiu et al. [125] for closed retrieval systems. We select a history turn if

the similarity with previously selected history turns is greater than 0.5. For each history

turn(i = 1...n) we calculate the immediate reward with SBERT sentence encoder.

6) Question Rewriting [RW]: We adapt the algorithm of Vakulenko et al. [158]

for closed retrieval systems, which uses a question rewriting model to resolve ambiguous

questions (co-references) into self-contained questions. Their model requires training data

thus we use neuralcoref to resolve the co-references of the final query using previous history

turns. There are other query rewriting models like QReCC [17] which also require annotated

data.

7) Fixed Window [OrConvQA, WS-OrConvQA] [126,127]: WS-OrConvQA

is an improvement over OrConvQA but uses training data to learn weak supervision sig-

nals. Both models use a history window size w. Window size 6 is shown to produce the best

results for both. To select the baseline, we also compared different window sizes (2,4,6,8)

in a small validation set and w = 6 has given the best results.

8) Fixed Window with Ans. [ConvADR-QA] [58]: This model predicts the

answers for each historical question with a teacher model using annotated query rewrites

and appends the predicted answer to the context along with historical questions. For a

fully unsupervised pipeline, we adapt this approach to predict an answer for each question

using OrConvQA and append the answer to the context. The input sequence is C =
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Table 3.4: Reranker Results

Setting
ORQUAC doc2dial-OR ConvMix

MRR R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR R@1 R@5 R@10

No History 0.1408 0.1033 0.1927 0.2891 0.4572 0.3592 0.5901 0.6780 0.2264 0.1834 0.285 0.3139

First Last 0.1779 0.1491 0.2179 0.2891 0.5247 0.4514 0.6301 0.6780 0.2396 0.2052 0.2955 0.3139

Full History 0.1996 0.1702 0.2402 0.2891 0.5401 0.4644 0.6415 0.6780 0.2405 0.2020 0.2944 0.3139

NORMY 0.2033 0.1767 0.2411 0.2891 0.5478 0.4747 0.6515 0.6780 0.2405 0.2020 0.2944 0.3139

Backtracking 0.1954 0.1661 0.2361 0.2891 0.5325 0.4635 0.6368 0.6780 0.2403 0.2017 0.2940 0.3139

Rewriting 0.1696 0.1344 0.2181 0.2891 0.4583 0.3604 0.5911 0.6780 0.2295 0.1873 0.2867 0.3139

YAKE 0.2008 0.1731 0.2387 0.2891 0.5396 0.4624 0.6377 0.6780 0.2418 0.2031 0.2946 0.3139

[CLS]q0a0[SEP ]q1a1 [SEP ] · · · [SEP ]qnan, where an is the predicted answer for turn n.

We use the pipeline to predict the answer first and then append.

Implementation Details. NORMY is fully unsupervised without requiring any

training data. The pre-trained models are implemented with the open-source library Hug-

gingface 6. We index our document collection using PyLucene with StandardAnalyzer as

tokenizer Indexing is done with term frequencies, document frequencies, and positions.

Keyphrase extraction is done with open source library pke [28]. For computing similarity,

we use SBERT’s pre-trained roberta-large model. For Reranker module, we use pre-trained

BERT model finetuned on MSMARCO dataset [116]. For our Reader module we use a

pre-trained bert-large model finetuned on SQUAD dataset. We make our full code available

to the research community.

3.4.3 Retriever Results

Evaluation Methodology. We use the commonly used Mean Reciprocal Rank

(MRR) and Recall (R@k) methods to measure our retrieval performance. MRR calculates

6https://github.com/huggingface/transformers
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how far down the ranking the first relevant document is on average, where higher is better.

R@k measures the fraction of times the correct document is found in the top k predictions,

where higher is better.

Results. We first experiment with different values of the number of keywords y in the

keyphrase extraction shown in Figure 3.3a and find that y = 5 performs best. We use

y = 5, k = 10 and λ = 0.1 in Table 3.3. We found that using a larger k increases the

execution time of the system with a very small accuracy benefit. Figure 3.3 shows our

experimental results for different parameters used in NORMY.

We compare different history modeling techniques using BM25 in Table 3.3. For all

three datasets, we see that our NORMY Retriever performs significantly better than other

baselines. This is due to a couple of factors: 1) We remove irrelevant information from each

history turn rather than eliminating the history turn altogether, 2) We consider previously

retrieved passages from previous history turns as candidate passages. We can also see that

history models that use fewer contexts like Question Rewriting, First-Last, and No History

perform significantly worse indicating we need more context while retrieving from millions

of passages.

3.4.4 Reranker Results

Evaluation Methodology. We use the same metrics as the Retriever as both of

these modules produce top k passages.

Results. From Table 3.4 we see that the Reranker module significantly improves

the ranks of relevant passages. Using a fixed window, which sits between a broader context

like Full History and a narrower context like Rewriting produces the overall best results.
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We conduct experiments with different history window sizes w and show the results in

Figure 3.3b. Fixed window of 6 works best for two of our datasets, which is supported

by the literature [127]. For ConvMix, we see that YAKE performs slightly better than all

other methods and the results vary very little. This is because the passages in the collection

are single sentences only, leading to multiple passages being relevant to the question. The

Reranker ranks such passages similarly whereas only one contains the gold answer. In the

real world, it is unusual for the documents to be single sentences. Note that our hypothesis

that the Reranker needs less context than the Retriever still holds, as YAKE has less context

than Full History.

Table 3.5: Reader F1

Setting ORQUAC doc2dial-OR ConvMix

No History 0.1557 0.1898 0.6785

First Last 0.0996 0.1291 0.4842

Full History 0.0845 0.1196 0.3711

Fixed Window 0.0848 0.1200 0.4859

Backtracking 0.1118 0.1541 0.5591

NORMY(Rewriting) 0.1774 0.2220 0.7393

YAKE 0.1277 0.1551 0.67

3.4.5 Reader Results

Evaluation Methodology. We treat the evaluation of Reader module as a span

selection task and adopt token level F1 as the evaluation metric. F1 calculates the similarity

between the ground answer and the predicted span, where higher means better.
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Table 3.6: Entire Pipeline F1. ‡ means statistically significant improvement over baseline

with p < 0.5.

Setting ORQUAC doc2dial-OR ConvMix

NORMY[ours] 0.0782‡ 0.1625‡ 0.1723‡

NORMY w/o decay 0.0668‡ 0.1323‡ 0.1490

NORMY w/o sim 0.0695‡ 0.1431‡ 0.1562‡

OrConvQA [127],

WS-OrConvQA [126](BM25) 0.0478 0.0955 0.1314

OrConvQA,

WS-OrConvQA (DPR) 0.0466 0.0948 0.1298

ConvADR-QA [58] 0.0454 0.0897 0.1244

Results. From Table 3.5 we can see significant performance drops when more

contexts are added for all three datasets.

As the candidate passages have been reduced to 1, transformer-based reader model

performs significantly better when only one query is used.

Narrower contexts like adding no history and question rewriting perform much

better than broader context models further proving our hypothesis. Among them, question

rewriting produces a better result. For ConvMix we can see very high F1 scores for ap-

propriate history models as the answers are on average two tokens only, which makes the

Reader model easily predict answer spans. However, history models with broader context

have poor F1 scores for this same dataset indicating the model needs proper history models

even in simpler scenarios.

3.4.6 End-to-end Evaluation

In this section, we compare our pipeline with the state-of-the-art models [58, 126,

127], which either use a fixed window of 6 or full history with predicted answers uniformly
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in all modules. We see in Table 3.6 that SOTA models perform poorly in a fully unsuper-

vised setting. We also see that, ConvADR-QA performs worse than OrConvQA, as in an

unsupervised setting, a wrongly predicted answer could misdirect the context to retrieve

irrelevant passages. Our pipeline with non-uniform history modeling performs significantly

better. SOTA models use fine-tuned dense retriever model (DPR) for their retriever module

instead of BM25 which is used by NORMY. We use the vanilla pre-trained version of DPR

here as we don’t have access to training data. We also compare to a variant of OrConvQA

that uses BM25 instead of DPR for completeness. We see that BM25 performs better than

dense retriever models. Note that, uniformly using other baseline history modeling tech-

niques evaluated in previous subsections does not produce better results than NORMY in

the end-to-end pipeline. We do not show these in Table 3.6 for brevity.

3.4.7 Ablation Studies

The effectiveness of our model relies on some of the design choices we made. We

investigate such choices our novel retriever NORMYRetr has from equation (3.2). We

present the ablation results in Table 3.6. Specifically, we show two ablation settings as

follows:

NORMY w/o decay. We showed that if we disregard previously returned pas-

sages we may miss out on some relevant information required for subsequent modules.

However, if we gave the same weight to previous passages as passages returned from cur-

rent turn n, we see a degradation in performance. This is due to the current turn holding

the most amount of information. Thus passages returned from the current turn should be

given the most weight.
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NORMY w/o sim. If a history turn is related to its previous turn, the passages

returned will also have some similarities. Here, we disregarded the average pairwise similar-

ity with the previous turn’s returned passages from equation (3.2). We again see a decrease

in model performance. By refining retriever scores with similarity score, we compute the

relevance of passages with relevant conversational history.

The ablation studies further verify that both decay and similarity scores are crucial

for NORMY to perform best.

3.5 Related Work

Machine Reading Comprehension (MRC). MRC task typically includes a

single-turn query where the answer grounds in a short passage. It started with TREC [159]

in the early days where the goal was to retrieve the appropriate passage for 200 factoid

questions and advanced to recent high-quality datasets like NQ [86], SQuAD [131, 132],

NewsQA [157].

Open Domain QA. Open domain QA introduces large corpus as grounded doc-

uments and the task is to retrieve the appropriate documents and then try to extract

the answer span. For this task, high-quality datasets have been proposed such as Trivi-

aQA [76], MSMarco [21], Quasar [55], WikiQA [45], PATQuestions [107]. Some previous

work [84, 90, 164] selects answers from a closed set of passages or learns to rerank them.

End-to-end open domain pipelines like DrQA [35] and BERTserini [171] use TFIDF/BM25

for the retrieval of passages and a neural reader to select the answer span. ORQA [91] and
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DPR [79] introduce a learnable retriever module with a dual encoder architecture. They

show scalability for large scale collections [53]. These works are all single-turn QA’s whereas

we target multi-turn conversations.

Conversational QA. Conversational QA is a variant of MRC where the queries are no

longer single turn and the role of retrieval is disregarded [41]. The multi turn questions

can be interconnected (CoQA [137], DoQA [31]), can depend on the previous history an-

swer(QuAC [39]) or only limited to binary answers (ShARC [143]). A better understanding

of the context of conversation history is needed to answer the grounded question. To cap-

ture the context, FlowQA [69] and GraphFlow [38] use each word as nodes in a graph

and use an attention mechanism to represent the history; HAE [128] considers the history

ground answers as context which is impractical for real life dialogue agents; Pos-HAE [129]

considers the history turn positions as additional encoding. There are also backtracking

based [125] and query rewriting based [17, 109, 158, 160] models as mentioned in previous

sections.

Open Domain Conversational QA. ODQA models like OrConvQA [127], WS-

OrConvQA [126], ConvADR-QA [58] do not perform any history modeling and use the

same history window in all of their modules for the end-to-end system. Other ODQA

works like TopiOCQA [13], graph-OrConvQA [94] do not focus on history modeling and

use gold training data to train neural models for their pipeline. Similar to Extractive QA

like this task (OrConvQA), there are Abstractive pipelines [83, 93] where the answer is

generated using transformers like BART [92] and T5 [130] rather than being extracted from
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passages. Such pipelines are sequence-to-sequence tasks and not span predictions. There

are other works that perform ODQA over structured data such as knowledge graphs [41] or a

combination of data sources [40]. They do not perform any history modeling to contextualize

the conversation and the task is out of the scope of this work.

3.6 Conclusion

We have presented the first end-to-end pipeline that uses non-uniform history

modeling for open retrieval conversational question answering. We show that existing sys-

tems are suboptimal due to modeling the context in the same way for all modules and not

utilizing previously returned passages for the Retriever module. We have also proposed a

novel algorithm to utilize such passages to output higher-quality passages for subsequent

modules. We further updated the doc2dial dataset to make it appropriate for OrConvQA

task. Extensive experimental evaluation from various history modeling techniques with dif-

ferent types of data shows that NORMY significantly outperforms the state-of-the-art in

each individual module and the entire pipeline.
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Chapter 4

Budget-constrained Text

Re-ranking with Large Language

Models

4.1 Introduction

Text re-ranking focuses on ranking N source documents given a specific query and

is crucial for providing the relevant retrieved context to downstream tasks. It serves either

as a standalone task or as an intermediate step for question answering tasks [134, 136] in

a retrieval augmented setting, where the answer is generated from the top k relevant pas-

sages. Traditional ranking methods includes BM25 [97] and neural methods like DPR [79],

Contriever [71] etc. Recently, large language models (LLMs) such as GPT-4 [120] have

demonstrated dominant performance in text re-ranking [154].
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However, utilizing LLMs often comes at a cost: the process can be quite expensive,

as closed-source LLMs charge based on the number of tokens. This expense escalates in

text re-ranking due to the need to input substantial text, proportional to the number of

passages to re-rank. For example, re-ranking 500 passages for a single query, with each

passage having an average length of 100 tokens, currently costs at least 5 USD when using

GPT-4 [4]. This cost becomes intractable when businesses need to handle thousands of

queries daily, making budget the biggest constraint.

Although there are many alternatives such as TextSynth [7], AI21 [1], Cohere [2],

Replicate [6], etc., that offer LLM API services at lower costs, utilizing these commercial

APIs may still not be sustainable with high volumes of queries. This motivates us to

investigate the trade-off between cost and performance for text re-ranking. Our aim is to

propose a budget-aware solution for text re-ranking that maximizes performance within the

constraints of a given budget. With this goal in mind, we approach budget-constrained text

re-ranking using LLMs as a constrained optimization problem. Here, we explore various

re-ranking methods with different properties and optimize for the best strategy for budget-

aware text re-ranking.

Our work contributes to the first efforts in budget-aware modeling utilizing LLMs

for text re-ranking, to the best of our knowledge. Recent work on cost-aware applications of

LLMs with LLM Cascading [37, 145, 173] is not applicable to text re-ranking. They either

focus primarily on QA or reasoning tasks [173], or require a fine-tuned model (with training

data) to assess the generation quality of LLMs [37,145]. On the other hand, works focusing

on using LLMs for text re-ranking primarily aim at performance improvement without
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Figure 4.1: An overview of EcoRank with an example of 7 passages. A fraction of budget is

spent on 4 passages for pointwise prompt with a costlier LLM and an intermediate ranked

list is generated with unprocessed passages in the middle. Then, using the rest of the budget

we call the cheaper LLM to do pairwise comparisons and create the final ranked list.

considering budgets. The three most common approaches exhibit increasing costs as the

number of tokens inputted into the LLMs increases: 1) Pointwise prompts [142], which input

a single passage per request and output calibrated prediction probabilities before sorting;

2) Listwise prompts [102, 154], which input multiple passages per request as lists and ask

LLMs to output the lists in order; 3) Pairwise prompts [124], which input pairs of passages

per query per request and use a sliding window to sort the top-k passages. Approximately,

the most expensive approach, namely pairwise prompts, can cost about 2 · k times more

than pointwise prompts where k is the size of the sliding window.

In this chapter, we propose a suite of budget-constrained methods to perform text

reranking using a set of LLM APIs. Our most efficient method, which we refer as EcoRank,

is a budget-constrained LLM-based text re-ranking pipeline, that jointly optimizes several

objectives: 1) which prompt designs to deploy, 2) which LLM APIs to call, and 3) how to
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split budget between multiple prompts and LLMs. Optimizing all these decisions jointly is

challenging for the following reasons. (a) The provided budget may not be enough to input

all input texts once to the LLM API. The developed method must be able to optimize for

the top-few (e.g. top-1) text. (b) Different LLM APIs may have different strengths and

limitations. (c) There is an exponential number of combinations of prompt designs and API

selections.

Addressing these questions, we first consider various text re-ranking prompts tai-

lored to accomplish the re-ranking task within a budget. Next, we explore different LLM

APIs and their associated costs for implementing these prompts. We then introduce a novel

two-layer approach, EcoRank (depicted in Figure 4.1), which begins by re-ranking initially

ranked passages (e.g., those ranked using BM25) with pointwise relevance filtering on a

high-accuracy (and consequently expensive) LLM API, utilizing a fraction of our budget.

This initial re-ranking demotes irrelevant passages, allowing us to allocate the remaining

budget to re-rank relatively relevant passages. In the second layer, we use a less accurate

(and thus cheaper) LLM API, applying the remaining budget to further re-rank the pas-

sages using pairwise ranking prompting. We evaluate various single or hybrid (combining

more than one) prompt designs for the text re-ranking problem, for various budgets and

APIs on four popular datasets: Natural Questions (NQ) [86], Web Questions (WQ) [24],

TREC [48] DL19, and DL20. Our most efficient method EcoRank achieves a gain of 14%

on MRR and R@1 ranking accuracy than baselines. Our contributions are summarized as

follows.
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• We introduce the problem of budget-constrained text re-ranking that considers the

cost of various LLM APIs.

• We propose and compare various ranking prompt designs and API choices in a budget-

constrained scenario for text re-ranking.

• We further propose a novel two-layer cascading pipeline EcoRank which optimizes the

budget usage.

• We extensively evaluate and compare various prompt designs and API choices on four

datasets. We make our code available to the research community. 1

4.2 Problem Definition

We focus on optimizing passage re-ranking under budget constraints, ranking top-k

passages from a pre-ranked list. These lists are often obtained from a retriever in response to

a natural language query. Given a budget β, a query q, and a list of pre-ranked N passages

p0 · · · pN with respect to q, the task is to re-rank the passages using available LLM APIs and

retrieve top-k passages. For instance, in question answering tasks, BM25 is commonly used

to produce the initial ranking, and then the main focus is typically on the top re-ranked

passage (i.e. k = 1). The following designs are critical for budget-aware text re-ranking.

API choice. Assume there are M different LLM APIs available, denoted as L1 · · · LM .

Each API L takes a prompt ρ and generates an output Θ. Associated with calling each

1https://github.com/shihabrashid-ucr/EcoRank
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API is a cost C, defined in Equation 4.1:

C = cp · len(ρ) + co · len(Θ) + cf (4.1)

where cp represents the cost per input or prompt token, co is the cost determined by the

number of tokens generated by L, and occasionally, a fixed API call cost cf applies.

Choice of ranking prompt. The other key design choice is the set of prompts ρ ∈ T

for a text re-ranking task. Specifically, given the passages p0 · · · pN and query q, we need to

generate a sequence of prompts, where each prompt includes the query and one or more of

the input passages. For example, a prompt can ask if a passage is relevant or ask to compare

two passages. As input tokens determines the cost to generate an output, choosing the right

prompt(s) is very crucial.

Split of budget. Our experimental setup also accounts for scenarios where multiple

prompts or rounds of iterations are required. In such cases, there is an additional factor in

budget considerations: the budget β can be divided and allocated across multiple prompts

ρ, β ≜ β · x+ · · ·+ β · y where the coefficients x+ · · ·+ y = 1.

Budget-aware optimization. Given the problem setups described above, the task of

budget-aware text re-ranking essentially becomes an optimization task. The objective is

to maximize the re-ranking performance, denoted as E, subject to a given budget β. This

optimization occurs within the search spaces of prompts, APIs, and budget allocations,

Eq,p[c(L, ρ)] ≤ β, where c(L, ρ) is the associated cost for processing query q with prompt ρ

and LLM L. Given the vast range of available APIs, prompts, and permutations of budget
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splits, this optimization presents non-trivial and unique challenges. No other research work

has considered the cost of the LLMs for text re-ranking.

4.3 Budget-Aware Ranking Prompt Designs

Is the following passage
related to the query?
Passage: {{passage}}

Query: {{query}}

Yes/No

Given a query  {{query}} which of the
following two passages is more related?
Passage A: {{passage1}}
Passage B: {{passage2}}
Output Passage A or Passage B.

The following are passages related to query  {{query}}
[1] {{passage1}}
[2] {{passage2}}
...
Rank these passages based on their relevance to query.

Passage A /Passage B

[2] > [1] > [3] ....

(a) Pointwise (b) Pairwise

(c) Listwise

Figure 4.2: Different prompt strategies for text re-ranking.

We build on previous works on ranking prompt designs. Our key contribution is

making these designs budget-constrained. The different designs are depicted in Figure 4.2.

4.3.1 Pointwise Methods

Pointwise approaches process the passages one by one along with the query as a

prompt. We define three types of prompts within pointwise methods.

Query generation. [142] proposed an unsupervised pipeline UPR to re-rank passages by

asking the LLM to generate a query q′ given each passage pi from the initial ranked list of

passages. Their approach is not applicable to generation-only LLMs like GPT-3 or GPT-4

which do not score the outputs. For budget constrained scenarios, we adapt their approach

to generation only LLMs by asking the LLM to generate a query given a passage and

measure the token-level F1 score between the newly generated query q′ and original query
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q and sort the passages based on this score. We start from the top of the list and go down

until we exhaust the budget, and keep the rest in their original ranking positions. We call

this approach B-UPR.

Binary Classification. We propose another type of budget-aware pointwise prompt de-

sign inspired from [96] where we ask the LLM to predict Yes or No given each passage

from the initial list whether it is relevant to the query q. We ask the LLM to output only

”Yes” or ”No” which restricts the number of output tokens to be 1. This method can be

categorized as a coarse-grained strategy where we group the passages based on relevance

but each individual passage ranking relies on the initial score.

Likert Classification. Instead of classifying each passage in a binary fashion, we also

introduce a design to categorically classify each passage into a 3-point Likert scale, inspired

from [182], where we ask the LLM to classify a passage into either of the following three

groups: Very related, Somewhat related or Unrelated.

4.3.2 Listwise Methods

In this strategy, passages p0 · · · pN are put through the LLMs with identifiers such

as ([1], [2], etc.) as a list along with the query q. The LLM is then asked to give the relative

ordering of the passages as an output (i.e. [2] ¿ [1] · · · ). Recent works like RankGPT [154],

LRL [102] introduce a sliding window strategy to combat token limitation challenge in

LLMs, where a sliding window of size w with a step of s is used. For a budget-constrained

scenario, we approximate the number of passages that can be given as input to the prompt.

We call this B-RankGPT.
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LLM Parameters Cost‡ Provided By
Methods (MRR) Methods (R@1)

Pointwise PRP Listwise Pointwise PRP Listwise

FLAN T5-XL 3B 1x Replicate 42.08 46.54 NA 33.4 39.5 NA

FLAN T5-L 800M 1
3
x Replicate 37.91 38.03 NA 27.4 29.2 NA

Llama2 7B 1x TextSynth 30.24 21.18 NA 20.2 10.6 NA

Falcon 7B 1x TextSynth 30.8 23.44 NA 20.6 12.8 NA

GPT-curie 6.7B 5x OpenAI 30.61 19.52 NA 20.8 9.40 NA

GPT-3.5-turbo 175B 10x OpenAI 34.41 43.82 42.3 23.9 36.60 34.3

Table 4.1: Different LLMs’ performance with various strategies on a subset of NQ dataset

for top-20 passages. ‡ Cost is measured as a unit here as the pricing may vary with time.

However, as the prompt of listwise method is rather complicated (LLMs have to

understand the ordering of multiple passages and have to give an output in a structured

format), most LLM APIs face issues in giving the correct output. [124] show that medium-

sized LLM APIs like FLAN-T5-XL [42] are inconsistent and not able to understand the

prompt correctly and provide irrelevant results. Only big-sized commercial LLMs like GPT-

4 and GPT-3.5 are able to utilize this approach correctly. Further, it is highly sensitive to

input ordering, meaning the output depends heavily on the order of the passages in the

prompt.

4.3.3 Pairwise Methods

This is a fine-grained strategy where each passage is compared with each other

similar to bubble-sort and their ranking is modified. Given two passages pi, pj , and one

query q, the LLM is asked to choose one passage which is more relevant to the query. This

ensures the relative ordering among the passages. [124] proposed various pairwise ranking

prompts (PRP). Among them, PRP-Sliding, which does k rounds of bubble-sort pass that
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ensures the top-k ranking performs best. However, all the approaches, even sliding-k are

quite expensive. To get top-k ranking, N ·k API calls need to be made with each call having

approximately twice the number of tokens (because two passages per prompt) compared

to pointwise methods, which need to make N calls with each call having less tokens. In

contrast, PRP methods can achieve fine-grained ranking accuracy. We adapt this strategy

to a budget-constrained one by approximating the number of calls that could be made

within the budget. If τ such calls can be made, we start at l = min(k, τ)-th positioned

passage in the initial ranked list and move the passage up the list. We continue iterating

until τ = 0. For passages that could not be processed, we take their initial ranking position.

We call this approach B-PRP.

4.4 EcoRank

In this section, we present our novel most efficient budget-aware approach shown

in Figure 4.1. Both listwise and pairwise methods can achieve accurate rankings but they

suffer from high cost. Listwise methods only work with very expensive LLMs hence we put

our focus on pairwise approach. While constrained within a budget, the number of passages

that can be processed by LLMs impacts the final ranking accuracy. Cheaper LLMs are able

to process more passages but they lack quality. Therefore, there are two key challenges

that needs to be solved: 1) how to ensure quality 2) how to ensure quantity. With no

budget constraint, pairwise methods may be an obvious choice due to their fine-grained

accuracy but they have several limitations. We solve the challenges of pairwise designs in a

budget-constrained scenario in a two-staged fashion as shown in Figure 4.1.
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First stage. Only the first few passages can be compared by pairwise with a limited

budget. However, as the initial ranked list is not that good, valuable tokens may be spent

on irrelevant passages. Thus in the first stage, we intelligently pick the passages to do

pairwise comparison on.

We split our budget β into two fractions x and y and use x amount to filter the

passages using binary classification approach from the pointwise prompting group. We use

a stronger and comparatively expensive LLM L1 with cost C1 to generate a relevance for

the passages in the form of ”Yes” or ”No” and create an intermediate ranked list as per the

binary classification strategy mentioned above. This coarse-grained strategy ensures quality

as we are using a strong LLM to put more relevant passages at the top for the next stage

and push irrelevant ones to the bottom of the list.

Second stage. We spend the rest y amount using pairwise prompting design to compare

two passages at a time. To ensure quantity, we use a cheaper LLM API L2 with cost C2

to do the comparisons. As the passages have already been filtered by a stronger LLM, a

cheaper LLM does not hinder the quality that much rather it can process (C1/C2)x the

number of passages than the expensive variant for a fixed budget. Further, as there are

much fewer ”Yes” passages compared to ”No”, the unprocessed passages from first stage

can be processed at this stage.

While further stages can be added to the pipeline, we see diminishing results as

we add more stages. Thus we choose two.
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Choosing the LLMs. As seen in Table 4.1, LLMs’ performance is not proportional to

their cost. Some expensive API (i.e. GPT-curie or GPT-3.5) may be less effective in zero-

shot text re-ranking tasks than comparatively cheaper LLM (i.e. T5-L or T5-XL). Further,

same-priced LLMs may not give the same performance. A key optimization here is to choose

the appropriate LLM which will perform the task accurately without much cost. As the

T5 LLMs perform significantly better with reasonable cost, we choose Flan T5-XL as the

costlier API L1 and Flan T5-L as the cheaper API L2 in EcoRank.

Optimization of budget split. Another key challenge here is the split of budget x and

y. Putting more budget in the first stage will ensure more quality filtering whereas putting

more budget on the second stage will do more pairwise but on less relevant passages. We

hypothesize that both stages contribute equally to the pipeline and choose an equal split of

x and y.

4.5 Experimental Evaluation

4.5.1 Setup

Implementation Details. We host the LLMs offline (except for GPT3.5) and define

the budget in terms of number of tokens. The GPU instance we use is g5.4xlarge. The

prices of LLMs change with time frequently so we make a standard approximation of the

costs of each LLM shown in Table 4.1. For example, T5-L is approximated as 3x cheaper

than T5-XL and GPT-3.5 is 10x costlier than T5-XL based on the pricing page of different

services [4, 6, 7].
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To implement the supervised models, we load the available pre-trained versions

in our GPU and use them to generate embeddings of the passages and queries. We use

PyGaggle 2 to re-rank the passages with the loaded model.

To implement InPars, We use GPT-3.5 to generate synthetic data d fully using

our budget B1, B2, B3. Using B1 we could generate around 50K, using B2 10K, and

using B3 5K questions. Thus we have three sets of training data db1, db2, and db3. We

randomly sampled passages from the corpus and asked GPT-3.5 to generate a new question.

These are our positive examples. To get the negative examples, we use BM25 to retrieve

5 relevant passages. The passages that are not gold passages are considered as negative

examples. We trained the T5-large 3 models for three budget categories with 156 steps

and the same training arguments as InPars. We use the corresponding trained model to

generate embeddings of the passages and re-rank.

Datasets. Following previous work on passage retrieval, we choose the popular benchmark

datasets Natural Questions (NQ) [86], Web Questions (WQ) [24], TREC [48] DL19, and

DL20. There are total of 3610 questions on NQ, 2032 on WQ, 30 on DL19, and 44 on DL20

test splits. For TREC datasets, there are multiple relevant passages per query contrary to

NQ and WQ. To ensure fairness among datasets, we consider the passages with a score of

3 to be the relevant ones for TREC.

Budget categories. We experiment with three budget categories. Budgets are repre-

sented as token limits per question. The number of tokens that can be processed with each

2https://github.com/castorini/pygaggle
3https://huggingface.co/google-t5/t5-large
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Category Cost T5-XL T5-L GPT-3.5

B1 0.57c 20000 60000 2000

B2 0.11c 4000 12000 400

B3 0.05c 2000 6000 200

Table 4.2: Budget categories for different LLMs.

LLM is mentioned in Table 4.2. We choose a relatively higher budget B1 which can process

most passages with pointwise and complete one pass with pairwise, and lower budgets B2,

B3 where only some passages can be processed to show the efficacy of our solutions.

Baselines. On top of the budget-constrained methods introduced above, we show com-

parisons with state-of-the-art supervised and unsupervised baselines. The supervised base-

lines are: 1) monoBERT [117]: A cross-encoder reranker trained on BERT-large, trained

on MSMARCO, 2) monoT5 [118]: A sequence-to-sequence reranker based on T5, and 3)

TART [20]: A supervised instruction-tuned passage reranker based on FLAN-T5-XL

For unsupervised approach, we consider InPars [27], where we generate synthetic

training data using GPT-3 and use them to train a T5-large model. For each budget

category, we spend all our budget to generate synthetic data and infer the trained model

in a zero-shot approach. We also consider OpenAI text-ada-002 embedding model as a

reranker baseline.

We assume zero cost for the supervised baselines and no inference cost for InPars

as no paid API is used. In reality, supervised models can have some costs regarding time

and computing resources.
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Figure 4.3: (a) and (b) subgraphs show the impact of our parameter choices in EcoRank

for budget B2.

4.5.2 Main Results

We show our main evaluation results for different budgets and ranking strategies in

Table 4.3 for N = 50 passages. We choose the popular Mean Reciprocal Rank (MRR) and

Recall@k as our evaluation metrics following previous work. All LLM-based approaches

increase the initial ranking significantly except for B-UPR. We see that, overall, for all

budget categories, EcoRank surpasses all other approaches, even the supervised ones. For

TREC DL 20 dataset, as there are many relevant passages given a query, B-PRP performs

a little better for budget B1 and ours performs similarly. B-RankGPT is promising but it

can only work with a high budget (i.e. B1) as GPT-3.5 is expensive.

Supervised vs Unsupervised. We see that supervised models sometimes perform better

than EcoRank in some datasets in B3. As we assume zero cost for supervised models, budget

is not directly applicable. They can process all the passages while budget-aware approaches

can process only a few in B3. Even with this limitation, our methods perform better than
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supervised models in B1 and B2. Further, supervised models have the following restrictions:

1) training data may either not be available or be very difficult to collect, especially if the

domain is niche, and 2) training data may incur high annotation costs. In real life systems,

they are expected to perform worse. Unsupervised fine-tuning based approaches like InPars

also do not perform as well as ours.

High to low budget analysis. Among budget-aware methods, for higher budget (B1,

B2), we see B-PRP method performing better than pointwise methods like binary classifi-

cation in MRR and R@1 metrics. As we decrease our budget (B3), due to pairwise methods

not processing enough passages, they perform worse than binary method in MRR. EcoRank

achieves the best results in all budget categories, proving the efficiency of this approach.

The gain of EcoRank with the second best approach increases from an average of 2% for

higher budget to 12% for lower budget for R@1. This shows with lower budget constraint,

our most efficient approach can perform really well.

4.5.3 Analysis of our chosen parameters

For EcoRank we have made some decisions regarding three sets of parameters: 1)

The choices of prompting strategies, 2) The choices of expensive and cheap LLMs L1, L2,

and 3) The choices of budget split between the prompts x and y. We chose pointwise and

pairwise strategies due to their cost-to-performance ratio as seen in Table 4.1. We choose

an expensive LLM for the first stage and a cheap LLM for the second stage with equal

budget split x = 0.5, y = 0.5. The justification being that an expensive LLM is needed

in the first stage to filter the important passages for the pairwise approach to focus on the
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second stage. As both stages play an equal part, an equal budget split is the appropriate

choice.

We accompany our choices with an extensive evaluation performed on two datasets

with all combinations of budget splits and LLM choices shown in Figure 4.3. The blue

line shows the results if we use the cheaper LLM in the first stage. We see a declining

performance than choosing an expensive LLM (shown in red) in stage one. As we move closer

to an equal split, the performance keeps increasing till it reaches a peak and declines again

as we move away. For detailed results on chosen parameters, please refer to appendix ??.

4.5.4 Ablation studies of EcoRank

In EcoRank, there are two main choices that impact the performance.

1) Hybrid prompt design. We use a combination of pointwise and pairwise methods.

If we consider the intermediate ranked list (from Figure 4.1) that is generated after the first

stage as the final ranking, the performance decreases as only half budget is used. Further,

if we only use one ranking prompt design (either Binary or B-PRP in Table 4.3) using full

budget we also see a significant decrease in performance than EcoRank. Hybrid prompt

design is crucial to get the maximum performance in a budget-constrained scenario.

2) Cascading of LLMs. We show the results of a variant of EcoRank where we do

not cascade LLMs but keep the hybrid prompt design. We call this approach EcoRank-

w/o-cascade. Only the expensive LLM is queried in both stages. Although an expensive

LLM is more accurate, we see from Table 4.3 that, this variant falls short of EcoRank. It

still performs better than other methods. Using a cheaper LLM in the second stage can
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enable processing more passages resulting in better performance. Cascading of cheap and

expensive LLMs is impactful to getting the maximum performance.

4.6 Related Work

To the best of our knowledge, we are the first to work on budget-constrained text

re-ranking problem with LLMs. We divide the related work into LLMs in text re-ranking

and Cost aware LLMs.

LLMs in text re-ranking. There are three main zero-shot prompting strategies to re-

rank initially ranked passages. They are pointwise [96,142,182], listwise [102,154,155], and

pairwise [124], which we covered in details in Section 4.3. Each strategy has their own

strengths and may not work with all types of LLMs. Very recently another prompting

strategy has been introduced called setwise [183], which is an improvement over listwise

approach where instead of outputting an ordered list of documents, a single document which

is the most relevant is given as output. Although this reduces the computational overhead

of listwise and pairwise methods, it works best with LLMs which can output scores of

generation. Other works like distillation [153], RankVicuna [122], RankZephyr [123] train an

open source model with training data to improve listwise approaches. All these approaches

do not consider the cost of LLMs and do not try to optimize the performance of text rankers

with a budget constrain. Prior to recent efforts with LLMs in text re-ranking, most works

focused on the supervised ranking problem using monoT5 [118] or BERT [181] where they

trained a pre-trained LM (PLM) for re-ranking tasks. Other supervised methods focus

on generating data to train PLMs like InPars [27], Promptagator [50], ExaRanker [61],
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SPTAR [121], HyDE [63] etc. They mainly use LLMs as an auxiliary tool to support the

training of PLMs and thus different from the scope of this chapter.

Cost-aware LLMs. There are some works which focus on cost-aware applications of

LLMs but in other areas than text re-ranking. FrugalGPT [37] uses LLM cascading to

reduce the cost of API calls but they require a trained model to score the generation quality

similar to FORC [145] which uses a trained meta-model to predict performance of LLMs.

These trained models require fine-tuning data which may be difficult to obtain. MoT [173]

uses answer sampling strategy which is not applicable in text re-ranking as LLMs output

fixed tokens instead of open-ended. Other works focus on optimizing API calls by using

a neural caching system with a student model [133]. None of these apply to our problem

statement as we aim to optimize the performance in text re-ranking in a fully unsupervised

fashion.

4.7 Conclusion

We contribute to the first efforts of budget-constrained text re-ranking with LLMs

and have identified that existing works fail to consider budget while optimizing performance

in text re-ranking. We propose a suite of budget-constrained methods with various ranking

prompt designs and LLMs and extensively evaluate them on four datasets. Our most

efficient method EcoRank, which is a two-layered pipeline that optimizes vast spaces of

decisions, achieves a gain of 14% on MRR and R@1 than other approaches.
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Method Strategy LLM
NQ WQ TREC DL 19 TREC DL 20

MRR R@1 MRR R@1 MRR R@1 MRR R@1

BM25 - - 32.49 22.10 29.69 18.89 48.15 30.00 69.67 56.86

Supervised Models

monot5-base - T5-base 48.01 39.11 43.15 33.21 74.57 66.66 79.94 68.18

monot5-3B - T5-3B 50.47 41.66 44.88 35.23 72.75 63.33 79.49 65.9

monoBERT - BERT 47.31 38.25 43.63 33.8 73.68 66.66 81.06 70.45

TART - T5-XL 46.42 37.47 42.65 33.07 73.13 60.00 68.03 52.28

Unsupervised: B1 - 0.57 cents per question

InPars - T5-large 42.73 32.43 41.49 31.05 59.63 46.66 74.72 61.36

Binary Point T5-XL 46.77 37.36 42.09 31.54 64.86 50.00 70.67 54.54

Binary Point GPT-3.5 36.10 25.80 34.06 22.58 53.76 40.00 59.99 45.45

Likert Point T5-XL 39.49 28.25 39.81 28.44 59.86 43.33 63.85 50.00

B-UPR Point T5-XL 27.37 17.10 29.69 18.89 26.17 10.00 36.12 25.00

B-PRP Pair T5-XL 51.85 45.04 48.11 41.14 65.40 56.66 78.97 68.18

B-PRP Pair GPT-3.5 36.68 29.00 37.25 30.01 63.85 53.33 66.4 54.54

B-RankGPT List GPT-3.5 45.05 37.83 42.01 34.10 66.82 56.66 72.23 63.63

EcoRank† Hybr. T5-XL 52.76 45.87 48.94 41.58 78.87 67.44 80.63 70.45

Unsupervised: B2 - 0.11 cents per question

OpenAI Embedding - text-ada-002 32.37 22.10 29.69 18.89 48.15 30.00 58.67 45.45

InPars - T5-large 43.92 33.57 42.11 31.39 60.39 46.66 72.59 54.54

Binary Point T5-XL 44.88 36.06 40.84 30.56 64.66 50.00 70.67 54.54

Likert Point T5-XL 38.96 28.00 39.17 27.95 59.86 43.33 63.78 50.00

B-UPR Point T5-XL 28.03 17.45 29.69 18.89 25.62 10.00 35.96 25.00

B-PRP Pair T5-XL 45.97 40.30 42.79 36.71 65.33 56.66 74.44 59.09

EcoRank-w/o-casc. Hybr. T5-XL 48.56 42.63 44.87 38.09 63.13 50.00 74.06 59.09

EcoRank Hybr. T5-XL+L 50.72 44.34 47.05 40.55 65.58 53.33 80.22 70.45

Unsupervised: B3 - 0.05 cents per question

InPars - T5-large 44.49 34.79 42.63 32.72 59.84 46.66 74.3 61.36

Binary Point T5-XL 43.06 34.59 39.20 29.42 62.97 50.00 70.67 54.54

Likert Point T5-XL 38.31 27.83 37.65 26.91 59.79 43.33 63.58 50.00

B-UPR Point T5-XL 29.53 18.55 30.10 19.43 33.2 16.66 40.52 25.00

B-PRP Pair T5-XL 42.81 36.98 39.45 32.66 64.02 53.33 78.93 68.18

EcoRank-w/o-casc. Hybr. T5-XL 44.13 37.89 40.66 33.85 63.13 50.00 77.1 67.81

EcoRank Hybr. T5-XL+L 46.83 40.33 43.86 37.00 66.92 56.66 78.76 70.45

Table 4.3: Results (MRR and R@1) on all datasets for 50 passages. For B2 and B3, the

budget is too low for B-RankGPT to have any impact hence it is omitted.
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Chapter 5

Iterative Query Expansion for

Retrieval Over Cost-constrained

Data Sources

5.1 Introduction

Many Information Retrieval and AI tasks depend on the availability of an effective

Retriever module. A Retriever extracts k relevant documents or passages, given a query.

It serves as a standalone task as a core component in modern search engines, or as an

intermediate step for retrieval-augmented question-answering or other downstream tasks.

There are two main paradigms for retrievers: 1) sparse or lexical-based retrievers such as

BM25 [139], and 2) dense or embedding-based retrievers like DPR [79] and Contriever [72].

Dense retrievers have been shown to perform better when large amounts of labeled data are
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available, whereas BM25 remains competitive on out-of-domain datasets [156].

Query expansion is a popular approach to improve the accuracy of retrievers [].

A popular method to expand the query has been the use of pseudo-relevance-feedback

(PRF) [141, 175], which addresses the query-to-document vocabulary mismatch problem.

Key terms are extracted from the top-k relevant documents in the first pass retrieval and

appended to the original query to perform the final retrieval. However, the documents

returned from the first stage retrieval may not be relevant, and may introduce noise thus

hindering the effectiveness of PRF. To alleviate this issue, recent LLM-based approaches

like query2doc [162], CoT [73] and GRF [104] skip the first-stage retrieval and use LLMs

to generate additional content to append to the original query. These approaches use pre-

trained LLMs as black boxes and have shown improved results.

A salient assumption of these LLM query expansion works is that the cost of

retrieving documents is low, compared to the cost of accessing the LLM. For example,

the document collection may be stored in Elastic Search, which has a very low per-query

cost. We argue that this assumption is not true in several important problem settings,

where the dominant cost is the retrieval of result documents. This is the case when the

document corpus is not available or indexed locally, but is accessed via APIs. For example,

legal document retrieval systems like PACER [9], Westlaw [10] and LexisNexis [8] charge

a fee for retrieving each document. These fees can be as high as 0.1 USD per page of a

document [9].

Our key idea for improving the retrieval accuracy is that we combine classic pseudo-

relevance feedback expansion techniques with modern LLM-based query expansion tech-
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Figure 5.1: An overview of our proposed solution

niques. To mitigate the drawbacks of pseudo relevance feedback, we employ an LLM as

a relevance judge for each returned result. Specifically, we propose ProQE, shown in Fig-

ure 5.1, which is a progressive query expansion algorithm that iteratively expands the query

as it retrieves more documents.

Creating a progressive query expansion algorithms is challenging for several rea-

sons. First, we need to decide how the terms in each retrieved document, whose relevance is

uncertain, should be used to potentially adapt the query. This is related to the exploration

vs. exploitation paradigm: if we retrieve more documents using the original query, we may

view more diverse results, whereas aggressively refining the query using the early retrieved

documents may improve the focus and accuracy of the retrieval. Second, we want to create

an expansion method that performs well for most of the popular ranking algorithms, both

based on sparse and dense retrieval. This will allow our method to be applicable to a wide

range of black-box (e.g. API-based) ranking systems which may input a list of keywords or

weights and return a ranked list of results.

A key feature of ProQE is its plug-and-play capability, allowing it to integrate

seamlessly with any sparse or dense retrieval methods. The process operates as follows.
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For Sparse retrievals, we first retrieve the top one new document using the original query.

Through two LLM calls, it extracts potential expansion terms from this document and

further scores the relevance. Our scoring function takes the relevance score and all previously

retrieved terms as input, and updates the weights. The terms are appended to the query

based on their updated weights. We repeat this process n times. Retrieving only 1 new

document at each iteration helps by saving unnecessary retrieval costs. Further, evaluating

each document ensures that terms from more relevant documents receive higher weights,

allowing for progressive updates to the query terms based on LLM feedback. Finally, after n

iterations, the final query is formulated by prompting the LLM using chain-of-thought [166]

to retrieve additional context and appending it to the intermediate query. For dense retrieval

models, separate embeddings of the original query, expansion terms, and CoT output are

created and then combined using a weighted average to form the final query embedding.

We extensively compare our method to state-of-the-art pseudo relevance feedback

and generative query expansion approaches, for multiple types of sparse and dense retrieval

models on four popular datasets: Natural Questions (NQ) [86], Web Questions (WQ) [24],

TREC [48] DL19, and DL20. ProQE achieves an average gain of 37% on MRR and R@1

ranking accuracy compared to the baselines.

Our contributions are summarized as follows:

• We introduce the problem of LLM-assisted retrieval over cost-constrained black-box

data sources.

• We propose novel progressive query expansion algorithms for both sparse and dense

retrieval systems.
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• We extensively evaluate and compare various baseline expansion methods, over var-

ious retrieval models on four datasets. We make our code available to the research

community.1

5.2 ProQE: Progressive Query Expansion

Problem Definition. We focus on retrieving k documents from a collection D, either

with Sparse or Dense retrieval approaches. The query expansion task is formulated as

generating an expanded query q′ that contains additional query terms that may help in

retrieving relevant documents, given the original query q. We assume D is not indexed

locally and is only accessible via a retrieval API A. A charges a cost C for the retrieval

of each new document given a query. The cost typically does not depend on any variable,

i.e. the size of the query. Note that we assume that the query interface only charges for

retrieving new unique documents. That is, if we expand the query and resubmit and the

same document p is returned, there is no additional cost. This is not a necessary assumption

for ProQE, but it is commonly used by commercial systems such as ScrapeOps web content

retriever [11].

ProQE extracts key terms from each retrieved document and uses these terms at

each iteration to modify the query, before retrieving more documents. We next discuss the

details of ProQE for sparse and dense retrieval systems.

1link here
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ProQE for Sparse Retrieval. Our method first retrieves top-1 new document p1 calling

A using the original query q. The relevance of the passage rel(pi) is assessed by prompting

an LLM L with a pointwise ranking instruction [96], ”Is the following passage related to

the query?”. In parallel, m potential expansion terms are extracted using L with q and p1

given as input with the instruction ”Given the query and passage, extract 5 keywords that

may be useful to better retrieve relevant passages.”. The weights w(ti) of terms t1 · · · tm are

updated using the following equation and kept in a global dictionary with total terms M .

w(ti) =


w(ti) + β, if rel(p1) = 1

w(ti)− γ, if rel(p1) = 0

(5.1)

The terms with w(ti) > 0 are considered as expansion terms and are repeated int(w(ti))

times and appended to the original query. The original query is boosted α times to form

the intermediate query q+.

q+ = concat({q} × α,
M∑
i

{ti} × w(ti)) (5.2)

This process is iterated n times. At the beginning of each iteration, the intermediate query

q+ is used to retrieve p1 and a new q+ is generated at the end. By boosting and decreasing

the weights of expansion terms based on feedback from the LLM and the retrieved passage,

only relevant terms are appended to the query, thereby reducing noise. The iterative process

facilitates focused retrieval in each turn, leading to the generation of effective query terms.

Any irrelevant term added in one iteration is corrected in subsequent iterations. We tune

m, n, α, β, and γ on dev sets and show that the number of iterations does not vary the

final performance much. We discuss parameter details further in Section 3.4.
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Finally, after n-th iteration, we prompt L using chain-of-thought instruction [73]:

”Answer the following query, give rationale before answering.” and receive the output θc.

We stop the iteration at n as further updates do not improve the performance and may

deteriorate. The final query q′ is formulated as q′ = concat(q+, θc). We observed that

appending θc with q at the start of the iterations adversely impacts performance, as the

non-factual outputs from the LLM can misdirect the progressive update of queries via

relevant passages.

Dense Retrieval. Query expansion with key terms typically works best for sparse re-

trievals as expansion targets vocabulary mismatch and is uncommon for API-based retrieval

systems. Nonetheless, for completeness, we show that ProQE also improves the dense re-

trieval system. Appending a term multiple times does not boost its weight in a dense

retrieval system as the whole semantic meaning is captured in an embedding. We use an

encoder from a dense retriever model to create embeddings for the original query E⃗q. After

each iteration, intermediate query embedding E⃗q+ is computed as follows.

E⃗q+ = σ × E⃗q + τ × 1

M

M∑
i

w(ti)× E⃗ti (5.3)

where σ is the query weight and τ is the term weight for dense models. After n itera-

tions, similarly, we create the embedding for the CoT output E⃗θc and compute the final

query embedding E⃗q′ = σ × E⃗q+ + δ × E⃗θc, where δ is the CoT weight. We use this final

query embedding to search the corpus embeddings using similarity search to retrieve the

documents.
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5.3 Experimental Evaluation

Datasets. Following previous work on passage retrieval, we choose the popular benchmark

datasets Natural Questions (NQ) [86], Web Questions (WQ) [24], TREC [48] DL19, and

DL20. For TREC datasets, there are multiple relevant passages per query contrary to NQ

and WQ. To ensure fairness among datasets, we consider the passages with a score of 3 to

be the relevant ones.

Implementation. For experiments, we indexed the document corpus with Pyserini. For

LLM choice, we compared with GPT-3.5, Flan T5-XL, Llama-2 on dev set and chose T5-

XL as it has the best cost-to-performance ratio. This choice is also supported by previous

work [73,135]. We tuned our sparse weight parameters α, β, γ with a range from 0 to 5 and

step size of 1, dense weight parameters σ, τ , and δ with a range from 0 to 1 and step size

of 0.1, iteration number n (range from 2 to 15 with step size of 1), and number of potential

expansion terms m (range from 3 to 7 with step size of 1) on the dev sets of our datasets

and chose the values α = 1, β = 1, γ = 0, σ = 0.8, τ = 0.2, δ = 0.2, n = 5, and m = 5.

Note that, our choices of α, σ, τ , δ, and m are also supported by previous work [104,162].

Baselines. We sampled from each retrieval category, sparse and dense with unsupervised

and supervised variants to show the effectiveness of ProQE. For sparse retrieval, we compare

with BM25 and docT5 [119] as retrievers. docT5 uses a trained T5-large model to generate

a query given a document and the generated query is appended at the end of the document.
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Method
NQ WQ TREC DL 19 TREC DL 20

MRR R@1 MRR R@1 MRR R@1 MRR R@1

Sparse Retrieval

BM25 29.84 20.77 28.16 19.00 33.59 20.93 12.85 10.00

+RM3 28.76 20.24 31.16 22.78 30.09 20.93 10.89 8.00

+Rocchio PRF 25.42 17.61 26.28 18.65 28.33 18.60 10.40 8.00

+query2doc ZS 32.65 24.73 38.05 30.41 26.44 13.95 11.02 8.50

+query2doc FS 35.11 25.70 38.58 29.13 37.03 20.93 12.86 10.50

+CoT 35.42 26.48 44.07 35.48 35.78 25.58 13.73 11.00

+GRF 33.51 26.34 42.22 34.99 23.31 11.62 10.69 8.50

+NORMY 39.48 33.01 47.70 40.89 34.12 27.90 14.71 12.50

docT5 - - - - 44.87 32.55 13.96 10.50

+NORMY - - - - 43.05 34.88 14.02 13.60

Dense Retrieval

DPR 22.67 10.33 24.69 13.13 - - - -

+CoT 23.13 10.55 25.29 12.99 - - - -

+query2doc 23.38 11.02 25.23 13.04 - - - -

+NORMY 24.73 12.32 26.42 14.18 - - - -

TCT-Colbert - - - - 46.66 37.20 16.33 14.01

+ NORMY - - - - 47.17 39.53 16.45 14.01

Table 5.1: Results (MRR and R@1) on all datasets for 20 passages. Best performing are

marked bold.

The document is then indexed to better match the query. We use Pyserini’s prebuilt index

msmarco-v1-passage-d2q-t5. For dense retrieval, we compare with DPR [79] and TCT-

Colbert [98]. We use DPR’s question encoder fine-tuned on NQ and multiset and the

prebuilt index of Pyserini. TCT-Colbert fine-tunes a student encoder with distillation from

a teacher ColBERT [80] model. We use castorini /tct colbert-msmarco as the query

encoder.

We chose both state-of-the-art pseudo-relevance feedback and generative models

to compare against ProQE as comparing methods. Specifically, we choose the following:
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RM3 [12]: A PRF approach that expands the query from top-k retrieved documents. We

use fb terms = 10, fb doc = 10, and query- weight = 0.5 following Pyserini’s instructions [?].

Rocchio PRF [141]: Classic Rocchio formula with fb terms = 5 and fb docs = 3.

query2doc [162]: Additional passage generated from queries using LLMs. We show both

the zero-shot (ZS) and few-shot (FS) variants.

CoT [73]: Chain-of-Thought prompting output from LLMs.

Generative relevance feedback (GRF) [104]: Multiple types of additional content such

as news articles, essays, keywords, queries, and entities generated from LLMs given the

original query and combined together.

Main Results: Sparse We show our main evaluation results in Table 4.3 for k = 20

passages. We choose the popular Mean Reciprocal Rank (MRR) and Recall@k as our

evaluation metrics following previous work. We see that in both types of retrievals, ProQE

improves the baselines by up to an average of 37% from the variant without expansion. PRF

methods like RM3, Rocchio do not perform well due to the top retrieved passages not being

relevant. Among LLM-based generative methods, both query2doc and CoT perform really

well and significantly improve the performance. However, to get the best results, feedback

from both retrieved passages and LLMs are needed. The few-shot variant of query2doc has

better MRR in DL 19 dataset than ours but worse R@1. Generating larger passages with

LLM in some scenarios may retrieve better results at k ¿¿ 1 position. However, in Retrieval

Augmented Generation tasks, only the top few passages are considered hence R@1 metric

is more important. docT5 uses a fine-tuned model hence the performance is better than

BM25. We see that ProQE still improves a trained model’s performance.
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Figure 5.2: Impact of iterations for NQ and WQ dev sets.

Main Results: Dense We see that ProQE improves native dense retrievals by an aver-

age of 8%, although the margin is lower than sparse. Unsupervised dense retrieval is not

typically suited for query expansion and is uncommon for cost-constrained data sources.

Regardless, our method is applicable to any such system if released in the future.

Analysis: Impact of iterations. We show the impact of iteration number in Figure 5.2.

We see diminishing results after 5 iterations. However, the performance does not vary much

after 5. This shows that, regardless of what iteration number is chosen, it will improve the

performance of native retrieval systems and other strong baselines.

5.4 Related Work

Query Expansion. To resolve the lexical mismatch between query and relevant

documents, relevance feedback from documents [101, 141] or knowledge sources [51, 108,

169] are used to expand the query. In cases where the gold labels are not available, the
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top retrieved documents are used as pseudo-relevant documents like KL [175], RM3 [89]

etc. PRF methods are primarily used in Sparse retrievals and may introduce noise in

expanded terms, affecting its reliability. Recently, there have been systems for learned sparse

retrievals like SPLADE [62], which is a neural retrieval model that uses BERT and sparse

regularization to learn query and document sparse expansions. PRF methods have also been

adapted by embedding-based dense retrieval models [79] like ANCE-PRF [172], ColBERT-

PRF [165] which extracts relevant embeddings from retrieved documents to incorporate to

the query embedding. Both learned sparse and dense retrieval models require training data

with gold relevance labels which becomes exponentially difficult to collect if the corpus

is not available locally. Further, our algorithm can work with both sparse, learned and

unsupervised dense retrieval models.

LLM Augmentation. The use of LLMs [29] have spread to different augmen-

tation techniques such as query rewriting [74,168], query-specific reasoning [61], document

augmenting (doc2query) [119] etc. Some very recent LLM based query expansion works

include query2doc [162], where an LLM generated document is augmented; GRF [103,104],

where additional context such as keywords, news, facts generated using LLM are appended,

and CoT [73], where a chain of thought answer is appended to the query. These works exclu-

sively use LLMs as additional context which have been shown to hallucinate. Other works

include HyDE [63], and GAR [19] which require trained models to compute the embeddings

of the generated documents.

Cost-aware Methods. To the best of our knowledge, we are the first to consider

the cost of retrieval as a constraint. Other cost-aware methods like FrugalGPT [37], Eco-
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Rank [135] consider the costs of LLM APIs are used for either direct question-answering,

reasoning, or text re-ranking tasks. We show that, in practical scenarios, retrieval API costs

can dominate the total cost of retrieval augmented generation.
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Chapter 6

Conclusions

In this dissertation, we focused on four problems related to the open retrieval

question answering system. First we tackled the training data scarcity problem of frequently

asked question answering. We proposed QuAX, a pipeline to automatically extract high-

utility question answer pairs. Second, we focused on the open retrieval conversational

question answering task. We proposed NORMY, which models the conversational history

differently in each module of the pipeline. NORMY is non-uniform and performs better than

all other baselines. Third, we introduced the problem of budget-constrained text reranking

with Large Language Models. LLMs can be very expensive and we propose EcoRank, a

budget-aware pipeline that jointly optimizes the prompt choices, LLM choices, and budget

split. Finally, we focus on the Retriever component of the ORQA pipeline. We proposed

ProQE, an iterative query expansion method that combines classic PRF methods with

LLM-based techniques. With our novel scoring function, we showed that ProQE can adapt

with any sparse or dense retrieval systems and improves the baselines.
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Gurevych. Beir: A heterogenous benchmark for zero-shot evaluation of information
retrieval models. arXiv preprint arXiv:2104.08663, 2021.

[157] Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip
Bachman, and Kaheer Suleman. Newsqa: A machine comprehension dataset. arXiv
preprint arXiv:1611.09830, 2016.

[158] Svitlana Vakulenko, Shayne Longpre, Zhucheng Tu, and Raviteja Anantha. Question
rewriting for conversational question answering. In Proceedings of the 14th ACM
International Conference on Web Search and Data Mining, pages 355–363, 2021.

[159] Ellen M Voorhees, Dawn M Tice, et al. The trec-8 question answering track evaluation.
In TREC, volume 1999, page 82. Citeseer, 1999.

[160] Nikos Voskarides, Dan Li, Pengjie Ren, Evangelos Kanoulas, and Maarten de Rijke.
Query resolution for conversational search with limited supervision. In Proceedings
of the 43rd International ACM SIGIR conference on research and development in
Information Retrieval, pages 921–930, 2020.

[161] Ben Wang and Aran Komatsuzaki. Gpt-j-6b: A 6 billion parameter autoregressive
language model, 2021, 2022.

[162] Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query expansion with large
language models. arXiv preprint arXiv:2303.07678, 2023.

[163] Shuai Wang, Zhiyuan Chen, Bing Liu, and Sherry Emery. Identifying search keywords
for finding relevant social media posts. In AAAI, pages 3052–3058, 2016.

103



[164] Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang, Tim Klinger, Wei Zhang,
Shiyu Chang, Gerry Tesauro, Bowen Zhou, and Jing Jiang. R 3: Reinforced ranker-
reader for open-domain question answering. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[165] Xiao Wang, Craig Macdonald, Nicola Tonellotto, and Iadh Ounis. Colbert-prf: Se-
mantic pseudo-relevance feedback for dense passage and document retrieval. ACM
Transactions on the Web, 17(1):1–39, 2023.

[166] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V
Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language
models. Advances in Neural Information Processing Systems, 35:24824–24837, 2022.

[167] Thomas Wolf. Neural Coreference - Huggingface. https://huggingface.co/coref/.

[168] Zeqiu Wu, Yi Luan, Hannah Rashkin, David Reitter, Hannaneh Hajishirzi, Mari
Ostendorf, and Gaurav Singh Tomar. Conqrr: Conversational query rewriting for
retrieval with reinforcement learning. arXiv preprint arXiv:2112.08558, 2021.

[169] Chenyan Xiong and Jamie Callan. Query expansion with freebase. In Proceedings
of the 2015 international conference on the theory of information retrieval, pages
111–120, 2015.

[170] Bishan Yang, Jian-Tao Sun, Tengjiao Wang, and Zheng Chen. Effective multi-label
active learning for text classification. In Proceedings of the 15th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 917–926, 2009.

[171] Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li,
and Jimmy Lin. End-to-end open-domain question answering with bertserini. arXiv
preprint arXiv:1902.01718, 2019.

[172] HongChien Yu, Chenyan Xiong, and Jamie Callan. Improving query representations
for dense retrieval with pseudo relevance feedback. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management, pages 3592–
3596, 2021.

[173] Murong Yue, Jie Zhao, Min Zhang, Liang Du, and Ziyu Yao. Large language model
cascades with mixture of thoughts representations for cost-efficient reasoning. arXiv
preprint arXiv:2310.03094, 2023.

[174] Munazza Zaib, Wei Emma Zhang, Quan Z Sheng, Adnan Mahmood, and Yang Zhang.
Conversational question answering: A survey. Knowledge and Information Systems,
pages 1–45, 2022.

[175] Chengxiang Zhai and John Lafferty. Model-based feedback in the language modeling
approach to information retrieval. In Proceedings of the tenth international conference
on Information and knowledge management, pages 403–410, 2001.

104



[176] Shu Zhang, Dequan Zheng, Xinchen Hu, and Ming Yang. Bidirectional long short-
term memory networks for relation classification. In Proceedings of the 29th Pacific
Asia conference on language, information and computation, pages 73–78, 2015.

[177] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks
for text classification. In Advances in neural information processing systems, pages
649–657, 2015.

[178] Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang,
Enbo Zhao, Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: a survey on
hallucination in large language models. arXiv preprint arXiv:2309.01219, 2023.

[179] Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei Hao, and Bo Xu.
Attention-based bidirectional long short-term memory networks for relation classifi-
cation. In Proceedings of the 54th annual meeting of the association for computational
linguistics (volume 2: Short papers), pages 207–212, 2016.

[180] Fengbin Zhu, Wenqiang Lei, Chao Wang, Jianming Zheng, Soujanya Poria, and Tat-
Seng Chua. Retrieving and reading: A comprehensive survey on open-domain question
answering. arXiv preprint arXiv:2101.00774, 2021.

[181] Honglei Zhuang, Zhen Qin, Shuguang Han, Xuanhui Wang, Michael Bendersky, and
Marc Najork. Ensemble distillation for bert-based ranking models. In Proceedings of
the 2021 ACM SIGIR International Conference on Theory of Information Retrieval,
pages 131–136, 2021.

[182] Honglei Zhuang, Zhen Qin, Kai Hui, Junru Wu, Le Yan, Xuanhui Wang, and Michael
Berdersky. Beyond yes and no: Improving zero-shot llm rankers via scoring fine-
grained relevance labels. arXiv preprint arXiv:2310.14122, 2023.

[183] Shengyao Zhuang, Honglei Zhuang, Bevan Koopman, and Guido Zuccon. A setwise
approach for effective and highly efficient zero-shot ranking with large language mod-
els. arXiv preprint arXiv:2310.09497, 2023.

105




