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BASIN-3D: A brokering framework to integrate diverse environmental data 
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A B S T R A C T   

Diverse observational and simulation datasets are needed to understand and predict complex ecosystem behavior 
over seasonal to decadal and century time-scales. Integration of these datasets poses a major barrier towards 
advancing environmental science, particularly due to differences in the structure and formats of data provided by 
various sources. Here, we describe BASIN-3D (Broker for Assimilation, Synthesis and Integration of eNviron-
mental Diverse, Distributed Datasets), a data integration framework designed to dynamically retrieve and 
transform heterogeneous data from different sources into a common format to provide an integrated view. 
BASIN-3D enables users to adopt a standardized approach for data retrieval and avoid customizations for the 
data type or source. We demonstrate the value of BASIN-3D with two use cases that require integration of data 
from regional to watershed spatial scales. The first application uses the BASIN-3D Python library to integrate 
time-series hydrological and meteorological data to provide standardized inputs to analytical and machine 
learning codes in order to predict the impacts of hydrological disturbances on large river corridors of the United 
States. The second application uses the BASIN-3D Django framework to integrate diverse time-series data in a 
mountainous watershed in East River, Colorado, United States to enable scientific researchers to explore and 
download data through an interactive web portal. Thus, BASIN-3D can be used to support data integration for 
both web-based tools, as well as data analytics using Python scripting and extensions like Jupyter notebooks. The 
framework is expected to be transferable to and useful for many other field and modeling studies.   

1. Introduction 

It is important to predict how watersheds and other ecosystems will 
respond to changing environmental conditions for optimal management 
of natural resources. The study and modeling of natural environments 
requires integration of diverse observations that sample different 
properties of these complex systems (Fig. 1). Often, data are required at 
multiple spatial and temporal scales to enable both quantification of 
fine-scale processes and their aggregation to larger scales. For example, 
heterogeneous data on water cycle processes, such as precipitation, river 
discharge, soil moisture, infiltration, evapotranspiration, need to be 
integrated with data on topography, soil properties, and water use to 
predict water availability and quality at seasonal to decadal scales (e.g. 
Krysnova and Arnold, 2008; Maxwell et al., 2015; USGS Water Re-
sources, 2020). 

The development of long-term monitoring networks and research 
data management requirements have led to an unprecedented volume 

and diversity of available environmental data (Rode et al., 2016). Ad-
vances in data analytics, scale-aware mechanistic modeling, Machine 
Learning (ML) and other computational methods create opportunities to 
integrate diverse environmental data into a predictive framework 
(Hubbard et al., 2020). Yet, these data are underutilized in studies that 
seek to improve the understanding and predictions of environmental 
systems, in part due to major challenges associated with the discovery 
and integration of relevant datasets for scientific analysis and modeling. 
Currently data integration across different providers is an arduous, 
time-intensive task, needing considerable harmonization efforts (refer to 
Table 1 for a list of common data integration terms). Most data sources 
are organized around the provider’s requirements and not the user’s 
needs to discover, integrate and utilize the data. For example, in the 
United States (US), several monitoring networks have been established 
across federal, state and local agencies that have not adopted common 
data or metadata standards. Different suites of physical, chemical and 
biological parameters are measured across regions and time periods 
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using a variety of methods. Data are served using an assortment of for-
mats, variable names, units and schemas (e.g. Sprague et al., 2017). As 
an example, stream discharge and water level data collected by the US 
Geological Survey (USGS), US Bureau of Reclamation (USBR), several 
state agencies, local efforts (e.g. water management districts, watershed 
associations) and numerous research networks such as the Long Term 
Ecological Research (LTER), Critical Zone Observatories (CZO), Na-
tional Ecological Observatory Network (NEON) are published with 
heterogeneous data formats and access mechanisms. Thus researchers 
typically create manual, one-off integrated products for their scientific 
needs, which become outdated when the data change. 

Several approaches have been used to integrate disparate datasets 
over the past few decades. One method, known as data warehousing, 
integrates data from various sources into a centralized database, which 
can be queried to retrieve synthesized data streams. Some systems using 
this approach, like the National Water Quality portal (https://www.wat 

erqualitydata.us/) and Ameriflux (https://ameriflux.lbl.gov/), combine 
structurally similar data by requiring sources to provide data in partic-
ular formats (Blodgett et al., 2015; Pastorello et al., 2017). However, 
centralized databases can become outdated and are difficult to maintain 
as the number of desired sources, data types and volumes grow. 

Data federation, also known as the hub and spoke model (Haas et al., 
2002), is an alternate approach that has gained traction. Here, data are 
left at the original sources and an intermediate brokering software 
maintains a catalog and retrieves data on demand (Genesereth, 2010; 
Nativi et al., 2013). This allows users to access the latest version of the 
data from different sources as though it were available in a central 
location. The brokering approach has been adopted by systems such as 
the Group on Earth Observations (GEOSS) Discovery and Access Broker 
(Nativi et al., 2014) and the related BCube brokering framework 
(Khalsa, 2017). The US National Groundwater Monitoring Network 
(https://cida.usgs.gov/ngwmn/index.jsp) uses an advanced brokering 

Fig. 1. Gaining an understanding of multi-scale ecosystem processes often requires acquisition and integration of a variety of data that sample different properties 
across multiple temporal and spatial scales. Examples shown here include data associated with fields of hydrology, meteorology, geology, geochemistry, ecology and 
biology, which can all be useful for understanding watershed behavior. 

Table 1 
A list of commonly-used terms that have specific definitions in this paper and BASIN-3D. The first four terms are hierarchical in that the prior term is a component of the 
following term. For example harmonization is the transformation of different data formats into the same formats. The definitions and examples are provided to 
illustrate the intent of the term’s usage and are not necessarily capabilities available in the current version of BASIN-3D.  

Term Definition Example 

Transform/Transformation Convert or translate data into different units, variable names, and/or 
structural formats. 

Air temperature data with variable name Tair and units deg F are 
translated into variable name TA and units deg C. 

Harmonize/Harmonization Transform (see definition above) data of the same type collected with 
comparable methodology into the same variable names, unit terms, and 
structural formats. In some cases, units may be converted into a 
preferred standard. 

River discharge gage data from different sources are harmonized by 
transformations into a common BASIN-3D controlled vocabulary term 
‘RDC’ and OGC representation ‘time-value pair’, with conversion to 
common SI units of ‘m3/sec’. 

Synthesize/Synthesis Combine data of different types from different sources into the same 
overarching data structure. Data of similar types from different sources 
are harmonized (see definition above). Data are matched in space (by 
monitoring feature) and by time (using the timestamp provided by the 
data source). 

Geochemical data from different sources (e..g DOE databases, National 
Water Quality Portal) are harmonized into the same units, variable 
names, and structural formats. These geochemical data are then 
combined with other types of data, like meteorological and hydrological 
data, using the same units, variable names, and structures across different 
data types when possible. Data with the same time stamps and locations 
are aligned (e.g. in the same row or column). 

Integrate/Integration Provide a single point of access in a unified view for synthesized (see 
definition above) data from different sources. 

Water quality data synthesized across different sources and data types are 
available through the BASIN-3D synthesis web or python APIs. 

Aggregate/Aggregation Group data by a defined spatial entity and/or temporal period. The 
grouped data may be represented by “aggregate” value(s) that are often 
statistical calculations of the grouped data. 

Data collected at 15-min intervals are aggregated to hourly or daily 
values.  
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approach to synthesize datasets from various sources to support a portal 
with interactive visualizations; however, this system only handles spe-
cific types of groundwater monitoring data (water level, quality, li-
thology), and requires cooperative agreements with providers to 
standardize their data to facilitate data exchange (https://acwi.gov/s 
ogw/ngwmn_framework_report_july2013.pdf). One of the more suc-
cessful implementations of a brokering approach is the Consortium of 
Universities for the Advancement of Hydrologic Science (CUAHSI) Hy-
drologic Information System (HIS; https://hiscentral.cuahsi.org), which 
transforms diverse time-series data using the WaterOneFlow web ser-
vices into a standardized WaterML format with common variable and 
unit names from the CUAHSI controlled vocabularies (Horsburgh et al., 
2009, 2016). The HIS enables unified access to data synthesized from 
over 95 providers via the Hydroclient interactive portal. However, the 
WaterOneFlow web services need to be hosted and maintained by the 
provider or CUAHSI, which limits its application to data sources that 
belong to the HIS ecosystem. The HIS system also does not support large 
data downloads as the Hydroclient limits search and access to 25,000 
results. This tends to be problematic for intensive data-driven applica-
tions such as ML, where programmatic access to large amounts of data 
from sources outside of HIS may be needed. 

More recently, federated computational tools have emerged to pro-
vide streamlined access to big datasets across different data sources on 
the cloud. Examples include the Pangeo platform (http://pangeo.io), 
which creates interactive and reproducible open source workflows to 
discover, analyze and visualize large geoscience datasets on cloud re-
sources, and is integrated with data discovery tools such as intake (https: 
//github.com/intake) and the SpatioTemporal Asset Catalog (https://st 
acspec.org/). However, these federated approaches and tools only pro-
duce integrated data catalogs or co-located datasets. They do not parse 
or translate data from different sources into an integrated view. 

Thus, despite the advances made by these systems, the most essential 
and difficult data integration tasks—the conceptual reconciliation of the 
various ways data is served by the providers and harmonization of data 
formats, units, and semantics—are still left to the end users. There re-
mains a critical need for generalizable frameworks that can be easily 
used by environmental scientists or practitioners to integrate vastly 
diverse data types, structures and formats. Such frameworks would 
automate integration of disparate, multiscale data on-demand from 
heterogeneous databases, as they are being dynamically updated on the 
original sources, and enable users to easily search, subset and retrieve 
synthesized data (BERAC, 2013). 

To address this gap, we present BASIN-3D (Broker for Assimilation, 
Synthesis and Integration of Diverse, Distributed Datasets), a generic, 
extensible data-brokering software designed to integrate heterogeneous, 
multiscale data into a coherent framework and create synthesized 
datasets that scientists can easily utilize. We aimed to develop a broker 
that would allow its users to create a single access point for diverse 
environmental databases and data types by retrieving data from the 
sources on-demand and harmonizing the data streams to provide an 
integrated view. This would help bridge the gap between the user- 
centric objective, to easily find, subset and synthesize relevant data, 
and the provider-centric objective, to organize and publish their entire 
data collection. BASIN-3D enables users to access the most recent 
version of the data from each of the sources, as if the data were available 
from a single provider, without losing the data provenance. 

We demonstrate the utility of BASIN-3D with two prototype imple-
mentations that require integration of diverse time-series measurements 
at watershed to regional scales, from multiple sources that use different 
data formats, organization and terminologies. BASIN-3D is the first 
brokering software to our knowledge that enables custom integration of 
heterogeneous time-series data from users’ preferred data sources, 
without requiring coordination with providers. Thus, it is intended to 
make the typical scientific workflow of acquiring and harmonizing data 
from diverse sources more repeatable and reproducible. Users of BASIN- 
3D can remain agnostic to the location, format, structure and 

authorization requirements of the sources. Multiple clients, such as web 
portals, visualization tools, and analytical and modeling codes, can 
connect to the BASIN-3D Application Programming Interfaces (APIs) to 
access synthesized datasets. The flexibility provided by this approach is 
essential for modern environmental data science applications, where 
there is a need to synthesize disparate data on demand, to address 
evolving science questions or stakeholder needs. 

This paper is organized as follows. In Section 2, we describe the 
features and architecture of BASIN-3D. Section 3 provides a demon-
stration of BASIN-3D to integrate diverse observations at watershed to 
regional scales for two U.S. Department of Energy (DOE) projects. Sec-
tion 4 discusses the BASIN-3D approach along with its advantages and 
limitations, as well as opportunities for building generalizable frame-
works that integrate large, complex environmental data. 

2. Methods: Data synthesis constructs and features of BASIN-3D 

We followed a scientist-centered design approach to develop BASIN- 
3D, by first understanding the end product desired through use cases. 
Then, we worked backward to identify the corresponding data sources, 
synthesis and transformations, and interfaces needed (Ramakrishnan 
et al., 2014). The BASIN-3D data integration approach uses a central 
abstract data-model schema with mappings to different sources (Gene-
sereth, 2010). BASIN-3D utilizes the Open Geospatial Consortium (OGC) 
and International Standards Organization (ISO) standard “Observations 
and Measurements; OGC 10-004r3/ISO 19156: 2013” and “OGC 
Timeseries Profile of Observations and Measurement; OGC 15-043r3” 
schemas (Cox, 2011; Tomkins and Lowe, 2016). 

The following sections describe the key concepts, architecture and 
usage models of BASIN-3D. Although the current implementations of 
BASIN-3D use concepts tailored to time-series data used in watershed 
science, the framework is applicable for a variety of environmental data 
types and applications. 

2.1. Multiscale spatial and temporal representations 

Environmental observations made at different spatial scales are often 
grouped using hierarchical relationships to facilitate data management, 
synthesis and aggregation. The definition of spatial extents and group-
ings can be domain or study specific, and can include multiple hierar-
chical relationships (Christianson et al., 2017). For example, an 
observation made at a point location can be represented as a member of 
a USGS Hydrologic Unit Code (HUC) hierarchy of hydrological features 
that includes the river basin and watershed, as well as part of other 
spatial hierarchies like the study plot and site (Fig. 2). 

BASIN-3D uses constructs from the OGC standard to represent mul-
tiscale spatial elements with their location features, associated group-
ings and hierarchies. In particular, BASIN-3D uses ‘Monitoring Feature’ 
entities which inherit components of the OGC entities ‘Feature’, ‘Sam-
pling Feature’, ‘Spatial Sampling Feature’ (Appendix 1) [Cox, 2011; 
Tomkins and Lowe, 2016]. Monitoring Features are classified by a 
controlled list of Feature Types that represent spatial features at different 
scales relevant to watershed sciences: ‘Region’, ‘Subregion’, ‘Basin’, 
‘Subbasin’, ‘Watershed’, ‘Site’, ‘Plot’, ‘Horizontal Path’, ‘Vertical Path’ and 
‘Point’ (e.g. Fig. 2); this list is specific to each BASIN-3D implementation 
and can be expanded to include additional Feature Types relevant to 
other disciplines. Monitoring Features, as an extension of Spatial Sampling 
Features, are geographic entities that have a shape property to describe 
their spatial geometry as one of four types specified by OGC: ‘point’ (e.g., 
point, specimen), ‘curve’ (e.g., river, well, tower), ‘surface’ (e.g., river 
basin, watershed, site, plot), and ‘solid’ (e.g. lidar cloud). The physical 
location coordinates of a Monitoring Feature are represented using the 
Federal Geographic Data Committee (FGDC) data standard (FGDC 
1998), which provides support for multiple spatial reference systems 
including geographic (latitude/longitude), grid (Universal Transverse 
Mercator), and planar (distance/bearing representation) coordinates. 
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Monitoring Features can be infinitely nested using parent-child spatial 
relationships. For example, a plot containing multi-level wells will have 
three types of Monitoring Features defined as a surface (plot) > curve 
(well) > point (sensors at different depths in the well; e.g. Fig. 2). 

BASIN-3D also supports observations collected at different temporal 
scales and resolutions. Synthesis over different temporal resolutions is 
enabled via three parameters defined in the OGC observation-based 
framework: (1) phenomenon time (the time of the observation); (2) 
aggregation duration (a qualitative description of the duration over 
which the observation was acquired, e.g., annual, day, hourly); and (3) 
time reference position (the position of the time value within the 
observation time, e.g., start, middle, end, instant). These parameters can 
accommodate different temporal resolutions provided by the data 
source. For time-series observations, an aggregation duration parameter 
is typically specified by the data source, and the retrieved data is 
included in the Observation Result (Section 2.2) as a Time Value Pair 
(TVP). 

2.2. Abstracted representations for diverse observation types 

BASIN-3D also supports diverse observation types with the OGC 
concepts. It uses a generically-defined ‘Observation’ entity with three 
components: the ‘Observed Property’ describes the measurement (e.g. 
river discharge, stream chemical concentrations), the ‘Feature of interest’ 
defines the subject of observation (e.g. river), and the ‘Observation Re-
sults’ defines the results of the observation using abstracted data struc-
tures (e.g., a time-series of coupled timestamps and values). The 
components of the Observation are linked as follows: Observation Results 
of an Observed Property are reported for a Feature of interest, typically 
specified as a representative Monitoring Feature (Section 2.1). 

BASIN-3D maintains a controlled list of Observed Properties and a 
preferred set of units to which the data provider’s variables and units are 
mapped (Appendix 2). This enables BASIN-3D to harmonize variable 
names across data used for the same measurement (e.g., Al, Aluminium) 
into a single Observed Property for a diverse set of observations (e.g., 
physical, chemical and biological measurements) with standardized 
units. 

BASIN-3D also uses abstracted Observation Result types, (e.g. time- 
series, image, grid), instead of discipline-specific representations (e.g., 
discharge, water quality parameter). For our applications so far, we have 
implemented an Observation Result for time-series data. Thus time-series 
data from different science disciplines or research applications (e.g. 
meteorology, geochemistry) are transformed into Observation Results in 

the uniform format ‘Measurement Timeseries Time Value Pair (TVP)’, an 
array of paired timestamp and data values. All BASIN-3D timestamps 
follow the ISO 8601 standard (https://www.iso.org/iso-8601-date-a 
nd-time-format.html). The Observation Result can be extended to repre-
sent additional data types beyond time-series measurements, such as 
categorical data, imagery, and remote sensing (Section 4.1). Other 
metadata such as the measurement units are provided within the 
Observation Result object. 

2.3. Framework architecture and implementations 

BASIN-3D presents two approaches for data integration – first as a 
Python library, and secondly as a Django web-based application 
(https://www.djangoproject.com/) leveraging its vast extensions to 
provide mechanisms for site administration, authentication and autho-
rization, and documentation. It has a modular architecture consisting of 
(1) a ‘Data Acquisition Layer’ that connects to data sources and retrieves 
data dynamically, (2) a ‘Data Synthesis Layer’ where data are trans-
formed to the BASIN-3D schema (hereafter referred to as the Synthesis 
models), and (3) either a ‘Data Output Layer’ that transforms synthe-
sized data into specified data structures in the Python version (Fig. 3a) 
or a ‘Web Service Layer’ that receives requests from and returns results 
to different clients in the Django version (Fig. 3b). It also contains an 
extensible internal catalog to maintain a list of data sources with their 
authentication information, and a controlled vocabulary of Observed 
Properties. 

The Data Acquisition Layer provides functionality to customize data 
source connections as required for the application using a plugin ar-
chitecture containing extensible Python classes. The base Plugin classes 
enable connection to any network-accessible source such as a database, 
web service or a remote or local filesystem. They also include an 
extensible HTTP connection module with support for some common 
authentication methods such as the Hypertext Transfer Protocol (HTTP) 
authentication API that supports OAuth2 (https://oauth.net/2/) and 
token-based authentication. Custom data access plugins consist of 2 
components: 1) a python module, and 2) a csv file with a mapping of 
data source variables to BASIN-3D variables. In the plugin python 
module, the developer extends the base plugin classes and implements 
the authentication required by the source (if any), constructs queries to 
retrieve data and metadata required by BASIN-3D (Table 2), and maps 
the structure, format and semantics of the returned data to the Synthesis 
models. In particular, information about measurement locations (via a 
mapping to Monitoring Feature objects) and time-series data (via a 

Fig. 2. Example Monitoring Feature groupings and hierarchies for a watershed study. The site attributes that are indicated in the features are described in Section 3.1.  
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mapping to Measurement TVP Timeseries objects) is configured in the 
python plugin module. Mapping to the BASIN-3D synthesis models is 
open-ended and accommodates a range of scenarios depending on the 
availability of data or metadata from the data source. Plugin developers 
can choose to return mapped data from the data source, return data from 
other supplementary local or remote sources, or return nothing if no 
relevant information is provided by the data source. The WFSFA 
implementation (Section 3.2) describes additional examples of plugin 
configuration. Plugins can be shared between the Python library and 
Django implementations. Currently both versions are bundled with a 
plugin to the public USGS National Water Information System (NWIS; 
https://nwis.waterdata.usgs.gov) that can be used out-of-the-box to 
access the NWIS data and also used as a template to create new plugins 
to connect to new sources. After the plugins are created, it is trivial to 
query the BASIN-3D APIs for integrated search and access of data across 
all configured sources. Any custom data access plugin that extends the 
BASIN-3D Plugin classes can be registered for use with the Data Syn-
thesis Layer using a simple function call. 

The Data Synthesis Layer transforms data received from the sources 
into two BASIN-3D synthesis objects that represent time-series data, 
namely the Monitoring Feature (e.g., Watershed, Site, Point) and 

Measurement Timeseries TVP (Sections 2.1 and 2.2). The variables used 
by the data sources are harmonized to a controlled vocabulary of 
Observed Properties. The synthesis layer supports common query pa-
rameters to filter synthesized data by time, location, observed properties 
and data quality (Table 2). 

The Data Output Layer translates the BASIN-3D synthesis objects into 
commonly used analysis formats. BASIN-3D currently supports Python 
Pandas dataframe objects and csv files for Measurement Timeseries TVP 
data as well as Python dictionary objects and csv files for the Monitoring 
Feature and Observed Property metadata. It also supports HDF5 file for-
mats that contain both the data and metadata. The output formats are 
specified by the data user and can be extended to additional types. 

The Web Services Layer provides a scalable, fault tolerant and 
extensible Representational State Transfer (REST) API powered by the 
Django Application Framework (https://django-basin3d.readthedocs. 
io/). Clients can use the Synthesis Web API to view the catalog of lo-
cations and observed properties, make data requests and retrieve results 
in a Javascript Object Notation (JSON) format. 

Fig. 3. BASIN-3D architecture showing (a) 
the Python implementation where users 
connect to plugins as needed and results of a 
query to the Synthesis Layer are returned as 
HDF5 files or a Python Pandas dataframe via 
the Data Output Layer; and (b) the Django- 
based web implementation (django- 
basin3d) where the Watershed Function SFA 
(WFSFA) Broker is a custom implementation 
containing plugins to access two Watershed 
SFA field databases and USGS NWIS. The 
Web Service Layer enables the WFSFA Bro-
ker to provide a single web service that cli-
ents can use to specify queries and access 
results via the Synthesis Layer. Here BASIN- 
3D refers to the entire ecosystem, basin3d 

refers to the core Python software and django-basin3d refers to a Django wrapper around basin3d that enables the web framework (see https://github.com/ 
BASIN-3D). Note that the Python library (basin3d) is an install requirement in django-basin3d.   

Table 2 
Mapping of Data Source Objects across plugins to the BASIN-3D Synthesis Model for the two BASIN-3D implementation approaches. Web API calls shown here require 
configuring a custom broker implementation (e.g. WFSFA). Python API calls require installing the BASIN-3D package, configuring the appropriate data source plugin 
(s), and instantiating a “synthesizer” object. Note that the API calls for the Measurement TVP Timeseries object are examples of USGS NWIS Daily Values data synthesis. 
Documentation for the Python API calls are available at https://basin3d.readthedocs.io/(in the Key Functions section). Documentation for the Web API calls are 
available at https://django-basin3d.readthedocs.io/(in the REST API section).  

USGS NWIS 
Data Source 

East 
River 
Data 
Source 

Rifle 
Data 
Source 

BASIN-3D Synthesis Model BASIN-3D Synthesis 
Web API Calls 

BASIN-3D Synthesis 
Python API Calls 

NWIS Sites Locations Locations MonitoringFeature 
Type: Point 

/monitoring_features/points synthesizer.monitoring_features 
(feature_type ’POINTS’) 

HUC: 
Watershed 

Directly 
coded 

Directly 
coded 

MonitoringFeature 
Type: Watershed 

/monitoring_features/watersheds synthesizer.monitoring_features 
(feature_type=’WATERSHED’) 

Hydrological 
Unit (HUC)  

● Region  
● Subregion  
● Basin  
● SubBasin 

No 
Mapping 

No 
Mapping 

MonitoringFeature 
Type:  
● Region  
● Subregion  
● Basin  
● Subbasin 

/monitoring_features/regions/monitoring_features/ 
subregions/monitoring_features/basins/ 
monitoring_features/subbasins 

synthesizer.monitoring_features 
(feature_type=’REGION’) 
synthesizer.monitoring_features 
(feature_type=’SUBREGION’) 
synthesizer.monitoring_features 
(feature_type=’BASIN’) 
synthesizer.monitoring_features 
(feature_type=’SUBBASIN’) 

NWIS Daily 
Values 

Location 
Data 

Location 
Data 

Measurement_TVP_Timeseries /measurment_tvp_timeseries/? 
monitoring_features=USGS- 
0911000&observed_property_variables=RDC, 
WT&start_date=2019-10-25&end_date = 2019-10- 
30&aggregation_duration=DAY 

synthesis.get_timeseries_data (synthesizer, 
monitoring_features=[’USGS- 
09110000’], 
observed_property_variables=
[’RDC’,’WT’], start_date=’2019-10-25′, 
end_date=’2019-10-30′)  
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3. Results: Applications of BASIN-3D to integrate water data 

3.1. Python application to synthesize regional-scale water data 

A first application of BASIN-3D is for a Python-based, data-driven 
framework iNAIADS (iNtegration, Artificial Intelligence, Analytical 
Data Services) developed for a DOE project that aims to predict how 
hydrologic disturbances will change water quality in large river corri-
dors of the United States using ML models that account for differences in 
watershed characteristics, including geomorphology, geology, climate 
and land use. Thus, the study needs to utilize hydrological, geochemical, 
climate time-series and other spatial datasets at point to regional scales 
from a vast array of sources such as NWIS, Daymet (https://daymet.ornl. 
gov/) and the National Hydrography dataset (https://www.epa.go 
v/waterdata/nhdplus-national-hydrography-dataset-plus). The project 
requires flexible programmatic access to data sources for exploratory 
analysis, subsetting and retrieval of data on-demand, and repeatable 
integration of large datasets into an easily useable format. Here, BASIN- 
3D is used to integrate data as standardized inputs for the analytical and 
ML modules, and insulate them from any changes in how data is served 
by the sources. 

The BASIN-3D Python library (basin3d) is a standalone software that 
can be deployed with the simple “pip install” command. It is easy to 
integrate with typical data wrangling, analysis and plotting capabilities 
within Jupyter notebooks (http://jupyter.org) or other Python scripts 
(Fig. 4). To request data, users specify the set of monitoring features, 
observed properties and time period of interest as parameters within a 
Python function call (see basin3d documentation: https://basin3d. 
readthedocs.io/). The output is returned as a Python Pandas dataframe 
with harmonized units and aligned timestamps where each time-series is 
a column named by the combination of Monitoring Feature ID and the 
BASIN-3D Observed Property variable name. The Pandas missing value 
is used if a particular time series does not have a measurement for a 
given timestamp. The integrated data can be saved in HDF5 file formats 
for offline retrieval. The outputs also separately return associated met-
adata as a Python dict object with elements for each time series (i.e., 

column), which includes metadata such as the Observed Property, and 
results metadata such as units, statistics, result quality and temporal 
aggregation. These metadata attributes can be modified as needed, and 
future extensions will include the original variable name and monitoring 
feature geolocation details, if provided by the data source, to enable 
transparency in the plugin mappings. 

As an example application, basin3d was used to integrate 70 years 
(1950–2020) of daily stream discharge and temperature data from NWIS 
and meteorological data from Daymet (version 4) for stations in all 
hydrologic regions within the Continental United States (CONUS) using 
its Synthesis Python API calls with just a few lines of code (https:// 
basin3d.readthedocs.io/en/latest/quick_guide.html). The integrated 
datasets were used to create input and validation datasets for ML models 
to predict stream temperature. By using basin3d, it would be trivial to 
extend the integrated datasets to add new years of data. Any changes to 
the underlying data sources such as a new version of the Daymet dataset 
being made available or changes in variable semantics or data access 
mechanisms can be handled within the BASIN-3D plugin, without 
requiring changes in the analytical or ML modules. 

3.2. Web-based application for an integrated data portal at the 
watershed-scale 

The second application of BASIN-3D is for the DOE’s Watershed 
Function Science Focus Area (SFA; http://watershed.lbl.gov), which 
seeks to gain a predictive understanding of how perturbations like early 
snowmelt influence hydrobiogeochemical processes in mountainous 
watersheds and impact downstream water availability and quality at 
subseasonal to decadal timescales (Hubbard et al., 2018). The project 
has two field sites in the Upper Colorado River Basin of the US: the 
headwaters East River catchment near Crested Butte, CO (ongoing since 
2014), and a floodplain site on the Colorado River near Rifle, CO (active 
from 2009 to 2017). The project, in partnership with several collabo-
rating organizations, generates a vast amount of diverse data, including 
hydrogeological, geochemical, climate, metagenomic and remote 
sensing observations (Kakalia et al., 2021). The SFA maintains two 

Fig. 4. BASIN-3D can be easily used in a Python-based Jupyter notebook to retrieve synthesized data with a few lines of code.  
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private databases for each field site, the East River (ERDB) and Rifle 
(RiDB) databases that hold the project’s sensor- and sample-based ob-
servations and provide APIs to access the data (Varadharajan et al., 
2019). Data from the remote sensing campaigns are maintained sepa-
rately on SFA or other data systems such as the National Snow and Ice 
Data Center (NSIDC). Metagenomic data are held in a specialized 
database, ggKBase (http://ggkbase.berkeley.edu). The SFA also utilizes 
data from pre-existing infrastructure, such as USGS gaging stations, the 
Environmental Protection Agency’s (EPA) Clean Air Status and Trends 
Network (CASTNET) and National Resources Conservation Service 
(NRCS) Snow Telemetry (SNOTEL) sites. 

The project required integration of these diverse data held in 
different sources to minimize redundant and inconsistent efforts by 
scientists to retrieve and synthesize data. A critical need was for a 
software to integrate data from the two SFA private databases that 
required authentication with data from public sources such as the USGS 
NWIS and EPA (Fig. 5). Hence, the web version of BASIN-3D was used to 
support integration across the SFA’s East River and Rifle field sites and 
USGS sites across the East-Taylor Watershed, and to support serving the 
data through a user-friendly interactive web portal. 

In addition to the core BASIN-3D framework, the implementation 
needed two additional software components to enable a web-based view 
of the integrated data: (1) the Watershed SFA Broker Service (subse-
quently referred to as WFSFA); and (2) the SFA data portal to access the 
integrated datasets. The WFSFA is a custom Django-based broker 
implementation of BASIN-3D with plugins to connect to three remote 
data sources - the ERDB, RiDB and NWIS (Fig. 3b). In each plugin, a 
mapping between BASIN-3D synthesis objects and the data source ob-
jects are defined (see Section 2.3). For example, Monitoring Feature with 
type point in BASIN-3D is mapped to Location objects in the ERDB and 
RiDB, and to the site object in NWIS (Table 2). The Monitoring Feature 
with type watershed is mapped to the HUC watershed object in NWIS, 
and is explicitly defined for the ERDB and RiDB since they do not pro-
vide the watershed information as part of the location metadata. The 
plugins also transform source variable names to BASIN-3D controlled 
vocabularies (e.g. Al in the East River database to Aluminium (Al)). Data 
synthesized by the WFSFA are accessible through Synthesis Web API 
calls (Table 2). 

Authenticated SFA users can access and download integrated 

datasets using a web portal with search and interactive visualization 
capabilities (Fig. 6). To request data, users select the locations, observed 
properties (parameters or measurement variables), time period and data 
sources (sites) of interest on the portal’s selection widgets. The portal 
features filtering capabilities to help users identify observed properties 
measured at a set of locations and vice versa, which dramatically re-
duces the number of futile searches for which no data is available. Data 
search requests trigger Synthesis API requests via the WFSFA to 
dynamically retrieve data from the relevant sources, and return a Mea-
surement Timeseries Time Value Pair (TVP) Observation Result (Fig. 7). The 
portal displays results as a downloadable table of values, as well as 
interactive Javascript visualizations (https://dygraphs.com/). The use 
of BASIN-3D enables the portal code to be maintained separately from 
the plugins accessing the data. Updates to ERDB and RiDB are handled 
by modifying the plugins in the WFSFA, which minimizes maintenance 
required for the portal code. 

4. Discussion 

4.1. The BASIN-3D brokering approach 

BASIN-3D is a unique tool that serves different purposes than any 
prior broker-based environmental data integration system. In the era of 
data-intensive science and ML, there is a need for tools that enable users 
to integrate data across providers of their choosing, in a manner that 
makes most sense for their applications. In some cases users may want to 
integrate data differently, even when connecting to the same providers. 
It is impossible for any centralized system to anticipate the myriad data 
sources and ways in which users want to pull and synthesize data. 

Hence, we developed BASIN-3D to provide a flexible means for users 
to customize their data integration and to give them greater control on 
how data across providers are mapped into a common format. In 
particular, it was designed to address the following needs from our use 
cases, for which there was no pre-existing solution.  

1. Data integration for modeling and analysis applications - There 
was a need to pull together large datasets for exploratory analysis 
and ML (Section 3.1), which requires the ability to query and retrieve 
data using a programmatic API without any prior coordination with 

Fig. 5. Conceptual diagram of the functionality desired from the BASIN-3D supported data brokering system for the Watershed Function SFA. The broker would 
connect to various data sources across organizations and present an integrated view of the data to the user. 
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the data sources. It also requires support for JSON, as a concise and 
easily parsable format used in modern software applications. With 
BASIN-3D, we integrated data from NWIS (discharge, water tem-
perature), and Daymet (meteorological parameters) for stations in all 
regions of the CONUS into a single data frame with harmonized 
timestamps and units using the default APIs provided by the data 
sources. This data frame was also stored in the HDF5 file format for 
offline access by the analytical algorithms. BASIN-3D allows users to 

create their own plugins to flexibly connect to additional data 
sources of interest.  

2. Connection to private databases - A critical need for one of our use 
cases was to integrate data from a project’s multiple private data-
bases with data from public sources such as the USGS or EPA (Section 
3.2). We note that even within a single project, there may be a need 
to synthesize data from multiple sources, some of which may not be 
available from a public provider and do not provide data conforming 
to existing standards. BASIN-3D also supports both token and OAuth 

Fig. 6. WFSFA Data Portal provides an interactive data-driven user interface for exploring watershed data across USGS sites in the East Taylor Watershed and the 
Watershed Function SFA’s Rifle and East River field sites. 

Fig. 7. Example workflow describing the functionality behind a Synthesis API request. A user requesting river discharge data (RDC) for a given location (Avery 
station at the SFA’s East River field site) makes a request to the WFSFA, which retrieves the required data from the East River data source on demand and transforms 
the returned object into the generalized BASIN-3D synthesis models. 
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authentication making it convenient to connect to private databases 
that use these two common authentication mechanisms.  

3. Supporting diverse data types - Although the current version of 
BASIN-3D only handles time-series data, it is extensible to represent 
more general observations including remotely-sensed and simulation 
data because of its use of the OGC concepts. For example, to incor-
porate remote sensing data, an Earth Observation Result type, or more 
specifically an Optical Earth Observation Result, can be defined to 
handle a standard gridded data format, such as that described as eop: 
Earth Observation in the OGC Earth Observation Metadata Profile for 
Observation and Measurements (OGC 10-157r4; see Appendix 1b). A 
rich set of additional parameters such as image resolution and pro-
cessing information can be selectively included to fully describe the 
Observation. Similarly, for simulated data a model-specific Result type 
can be defined if an existing Result type (e.g., gridded or time-series) 
is not suitable. An Observation parameter can be defined to indicate 
that the data are simulated. Currently, we have implemented a lean 
data model that is based on our use cases and can be extended as 
needed to support additional data types. 

BASIN-3D also provides a mechanism for maintaining and 
amending a controlled list of Observed Properties for a variety of 
measurements. It comes with a default vocabulary (Appendix 2), 
created to support the diversity of measurements in our applications. 
However this list can be replaced with any preferred terminology or 
ontology by updating the Observed Property names in the BASIN-3D 
catalog, updating the mappings of the new terms to the data 
source terms in a plugin mapping csv file, and registering the updated 
plugin with the BASIN-3D Synthesis models. Following this, the new 
controlled vocabulary will work without requiring any changes to 
the plugin code. The controlled vocabulary focuses on the Observed 
Property alone and does not distinguish between units, aggregation 
type or sampling method, which are considered characteristics of the 
Observation. Separation of the Observed Property from the abstracted 
data representation Observation Results provides the flexibility to 
handle diverse observation data types in a similar manner. For 
example, it is easy to synthesize continuous sensor-based hydrolog-
ical time-series data with manual geochemical measurements using 
the Observation Results of type Measurement Timeseries TVP. Thus, 
BASIN-3D clients (e.g., web portals, visualization, analysis software) 
only need to use the Measurement Timeseries TVP to work with het-
erogeneous, time-series data across sources.  

4. Supporting different spatial representations - BASIN-3D can be 
expanded to support a variety of features and groupings by 
abstracting Spatial Sampling Features to the OGC’s four geometries 
(point, curve, surface, solid). By specifying Monitoring Features with 
parent-child relationships, observations can be specified and syn-
thesized at any defined spatial scale, as well as aggregated across 
scales. This provides flexibility with querying and integrating data 
across different scientific representations of sampling designs and 
aggregation (e.g. by a particular field site or across a river basin). 

We also note that the challenges with data integration are not unique 
to geosciences and are relevant to other fields such as intelligent 
transportation systems, autonomous vehicles, smart cities, and indus-
trial applications utilizing the Internet of Things (IoT) where similar or 
alternate solutions to BASIN-3D may exist. One example is a European 
open source IoT framework FIWARE (Cirillo et al., 2019), where adhoc 
integration modules and FIWARE IoT agents translate data provided by 
cities to the Next Generation Service Interface standard data format 
(OMA, 2012). These “adapters” are similar to our concept of a plugin, 
which generate data in a uniform format and also generate metadata 
following the FIWARE and Open and Agile Smart Cities (OASC) data 
models for downstream applications. More broadly there have been 
decades of research and applications based on semantic data integration 
to link data from heterogeneous sources onto a reference ontological 
model (e.g. Charpenay et al., 2018 and references therein). The semantic 

tools provide more sophisticated approaches to data harmonization in 
comparison to BASIN-3D, but do not handle aspects of spatial data 
integration and authentication necessary for our use cases. Further work 
is needed to explore and adopt concepts from the considerable body of 
literature on data integration beyond the geosciences. 

4.2. Advantages and limitations of using BASIN-3D to address data 
integration challenges 

We encountered several data integration challenges across our two 
use case applications. The first is to reconcile differences in concepts, 
formats, data models and semantics that can vary widely across data 
sources (Varadharajan et al., 2019). For example location terms such as 
“basin”, “site” and “point” are used differently by both data providers 
and consumers. Sampling hierarchies can be organized using any com-
bination of geometries (e.g. a transect containing wells, both curves as 
per the OGC), which makes it difficult to define a rigorous hierarchical 
description of sampling feature types. Similarly, data sources use 
different terms for variables and only a few use well-described ontol-
ogies. For example, NWIS has over 20,000 parameter codes dis-
tinguishing between sampling methods (e.g. filter size), units and 
aggregation (e.g. daily versus instantaneous). Additional trans-
formations such as unit conversions, quality checks or other processing 
may be needed prior to synthesis. For example, NWIS has different 
parameter codes for discharge in ft3/sec (00060) and m3/sec (30208); 
and queries using the two codes return different results, requiring unit 
transformations to synthesize discharge data across one source. Some 
data may need to pass QA/QC checks before they are ready to be used, 
which is challenging since a myriad of data quality flags and methods 
are used across sources. 

Data sources also differ in how they organize and provide access to 
data. In some cases, sources provide a collection of web services instead 
of a single end point. For example, NWIS has multiple web services for 
retrieving daily and instantaneous values for surface water, ground-
water and water quality data. Sometimes sources do not provide key 
metadata and queries for discovery and synthesis. For example, we 
found critical information was not provided or easily accessed, such as 
the depths of sensors and reference datums in queries retrieving bore-
hole information, the position of the timestamp in queries retrieving 
time-series data (i.e., whether the time stamp reflected the start, middle 
or end of the observation), descriptions of sampling protocols and data 
quality measures, and a list of all the observed properties measured at a 
given location. Finally, authentication requirements for data systems 
pose an additional barrier to users. 

We addressed many of these challenges using a plugin model that 
provides flexibility to the critical tasks of mapping and transforming 
data source objects and terminologies to the generalized BASIN-3D 
synthesis model (Section 2.3). Additional data transformations for unit 
conversions and quality checks can also be specified in the plugin. By 
default, both the units and quality flags provided by the source are 
passed on to the user in the BASIN-3D Observation Results (except for 
NWIS river discharge, which is harmonized to m3/sec). BASIN-3D also 
provides for three simple QA/QC flags - “checked”, “unchecked”, and 
“null”. The plugin design is flexible and any number of endpoints can be 
specified within a single plugin to accommodate for differences in how 
sources organize and provide data. BASIN-3D plugins incorporate two 
widely-used authentication protocols to lower the bar to access systems 
that require authentication. 

The BASIN-3D brokering approach to connecting with data sources, 
although versatile, also has its limitations. Currently, an understanding 
of both the data source and the BASIN-3D synthesis models, along with 
Python familiarity, are needed to build a custom data access plugin. 
Because of the diversity of data sources, a separate plugin for each data 
source is typically required. However as efforts to standardize data 
sources advance, we anticipate that one plugin may be able to support 
multiple data sources. Ideally the plugins should be designed so they are 
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easy to create or update as sources make structural changes such as 
adding new data categories or modifying terminologies. However, cre-
ation and maintenance of plugins is currently time-consuming especially 
if data source structures and semantics are difficult to map onto BASIN- 
3D’s schema. Typically it involves the judgement of domain experts, 
who determine how to map the various terms and formats to the Syn-
thesis models. Plugin development also requires expertise in software 
engineering, which may not be available to all scientific groups. The 
Python library is bundled with a plugin to the public USGS National 
Water Information System (NWIS; https://nwis.waterdata.usgs.gov) 
that serves as an example for developers to build custom plugins to new 
data sources. However, a more general template and testing tools that 
facilitate plugin creation and maintenance would lower barriers to this 
approach. 

The current version of BASIN-3D specifies default preferred units 
(Appendix 2), but does not include default unit conversion libraries that 
would accommodate a variety of units provided by sources. Creating a 
generalized unit conversion tool is difficult, given the wide variety of 
physical, chemical and biological variables. Although existing unit li-
braries such as the Udunits-2 (https://www.unidata.ucar.edu/software/ 
udunits/) or Pint (https://pint.readthedocs.io/en/stable/) can be uti-
lized, a generalized broker will need custom unit conversions for non- 
physical units (e.g. for geochemical data). 

Major feature enhancements to BASIN-3D are needed to scale to 
additional sources and handle more diverse and big data. First, the 
synthesis models must be extended to handle additional data types such 
as geospatial or remote sensing products and model data (Section 3.2). 
Then, BASIN-3D needs the ability to retrieve large datasets using pro-
tocols such as OpenDAP (https://www.opendap.org/) and OGC Web 
Coverage Service (https://www.unidata.ucar.edu/software/tds/curre 
nt/reference/WCS.html). For large time series data, paging returned 
results in the JSON is also an option. Retrieving big data can be a 
challenge to implement if sources do not support large data transfer 
protocols or provide basic metadata such as the size of the results or 
number of data points. BASIN-3D will also need the ability to cache data 
retrieved from prior queries as it retrieves data on-demand for each 
query and currently does not have a mechanism to store returned results. 
Caching data can enable efficient data retrieval, improve performance 
and the user experience particularly when retrieving large datasets, and 
will enable access to sources during outages (Blodgett et al., 2015). 
Caching would also enable users to track versions of data over time and 
potential impacts of change in the data to analyses or simulations 
(Ghoshal et al., 2018). 

Finally, a generalized data integration framework should provide 
detailed provenance information along with data usage rules and cita-
tions. This can be difficult to implement in a broker, particularly when 
there are various versions of the data and if sources do not track or 
provide the information. BASIN-3D currently enables identification of 
the source name and URL along with returned results but does not have 
support for additional citation information within its synthesis models. 
Creating dynamic data citations for on-demand queries is an important 
area for improvement to credit the sources and provide users of the 
synthesized data an ability to precisely cite versions of the data 
retrieved. 

4.3. Using standards to enable a generalizable, extensible brokering 
framework 

BASIN-3D has been designed to harmonize, integrate and query 
diverse datasets that result from a range of field investigations, moni-
toring networks and model simulations. In particular, use of the OGC 
and FGDC standards provides a means to support flexible synthesis of 
diverse measurement configurations and data types using abstracted 
data structures (Section 4.1). These standards are a suitable choice as 
they have been developed over several years to enable interoperability 
across data systems and have achieved consensus across and adoption by 

various organizations. 
We encountered some challenges implementing these data standards 

as the underlying construct for integration. First, it was not easy to use 
the standards partly because they are specified at a high level and do not 
provide implementation guidance beyond some simple, limited exam-
ples. For example, the OGC standards do not specify implementation of 
Monitoring Features or its parent features for different shapes or resolve 
how collections of spatial hierarchies should be organized. Standards 
also use specialized terminologies that domain scientists may not be 
familiar with. For BASIN-3D, we had to balance constraints of following 
the OGC standard using the specified terminology (e.g., using observ-
ed_property and measurement_tvp_timeseries), while making the con-
cepts and Synthesis API calls logical to domain scientists. Thus in a few 
cases we deviated from OGC definitions or terminologies to improve the 
usability of BASIN-3D for scientific researchers or for other practical 
reasons. For example, while the OGC standards differentiate between 
the feature being observed and the representative sampling feature upon 
which the actual observation is made, BASIN-3D does not make this 
distinction because most data sources only include information on the 
Sampling Feature and a ‘Feature’ in one case may be a ‘Sampling 
Feature’ in another. Thus all spatial entities are Monitoring Features in 
BASIN-3D; however, the data model is implemented as hierarchical 
classes which enables expansion to support any OGC Feature entity. 
Similarly, all Feature entities use Feature Types instead of specific, entity- 
based types (e.g., Spatial Sampling Feature Type) for practical 
implementation. 

It is also difficult to identify and track multiple, evolving standards 
potentially applicable to a situation. There are many standards that are 
highly suitable to a particular data type and sampling design, but few 
that are generalizable across the broad suite of diverse measurement 
types and sampling hierarchies that may be relevant to an interdisci-
plinary watershed study. As an example, we considered the widely-used 
GeoJSON specification (http://geojson.org) as the coordinate repre-
sentation for Monitoring Features. GeoJSON has become a de facto 
“standard” for geospatial data proposed by the Internet Engineering 
Task Force but is yet to be approved (https://tools.ietf.org/htm 
l/rfc7946). However, GeoJSON has several limitations including the 
inability to extend geometries beyond simple types, such as represen-
tation of circles or meshes (OGC, 2017). GeoJSON only represents 
geographic coordinates, using the World Geodetic System 1984 (WGS 
84) datum, with longitude-latitude pairs of a relevant shape (e.g. Poly-
gon), which does not accommodate for location information using other 
reference datums (e.g. a plot’s center point with lengths of the four 
sides). Thus in many implementations, GeoJSON has to be extended in 
an arbitrary manner by adding attributes into a non-standardized 
‘properties’ field. As another example, the WaterML 2.0 standard is 
specifically tailored for water time-series observations (https://www. 
opengeospatial.org/standards/waterml). However, WaterML cannot be 
used to represent LiDAR, hyperspectral or snow pit observations from 
the East River. Additionally, JSON representations are more common in 
modern applications, as they are less verbose than XML-based standards, 
more easily parsed and better suited for big data, and also easier for 
domain scientists to use. Hence, we chose the higher-level OGC standard 
as the default model for data integration since its use enables BASIN-3D 
to be extensible to diverse data types without using multiple standards, 
and also allows for JSON representations. 

5. Summary and conclusions 

There is a critical need to integrate heterogeneous, multiscale data to 
address complex environmental challenges. Often, data is distributed 
across many sources that do not share common structures and formats. 
Generalized data management frameworks that integrate diverse, 
distributed data can facilitate their use in analysis and modeling. We 
developed BASIN-3D, a data-brokering integration framework that re-
trieves subsets of data from different sources for on-demand queries and 
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integrates the data into a unified view. BASIN-3D applies concepts from 
OGC and FGDC standards to create an extensible framework that allows 
creation of custom plugins to map data sources to a common synthesis 
model. It can be used as a Django application to support web services 
and portals, as well as a simple Python library for analysis and modeling. 
We present implementations of BASIN-3D to integrate diverse time- 
series data for two DOE projects that study the impacts of hydrologi-
cal perturbations at watershed to regional scales. 

We encountered several challenges in building this framework, 
despite having just two applications. It was difficult to harmonize spatial 
elements, variable names, data quality terms and units across sources, 
and it required a combination of domain expertise and software engi-
neering to create software mappings to a common data-model schema. 
Data sources typically do not provide data with a user’s view, and 
sometimes information needed to synthesize data are unavailable or not 
easily accessible. Although existing standards provide much value in 
representing diverse data using a generalizable abstracted approach, 
they are difficult to use and provide minimal guidance on the details of 
their implementation. Some of these challenges can be addressed using 
BASIN-3D’s generalized brokering framework. The data integration 
needs of our applications are broadly applicable to a large number of 
environmental studies of complex systems. For example, the Critical 
Zone Observatories have similar interdisciplinary data that require 
integration across platforms (Zaslavsky et al., 2011). BASIN-3D also 
applies to policy initiatives that seek to integrate data across sources, 
such as the federal Open water data initiative (https://acwi.gov/spat 
ial/owdi/) and California’s Open and Transparent Water Data Act 
(https://water.ca.gov/ab1755). The BASIN-3D synthesis constructs are 
generalizable and can be extended to integrate data types beyond 
time-series for a wide range of environmental field and modeling 
investigations. 
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