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Abstract 

Previous experiments (Waldron & Ashby, 2001) showed that 
category learning was differentially impaired by a concurrent 
Stroop task, depending on the type of rule used to categorize 
items. Learning was more impaired for simple explicit rules 
than for complex implicit rules. The present simulation 
suggests that the multiple learning systems hypothesized by 
Waldron and Ashby are not necessary to explain their results 
because a single learning system provides a parsimonious 
account of the data. In this model, the harder of two 
concurrent tasks determines learning time. Therefore, 
combined task complexity explains why the concurrent 
Stroop task impairs learning in the explicit group more than in 
the implicit group.  

Introduction 
Categorization is an important cognitive task (e.g., Harnad, 
2005). It is currently controversial whether categorization is 
a single process, or if there are multiple systems involved 
for different kinds of categorization tasks.  

Waldron and Ashby (2001) performed an experiment with 
human participants that seemed to support the hypothesis of 
multiple learning systems. Participants had to categorize 
four-dimensional items. Two variables were manipulated. 
First, the type of rule determined the difficulty of the 
categorization task. In the explicit rule condition, items 
could be categorized according to a single input dimension. 
In contrast, under the implicit rule condition, three of the 
four input dimensions had to be integrated in order to 
determine category membership. They used term explicit 
because participants can typically verbalize simple, one-
dimensional rules. By contrast, participants generally cannot 
verbalize complex, multi-dimensional implicit rules, even 
when they perform well on categorization tasks using those 
rules.  

Second, Waldron and Ashby manipulated processing 
load. In a concurrent condition, participants performed a 
numerical Stroop task while learning to categorize. In a 
control condition, participants only had to learn to 
categorize. 

Participants were randomly assigned to either the control 
condition or to the concurrent condition. Each participant 
was presented with four categories to learn (two explicit and 
two implicit) in random order. The set of features relevant 
for determining category membership was selected 
randomly, and changed for each of the four categories to be 
learned. 

Results (Waldron & Ashby, 2001) are reproduced in 
Figure 1. Their statistical analyses of those results showed:  

1. A significant main effect of condition (i.e., processing 
load) – “… showing that the concurrent task group needed 
more training to learn the category structures than did the 
control group.” (p. 171) 
2. A significant main effect of rule type – “…showing that, 
over all other conditions, explicit rules required less training 
than did implicit rules.” (p. 171)  
3. A significant interaction between rule type and 
condition – “…showing that the concurrent task produced 
greater interference with explicit rules than with implicit 
rules.” (p. 171)  

In addition, Waldron and Ashby found a significant 
improvement in performance by the explicit concurrent task 
condition as the experiment progressed. The probable cause 
is a reduction of concurrent task interference, because the 
Stroop effect is known to diminish with training (Stroop, 
1935; MacLeod, 1991). As a result, the critical Rule Type 
by Condition interaction found “Early in Session” 
disappears by the end of the experiment (“Late in Session”). 
No other differences between Figure 1A and 1B are 
statistically significant. 

Waldron and Ashby (2001) claimed that the observed rule 
type by condition interaction supports the existence of 
multiple learning systems because the concurrent task 
interferes with explicit learning, but not with implicit 
learning. They further claim that the differential 
improvement in explicit learning during the experiment also 
supports multiple systems. Finally, Waldron and Ashby 
argued that, because the secondary (Stroop) task is 
commonly thought to reduce processing resources available 
to the primary (categorization) task, category learning 
should be more difficult when the Stroop task is 
concurrently performed. Furthermore, complex, implicit 
rules require more processing resources than simple, explicit 
rules. Thus, they conclude that in a single learning system, 
processing of implicit rules should always be impaired at 
least as much as that of simple rules when performed 
concurrently with the secondary task. Finally, they say that 
this prediction is contrary to what was observed: the 
learning of explicit rules was more impaired under 
concurrent task that the learning of implicit rules. 

These kinds of arguments based on interactions are 
commonly taken as evidence for multiple learning systems. 
An important example of such interactions is double 
dissociations. However, some simulations suggest that 
multiple learning systems are not necessary to account for 
them. In fact, Kello, Sibley and Plaut (2005) found that a 
single connectionist system could model double dissociation 
phenomena. 
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Similarly, this paper challenges Waldron and Ashby’s 
claim that the interaction they found is evidence for multiple 
learning systems. A simulation of their experiment was 
performed using Cascade-correlation neural networks 
(Fahlman & Lebiere, 1990). Results suggest that multiple 
category learning systems might not be necessary to account 
for their data.  

 
Figure 1 – Results from Waldron and Ashby (2001). Note 

that 1D rules were explicit, whereas 3D rules were implicit. 

Note. From “The effects of concurrent task interference 
on category learning: Evidence for multiple category 
learning systems” by E. M. Waldron and F. G. Ashby, 2001, 
Psychonomic Bulletin & Review, 8 (1), p. 172. Copyright 
2001 by The Psychonomic Society. Reprinted with 
permission. 

Method 
 

In the model, the categorization task has 4 inputs (binary 
features) and 1 output for a binary category decision (as in 
Waldron & Ashby, 2001). Like Waldron and Ashby (2001), 
two kinds of rules determined category membership: 
explicit rules where a single input feature determined the 
output (e.g., output is 1 if the second feature is 1), and 
implicit rules where 3 out of 4 features need to be integrated 
(output is 1 if any 2 of those 3 features are 1). The choice of 
input features used for categorization was random and 
different for each category. An example of implicit 
categorization task is presented in Table 2. 

The concurrent task was a Stroop task similar to the one 
used by Waldron and Ashby (2001). There were four binary 
input units representing the numerical (N) and physical (P) 
size of each of two digits (D1 and D2), each coded as 0 for 
small and 1 for large. A fifth binary input unit coded an 
instruction (Instr.) to identify the larger digit based on its 
numerical value (0) or physical size (1). The output was 
binary coded to identify which digit was larger (0 for digit 
1, or 1 for digit 2).  

 
Table 1 – Stroop task patterns (N=16) 

Inputs Output 
D1-N D2-N D1-P D2-P Instr.  

0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 

1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 

1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
1 

 
In the training set, 14 of the 16 patterns were questions 

about physical size, while 2 were about numerical size. 
Networks were presented with patterns in which the 
physical and numerical sizes were different, representing 4 
different combinations: (Small and Large) x (Digit 1 and 
Digit 2), therefore some replications of patterns were 
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necessary to match the 16 patterns of the categorization 
task. 

 
Table 2 – Example of patterns for an implicit task (N=16). 
In this example, the 4th input feature is not used to determine 
category membership. Output is 1 if at least two out of the 
other three features are 1. 

Inputs Output 
I1 I2 I3 I4  
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 

0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
1 
1 
1 
1 
1 
1 

 
For the simulations of the concurrent condition, the 

categorization and concurrent tasks were learned in parallel. 
As a straightforward way to model this, inputs and outputs 
of each task were concatenated, for a total of 9 and 2 
respectively. 32 networks were trained in each condition for 
a total of 128 networks. Networks varied in the values of 
their initial weights, which were randomly selected. 
Networks trained in the early in session condition were 
reused to simulate the late in session condition, after 
connection weights were modified to partially reset the 
Stroop effect (see Initializing Networks section for details). 
The goal was to mimic as much as possible the methods 
used in Waldron and Ashby (2001).  

In the simulations, the Stroop task was construed as a 
short-term “on the fly” learning to suppress default 
automatic response and to generate the unusual, but correct 
answer (evaluate differences in physical size). Because 
connection weights were initialized so that the network 
automatically generates the automatic response (evaluate 
differences in numerical size), the system had to unlearn this 
automatic response, and instead generate the correct 
response (evaluate differences in physical size). Stronger 
Stroop effects would manifest themselves in longer training 
time.  

Similarly, the categorization rules learned were also short 
lived. The system had to constantly learn novel associations 
because new combinations of features determining category 
membership were randomly selected for each of the four 
categories. 

Cascade-Correlation Algorithm 
As mentioned, this simulation used the Cascade-correlation 
(Cascor) algorithm (Fahlman & Lebiere, 1990). Cascor is a 
general purpose neural network algorithm that successfully 
simulated a range of cognitive tasks including the balance 
scale task, acquisition of pronouns and learning of distance, 
time, and velocity concepts (Shultz, 2003). As opposed to 
standard backpropagation algorithms in which 
experimenters need to set network structure prior to 
training, Cascor is a constructive technique where network 
size expands as needed to solve a task. 

Cascor networks begin with input and output units but no 
hidden unit. Training starts in the output phase during which 
Cascor minimizes the sum of squared error using some 
standard learning algorithm like QuickProp (Fahlman, 
1988): 

∑∑ −=
o p

popo TVE 2
,, )(    (1) 

where V is the activation of output o for pattern p, and T 
is the corresponding target value that the network is trying 
to learn. 

If error reduction stagnates before the task is successfully 
learned, Cascor enters the input phase. In input phase, a set 
of candidate units compete for recruitment. Those units are 
typically sigmoids, and each one starts with different 
random input connection weights. By adjusting those 
weights, Cascor maximizes the covariance of each candidate 
units’ outputs with the residual network error: 

∑∑ −−=
o p

oopp EEVVS ))(( ,   (2) 

where opE , is the error at output unit o for pattern p, 

oE is the average error at output unit o, pV is the output unit 

activation for pattern p, and V  is the average output unit 
activation. 

When covariance maximization stagnates, the unit with 
the highest covariance is selected and connected to the 
output units, and thus becomes a new hidden unit1. Other 
units are discarded. Cascor then proceeds with another 
output phase with the newly recruited unit. Training 
alternates between output and input phases until target level 
of error is reached or training times out. 

A major advantage of Cascade-Correlation over standard 
backpropagation is that determining network topology 
becomes part of the learning process, and is therefore 
automated. Although not necessarily optimal, network 
structures generated using Cascor tend to be relatively small 
(Fahlman & Lebiere, 1990). 
 
 

                                                           
1 Note that Fahlman and Lebiere (1990) found that using 
covariance (S) worked better than using true correlation in most 
situations. 
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Initializing Networks 
As noted, the Stroop effect diminishes with training (Stroop, 
1935; MacLeod, 1991). To simulate this effect, a different 
initialization scheme for networks trained to simulate the 
early and late conditions was used.  

Networks simulating the early phase were initialized so 
that numerical size outputs were given large connection 
weights between the numerical inputs and the output (called 
“numerical-bias weights”). Training thus involved inhibiting 
this automatic response (i.e., reducing the numerical-bias 
weights) and increasing weights between physical size 
inputs and the output.  

By contrast, to simulate the late in session condition, 
network weights were reset to a value equal to the mean of 
early training weights and numerical-bias weights, as 
illustrated in figure 2. This reflected the fact that early 
training reduces the Stroop effect, but only partially. 
To sum up, the experiment had two independent factors: (1) 
Condition (i.e., processing load) with two levels: Control 
(Categorization only) and Concurrent, and (2) Rule Type 
with two levels: Explicit and Implicit. Finally, there was one 
repeated factor, session with two levels: Early and Late.  
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Figure 2 – Example of network initialization for the Stroop 
task. The first set of weights represents initialization of the 
network before training. A large weight to the numerical 
output (numerical-bias weight) yields the automatic (but 
incorrect) response. After training (second set of weights), 
the network learned to generate the correct answer, as 
shown by a large connection weight to physical output. In 
the third set, network weights are reset to the average of the 
previous two sets of weights (before and after training) to 
partially reset the automatic response. Finally the last set of 
weights (similar to the second one) indicates that the 
network is generating the correct response again after 
training late in session. 

Results 
Simulation results are presented in Figure 3.  
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Figure 3A – Category Learning Early in Session. Error bars 
represent standard error. 
 

Category Learning Late in Session
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Figure 3B – Category Learning Late in Session. Error bars 
represent standard error. 

Statistical Analyses 
A mixed ANOVA was performed with Condition and Rule 
type as independent factors, and Session as a repeated 
factor. The following statistically significant effects were 
found: 
1. Main effect of Condition (processing load): F(1,124) = 

129.8, p < 0.001. Learning was faster in the control 
group than in the concurrent group. A main effect of 
Condition was also observed in human data. 

2. Main effect of Rule Type: F(1,234) = 437.8,  p < 0.001. 
Learning was faster for explicit rules than for implicit 
rules because explicit rules are simpler than implicit 
ones.  

3. Condition by Rule Type interaction: F(1,124) = 77.3,    
p < 0.001. The model produced the same critical 
interaction that Waldron and Ashby (2001) found. 
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4. Main effect of Session: F(1,124) = 67.4, p < 0.001. 
Training was faster late in session than early, a logical 
consequence of reduction in the Stroop effect due to 
learning. This trend was present in Waldron and 
Ashby’s work, although it was not significant. 

5. Session by Condition interaction: F(1,124) = 47.0,        
p < 0.001. Again, as a result of the reduction of the 
Stroop effect, the concurrent group improved more than 
the control group during the late session.  

6. Three-way interaction – Condition by Rule Type by 
Session: F(1,124) = 10.8, p < 0.001. The group that 
improved the most was the concurrent explicit 
condition, consistent with Ashby and Waldron (2001). 

In the simulation, the only effect that was not significant 
was session by rule type interaction F(1,124) = 2.9,              
p > 0.09.  Thus all significant effects in Waldron and 
Ashby’s data were captured in the model, and it also 
produces two additional effects: a main effect of Session, 
and a Session by Condition interaction. 

In short, when we compare Figures 1 and 3, we see that 
the pattern of simulation results is very similar to the one in 
Waldron and Ashby (2001) except that the F values were 
generally larger. This is a typical difference between human 
experiments and simulations because simulations have less 
error variance.  

Discussion 
The model was designed so that the categorization and 
concurrent tasks were learned in parallel. As a result, the 
number of epochs to criterion (success) was determined by 
the more complex task of the two.  

Early in the session, the implicit and the Stroop task have 
about the same complexity. This explains why three of the 
four groups cluster around 15 to 17 epochs, while the 
system learns the easier explicit control task in about 7 
epochs. 

When the networks were retrained to simulate the late-in-
session situation, categorization tasks remained as difficult 
as before because the content of the categories kept 
changing. However, the Stroop task was easier to learn 
because the weight initialization included a portion of the 
weights previously trained. Actually, by varying the 
proportion of trained vs. numerical-bias weights, the 
difficulty of the task can be varied from about zero (by 
taking 100% of trained weights, and 0% of numerical-bias 
weights) to as hard as at the beginning (by taking 0% of 
trained weights, and 100% of numerical-bias weights). 
Empirically, a 50% weighing resulted in a suitable level of 
difficulty. 

In the simulation, changes in the difficulty of the Stroop 
task only affected the explicit concurrent condition. In fact, 
learning in the implicit concurrent condition was unchanged 
because the implicit task remained at the same difficulty 
level. This generally explains how the model captured 
differential performance impairment in rule learning in 
presence of the concurrent Stroop task, and the various 
statistical interactions observed. 

Note that, from a computational modeling perspective, all 
these tasks are easy to learn using the Cascade Correlation 
learning algorithm. A single output phase was sufficient to 
learn the tasks, and thus no hidden units were recruited, 
indicating that these tasks are linearly separable. Because 
learning is so fast, differences of a few epochs can be 
relatively important. Consequently, results are sensitive to 
changes in parameter values such as inputs values, learning 
rates, and score thresholds. 

In Cascade-Correlation networks, interference naturally 
occurs in recruited hidden units because all network inputs 
and previously installed units contribute to the weighted 
sum of input used to determine the level of activation of a 
given unit. As discussed above, although Cascade-
Correlation can build complex network structures as it 
learns, no hidden units were necessary in this simulation to 
succeed at the tasks presented. As a result, the topology for 
this task is identical to a fully-connected backpropagation 
network with 4 inputs and 1 output. 

I am currently working on a new model that captures 
interference effects using hidden unit recruitment. However, 
the current model does capture the limited capacity aspect of 
task concurrence by virtue of being built out of only 9 input 
and 2 output units. 

In short, this single learning system accounts for the 
pattern of results in Waldron and Ashby (2001) because the 
harder task determines learning time. Combined task 
complexity (categorization + concurrency) explains why the 
Stroop task impairs the explicit task more than the implicit, 
and why the explicit concurrent group improves the most 
with training. 

 
Concerns about Waldron and Ashby’s study (2001) 
Waldron and Ashby (2001) chose the numerical Stroop task 
because “Recent neuroimaging studies have shown that the 
anterior cingulate and dorsolateral prefrontal cortex are 
strongly activated in the Stroop (1935) task (Bench et al., 
1993)” (p. 170). The same brain regions are active when an 
explicit rule is learned, but not when an implicit rule is 
learned. 

Although this is a compelling reason for this choice, 
Waldron and Ashby (2001) did not control for task 
concurrence. Their hypothesis was that the Stroop task 
would interfere with the explicit, verbally-driven learning 
system causing more performance impairment to the 
explicit rule learning. However, perhaps concurrence by 
itself is sufficient to account for the pattern of data. Perhaps 
similar experiments should be performed involving other 
concurrent tasks varying in complexity and difficulty 
including some known not to activate the anterior cingulate 
and the dorsolateral prefrontal cortex.  

Furthermore, Waldron and Ashby (2001) did not test the 
verbalizability of their rules. More specifically, after 
participants reached success criterion they should be asked 
what rule they are using to classify elements to verify the 
explicit/implicit nature of the rules. 
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Under a multiple learning system model, learning using 
the explicit learning system would be impaired with the 
concurrent task. Because learning of one-dimensional rules 
still occurs under Stroop task concurrence, perhaps the 
implicit learning system is responsible for such learning. 
Actually, the fact that performance level is very similar 
under impaired (concurrent) one-dimensional learning and 
three-dimensional rule learning is compatible with this 
claim. Under the multiple learning system model, 
participants should not be able to verbalize one-dimensional 
rules learned using the implicit system because the implicit 
system is not connected to language processing modules of 
the brain. 

By contrast, an alternative explanation supporting a single 
category learning system is that differences in ability to 
verbalize rules are due to limitations in the system which is 
interpreting, extracting, or decoding what the single learning 
system has learned. It might be that, while an interpretive 
system is capable of extracting verbally-encoded rules for 
simple tasks such as one-dimensional rules, it can not do so 
for more complex tasks like the three-dimensional rule. This 
model therefore predicts that participants would be able to 
verbalize one-dimensional rules learned in a concurrent 
condition. 

Other models of these data have been proposed, including 
COVIS (Waldron & Ashby, 2001) and Alcove (Nosofsky & 
Kruschke, 2002, see also Ashby & Ell, 2002 for a reply). 
COVIS posits different learning systems for explicit and 
implicit rules. ALCOVE requires setting four free 
parameters.  

In short, the current model suggests that Waldron and 
Ashby’s multiple learning systems are not necessary to 
cover the critical Rule Type by Condition interaction, that 
is, the fact that the concurrent Stroop task interferes more 
with the learning of explicit rules than implicit rules. A 
Cascade-Correlation model provides a simple and 
parsimonious account in a single learning system. This and 
other simulations (e.g., Kello et al., 2005; Nosofsky & 
Kruschke, 2002) suggest that we need to be careful about 
using interaction evidence to draw conclusions about 
complex cognitive systems. 
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