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1 OVERVIEW

Because travel time provides information over an extended freeway link, rather than at a single

point, it is a key parameter for ATIS applications and it is a powerful tool for ATMS. Under PATH

sponsorship, we have already developed a prototype travel time measurement system that utilizes

existing dual loop speed traps and "model 170" controllers.  This research has advanced the work

by improving the vehicle reidentification algorithms (Section 2), extended them to single loop

detector stations (Section 3) and used the reidentified vehicles to extract both density and the net

number of lane change maneuvers (Section 4).  This latter work was conducted as part of the

Berkeley Highway Laboratory (BHL).
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2 IMPROVED VEHICLE REIDENTIFICATION AND TRAVEL TIME MEASUREMENT ON

CONGESTED FREEWAYS1

2.1 Introduction

This Section improves upon the vehicle reidentification algorithm presented in Coifman and

Cassidy (in press) for consecutive detector stations on a freeway; in the algorithm, a vehicle

measurement made at a downstream detector station is matched with the vehicle's corresponding

measurement at an upstream station. The work should be applicable to any detector technology

capable of extracting a reproducible vehicle measurement, or vehicle signature. The algorithm is

presented using measured vehicle lengths from conventional dual loop detectors; however it could

easily be adapted to match other vehicle signatures, such as visual vehicle signatures from wayside

cameras (e.g., MacCarley 1998), and vehicle dimensions from scanning laser radar (e.g., Larson

et al. 1998).

Obviously, once a vehicle has been matched, its travel time is simply the difference in arrival times

at the two stations. Travel time data could be used to improve many traffic management

applications such as automatic incident detection, adaptive freeway ramp metering, and traveler

information systems (Palen 1997; Balke et al. 1995). The data might also be used for routing

vehicles over a network so as to reduce traveler delay, for calibrating traffic planning and

simulation models, and for quantifying the potential benefits of emerging detector technologies that

extract more detailed information from individual vehicles.

Reviewing the algorithm developed in Coifman and Cassidy (in press), it uses arrival times and

number of arrivals at the upstream station to identify the set of all upstream observations in the

same lane that could have come from a given downstream vehicle measurement. This set of

feasible upstream measurements is bounded by the minimum feasible travel time between stations

(the fastest possible vehicle) and an assumed maximum density (the largest number of vehicles that

could be stored between the two detectors). The algorithm then takes the difference between the

given downstream measurement and each of the feasible upstream measurements, and it identifies

all pairs whose difference exceeds the measurement accuracy, as defined in the Basic Algorithm

subsection below. These measurements presumably could not have come from the same vehicle,

while all remaining pair-wise comparisons are treated as possible matches. Of course with this

simple test the downstream vehicle will likely have many possible matches within the set, and at

most, one true match amongst them. We term the collection of incorrect matches as false positives.

                                                

1 E. Ergueta helped prepare this Section.
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The sequence of a platoon's vehicle signatures provides more information than do the individual

measurements, as is demonstrated herein. Toward eliminating false positives, the algorithm

matches platooned vehicles whenever these pass both the upstream and downstream detector

stations without altering their relative sequence. Obviously, lane change maneuvers disrupt these

sequences, but previous research has shown that lane change maneuvers are relatively infrequent

under most traffic conditions. For example, Worrall and Bullen (1970) observed that lane change

frequency decreases with average velocity while Windover (1998) found that under congested

conditions, consecutive vehicles will often maintain their relative order within a platoon for long

distances. The algorithm has been explicitly designed to accommodate normal frequencies of lane

change maneuvers (the algorithm has been tested successfully with up to 22 percent of the vehicles

entering the lane between detector stations). Subsequent subsections will verify that the lane

change assumptions hold for the study segments.

Using effective vehicle lengths measured by conventional dual loop detectors, the algorithm can be

deployed without requiring new detector hardware. The length measurements, however, may only

be accurate to half a meter due to the resolution limitations of dual loop detector data. As discussed

in Coifman (1998), the accuracy of these loop detector measurements improves as vehicle

velocities decrease. Consequently, for the existing detectors used in this study, the algorithm is

limited to match vehicles during congested traffic conditions, i.e., when the local velocity at either

station is less than 72 km/h. Coifman (in press) presents a complementary algorithm for measuring

travel times from dual loop detectors during free flow traffic conditions.

Unlike the algorithm presented in Coifman and Cassidy (in press), which found a single match for

each vehicle and then separately looked for patterns in these results to eliminate erroneous matches,

this Section integrates the two processes. The integration makes the algorithm robust to detection

errors, allowing it to identify a final match for more vehicles and to do so with higher accuracy.

The remainder of this Section is organized as follows. The first subsection summarizes our Basic

Algorithm for vehicle reidentification, including how to calculate vehicle lengths from dual loop

detectors, how to identify all possible matches for each downstream vehicle, and how to address

lane change maneuvers. The second subsection describes the new work done to eliminate false

positives, which includes the development of four independent tests. The third subsection applies

the algorithm over large data sets. The final subsection presents concluding remarks.
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2.2 The Basic Algorithm

The vehicle reidentification algorithm is described here via its application; i.e., it is applied to traffic

data measured in a single lane at two neighboring dual loop detector stations, 0.55 km apart, in the

Berkeley Highway Laboratory along Interstate-80, north of Oakland, CA (Coifman et al. 2000).

2.2.1  Vehicle Length Measurement

The first step in the algorithm is to measure vehicle lengths. To illustrate this process, Figure 2-1A

shows a time-space diagram depicting a vehicle passing over a dual loop detector. The controller

normally records four transitions, i.e., the turn-on and turn-off times at each of the loops, as

shown in Figure 2-1B. These measurements are used to calculate: dual loop traversal time via the

rising edges, TTr, dual loop traversal time via the falling edges, TTf, total on-time at the first loop,

OT1, and total on-time at the second loop, OT2, as indicated in the figure.

Occasionally a vehicle will change lanes over the dual loop detector or one of the loop detectors

will malfunction and these misdetections will impact the performance of the reidentification

algorithm. For the data presented in this study, less than three percent of the data collected

presented these errors. Figures 2-2A-B and 2-2D-E show the most common errors at a dual loop

detector. It can be difficult to differentiate between flicker at one loop and the other loop failing to

detect a vehicle, but both errors result in two sequential pulses at one loop without an intervening

pulse at the other loop. The algorithm in Coifman and Cassidy (in press) discarded all of the

questionable pulses, i.e., those highlighted with gray rectangles in Figure 2-2. As a result, this

cleaning process discarded one or two vehicles whenever an error occurred. However, comparing

Figures 2-2A and 2-2B, regardless of which error occurs, two parameters are always measured

correctly, OT2 and TTf. We now keep the pulse at the second loop and use these measurements to

reconstruct a pulse at the first loop by retaining TTf and setting OT1 equal to OT2, as shown with

dashed lines in Figure 2-2C. Looking at Equation 2-1 below, it becomes clear that equating OT1 to

OT2 implicitly assumes that the vehicle passes both loops without accelerating, which is a

reasonable assumption due to the small spacing (6.1 m) between the dual loops. The analogous

process of reconstructing a pulse at the second loop is shown in Figures 2-2D-F. The improved

cleaning process will still sometimes discard a vehicle, but to the vehicle reidentification algorithm

these missing pulses simply appear to be a phantom vehicle that entered or exited the lane between

the stations.

Obviously, the loop separation (6.1 m in this case) divided by the traversal time yields the vehicle

velocity. It is clear from Figure 2-1A that two measurements are available for the effective vehicle

length,
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and the algorithm uses the average of the two. Equation 2-1 and Figure 2-1A show that the

effective vehicle length is the sum of the physical vehicle length and the length of the detection

zone.

Since the controller samples the loops at 60 Hz, the traversal times and on-times in Equation 2-1

are accurate to ±1/30 seconds. To capture this resolution constraint, the measurement uncertainty is

defined as the range spanned by [L1, L2] after including ±1/60 seconds in OT1, OT2, TTr and TTf.

To ensure the accuracy of OT1, OT2, TTr and TTf, any hardware problems at each station, such as

cross talk between detectors, were identified using Coifman (1999) and corrected.

2.2.2  Possible Matches and the Vehicle Match Matrix

Within each lane, vehicles are assigned successive arrival numbers as they pass each detector

station and these numbers are assigned independently at each station. Next, a set of feasible

upstream measurements is identified for each downstream measurement, as discussed previously.

The algorithm finds all vehicles in this set with a length range that intersects that of the downstream

vehicle. The results of this resolution test (i.e., the set of possible matches for each downstream

vehicle) are stored as one row in a matrix termed the vehicle match matrix (VMM). Figure 2-3

shows the VMM for 100 downstream vehicles, where each point represents a possible match. Note

that the columns are indexed by the difference between the arrival numbers assigned to vehicles at

the upstream and downstream detector stations (upstream offset). Therefore, each diagonal in the

VMM corresponds to all possible matches for a given upstream vehicle.  Note that throughout this

Section, a diagonal in the VMM will refer to a diagonal going from the upper right to the lower left

corner of this matrix.

The false positives are randomly distributed over the VMM, but if vehicles usually maintain their

order between stations (i.e., assuming lane change maneuvers are relatively infrequent), the true

(but unknown) matches should manifest themselves as sequences of possible matches in the same

column. For simplicity, the term sequence is used to refer to a sequence of possible matches in the

same VMM column. So in other words, false positives will typically form short sequences in the

VMM's columns while true matches will usually form longer sequences within single columns.
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After discussing lane change maneuvers, several tests are developed that exploit this property to

eliminate false positives. After applying these tests, each downstream vehicle is matched to at most

one upstream vehicle. Some of the tests explicitly look for a small set of lane change maneuvers, as

discussed below.

2.2.3  Lane Change Maneuvers and Best Matches

After finding sequences of possible matches in the VMM, the reidentification algorithm searches

for a small set of lane change maneuvers between sequences as outlined in Coifman and Cassidy

(in press). Although the algorithm does not attempt to match vehicles that have changed lanes,

these maneuvers impact the relative order of the vehicles that remain in the lane, and the algorithm

must correct for these changes. Briefly summarizing the process, Figure 2-4A-C respectively show

the three maneuvers searched for: a vehicle exiting a lane, a vehicle entering a lane, and a vehicle

entering a lane while another exits the same lane. For each new sequence of possible matches, the

algorithm checks to see if it can be linked to an earlier sequence via one of the maneuvers. This

search is only applied to the first match in the sequence, downstream vehicle m in this example,

and the algorithm looks at the neighboring columns for two preceding downstream vehicles, the

shaded elements in Figure 2-4D. When a possible lane change occurs, the algorithm joins the two

sequences in a modified sequence, as illustrated in Figures 2-4E-F. Except where noted, these

modified sequences include at most a single lane change maneuver, but a given possible match that

is included in a sequence may be included in many modified sequences. Note that the set of

modified sequences includes all of the original sequences as well. The Basic Algorithm will select

the longest modified sequence from this set, so that for each row, the algorithm finds the element

corresponding to the maximum value (best match), thus, identifying the longest modified sequence

for a given downstream vehicle.

Provided traffic does not stop over one of the detectors, the link travel time usually will not change

significantly between two successive vehicles. In the event that there is a tie for the best match in a

row of the VMM, the algorithm will compare the resulting travel times for each of the matches

from this set to the median travel time of the previous 30 vehicles already matched. If the local

velocity measurements indicate that traffic has not recently stopped over one of the detectors, the

algorithm will eliminate all of the matches from the set that have a travel time more than 20 seconds

different from the median. If more than one match still remains in the set, none of them will be

retained as a best match. Except for these rare cases, the algorithm will yield a single, unique best

match for each downstream vehicle. Figure 2-5 shows an example of the resulting matches from

the Basic Algorithm (including lane change maneuvers), applied to the VMM of Figure 2-3. A few

obvious false positives remain in this example between columns 20 and 55, and also around
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column 90. The next subsection will attempt to improve performance by further eliminating these

false positives as well as others that are not as obvious to the eye.

2.3 Tests to Eliminate False Positives

Four tests have been developed to improve the performance of the Basic Algorithm, as described

below. The Filter and Cone Tests are applied before searching for lane change maneuvers (starting

from the original VMM matrix) while the Multiple Lane Change Test is applied concurrently with

this search and the Travel Time Test is applied after this search (since it needs a preliminary "best

match" for each downstream vehicle). Each test is designed to run independent of the other tests.

2.3.1  Filter Test

As previously discussed, true matches tend to form longer sequences than false positives do. This

test will favor areas of high density of matches in the VMM. The Filter Test uses aggregate trends

to narrow the range of feasible upstream matches to a small number of columns in the VMM that

are most likely to contain the true matches. So, as opposed to the upcoming tests, the Filter Test

does not look for final matches, but for a "final region."

The Filter Test starts with the VMM and selects all matches that are members of the three longest

vertical sequences for each row and for each diagonal, i.e., the most promising matches for a

downstream vehicle and an upstream vehicle, respectively. Figure 2-6A shows an example of this

pre-selection applied to the VMM of Figure 2-3. The Filter Test will ignore matches if they fall in

sequences shorter than five vehicles.

The remaining matches are assigned a weighting of "1", and all other elements in the matrix are

assigned a weighting of "0" (blank spaces in the figure). Most vehicle lengths fall within a small

range; the remaining vehicles (about ten percent for the subject location) are distinct and have fewer

false positives associated to them. Exploiting this fact, if a downstream vehicle has a possible

match for less than 10 percent of its feasible matches, the vehicle's weighting will be doubled. The

Filter Test also favors matches that fall in longer sequences (i.e., situations with no detected lane

change maneuvers). Specifically, if a match belongs to a sequence that is 1.25 times longer than

the median sequence length passing through the row of the VMM, the match 's weighting is also

doubled. Thus, a distinctive vehicle in a long sequence may ultimately receive a weighting of "4".

Each element of the filtered VMM now has a weighting of 0, 1, 2 or 4. Next, the Filter Test takes a

moving average of 20 rows within each column, i.e., for each element in the filtered VMM, it

calculates the mean weighting over the previous 20 elements in the same column. Once more,
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assuming that true matches usually form longer sequences than false positives, this process should

favor the former. Comparing Figures 2-6A-B, this averaging has extended the sequences.

Although it is not shown in Figure 2-6B, each of the matches has a different weighting associated

with it. Also note that the small sequences (shorter than five vehicles long) that are shown in

Figure 2-6A have been discarded in a previous step, and therefore do not appear in Figure 2-6B.

Under most traffic conditions true matches usually will not change columns rapidly because, as

previously noted, each column shift represents the relatively infrequent lane change maneuvers.

This property is evident in the higher density of matches shown around column 82 in Figure 2-6A.

Taking the results from the vertical moving average (Figure 2-6B), the Filter Test then calculates a

moving average of five columns within each row in order to "connect" sequences from adjacent

columns of the filtered VMM and account for lane change maneuvers. The results of this horizontal

moving average represent the final weightings for each element in the filtered VMM.

Next the Filter Test selects all matches that have a weighting greater than a threshold. In the present

study, to determine this threshold we calculated the mean over all non-zero final weights from the

filtered VMM. The threshold was then set to 5 times this mean weighting. The averaging and

thresholding process is repeated a second time to further narrow the set of possible matches.

Everything that remains defines the good region, e.g., Figure 2-6C.

Even though determining the good region is the ultimate goal of the Filter Test, in order to

appreciate its performance, we apply the Basic Algorithm to the same VMM independently of this

test. Finally, only the intersection of the best matches from the Basic Algorithm (Figure 2-5) and

the good region from the Filter Test (Figure 2-6C) are retained as final matches for this test, e.g.,

Figure 2-6D.

2.3.2  Cone Test

Although the true matches are not known a priori, they will usually be preceded by other true

matches in nearby columns. The Cone Test will favor patterns of matches that resemble earlier true

matches. This test uses coarse information to narrow the set of possible matches in the VMM,

starting once more with the matches that fall in the three longest sequences per row and diagonal in

the VMM, e.g., Figure 2-6A. This test considers each of the resulting sequences individually,

unlike the Filter Test. For the first element of each sequence, the algorithm considers a "cone" of

earlier matches expanding upwards from the match, e.g., the shaded area in Figure 2-7A. The cone

spans 20 rows, with the left-hand boundary corresponding to the situation where every other

vehicle enters the lane, and the right-hand boundary corresponding to the situation where every
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other vehicle exits the lane. Since entering and exiting vehicles result in different column shifts, as

shown in Figure 2-4, the cone is asymmetric.

In this manner, it is assumed that any matches below the cone can not precede the given sequence

via lane change maneuvers, but those within the cone could have. Thus, if a sequence exits the

bottom of the cone, all matches below the cone will be excluded from that sequence's length, e.g.,

a sequence containing two matches within the cone and five below the cone will be treated as if it

only has two matches for the given cone. On the other hand, the length for a sequence starting

above the cone will include all of the matches above the cone since they could still precede the

possible match at the vertex of the cone, e.g., for a sequence containing 13 matches, starting above

the top of the cone and ending inside the cone, all 13 matches will be included.

A cone weight is calculated for each new sequence, based on the sum of the lengths of all

sequences within the cone. For example, for a cone containing two sequences, one composed of

13 matches and the other of 2 matches, the resulting cone weight would be 13+2=15.

As in the previous test, the Cone Test favors unique vehicles that are likely to have fewer false

positives, and therefore the cone weight is increased by one unit for each match within the cone

that corresponds to an uncommon vehicle length, i.e., if a downstream vehicle has a possible

match for less than 10 percent of its feasible matches. Also, if any match in the cone belongs to an

unusually large sequence compared to the other matches for that row of the VMM (at least 1.25

times the median sequence length passing through the given row) the cone weight is increased by 5

units per long sequence.

After calculating the cone weight for each sequence, the test selects only the sequences that have a

cone weight of at least 0.75 times the average cone weight over the preceding 50 rows of the

matrix. The results of this selection are shown in Figure 2-7B. Some rows may still contain more

than one match at this stage, so the remaining sequences are joined vertically by lane change

maneuvers and the longest modified sequence passing through a given row is retained. The final

matches from the small example are shown with dark circles, superimposed on the original VMM,

in Figure 2-7C.

2.3.3  Travel Time Test

As previously noted, two successive vehicles will usually have similar link travel times unless one

of them comes to a stop over one of the detector stations. The Travel Time Test exploits this

property to eliminate false positives and when possible, finds a more promising match for a given

downstream vehicle. This test starts with the best matches from the Basic Algorithm and considers
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each of these matches one at a time, processing them in the order of the downstream vehicle

numbers (going top to bottom in the matrix in Figure 2-5). First the test discards any match

indicative of a vehicle traversing the link at a very high velocity. For the present study, any vehicle

moving faster than 120 km/h would be discarded. If a match passes that step, the resulting travel

time is compared to that of the median travel time over all final matches (matches that have already

passed this test) in the 30 preceding rows. If this travel time is within 20 seconds of the median,

the match will be retained. Otherwise, the Travel Time Test examines the local velocities at the two

detector stations to see if a passing disturbance could explain the difference in travel times. In the

event of such a disturbance, consecutive vehicles should still have similar upstream offsets, i.e.,

fall in or near the same column of the VMM. So, a match will also be retained if such a disturbance

passed one of the detectors and the upstream offset for the subject match is within five columns of

the median upstream offset over all final matches in the 30 preceding downstream vehicles.

Since the local travel time median only includes matches that have previously passed this test, a

match will also be retained in the event that there are fewer than 10 matches in the set because such

set is considered too small to yield meaningful conclusions. For this reason, the last matches in a

very long sequence of false positives might be retained. For example, a long sequence of false

positives is shown with points in column 20 of Figure 2-8A. The first few matches in this

sequence are discarded, but eventually the test retains the end of the sequence (shown with light

circles). By the same mechanism, the test will recover from such errors after discarding a few true

matches. Again, notice in Figure 2-8A that even though the first few matches of the true sequence

in column 80 (starting at row 150) are not retained by the test, the rest of the sequence is.

If the match for a downstream vehicle fails to pass these steps, the Travel Time Test will then

attempt to find a better match for that vehicle by checking the second and third longest sequences in

the row. These matches will only be considered if they are also among the three longest sequences

for the given diagonal, e.g., Figure 2-6A. Out of this set, the match with the smallest difference

from the median travel time will be retained provided it is within 20 seconds of the median, as

before. The final matches from the small example are shown with dark circles, superimposed on

the original VMM, in Figure 2-8B.

2.3.4  Multiple Lane Change Test

The Multiple Lane Change Test is based on the identification of possible lane change maneuvers as

explained in the Basic Algorithm subsection. Rather than only finding modified sequences linked

by a single lane change maneuver, this test processes the VMM five separate times, each time

allowing for modified sequences containing one additional lane change maneuver than the previous



Coifman and Varaiya

2-10

pass, up to a total of five lane change maneuvers. Figure 2-9A compares the best matches when a

single lane change maneuver is allowed against those when five lane change maneuvers are

allowed. Note the differences around rows 37, 53 and 99.

This test is based on the observation that the various number of lane change maneuvers will be

vulnerable to different errors. For example, a long sequence of false positives is more likely to

corrupt the algorithm when only single lane change maneuvers are considered. On the other hand,

many short sequences of false positives might be joined together and corrupt the algorithm when it

allows multiple lane change maneuvers. The true matches, however, should be consistent across

the different number of lane changes.

For each of the five cases, the test selects the matches that are members of the five longest modified

sequences per row and diagonal. Then, the intersection of these sets is generated. This intersection

is treated like a new VMM and then processed using the same steps as in the Basic Algorithm, i.e.,

after allowing for a single lane change maneuver between sequences of matches, the test finds the

element corresponding to the longest modified sequence in the row or best match. The final

matches from the small example are shown with dark circles, superimposed on the original VMM,

in Figure 2-9B.

Obviously the previous tests include several parameters. Additional testing over a wide range of

locations would be necessary to optimize these values. At present the 60 Hz detector data used in

this study are not widely available and securing such data is the subject of ongoing work.

Meanwhile, the values used in this Section provided successful results in all 10 lanes in each of the

six links of the Berkeley Highway Laboratory.

2.4 Results

To illustrate the performance of the new tests, they are applied to two different scenarios. The first

scenario corresponds to an hour of data collected from the same lane at two detector stations 0.55

km apart, with no ramps between them. The second scenario corresponds to a two-hour period of

data collected for all lanes at two detector stations also 0.55 km apart, but this time with an off

ramp in between them.

For the first scenario video data were also colleted at these stations and all vehicles that passed

during the study period were visually matched between the two locations. In this sample, 1,462

vehicles passed the downstream station, out of which, 193 entered the lane between the detectors

and did not have a match. The resulting travel times for the remaining 1,269 vehicles were

calculated. Figures 2-10A-D show the resulting travel times for the matches extracted by each of
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the tests (light X's) contrasted against these ground truth travel times (dark line). Table 2-1

summarizes the number of matches found by each of these tests. The first column includes all the

final matches shown in Figures 2-10A-D, including some that fall outside the region for which we

have ground truth data. The remaining columns of the table reflect only the matches found within

the period for which ground truth data are available.

Although all of the tests retain a few false positives, the selection mechanisms are different and

each test keeps a different set of false positives. This property is exploited to further eliminate

errors by running all these tests in parallel and retaining only those matches that appear in at least

two of the tests. Figure 2-10E shows the resulting travel times for the sample of 1,462 vehicles

contrasted against the true travel times, and the number of matches is also reported in Table 2-1.

Applying a modified version of the Travel Time Test to the matches, as explained momentarily,

further improves the results. Now, however, if the travel time associated with a vehicle is not

within one minute of a local travel time median (considering the previous 20 vehicles) the current

match is discarded. Figure 2-10F and Table 2-1 show the results after applying this final filter for

the same sample of 1462 vehicles. As is evident by the travel times Figure 2-10F and Table 2-1,

most of the incorrect matches are very close to the true match for those vehicles.

In general the new algorithm performs significantly better than the old algorithm from Coifman and

Cassidy (in press). These differences are particularly apparent when large numbers of vehicles

enter or exit the lane. The second scenario considers just such a case, matching vehicles in a

segment that includes an off-ramp between the detector stations. Unlike the first scenario, this

example considers all five lanes and compares the results from both the old and new algorithms.

Once more we use video collected concurrently with the loop data to verify the performance of the

algorithms. It would be prohibitively time consuming to manually match the 13,500 vehicles that

passed both detector stations during this example. Fortunately, it is not necessary to match every

vehicle manually. If the algorithm is correctly matching vehicles, it will also yield the true travel

times for those vehicles. Although travel time over a freeway link can change dramatically in a

short period of time, the travel times for two successive vehicles will be very similar. Thus, a

human observer must manually match a sufficient number of vehicles to capture changes in link

travel time, but this can be accomplished using a small fraction of the passing vehicles. We

matched an average of two vehicles per minute for verification in this scenario.

Figure 2-11 shows the travel times of all the vehicles in the second scenario matched by the new

algorithm contrasted against the manually generated matches. The equivalent link velocities ranged

from free flow down to 6 km/h during this example. Similar accuracy was found with the old
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algorithm, although the frequency of matches was considerably lower. As shown in Table 2-2, in

some lanes the new algorithm matched more than twice as many vehicles as its predecessor did.

In the first scenario the new algorithm matched 86 percent of the vehicles while in the second

scenario it recognized between 35 and 65 percent of the vehicles that passed both detector stations,

depending on the lane. The required matching rate depends on the ultimate application. For

example, Van Aerde et al. (1993) estimated that matching 20 percent of the population is sufficient

for travel time measurements, and Holdener and Turner (1996) suggests that the percentage may be

even smaller. Clearly, the algorithm has surpassed these requirements in both scenarios.

2.5 Conclusions

This Section has presented an algorithm to match a vehicle's length measurement at a downstream

detector station with that vehicle's corresponding measurement at an upstream station. Although

this algorithm is potentially compatible with many vehicle detector technologies, the Section

illustrated the method using existing dual loop detectors to measure vehicle lengths. Of course once

a vehicle has been matched across neighboring detector stations, the difference between its arrival

times at each station defines the vehicle's travel time on the intervening segment.

The algorithm rules out unlikely matches, looks for sequences of possible matches between

measurements at the two stations, and then eliminates unlikely sequences of these matches. This

elimination process is based on the assumptions that lane change maneuvers are relatively

infrequent, sequences of true matches tend to be larger than those of false positives, and that two

successive vehicles will usually have similar link travel times. These assumptions were used to

develop four tests to eliminate false positives: Filter Test, Cone Test, Travel Time Test, and

Multiple Lane Change Test. Although none of the tests are perfect, they all produce good results

and as illustrated, the results can be improved by combining the tests because they exhibit different

errors. Meanwhile, ongoing research is seeking to optimize the parameters used in these tests.

The beauty of our approach is its simplicity and its low cost, since our research is completely

compatible with the hardware (for detection and communication) that some operating agencies have

already deployed, such as those in California, Ohio and Massachusetts. Several other algorithms

have been proposed for measuring travel time directly using improved vehicle signatures, such as

Reijmers (1979), Pfannerstill (1984), Kuhne and Immes (1993), and Huang and Rusell (1997).

These algorithms, however, require the deployment of new detector infrastructure even before the

benefits of measuring travel time can be quantified. Other surveillance systems, such as Dailey

(1993), Petty (1997), Westerman and Immers (1992), and Westerman et al. (1996), have been



Coifman and Varaiya

2-13

proposed for the estimation of travel time, but these systems currently perform poorly under heavy

congestion. Our work is among the few methods that can accurately measure travel time with the

existing surveillance infrastructure during congested conditions.

Finally this work represents a significant improvement over our preceding work, Coifman and

Cassidy (in press). We not only increased the number of vehicles matched, but also obtained

accurate travel time measurements with an off-ramp between the detector stations and a higher

frequency of lane change maneuvers.



Figure 2-1 One vehicle passing over a dual loop detector, (A) the two detection zones and the
vehicle trajectory as shown in the time space plane. The height of the vehicle’s trajectory
reflects the non-zero vehicle length. (B) The associated turn-on and turn-off transitions at
each detector.
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Figure 2-2 Analysis of detection errors between paired loops, (A) the first loop flickers as a vehicle
passes, (B) the second loop fails to detect a vehicle, (C) regenerated pulse at the first
loop, (D) the second loop flickers as a vehicle passes, (E) the second loop fails to detect a
vehicle, (F) regenerated pulse at the second loop.
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Figure 2-3 A sample VMM for 100 downstream vehicles.
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Figure 2-4 A simple example illustrating the possible disruptions recognized by the Algorithm: (A)
One vehicle exits the lane between stations or is not detected downstream, (B) One
vehicle enters the lane between stations or is not detected upstream, (C) One vehicle
enters and one vehicle exits the lane between stations or is measured incorrectly at one of
the stations, (D) The search region for the sequence starting at element (m,n). (E) Three
sample sequences, one in each column n-1 to n+1. (F) In this case, the sequence starting
at (m,n) is joined via an entrance (part B) to a portion of an earlier sequence.
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Figure 2-5 Matches (circles) after accounting for lane change maneuvers and initial VMM (light
points).
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Figure 2-6 (A) Selection of best 3 matches per row and diagonal before lane changes, (B) extended
sequences after vertical moving averages, (C) good region, (D) final matches (circles),
possible matches within good region (dark points), and initial VMM (light points).
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Figure 2-7 (A) Construction of a cone, (B) sequences that passed the test, (C) final matches (dark
circles) and the original VMM (light points).
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Figure 2-8 (A) An example of the Travel Time Test recovering after a long sequence of false
positives, dark points indicate possible matches from the Basic Algorithm and light
circles are those matches selected by the test at this step (note this matrix does not
correspond to the data shown in Figure 2-3), (B) final matches (dark circles) and the
original VMM (light points) from the data shown in Figure 2-3.
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Figure 2-9 (A) Best match per row after one lane change maneuver (dark points) and five lane
change maneuvers (light circles), (B) final matches from the data shown in Figure 2-3 (dark
circles) and the original VMM (light points).
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Figure 2-10 Resulting travel times from the matched vehicles (light X’s) and ground truth travel times
(dark line) for the first scenario, (A) Applying the Filter Test: 1206 final matches, (B)
Applying the Cone Test: 1109 final matches, (C) Applying the Travel Time Test: 1182
final matches, (D) Applying the Multiple Lane Change Test: 1304 final matches (E)
Combining the results from all four tests: 1267 final matches, (F) Applying all four tests
and the final travel time filter: 1218 final matches.
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Figure 2-11 Resulting travel times from the matched vehicles (light X’s) and ground truth travel times
(dark circles) for the second scenario. (A) Lane 1 (inside, High Occupancy Vehicle lane),
(B) Lane 2, (C) Lane 3, (D) Lane 4, (E) Lane 5 (outside lane).
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Table 2-1 Final results for the first scenario for each of the tests applied to a consecutive set of 1462
downstream vehicles, out of which 1269 vehicles passed both detectors and the
remaining 193 vehicles entered the lane between the two stations (compare to matches
found during period with ground truth).

During period with ground truth

Total Final

Matches From

Entire Set Final Matches

Correct

Matches

Incorrect

Matches

Average Absolute

Percent Error in Travel

Time for Final Matches

 Filter 1206 1127 1054 73 5.60

 Before  Cone 1109 1036 933 103 9.89

 Final  Travel Time 1182 1099 1025 74 2.37

 Filter  Multiple Lane Changes 1304 1197 1111 86 6.59

 Combined Tests 1267 1180 1108 72 4.94

 Filter 1160 1082 1048 34 1.44

 After  Cone 1013 950 905 45 1.93

 Final  Travel Time 1147 1068 1012 56 1.80

 Filter  Multiple Lane Changes 1231 1137 1102 35 1.44

 Combined Tests 1218 1132 1094 38 1.45

 Ground Truth Matches 1269



Table 2-2 Final results for the second scenario, percentage of passing vehicles matched from the
new and old algorithms.

Percentage of vehicles that were matched

Lane 1

(inside)

Lane 2 Lane 3 Lane 4 Lane 5

(outside)

New Algorithm 51.0% 54.7% 64.8% 44.7% 34.6%

Old Algorithm 38.5% 37.3% 39.3% 19.7% 8.9%



Coifman and Varaiya

3-1

3 VEHICLE REIDENTIFICATION AND TRAVEL TIME MEASUREMENT ON

FREEWAYS USING SINGLE LOOP DETECTORS- FROM FREE FLOW THROUGH

THE ONSET OF CONGESTION2

3.1 Introduction

Traditional traffic surveillance strategies use loop detectors to calculate aggregate measures, such as

flow and occupancy, at discrete locations on a freeway. Typically, these point measurements are

assumed to be representative of extended links spanning detectors. This assumption is usually not

valid when the facility becomes congested, e.g., when an incident occurs between two detector

stations it can take several minutes before speeds drop at either of the stations.

The limitation of point data has spurred interest in vehicle reidentification techniques, which match

the observations of the same vehicle at successive detector stations, e.g., Kuhne and Immes

(1993), Huang and Russell (1997), Cui and Huang (1997), Balke et al. (1995). All of these earlier

works require new detector hardware to extract detailed vehicle signatures. Often times, these

advanced technologies are developed without consideration for the general goals of traffic

surveillance, and as a result, an operating agency may risk investing in an expensive surveillance

system to capture extraneous information. The systems also risk discarding useful information,

e.g., in some cases, the tools collect link data but are not capable of measuring point data.

From an operations standpoint, the most important task of a surveillance system is determining

reliably whether the facility is free flowing or congested. Conventional loop detectors meet this

goal, but the response time to delays between detector stations can be excessive (Lin and Daganzo,

1997). Some of the advanced surveillance technologies promise to satisfy all of these tasks, but

they have yet to see widespread deployment. In contrast to investing in new detector hardware,

earlier work by our group developed a methodology to match vehicle measurements between

conventional dual loop detector stations during free flow conditions (Coifman, in press). This

Section extends the work to single loop detectors using the standard bivalent measurements. Key

to the new approach is the ability to estimate vehicle lengths accurately at single loop detectors

(Coifman et al., in press).

The algorithm identifies relatively distinct vehicles, i.e., long vehicles, at the downstream detector

station and then for each of these vehicles it looks for a similar vehicle in the same lane at the

upstream station within a time window of reasonable free flow travel times. Thus, if traffic is free

                                                

2 B. Banerjee helped prepare this Section.



Coifman and Varaiya

3-2

flowing over the link between detectors, this approach will usually find a match in the time

window. If the freeway is congested, vehicles will be delayed and the true match for a vehicle will

not be found in the time window. In the event a match is found the algorithm can also calculate that

vehicle's travel time by taking the difference in the vehicle's arrival time at the two locations. In

other words, the algorithm is capable of reporting free flow travel times or that "traffic is not free

flowing".

3.2 Determining if Traffic is Free Flowing

All vehicles that traverse a link between two detector stations must, by definition, pass both

stations. For these vehicles, every downstream observation should have a corresponding upstream

observation and the time between these two observations is simply that vehicle's link travel time.

These travel times are not known a-priori; however, if the vehicle travels at free flow velocities

over the entire link, the travel time must fall within a known range of free flow travel times. This

concept is illustrated in Figure 3-1. For the present study, the free flow travel time range is defined

as follows:

ttR
v v0 16 8 16 7

=
+ −







distance
( , 8)

distance
( , 2)max √

,
max √

(3-1)

where

ttR0     = the range of feasible free flow travel times [h],

√v    = local velocity estimate at the downstream detector station, as defined below,

[km/h],

distance = the known distance between detector stations [km].

To keep the search window as short as possible, while also being able to accept a wide range of

free flow velocities, Equation 3-1 will select the assumed velocity range to be [72,88] km/h if

√v<72 km/h and √v±16 km/h if √v>88 km/h. These constants were determined empirically, but they

have proven robust when applied to many different freeway links.

Chang and Kao (1991) suggest that at most locations, lane change maneuvers are relatively

infrequent during free flow conditions and the experimental results in subsequent subsections

support this observation. So a free flow vehicle observed at the downstream station will usually

have a corresponding observation at the upstream station in the same lane, in the time window

bound by ttR0. Congestion will disrupt this relationship, both because the travel time will increase
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beyond the free flow travel time range and because there may be an increase in lane change

maneuvers, particularly if one or more lanes are blocked.

3.3 Vehicle Measurements

For a given downstream vehicle, many upstream vehicles may be observed in the corresponding

time range. Estimated vehicle length, as defined in Coifman et al. (in press) and summarized in this

subsection, is used to differentiate between vehicles. For each vehicle at each detector, the

algorithm estimates velocity, √v , with the following equation,

√v
L

median on
=

( )
(3-2)

where the on-time, on, is simply the amount of time that the detector is occupied by the vehicle.

The constant, L, represents the assumed median vehicle length and the median on-time comes from

19 consecutive vehicle measurements centered on the subject vehicle. If one assumes that all of the

vehicles in a sample are traveling near the median velocity, one can use Equation 3-2 in conjunction

with measured on to estimate individual vehicle lengths, √l , with the following equation,

√ √l v on
L on

median on
= ⋅ = ⋅

( )
(3-3)

The length range, LR, is defined as,

LR l= [ ] = [ ] ⋅min length est, max length est 0 995 1 045. , . √ (3-4)

and the measurement uncertainty is defined as the difference between the maximum and minimum

length estimates. Of course the occasional measurement error will result in an erroneous LR for

that vehicle, but the methodology was specifically designed to accommodate these errors.

Next, the algorithm compares length estimates between detector stations. If the length range for a

downstream observation overlaps that of an upstream observation, then the two observations may

have come from the same vehicle. Otherwise the result of the pair-wise comparison can be

dismissed as an unlikely match because even allowing for the measurement uncertainty the two

ranges do not intersect.

Most observations are passenger vehicles and their lengths fall in a small range, e.g., roughly 80

percent of the observations fall between 5 m and 7 m for the data used in this study. It is difficult to
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differentiate between these short vehicles. In contrast, some length observations are as long as 24

m. The large range of feasible lengths and the lower frequency of observations for the long

vehicles make it possible to differentiate between them.

3.4 Algorithm Implementation

Using an example to illustrate the algorithm implementation, we consider a 0.55 km freeway

segment from the Berkeley Highway Laboratory (Coifman et al., 2000). This facility is equipped

with eight dual loop detector stations. We use a single loop at two neighboring stations to

demonstrate the methodology and then verify the results using the corresponding dual loop data

(Coifman, in press).

To eliminate the common vehicles, all downstream vehicles shorter than 7 m are ignored.

Whenever a long vehicle passes the downstream loop detector the algorithm searches a fixed time

earlier, bounded by Equation 3-1, for any upstream vehicles in the same lane whose length range,

as defined by Equation 3-4, intersects the downstream vehicle's length range. If an intersection is

found, the corresponding upstream vehicle is considered a possible match and the downstream

vehicle is assigned a value of one. If more than one intersection is found within the time window,

then arbitrarily, the most recent of these upstream observations is considered the possible match.

Otherwise, the downstream vehicle does not have an identifiable free flow match in the lane and

that vehicle is assigned a value of zero.

Obviously, a free flow vehicle will not have a match in the same lane if the vehicle changed lanes,

entered the freeway between detectors, or because of a misdetection at one of the stations. On the

other hand, a delayed vehicle should not have a match (Figure 3-1B), but another vehicle of similar

length may have passed within the time window. To eliminate most of these false positives,

possible matches are suppressed in subsequent stages of the algorithm if there are fewer than two

possible matches in the preceding six trials (including any suppressed matches). Next, we take a

moving average of the 10 most recent outcomes (including the current outcome). Figure 3-2A

shows this moving average for just over 20 hours of data from the single loop detectors. For

reference, Figure 3-2B shows the corresponding averages using the dual loop data. Applying a

threshold to these data, Figure 3-3 shows the travel times for all of the long vehicles that had a

possible match and a moving average over 0.2 in Figure 3-2.

The goal of the algorithm is to detect when travel times start to increase. The onset of congestion is

characterized by a dramatic increase in link travel times. When this occurs, the true travel times will

not fall within the range specified by Equation 3-1. Notice that the single loop algorithm found few
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fast matches between 6 and 10 hours, which corresponds to the same time range when the dual

loop algorithm found few matches. The lack of matches in this case is due to the fact that a

downstream queue overruns the segment. Although the measured travel times in Figure 3-3 are

useful for traffic surveillance, the true diagnostic power of the method comes from the moving

average in Figure 3-2. The free flow periods are characterized by high average values and

congested periods by low average values.

Looking closer at the travel times in Figure 3-3, there is a transition period as the queue first

overruns the downstream detector and eventually covers the entire link. This transition is

characterized by increasing travel times, as can be seen just after 6 hours. In an attempt to capture

the increasing delays during the transition, one can define additional travel time ranges (ttR's), each

one with a slower link velocity than its predecessor and use the same methodology outlined above

for these new ttR's. Using dual loop data, earlier work has shown that as a queue grows across the

link, the true travel times will pass from one ttR to the next (Coifman, in press). The onset of

congestion can then be identified as the instant the fastest ttR, i.e.ttR0, ceases to contain highest

moving average among all of the ttR's.

3.5 Limitations at Single Loop Detectors

The use of Equation 3-3 requires the assumption that most vehicles in the moving median have a

length close to L.  Close examination of Figure 3-2A reveals at least two cases near 14 hours

where this assumption breaks down and the moving average drops even though traffic is free

flowing.  Figure 3-4A shows a detail of this moving average.  Figure 3-4B shows the

corresponding measured and estimated lengths at the downstream detector.  Notice that many

successive long vehicles passed, resulting in a low velocity estimate, shown in Figure 3-4C, and

thus, a low length estimate.  This error prevented the algorithm from finding matches for the long

vehicles and impacted the moving average for several following vehicles because even after the

velocity estimate recovered, several possible matches were suppressed due to the low frequency

earlier matches. Fortunately, these velocity errors can be identified using a slightly more

sophisticated estimation process, e.g., using occupancy to help identify free flow periods at the

detector and set the velocity estimate accordingly (Coifman, 2001).

3.6 Conclusions

This Section has developed a new traffic surveillance strategy using existing single loop detectors.

Rather than reporting local conditions at the detectors, the strategy identifies periods when the link

between two detector stations becomes congested. Unlike most surveillance strategies that attempt
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to match vehicle measurements between detector stations, this work is compatible with the existing

detector infrastructure.

To place the work in context, the algorithm has a lower reidentification rate than the other methods

that require new hardware, but perhaps the higher rate is not necessary. One could view the

algorithm as a low cost means to investigate the benefits of vehicle reidentification and travel time

data before investing in a new surveillance system. In any event, the algorithm is intended to

augment, rather than supplant, conventional point detector measurements. By combining point

detector data with the new link data, it should be possible to identify transients in either data set and

improve performance beyond what would be possible with just one of these data sets.
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Figure 3-1 One vehicle traversing an extended link between two detector stations,
illustrating the free flow travel time range. (A) The vehicle travels at a free
flow velocity and it was observed at the upstream station during the time
range; (B) the vehicle traveled slower than the minimum free flow velocity
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Figure 3-2 Each pair-wise test is assigned a value of 1 if a match is found and 0
otherwise. This figure shows the moving average using (A) single loop data
(B) dual loop data.
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loop data (B) dual loop data.
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4 ESTIMATING DENSITY AND THE NUMBER OF LANE CHANGE MANEUVERS IN A

FREEWAY SEGMENT

4.1 Introduction

Virtually all traffic flow models are based on the relationships between flow, q, density, k, and

velocity (space mean speed), v.  This fact is due to the spatial and temporal nature of traffic flow

and has been reflected all the way back to the seminal works on traffic flow theory, e.g.,

Greenshields (1935), Lighthill and Whitham (1955) and Richards (1956).  One can easily measure

q and v at a point in space with conventional traffic detectors, but k is more difficult to measure.

Although in theory, density could be measured between detector stations using simple input-output

models, vehicle detectors are imperfect and detector drift precludes such simple measurement.

Most traffic flow theory has been developed using point measurements and in some cases,

resource-intensive data collection efforts to capture spatial information.  The latter were typically

short-term studies, often consisting only of a few minutes or a few hours of data, and were usually

based on photogrammetric tools dating back to Greenshields (1934).  In addition to the difficulties

of capturing simple spatial measurements such as k, it has long been recognized that lane change

maneuvers can influence the relationships underlying traffic flow theory or even disrupt the

relationships if lane change maneuvers are not accounted for.  While density can be measured from

a single image, quantifying lane change maneuvers requires both spatial and temporal coverage.

Considerable efforts have been made to estimate and model density: Gazis and Knapp (1971),

Nahi and Trivedi (1973), Gazis and Szeto (1974); lane changing frequency: Worrall and Bullen

(1970), Worrall, Bullen and Gur (1970), Phal (1972), Munjal and Hsu (1973), Gang and Kao

(1991); as well as the combination of density and lane changing behavior: Chang and Gazis

(1975), Sheu (1999).  The density models must accept a large uncertainty range due to

conventional operation of vehicle detectors, while many of the lane change models assume accurate

measurement of density.  All of the models are limited by the small amount of available spatial data

for validation.  For example, in most cases lane changing was modeled as a function of flow, but it

is likely that excluded factors such as location, time of day, and vehicle mix are significant.

Recent advances in traffic surveillance could solve this data deficiency.  Video image processing

and vehicle tracking tools may soon be accurate enough to extract density and lane changes within

a limited field of view.  However, occlusion and oblique viewing angles limit the distance that one

camera can be used to automatically extract such data and a vehicle traveling at free flow speeds

will likely be out of (trackable) view within a few seconds.
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In the mean time, Reijmers (1979) presented new vehicle detection hardware that is compatible

with existing loop detectors and is capable of extracting detailed magnetic vehicle signatures.

Kuhne and Immes (1993) and others have since used these signatures to match a vehicle's

measurements between one location and another, so-called vehicle reidentification.  By matching

almost every vehicle, these new loop based systems could provide direct measurement of true

density and lane change frequency.  So far, the new detectors have seen limited deployment

because they require additional hardware and considerably higher communication bandwidth

compared to conventional loop detectors.

Recent work by our group has produced an alternative to the hardware intensive vehicle

reidentification tools.  Our approach uses the existing vehicle detection hardware and

communication infrastructure.  Unlike the detailed magnetic signatures, the approach uses the

standard bivalent loop detector output to measure effective vehicle lengths at dual loop detectors.

These vehicle measurements are assigned sequential arrival numbers in each lane at each detector

station, denoted Nu(t) and Nd(t) for the upstream and downstream stations, respectively.  Two

complementary algorithms use these length measurements, arrival numbers and arrival times to

reidentify vehicles between detector stations.  The first algorithm attempts to find a match for every

vehicle during congestion (Coifman and Cassidy, in press), while the second only attempts to

match unique vehicles during free flow conditions (Coifman, in press).  The operating regions of

the two algorithms overlap, allowing for uninterrupted vehicle reidentification.  The algorithms are

not able to match every vehicle under the limited resolution of the loop detector length

measurements.  Experimental results found that the congestion algorithm can match up to 75

percent of the passing vehicles while the free flow algorithm can match up to seven percent.  These

reidentification rates are sufficient for travel time measurement (Van Aerde et al., 1993, Holdener

and Turner, 1996) and the algorithms have been running continuously in the Berkeley Highway

Laboratory (BHL) for several years3 on Interstate 80, north of Oakland, California (Coifman,

Lyddy and Skabardonis, 2000).  This Section will show how the resulting matches can be used to

estimate density in a freeway lane between detector stations and measure lane inflow, the difference

between the number of lane change maneuvers that enter and the number that exit the lane.

These new measurements have many potential applications.  First, they could help verify and

calibrate earlier density and lane changing models, allowing data collection over an extended period

at a large number of locations.  Second, the new traffic parameters should improve incident

detection and assessment, e.g., identifying increased lane change maneuvers that deviate from

                                                

3 The real time system can be viewed at: http://www.its.berkeley.edu/projects/freewaydata.
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historical lane inflow patterns.  Third, lane inflow can lead to better detector diagnostics because

the net inflow summed over all lanes should be zero if there are detectors at all entrances and exits.

Similarly, as will be shown in this Section, lane inflow can be used to estimate ramp flow using

only the mainline detectors.  This point is important because, depending on the ramp geometry,

drivers may ignore striping and make it difficult to place ramp detectors to ensure accurate detection

of all vehicles.  The remainder of this Section presents the density estimation and lane inflow

measurement techniques given a vehicle reidentification methodology that only matches a portion

of the passing vehicles.

4.2 Density Estimation

The vehicle reidentification algorithms developed by our group provide data on a small percentage

of the vehicles passing on the segment between detector stations.  Figure 4-1 shows an example of

the matches from Coifman and Cassidy (in press) for 100 consecutive vehicles at the downstream

detector in one lane on an 1,800 ft freeway link in the BHL.  The downstream vehicle number, Nd,

is shown on the horizontal axis and offset between the vehicle numbers, Nd-Nu, for each match on

the vertical axis.  Notice that approximately 30 percent of the vehicles do not have matches in this

figure.  Although the reidentification rate from the two vehicle reidentification algorithms can be

significantly lower then shown in this example, the measurements capture valuable spatial

information about the traffic conditions between the stations.  Although the algorithms may not

match every vehicle, assuming few detector errors, conventional loop detector data contain

information on the entire vehicle population passing a single point.  Combining the point data with

the matched vehicle data, it is possible to estimate link density at two instants for each reidentified

vehicle.  Consider the case where downstream vehicle measurement Nd(t2) is matched to upstream

vehicle measurement Nu(t1).  The travel time for this vehicle is simply t2-t1.  If no vehicles change

lanes, then all vehicles that passed the upstream station while the matched vehicle traversed the link

must still be in the lane at time t2 and no other vehicles will be in the lane.  Similarly, all vehicles

that were in the lane at time t1 will have passed the downstream detector by t2 and no other vehicles

will have exited during the period that the matched vehicle traversed the link.  Of course the

assumption that no vehicles change lanes is unreasonable.  Relaxing the assumption such that most

vehicles do not change lanes leads to the following two estimates of lane density each time a

vehicle is matched between the two stations:

√k t
N t N t

u
u u

2
2 1( ) = ( ) − ( )

distance
(4-1)
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√k t
N t N t

d
d d

1
2 1( ) = ( ) − ( )

distance
(4-2)

Where √ku  and √kd  are based on the upstream and downstream arrivals, respectively, as illustrated in

Figure 4-2.

The points in Figure 4-3A-B show the resulting density estimates after applying Equations 4-1 and

4-2 to just over an hour of dual loop data from the same 1,800 ft freeway segment used in Figure

4-1.  For comparison sake, the density estimates from the upstream station are shifted in time to the

clock at the downstream detector station using the measured travel times.  In this case, measured

speeds at the dual loop detectors were on the order of 20 mph and approximately 1,400 vehicles

passed the downstream detector during the sample period.  Concurrent video data were collected at

both stations and all vehicles in the lane were manually matched during the same time period.  The

resulting density estimates from the manually matched vehicles are shown with solid lines in

Figure 4-3A-B.  Figure 4-3C compares the two manual density estimates.  If there were no lane

change maneuvers the two density curves should fall on top of one another, but they are within

seven percent of one another on average, with a few transients out to 30 percent.  These

differences are due to the fact that some vehicles do change lanes and the comparison in Figure

4-3C illustrates the benefit of making the two estimates.  Simply put, it is not the increased

sampling frequency, since √k td 1( ) cannot be made until after the matched vehicle leaves the link at

t2, rather, it is the redundancy between the two independent estimates that can be used to highlight

periods in which the accuracy of the estimates may be reduced due to lane change maneuvers.

The next subsection will address these lane change maneuvers.  But before proceeding, it is worth

noting that given a sufficiently accurate travel time estimation methodology, these equations also

apply in cases without vehicle reidentification.  For example, Coifman (2002) presents an

algorithm to estimate travel time using data from a single detector station and one could apply these

equations with the modification that t1 is estimated in Equation 4-1 and t2 is estimated in Equation

4-2.

4.3 Lane inflow Estimation

Assuming few detector errors, most of the drift in Nd(t2)-Nu(t1) for the set of matched vehicles will

be due to the lane inflow.  The lane inflow can be measured even with a low frequency of vehicle

reidentification.  The two vehicle reidentification algorithms mentioned previously only match

vehicles when they can, but more importantly, these matches are made relative to the local arrival

numbers at each detector station, Nu and Nd.  The lane inflow is simply the change in offset and the
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lane flux is defined as the time derivative of the inflow.  Both values can be calculated whenever a

new match is found.  Consider Figure 4-1, no matches were found for downstream vehicles

numbered 55 to 78.  The difference in the upstream offset before and after the gap indicates a net

inflow of -4 vehicles, i.e., 4 vehicles left the lane during the gap of 24 downstream vehicles

without matches.  Although not shown on the plot, the times each vehicle passed the detectors

were recorded.

Using data from the I-880 Field Experiment (Skabardonis et al., 1996), both vehicle

reidentification algorithms were applied independently to each lane of a five lane freeway segment

south of Oakland, California.  The segment is 1,500 ft long with an on-ramp near the upstream

detector station (inset, Figure 4-4A).  Three hours of data were used and no attempt was made to

explicitly account for lane change maneuvers or entering vehicles while matching vehicles.  The

number of vehicles and percentage that were matched for this example are presented in Table 4-1.

For each match in a given lane, the upstream offset versus downstream arrival time is shown in

Figure 4-4A.  The slope of each curve is the lane flux, quantifying the net number of vehicles that

enter (positive slope) or exit (negative slope) the given lane per unit time, over the distance that

spans the two stations.  Lane 5 (the outside lane) had a net inflow of 856 vehicles and lane 4 had a

net inflow of 405 vehicles during the three hour period.  The remaining lanes saw a smaller net

inflow during the same period.  Summing the inflow across all five lanes yields the gray line in

Figure 4-4B and a net inflow of 1,360 vehicles.  During the same period, 1,384 vehicles passed a

detector on the on-ramp and these arrivals are shown with a black line in Figure 4-4B, while the

difference between the two curves is shown in Figure 4-4C.

Although the vehicle reidentification algorithms were applied to each of the mainline lanes

independently -- ignoring both the other lanes and the presence of the ramp -- and only 11 percent

of the vehicles were matched, the net lane inflow and on-ramp flow are within two percent of one

another.  Figure 4-4D shows the time series velocity for reference and it is clear that the matches

come from free flow conditions prior to 8:00 and congested conditions thereafter.

Returning to the BHL for a larger example,4 the process is repeated over 24 hours on a five lane,

1,800 ft long segment without ramps.  Once more, the reidentification algorithms were applied to

each lane independently.  The number of vehicles and percentage that were matched for this

example are presented in Table 4-2.  Figure 4-5A shows the time series evolution of the inflow for

all of the lanes on the segment and the inset shows a schematic of the location.  The lane changing

patterns are due to the split of I-80, I-580 and I-880 less than two miles downstream of the study
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segment.  Lane 1 is a high occupancy vehicle lane and on most days, lane 2 usually experiences the

heaviest downstream congestion due to traffic backed up from the left-hand branch of the diverge.

This plot shows three transient periods of high lane flux in lanes 2 and 5, as enumerated in Table

4-3 and normalized for distance.  Obviously, vehicles can not move directly between non-adjacent

lanes, so these data indicate movement through all of the intervening lanes.  The additional lane

change maneuvers in lanes 3 and 4 are roughly balanced, i.e., after removing the long-term trend,

one vehicle leaves lane 4 between the stations for each vehicle that enters the lane.  This example

illustrates the fact that the net inflow differs from the total number of lane change maneuvers.  For

reference, Figure 4-5B-C show the time series velocity at the upstream and downstream stations,

respectively.  As shown with dashed lines on these plots, the periods of high lane flux listed in

Table 4-3 correspond to mixed traffic conditions on the link: free flow at the upstream station and

congested at the downstream station.  Apparently, when the tail of the queue is within the link,

drivers exhibit different lane changing patterns.  Quantifying this behavior will be the subject of

further research.

Summing the inflow across all five lanes yields the curve in Figure 4-5D.  Simply employing

vehicle conservation, one would expect that the total inflow should be constant since there are no

ramps in the link.  Considering the fact that over 100,000 vehicles pass during the day, indeed the

total inflow is nearly constant.  Most of the drift in this curve is likely due to infrequent detection

errors.  However, there are two distinct periods in which the drift can be explained readily.  First,

at 9:35 a sharp spike is evident and is due to a brief error in the vehicle reidentification algorithm

applied to lane 4.  Then, a broader spike is evident for approximately half an hour, centered on

10:15.  This event is due to an extended period without any matched vehicles in lane 2 coincident

with the upstream detector returning to free flow conditions, as shown in Figure 4-5B.  As

discussed in Coifman (in press), the free flow vehicle reidentification algorithm can continue

matching vehicles after the onset of congestion and into the range of the congestion algorithm.

However, once a link becomes completely congested, the free flow algorithm does not resume

matching vehicles until the entire link returns to free flow conditions.  So as seen here, when a

queue recedes over a link, travel times may leave the effective range of the congestion algorithm

before they return to the range of the free flow algorithm and lead to a brief period without any

matches from either algorithm.  In any event, the broader spike is simply due to a lack of

information from one of the lanes and does not represent an inflow estimation error.

                                                                                                                                                            

4 Unlike the I-880 Field Experiment, the BHL provides 24 hour a day coverage but lacks functional ramp detectors.
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4.4 Conclusions

Although this Section is based on the basic principle of conservation of vehicles, it is the measured

travel time that allows for density estimation and upstream offset that allows for lane flux and

inflow measurement.  The Section has shown that it is possible to capture the net effect of vehicle

maneuvers in space using loop detectors.  The work does not need a high frequency of matches,

just accurate ones.

There are many applications for the new measurements, including real time incident detection and

off line correlation between accident frequency and lane flux.  The measures can also be used to

verify the performance of detectors, any unexplained drift in inflow would likely be due to faulty

detectors.  The reader should be cautioned though, the fundamental equation, q=kv, does not hold

unless care is taken to estimate q and k over the same region of the time-space plane, e.g., Edie

(1963).  Finally, although the methodology was demonstrated using loop detectors, it is potentially

applicable to other detector technologies as well.



Table 4-1 Vehicle statistics for the three hour long I-880 lane inflow example in Figure 4-4.

lane 1 lane 2 lane 3 lane 4 lane 5 total

Number of vehicles 2,052 5,593 4,298 4,210 3,885 20,038

Number of matched
vehicles

203 439 611 554 342 2,149

Percent of vehicles
matched 9.9 7.9 14.2 13.2 8.8 10.7

Net inflow 55 18 26 405 856 1,360

Inflow as percent of
flow

2.7 0.3 0.6 9.6 22.0 6.8

Table 4-2 Vehicle statistics for the 24 hour long I-80 lane inflow example in Figure 4-5.

lane 1 lane 2 lane 3 lane 4 lane 5 total

Number of vehicles 16,256 27,268 23,312 24,596 25,173 116,605

Number of matched
vehicles 2,968 3,904 5,136 4,496 4,854 21,358

Percent of vehicles
matched

18.3 14.3 22.0 18.3 19.3 18.3

Net inflow 584 -891 -979 -415 1,708 7

Inflow as percent of
flow 3.6 -3.3 -4.2 -1.7 6.8 0.0

Table 4-3 Transient periods of high lane inflow in lanes 2 and 5 from Figure 4-5.

Lane 2 Lane 5

Approximate
time of day (hr)

inflow
(veh)

duration
(hr)

lane flux
per mile

(veh/hr/mi)

inflow
(veh)

duration
(hr)

lane flux
per mile

(veh/hr/mi)

10:00 -170 0.6 -830 100 0.2 1,467

15:00 -240 0.8 -880 250 0.8 917

17:20 -130 0.5 -762 150 0.4 1,100
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