
UC San Diego
UC San Diego Previously Published Works

Title
Black Block Recorder: Immutable Black Box Logging for Robots via Blockchain

Permalink
https://escholarship.org/uc/item/6tr0v003

Journal
IEEE Robotics and Automation Letters, 4(4)

ISSN
2377-3766

Authors
White, Ruffin
Caiazza, Gianluca
Cortesi, Agostino
et al.

Publication Date
2019

DOI
10.1109/lra.2019.2928780

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6tr0v003
https://escholarship.org/uc/item/6tr0v003#author
https://escholarship.org
http://www.cdlib.org/

Black Block Recorder: Immutable Black Box
Logging for Robots via Blockchain

Ruffin White1, Gianluca Caiazza2, Agostino Cortesi2, Young Im Cho3, and Henrik I. Christensen1

Abstract—Event data recording is crucial in robotics research,
providing prolonged insights into a robot’s situational under-
standing, progression of behavioral state, and resulting outcomes.
Such recordings are invaluable when debugging complex robotic
applications or profiling experiments ex post facto. As robotic
developments mature into production, both the roles and require-
ments of event logging will broaden, to include serving as evidence
for auditors and regulators investigating accidents or fraud. Given
the growing number of high profile public incidents involving self-
driving automotives resulting in fatality and regulatory policy
making, it is paramount that the integrity, authenticity and non-
repudiation of such event logs are maintained to ensure account-
ability. Being mobile cyber-physical systems, robots present new
threats and vulnerabilities beyond traditional IT: unsupervised
physical system access or postmortem collusion between robot and
OEM could result in the truncation or alteration of prior records.
In this work, we address immutablization of log records via
integrity proofs and distributed ledgers with special considerations
for mobile and public service robot deployments.

Index Terms—Robot Safety, Networked Robots, Software Mid-
dleware, Cryptobotics, Distributed Ledgers

I. INTRODUCTION

ROBOTS, being cyber-physical systems (CPS), are increas-
ingly deployed as part of a cyber-infrastructure, becoming

ever more interconnected with the Internet of Things (IoT).
The use of robots in a connected eco-system is far from trivial.
How do we make these robots safe? How can we verify correct
operation? How can we document operations for the purpose of
traceability or document operations in the presence of failures?
An essential part of the design, deployment and verification of
distributed robot systems is the ability to monitor and record
runtime event data.

The possibility of deploying real-world ’honeypots’ is a
serious concern given the widespread interest in exploiting self-
driving cars and autonomous drones [1]. Considering the recent
history in automotive exploitation [2] , there can be no doubt
that lack of security represents a real threat [3]–[6].

Documenting the operation of an integrated robotic sys-
tem composed of multiple components while generating a
comprehensive trace of the operation is essential to quality
control, debugging, systems verification, etc. For debugging
information flow or in cases of unexpected robot behaviour,
event logging is fundamentally integral. However, when the

Manuscript received: February, 24, 2019; Revised May, 24, 2019; Accepted
July, 8, 2019. This paper was recommended for publication by Editor Paolo
Rocco upon evaluation of the Associate Editor and Reviewers’ comments.

1Ruffin and Henrik are with UC San Diego, USA rwhitema@ucsd.edu
2Gianluca and Agostino are with Ca’ Foscari University of Venice, Italy
3Young is with Gachon University Seoul, South Korea

RobotEnclave

Planner
(Node)

LIDAR
(Node)

Log
Storage

Recorder
(Node)

Topic Data

Checkpoint
 Stamp: 1
 Proof: ...

Checkpoint
 Stamp: 1
 Proof: ...

Checkpoint
 Stamp: t
 Proof: ☑

Checkpoint
 Stamp: 1
 Proof: ...

Checkpoint
 Stamp: 1
 Proof: ...

Checkpoint
 Stamp: 2
 Proof: ☑

Checkpoint
 Stamp: 1
 Proof: ...

Checkpoint
 Stamp: 1
 Proof: ...

Checkpoint
 Stamp: 1
 Proof: ☑

✉ Msg t

✉ Msg 2

✉ Msg 1

HMAC

HMAC

HMAC

Nonce

Fig. 1: High level overview of immutable logging. Left, depicts
an example deployment where an enclaved process generates
the logs by capturing message traffic directly from each source.
While streaming the log data out to arbitrary storage, the data
is made immutable by submitting striding checkpoints to the
external blockchain, comprised of linked integrity proofs that
are indexed as checkpoint transactions, shown right.

absolute security of a robotic CPS can not be guaranteed, the
correctness of such event logs is subsequently tenuous.

Digital forensic investigations (DFIs) [7] use digital logs as
evidence in post-event analysis or in intrusion detection sys-
tems (IDS) in electronic devices. By continuously broadcasting
abridged cryptographic commitments of system state, devices
are constantly under the sword of Damocles which incentivizes
honesty via enforced accountability without relying on specific
hardware. Considering the mass-manufacturing restrictions for
mobile robots including build-of-materials, serviceability, im-
mense data rates, and the utilization of low-volume high-cost
tamper-proof storage devices such as Write Once Read Many
(WORM) memory would be financially unprofitable.

Additionally, considering the limitations for mobile robotic
platforms such as: restricted computational power, networking
bandwidth, on-board energy capacity, extensive transmission of
encrypted logs would be not only technologically impractical,
but also in violation of international data retention policies.
As detailed by Veitas et al. [8], though shared server-centric
data retention is favored by OEMs for its straightforward
architecture, it is also in direct contention with governmental
regulatory agencies and privacy advocacy groups.

Thus, our goal is in verifying the integrity, authenticity,
and completeness of robotic event data while under the threat
of malicious/erroneous insertion, omission, or replacement.
To this end, we explore the application of a Event Data
Recorder (EDR) based upon cryptographic linked integrity
proofs, disseminated via distributed ledgers, shown in Fig 1.

In this work, we present Black Block Recorder (BBR), an
approach combining the use of Digital Signature Algorithms
(DSA), keyed-hash Message Authentication Codes (HMAC),
and Smart Contract (SC) via Distributed Ledger Technology
(DLT) to enable tamper-evident logging, while considering the
limited resources available for mobile robotic deployments.

This is the structure of the paper: Section II (Related Work)
discusses the literature on immutable and tamper-evident logs,
distributed ledger technologies, and the limits of using existing
approaches with robots. Section III (EDR Roles, Requirements
and Primitives) discusses the details of the properties we want
to enforce and what trust settings are addressed with the
proposed framework. Section IV (Approach) formulates the
integrity proof, smart contract and permissioned blockchain
architecture as implemented in our framework, including design
mechanisms and development choices. Section V (Implemen-
tation) discusses the details of an implementation to evaluate
our proposed framework as capable of integrity verification
and runtime optimizations for mobile robotic scenarios. Finally,
Section VI (Conclusion and Future Work) provides a discussion
of the work and extensions w.r.t. newer available consensus
methods for the practicality and scalability in real world
deployments.

II. RELATED WORK

First, we give a brief introduction to token-based ledgers
and their main properties; then, we discuss in greater detail the
concept of distributed ledgers technology (DLT), immutable
logs, trusted computing, and their relevance to Event Data
Recording for autonomous systems.

A token-based blockchain is a peer-to-peer (p2p) distributed
ledger which derives its security from public-key cryptography.
Each participant in the network has a public address within
the Merkle Tree [9], e.g. derived by the hash of its public
key, which identifies the user uniquely among all the other
participants. Transactions between users are defined by pro-
viding as input the users’ blockchain addresses, the balance
transfer and the hashes of the outputs of the last accepted
block. Candidate transactions are signed and then broadcast
in the p2p network and collected by validators that aggregate
them in blocks. A candidate block is produced when validators
“mine” it - by solving the challenge of the consensus algorithm
- whereupon it will be proposed and added to the chain of
previous transaction blocks. A proposed fork is only adopted by
a validator after it is determined to be the longest chain among
the network where all transactions remain valid. The security
of the approach is assured by the Byzantine Fault Tolerance
(BFT) of the consensus algorithm used, and by relying on the
difficulty or inherent cost in subverting the consensus algorithm
as a deterrent against malicious actors. Readers unfamiliar with
this DLT architecture are referred to the seminal work [10] for
an approachable introduction.

A. Distributed Ledgers Technology

Prior to DLTs, horizontally scalable Distributed Databases
(DDB) were commonly used to replicate record state across
trusted storage devices. However when relying upon CPS

infrastructures for data retention, auditing the integrity of
classical DDB updates in face of transiently available or
compromised devices can deteriorate into an under-constrained
problem. Reconstructing postmortem consensus of chronologi-
cal changes across remaining DDB replications with potentially
revoked credentials are classes of issues that can be avoided
when disseminating data integrity using DLTs instead.

As an example, Bitcoin [10] provides an alternative to the
use of trusted third parties to process and mediate transactions;
i.e. the main focal point being the introduction of distributed
trust even under mutually distrusting validators. The resulting
distributed ledger contains an chronological evidentiary trail of
consensus that every participant can easily audit.

As discussed by BitFury and Garzik white papers [11] [12],
blockchain-based ledgers have gained popularity among banks
and other financial institutions with the ongoing development
of several applications that leverage upon Blockchain’s im-
mutability and consensus to validate transactions. However,
public finance blockchains are constrained due to latent/limited
transaction throughput and scalability due to energy and op-
portunity costs consumed by traditional Proof of Work (PoW)
[13] consensus. To overcome these limitations and enforce
enterprise-level security mechanisms, alternate variants have
emerged by defining public and private distributed ledgers.

In public ledgers there are no restrictions on submitting
transactions. Private ledgers limit those actions to a predefined
list of entities. Ledgers are further classified as permissioned
and permissionless. In permissioned ledgers vs. permission-
less, the identity of peers that act as validators is restricted;
e.g. whitelisted public keys. Public permissionless ledgers are
used for cryptocurrencies like Bitcoin; public permissioned
ledgers are used to keep control on ‘certified’ validators;
private permissioned ledgers work in ways similar to enterprise
distributed databases; private permissionless ledgers are not
possible. Even more novel approaches to ledgers have emerged
in the Hyperledger Project [14] from Linux Foundation, which
seeks to improve the performance of the distributed ledgers by
creating open source enterprise standard libraries.

B. Immutable Logs
Immutable logs require robust tamper-proof logging. Us-

ing cryptographic functions we are able to enforce integrity,
authenticity, and non-repudiation of the logs’ entry. Several
proposals to achieve immutable logs already exist in the liter-
ature; the usual general idea is to use a combination of DSAs
and Message Authentication Code (MAC) to unambiguously
validate log entries. It is possible to enforce accountability
[15] in an heterogeneous distributed environment and reduce
the number of trusted devices. However, the needs of central
authorities to store and verify the logs makes it necessary to
build an additional chain of trust and deploy a distributed
storage system for logs (e.g. distributed databases). The use
of a distributed versioning implementation such as IPFS [16]
can also be a valid option. Still, the use of Merkle DAG does
not incorporate verification mechanisms such as smart contracts
which are vital to apply validation logic to the system.

Following the discussion in II-A, considering the similarity
with Blockchain and its intrinsic security features, leveraging

on Bitcoin presents an appealing solution [17]. Snow et al. [18]
present how Factom 1 distributes immutable logs on Bitcoin
chain using an OP RETURN transaction to store the entry
of their client logs. Similarly, Cucurull et al. [19] discuss
how at Scytl 2 it was possible to incrementally secure elec-
tronic voting machine results on Bitcoin blockchain. However,
cryptocurrencies developers regard this as among the more
dubious emerging trends in the wild and an abuse of the
OP RETURN to piggy-back arbitrary data for storage on the
Bitcoin Blockchain [20]. As discussed by Matzutt et al. [21] the
impact of this abuse to store non-financial content on original
cryptocurrency blockchains is unsustainable.

On the other hand, Sutton et al. [22] follow the concept
of checkpoints presented by Cucurull et al., to propose a
model using Linked Data to optimize the use of Blockchain by
constructing a hashing tree rather than continuously dumping
logging hashes into the chain. This becomes necessary since
the misuse of OP RETURN has several disadvantages either
from the protocol point of view discussed above or because
of the transaction fees incurred. All the transactions that need
to be published in cryptocurrency blockchains need to pay
a fee that will be ‘burned’, deducting the limited balance
from the account. Considering the volatile increase of Bitcoin’s
exchange rate over the years, it’s clear that this costly operation
is not viable for large scale deployments.

Another barrier to the use of blockchains for storing im-
mutable logs is presented by the freshness property of the
Blockchain [23]. By design, Blockchain preserves the order
of events (i.e. weak freshness), however the accurate time of
events (i.e. strong freshness) is not guaranteed. The work of
Szalachowski [24] offers a workaround using a centralized third
party, however this plays somewhat against our own objectives
of distributed trust and scalability. Mobile robots may roam
autonomously beyond the network range of centralized base
stations or any one particular neighbor, so any agreed reference
to time must arise from a distributed consensus.

One notable work preceding much of the others thus far
using DLT is that of Crosby et al. [25] and presents effi-
cient data structures for tamper-evident logging using history-
trees. Although the validation using history-trees is efficient,
O(log2n), the runtime time for adding checkpoints is no longer
constant, O(log2n) rather than O(1) for hash-lists. Thus given
the lopsided computing resources between robots and off-line
auditing infrastructure, our approach opts for hash-lists given
the constant overhead in terms of log length, while introducing
indexing to enable the parallelizion of auditing.

C. Event Data Recorders

Event Data Recorders (EDR) have become prevalent within
the automotive industry, due in part to regulatory compliance
from governmental safety legislation, as well as OEM incen-
tives w.r.t. insurable liability and risk management. Reminis-
cent of Black Box Recorders in aviation, EDRs are used to log
internal and external vehicular data during deployment, such
as engine health and status, steering and brake operation, and

1https://www.factom.com
2https://www.scytl.com/en

accident reporting such as obstacle distances or inertial forces
from impact. Among the list of transportation infrastructure
primed to fully incorporate EDR deployments, autonomous
driving vehicles are perhaps first among them. Questions now
from both industry and regulatory agencies are being brought
forth as per the privacy and security of such EDRs given the
pervasive yet critical nature of the data they retain.

The work by Veitas et al. includes a two part series pertaining
to these particular issues; the first presents Policy Scan [26],
a methodology for technology strategy design; i.e. developing
concrete actions and products for guiding technology adoption.
Policy Scan was developed for the purpose of addressing
specific types of ill-defined problems in terms of observing,
analyzing and integrating technology developments with pol-
icy requirements, social governance and societal expectations.
The second paper [8] applies Policy Scan to the domain of
autonomous driving and smart mobility, presenting a proposal
for making future autonomous vehicles within collaborative
intelligent transportation systems (C-ITS) using EDR as more
socially acceptable and legally compliant.

Building upon the above groundwork and also that from Tau-
rer et al. [27], a bio-inspired approach to secure data recording
for robots, we have designed BBR as an EDR implementa-
tion that conforms to the in-vehicle data recording, storage
and access management requirements as specified, while also
remaining extendable to general autonomous AI applications
using open source robotic middleware and distributed ledger
software.

III. EDR ROLES, REQUIREMENTS AND PRIMITIVES

Here we formally define EDR systems in terms of the roles,
requirements and primitives adapted from prior work [8], [27]
to enumerate our design/implementation conformity. Boldface
terms are later referenced when demonstrating compliance.

A. Obligated Roles and Observing Parties

Auditors: observing parties called upon to investigate and
validate record archives. e.g. Regulatory Agencies or Gov.

Custodian: obligated subject of log content and tasked with
log preservation. e.g. Robot or autonomous vehicle OEM.

Owner: mediating party that has a stake in ensuring log
integrity/authenticity/confidentiality. e.g. End-User or Operator.

Reporter: an independent party responsible for faithfully
recording events. e.g. Trusted Logger or Recorder Enclave.

B. Recording, Storage and Access Requirements

R1 Data provision conditions: requires consent on behalf of
the Owner who transitively controls the log assets tracked.

R2 Fair and undistorted competition: trust should be dis-
tributed and shared across all validators (a.k.a Custodians).

R3 Data privacy and data protection: the co-location of logs
external to that of the Custodian must be prevented.

R4 Tamper-proof access and liability: integrity and authen-
ticity of logs must derive from an independent Reporter.

R5 Data availability economy: health and transparency of
logs are contingent upon giving Auditors appropriate access.

C. Defined Primitives and System Properties

P1 Secure identification of physical data sources: attestation
between devices trusted by the Custodian and Reporter.

P2 Metadata enrichment: log event context may be associ-
ated to respective Owner, Custodian and Reporter parties.

P3 Data exchange and messaging: authenticated encryption
is used in establishing secure connectivity between parties.

P4 Data recording & storage: reporting remains flexible in
terms of QoS as well as reasonable in resource consumption.

P5 Access management: rights, obligations, and authoriza-
tion of parties must be explicitly defined and enforceable.

IV. APPROACH

In our approach, using DLT in EDR requires the develop-
ment of two principal components: the integrity proof coupled
with the smart contract specification. This section details the
design of and the justification for both to accommodate the
constraints of mobile robots and open source frameworks.

A. Incremental Integrity Proof

To preserve the integrity of the logs without compromising
system performance or publicly disclosing private log content,
as in [19] we leverage the collision and pre-image resistance
of HMAC [28] by chaining the log checkpoints together
with key rotations, accommodating R3. Borrowing terminology
established in [19] we define a log checkpoint (Chki) to be
linked with the previous one by using the prior digest (hi−1)
as the key bytes when computing the current HMAC digest
(hi) from the log message (LogMsgi):

Chki = (i, hi) hi = HMAC(hi−1, LogMsgi)

where h0←${0, 1}m
(1)

For privacy, a random nonce is included as the genesis digest
(h0) to inject initial entropy into the linked integrity proofs,
ensuring that separate records with similar beginning contents
do not repeat the same telltale signature of consecutive proofs.

This deviates from previous work that convolutes the log
integrity proof with token based blockchains and previous
financial transaction outputs to achieve immutability. By keying
the HMAC with the previous checkpoint digest instead, we
reduce the validation of logs to the trivial task of checking a
simple hash-chain: i.e. sequentially iterating through LogMsgi
in the log file, ensuring the last linked digest corresponds to
the final proof published into the ledger, satisfying R4.

By including the index (i) into checkpoints, partial validation
or triage discrepancies in the face of missing or corrupted
log events can be fine-grained. Provided indices are similarly
embedded in log content, validation over large log files is easily
parallelizable, accelerating the total verification process.

Previous works such as [19], [22] make the distinction
between two different types of checkpoint entries; the first
being an incremental link in a chained proof, with the second
being an anchor point that must always be published to
commit to new secret keys while unveiling expired ones for
later verification of integrity and authenticity. Our approach to
checkpoints makes no such distinction, thus any checkpoint or

sequence of checkpoints may be immediately published. This
ensures that the latest checkpoints can always be submitted
on short notice or without necessarily waiting for previous
transactions to be finalized in the global blockchain.

For robotic applications in particular, where mobile com-
puting may be subject to instantaneous brownouts due to self
reliant energy supplies, integrity proofs that require stateful
cryptography [19] could leave a recorder without recourse for
resumption, as the previously finalized transactions would have
included a commitment to a future temporary key that must be
revealed upon the next checkpoint. Our approach permits the
recorder to quickly recover from last known integrity proof and
resume checkpointing the log wherever it left off (P4).

B. Smart Contract

Section IV-A formalized the incremental integrity proof to
ensure log file immutability; however, this efficient method
of verification does not in and of itself offer the authenticity
and non-repudiation properties still required. Smart Contracts
(SC) encapsulate the access control logic for DLT validators to
abide by when determining the validity of proposed checkpoint
transactions, addressing R1 and facilitating R4.

Instead of relying on colored coins or token metadata in
financial blockchains to encode ownership, a dedicated trans-
action family is defined to regulate write access to ledger
state. A common criteria however is that the validity of
candidate transactions must be deterministically computable;
i.e. no context external to the current state of the ledger and
transaction payload in question should be used in deliberation.
This ensures that the validity of any block in the chain can be
independently verified in the future.

To ensure authenticity of a checkpoint committed into the
blockchain, transactions are signed via an Elliptic Curve Dig-
ital Signature Algorithm (ECDSA), effectively notarizing the
identity of the signer. For our purposes, we also register the
identity into the blockchain by enrolling its public key into
an access control policy stored in the distributed ledger to be
used by SCs when verifying candidate checkpoint transactions.
Thus, we limit recorders’ permissions to append checkpoints
only for log files priorly-authorized (P2).

To ensure non-repudiation of transactions, our SC mandates
that checkpoint indices remain monotonically increasing. The
striding of published checkpoint indexes is permitted to enable
recorders to down-sample the rate at which integrity proofs are
transmitted, versus rate locally generated, as a Quality of Ser-
vice (QoS) to conserve energy or wireless network bandwidth
and ensure sustainable size of the distributed ledger’s state. To
curtail the memory growth of the ledger, effectively a database
each validator must maintain locally to participate, a paging
ring buffer is adopted to keep rotating the n latest checkpoints
for a given log file. The ring buffer size may also be allocated
to comply with data retention window requirements per R3.
However, the genesis digest is always preserved to ensure
indefinite immutability of the entire log unto its first record.

A particular problem presented in previous work includes
the open ended issue of finality of checkpoint termination, i.e.
preventing further checkpoints for a given log from appending

Msg: /foo
 Stamp: 1
 Data: ✉

HMAC
Topic 1
IDL Info

Checkpnt
 Stamp: 0
 Proof: ☑

HMAC
Checkpnt
 Stamp: 1
 Proof: ☑

Msg: /foo
 Stamp: 2
 Data: ✉

Checkpnt
 Stamp: 2
 Proof: ☑

HMAC

Msg: /bar
 Stamp: 1
 Data: ✉

HMAC
Topic 2
IDL Info

Checkpnt
 Stamp: 0
 Proof: ☑

HMAC
Checkpnt
 Stamp: 1
 Proof: ☑

Msg: /bar
 Stamp: 2
 Data: ✉

Checkpnt
 Stamp: 2
 Proof: ☑

HMAC

Bagfile
Nonce

Topic 1
Nonce HMAC

Checkpnt
 Stamp: 0
 Proof: ☑

Topic 2
Nonce

Topic 1
MetaInfo

HMAC

Bagfile💾
MetaInfo

HMAC

Topic 2
MetaInfo

M
es

sa
ge

 D
at

a
Se

ria
liz

at
io

n
✉ M

essage D
ata

C
heckpoints ☑

Checkpnt
 Stamp: 1
 Proof: ☑

Namespace,
Publisher,
Discovery...

Topic Bagfile
Checkpoints ☑

Name,
Date,
Device...

(a) Dependency diagram of linked integrity proof for single bag file database.

Topics BBR
id name type format nonce digest
1 /foo gps rtps bitsA bitsA0

2 /bar imu rtps bitsB bitsB0

3 /baz lidar rtps bitsC bitsC0

Messages BBR
id topic time data digest
1 id 1 1.0s bits bitsA1

2 id 2 3.1s bits bitsB1

3 id 1 4.5s bits bitsA2

(b) Database tables for topics and messages.

Fig. 2: Commitments to data and its insertion into the database is achieved via 2D-array hash-chains, where the primary axis
checkpoints each topic’s genesis-block and meta-info, while the secondary axis checkpoints the insertion of respective message
data. This coupling affords a holistic integrity proof of the entire database, while preserving topics as a time series atomic.

to the ledger after the log file is intentionally concluded. Such
actions could be taken by recorders that are threatened or
suspect intrusion, providing a self destructive deterrent and
reducing utility of private keys recovered by an adversary.

Previous works using token based blockchains could con-
clude a checkpoint record via output transactions that are
addressed to random public identities, for which no private
key is known. This extreme all-or-nothing ownership forfeit
is probabilistically final, but doesn’t afford any other status for
provenance, such as ‘stalled’, ‘critical’, or methods for reversal,
useful for conditional resumption of logs after a situation is
resolved. SCs instead provide greater granularity in this regard
for regulating the life cycle of checkpoint records.

V. IMPLEMENTATION

As a proof of concept, we implement Black Block Recorder
using existing open source robotic middleware and distributed
ledger software. ROS2 was chosen, given its support for secure
multicast networking (P1) and modular ROSBag2 plugin de-
sign, enabling secure and efficient tapping of internal/external
robotic networks (P3). Hyperledger Sawtooth3 was chosen
as the ledger framework for its energy efficient yet BFT
consensus algorithm, multilingual SC processors, permissioned
DLT support, and parallelizable transaction architecture.

As both custodian and reporter parties manifest as physical
CPS devices, their identities are particularly susceptible to
attack. Here, both are used to co-sign batched transactions
for validator submission; thus appended forgery checkpoints
necessitates the corruption of both the custodian and reporter.

A. Checkpoint Integration

To integrate our linked checkpoint approach into ROSBag2,
we extend the existing SQLite default storage plugin to addi-
tionally compute and broadcast the checkpoints. A 2D-array
hash-chain is created to render bagfile databases into append
only data structures. The following equations in conjunction
with the table and color coded flow diagram in Fig 2 depict
the process for checkpointing topic insertions:

3Hyperledger Sawtooth: hyperledger.org/projects/sawtooth

bitsbag←${0, 1}m (2)
bitsA ←HMAC(bitsbag, P roto(namebag)) (3)
bitsA0

←HMAC(bitsA , P roto(typeA, formatA)) (4)
bitsB ←HMAC(bitsA0

, P roto(nameA)) (5)
bitsB0←HMAC(bitsB , P roto(typeB , formatB)) (6)
bitsC ←HMAC(bitsB0 , P roto(nameB)) (7)
bitsC0←HMAC(bitsC , P roto(typeC , formatC)) (8)

The nonce (in blue) for bagfile is combined with bagfile
metadata (in purple), deterministically serialized via protobuf
to avoid the ambiguity in hashing a list of items, to generate the
nonce for the first inserted topic. This is then combined with
IDL information of the topic to generate the genesis digest. The
previous topic’s genesis digest and meta data is then combined
to seed the nonce for the next topic, which is also reported as
the checkpoint (in orange) for the bagfile itself (P2). Thereafter,
the cycle repeats for each additional topic.

For messages (in green), the previous digest for the respec-
tive topic is combined with the message and its time of arrival
to compute the current digest, shown below and in Fig 2:

bitsA1
←HMAC(bitsA0

, P roto(timeA1
, dataA1

)) (9)
bitsB1

←HMAC(bitsB0
, P roto(timeB1

, dataB1
)) (10)

bitsA2
←HMAC(bitsA1

, P roto(timeA2
, dataA2

)) (11)

In this way, bagfile and message checkpoints are loosely
coupled enough for auditing data provenance while remaining
independent for concurrent computation and atomic record
keeping, even across separate topic streams. An architecture
diagram of a robot deployment using the BBR storage and
bridging plugin can be viewed in Figure 3. Note the separable
stages for recording vs signing checkpoints within an enclave in
blue. This allows for modular integration for swapping database
storage drivers or alternate ledger infrastructures.

B. Transaction Family for EDR Smart Contracts
To develop BBR’s SCs, we extend from Sawtooth’s reference

supply chain Transaction Family (TF), used for tracing the

https://www.hyperledger.org/projects/sawtooth

Onboard
ECU

Robotic Sensor Network Automotive System

Multicast
Subs

S
w

ar
m

 📡
N

et
w

or
k

R
ob

ot

📶
 #

n

Message: ✉
 Topic: /foo
 Stamp: t +1

ROS2 Bag
DB 💾

ROS2 Bag BBR Sawtooth Bridge

Topics: 📄
Name, Type

Messages:
Time, Data

Checkpoint:
 Stamp: t +1
 Proof: ...

Subject name:
 Recorder
🔑 …

X.509
CA

Subject name:
 Robot
🔑 …

X.509
CA

Batch:
URI: [/foo,/bar]
 Payload: ...

SǠǗǾƝȶȻȨǃ

Message: ✉
 Topic: /foo
 Stamp: n +1

Checkpoint:
 Stamp: n +1
 Proof: ☑

Transaction:
 URI: /foo
 Payload: ...
SǠǗǾƝȶȻȨǃTransaction:

 URI: /foo
 Payload: ...

SǠǗǾƝȶȻȨǃ

Custodian
Robot 🔓

Recorder
Enclave 🔒

R
ob

ot

📶
 #

2

Validator
Sawtooth 🔒

State 💾

BBR Plugin

SQLite
Plugin

SROS2 via
Secure DDS

Multicast
Subs

SROS2 via
Secure DDS

SROS2 Transport

ECDSA
 Digest
 Engine

Ledger

Fig. 3: Flow chart visualization of the immutable logging pipeline. While every robot platform is held suspect, a secure
enclave (e.g. TTE) is reserved for the recorder process. Logged input is securely received within the enclave and used to
cryptographically derive a linked integrity proof specific for each input asset being tracked. As the log data may be streamed
to external storage, respective checkpoint transactions are bound to the robot’s public identity for batching and then signed by
the recorder’s private key sealed within the enclave. Thus only the robot’s private key may be used to sign and relay batched
transactions for validation; to append a forgery would necessitate the collusion of both the custodian and its assigned recorder.

provenance and other contextual time series information of
assets. This is formalized in Figure 4 by specifying our SC
using the Digital Asset Modelling Language (DAML)4, a
open source domain specific language for expressing contracts,
parties, rights, obligations, and authorization directly (P5).

The main SC for an EDR agreement is captured in lines
1-14 in Figure 4a, where the primary parties involved enter
as signatories, while a set of external parties are provisioned
observational access to the SC’s state. Control for creating
associative records is solely delegated to the recorder. Lines
23-40 capture the secondary SC specific to a particular record;
i.e. log checkpoints for a single topic. Again the recorder is
given the choice to append or finalize the record, while under
the assertion that submitted checkpoints remain monotonic. The
owner may also choose to finalize the record, whereupon the
SC is archived and left entirely immutable in the DLT.

Lastly, lines 16-22 and 42-44 specify the structural data
a recorder must submit upon choosing actions for aforemen-
tioned SCs. The complete DAML model, including the pending
SC for establishing the multiple party agreement, as well as the
test scenario depicted in Figure 4b has been open sourced and
made publicly available5. As integration between DAML and
Sawtooth is still in early development, the TF for BBR remains
implemented in the Rust programming language. The DAML
model is a faithful representation of the SC logic.

4DAML Specification: daml.com
5EDR DAML Model: github.com/dledr/edr daml

C. Performance Profiling and QoS Tuning

As a preliminary validation for the tractability of using
BBR in robotic systems, we provide a quantitative benchmark
comparison in the overhead introduced by utilizing the BBR
storage plugin and bridging interface by evaluating drop rate
performance and CPU load over a range of common sensor
message sizes and frequencies. Test results show BBR’s current
performance falls closely in line with the default driver plugin
whilst single thread workload remains unsaturated. See Fig 5.
Marginal performance gains during midrange workloads are
likely artifacts attributed to fewer CPU cache misses, due to
reduced process idle time given continuous overhead.

In regards to the depicted drop-off in throughput, though
BBR seeks to checkpoint events at the write-rate to database,
in practice the signing and transmission of those checkpoints
over the bridge interface should be rate limited for purposes
stated before, such as local QoS restrictions or moderating
workloads for external validators (R2); given that ECDSA
transaction signatures remain the predominate cryptographic
bottleneck in the pipeline. Recall that as long as each event is
incorporated into the hash-chain, down-sampling checkpoint
publication would not inhibit the tamper-evident properties
of the log segment with unpublished checkpoints, merely the
resolution at which alterations may be pinpointed in the log.

In regards to uplink network usage, validator traffic is
conditional upon consensus algorithm, gossip protocol, number
of participants, and frequency/size of submitted transactions

https://daml.com/
https://github.com/dledr

23 template EdrRecord -- Smart Contract for Records in EDR
24 with
25 edr: Edr -- Reference EDR of origin
26 record: Record -- Initial Record state
27 where
28 signatory edr.owner, edr.reporter
29 observer edr.auditors -- custodian can be excluded
30 choice EdrRecord_Append : ContractId EdrRecord
31 with checkpoints: [Checkpoint] -- [] for batching
32 controller edr.reporter -- Only Reporter appends
33 do let -- Update Record with added checkpoints
34 is_valid = checkMonotonic record checkpoints
35 _record = appendCheckpoints record checkpoints
36 assert (is_valid == True) -- Error on invalid
37 create EdrRecord with edr; record = _record
38 choice EdrRecord_Finalize : () -- Archives Contract
39 controller edr.owner, edr.reporter
40 do return () -- Finalized Record is un-appendable
41
42 data Checkpoint = Checkpoint with -- data type struct
43 c_proof: Text -- "<bits_A_1>"
44 c_stamp: Int -- 1

1 template Edr -- Smart Contract for EDRs
2 with
3 auditors: [Party] -- Regulatory Agencies
4 custodian: Party -- Robot/Vendor Identity
5 owner: Party -- User/Operator Identity
6 reporter: Party -- Logger/TEE Identity
7 where
8 signatory custodian, owner, reporter -- obligated
9 observer auditors -- non-obligated parties
10 ensure unique (custodian :: owner :: reporter)
11 controller reporter can -- create many Records
12 nonconsuming Edr_Record : ContractId EdrRecord
13 with record: Record
14 do create EdrRecord with edr = this; record
15
16 data Record = Record with -- data type struct
17 r_name: Text -- "/sensors/exteroceptive/gps"
18 r_type: Text -- "gps"
19 r_format: Text -- "rtps"
20 r_nonce: Text -- "<bits_A>"
21 r_digest: Text -- "<bits_A_0>"
22 r_checkpoints: [Checkpoint] -- monotonic list

(a) Formal specification of Smart Contract model for Event Data Recording captured in DAML

Pending
Custodian,
Owner, Reporter

EDR
Auditors,
Custodian,
Owner, Reporter

Record
Auditors,
Owner, Reporter

Record
Auditors,
Owner, Reporter

Active

Archived

Legend:
 Update

 Consuming

 Non-consuming

Create Contract

Reference

Observers,
Signatories

(b) Smart Contract Diagram

Fig. 4: Shown is a simplistic contract model for EDRs using DLT specified via a domain specific modeling language for SCs.
An EDR SC is first preliminarily proposed via a pending contract used to collect the necessary multi-party signatories. Once
finalized the pending contract is consumed to create the agreed EDR SC, allowing the recorder to create multiple referencing
records and append checkpoints, that itself or the owner may finalize. Respective SC diagram depicts a basic example scenario.

Tested Target Message Size (kB)

Av
er

ag
e

Dr
op

 R
at

e
(%

)

0%

25%

50%

75%

100%

1kB 10kB 100kB

Default Plugin BBR Plugin

Msg. Size vs Drop Rate @ fixed 1kHz Msg. Freq.

Tested Target Frequency (kHz)

Av
er

ag
e

Dr
op

 R
at

e
(%

)

0

25

50

75

100

0.1kHz 0.5kHz 1kHz 5kHz 10kHz

Default Plugin BBR Plugin

Msg. Freq. vs Drop Rate @ fixed 1kB Msg. Size

Tested Target Rate (Hz)

CP
U

Si
ng

le
 C

or
e

Lo
ad

 (%
)

0.01

0.1

1

10

100

1Hz 10Hz 100Hz 1000Hz

Default Plugin BBR Plugin

Msg. Freq. vs CPU Load @ fixed 1kB Msg. Size

Fig. 5: Droprate/Load performance comparison of our BBR
storage/bridge plugins with regard to ROSBag2’s default
SQLite plugin. Benchmarked via ROS2 Crystal, 2.6GHz Intel
i7-6700HQ, with RTI Connext RMW on loopback interface.

specific to DLT implementation/framework used. However, to
profile the network bandwidth usage specific to our BBR
bridge, Table I includes the minimal payload requirements as
calculated using the current serialization schema implemented.

This depicts the lower bounds given a signed batch transmis-
sion with a list of one signed transaction containing an array

Payload Size (bytes) Requirements

Chki 36 Ledger Disk Storage
Signed Transaction ≥629 Network Bandwidth

Signed Batch ≥965 Network Bandwidth

TABLE I: BBR Payload Allocations

of one checkpoint. While transactions in general may contain
arbitrary topic metadata, a checkpoint is simply a tuple of a
256bit hash and 32bit unsigned integer. As a reference, rosbag
recording all 20 unique topics on a typical TurtleBot3 running
ROS1 navigation stack writes to disk at about 1.4MB/s at
1k messages/sec., publishing every checkpoint batched at 1Hz
results in approximately 400Kbps in BBR uplink overhead.
In practice, a more sensible striding of one checkpoint per
topic per sec reduces this to around 110Kbps instead, with
a sustainable <1KB/s of ledger state growth (P4).

VI. CONCLUSION

In this work, we established a secure logging framework
for robots using distributed ledgers and linked integrity proofs
to insure the immutability of continuous event data records.
Authenticity and non-repudiation are achieved via dissemina-
tion of checkpoint proofs and smart contracts that respect the
nature of mutually distrusting parties involved while enforcing
a contractual symbiosis between regulators, robots, and users.

If fact, while the BTF holds for the DLT network, compro-
mising any single party involved in the EDR SC would not
itself afford an untraceable appended forgery, nor would the
exploitation of all EDR SC parties afford forgery of the past.

With respect to the whether the marginal overhead incurred
in recording logs via BBR vs. conventional rosbag exceeds the
benefits in ensuring event records remain tamper resistant, we
conclude that given the appropriate QoS for reporting topics
of significance, the practicality and utility of applying BBR in
security sensitive robotic domains remains advantageous.

We expect this application domain for robotic EDRs will
be one among many exciting frontiers to be explored along

the intersection of cryptobotics and distributed ledgers, as the
methods presented generalize across future DLT architectures.

Security of distributed ledgers can hinge upon the number
and health of validators that govern global state, influencing
R2, R5. If the validator pool becomes too small or dominated
by a single party, community trust in the ledger can falter. To
mitigate the monopolization of validation, more fog level IoT
devices, ranging from stationary C-ITS infrastructure or mobile
field robots, could be conscripted as additional validators to
help bolster device diversity. To incentivize participation and
avoid the tragedy of the commons, an alternate consensus
protocol could be adopted. Tangle [29], a Directed Acyclic
Graph (DAG) consensus algorithm used in IOTA, a DLT for
IoT domains, leverages an auspicious pay-it-forward strategy:
to issue transactions, an identity must first work to validate a
greater number of transactions than it wishes to submit, thereby
sustainably contributing to the network’s security.

Recently, DAGs have been gaining traction over blockchain
data structures due to their greater throughput of asynchronous
transactions and relaxed connectivity requirements. For large
scale robot deployments connected over temporally disjointed
or semi-partitioned networks, DAGs could alleviate the con-
tinuous global connectivity requirements incurred when using
traditional synchronous distributed data structures instead.

Lastly, given the designs presented for linked integrity proofs
supporting parallel checkpoint amendments, the lack of any
ROSBag2 storage plugin capable of taking full advantage
of such concurrency remains a shortcoming. Thus, the de-
velopment of such a storage plugin compatible with SQLite
alternatives supporting parallel writes would be a boon for
high-performance high-bandwidth message capture as well as
immutable event data recording.

ACKNOWLEDGMENT

We would like to thank the Hyperledger project for their
open source efforts and documentation; both were instrumental
in developing this work and exploring its applications.

REFERENCES

[1] J. McClean, C. Stull, C. Farrar, and D. Mascareñas, “A preliminary cyber-
physical security assessment of the Robot Operating System (ROS),”
vol. 8741, p. 874110, 2013. [Online]. Available: http://proceedings.
spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2016189

[2] C. Miller and C. Valasek, “Remote Exploitation of an Unaltered
Passenger Vehicle,” Defcon 23, vol. 2015, pp. 1–91, 2015. [Online].
Available: http://illmatics.com/RemoteCarHacking.pdf

[3] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Snachám, and S. Savage,
“Experimental security analysis of a modern automobile,” in Proceedings
- IEEE Symposium on Security and Privacy, 2010, pp. 447–462.

[4] S. Checkoway, D. Mccoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno,
“Comprehensive Experimental Analyses of Automotive Attack Surfaces,”
System, pp. 6–6, 2011. [Online]. Available: http://www.usenix.org/events/
security/tech/full{ }papers/Checkoway.pdf

[5] C. Miller and C. Valasek, “A Survey of Remote Automotive
Attack Surfaces,” Defcon 22, pp. 1–90, 2014. [Online]. Available:
http://illmatics.com/remoteattacksurfaces.pdf

[6] S. Morante, J. G. Victores, and C. Balaguer, “Cryptobotics: Why
Robots Need Cyber Safety,” Frontiers in Robotics and AI, vol. 2,
no. September, pp. 23–26, sep 2015. [Online]. Available: http:
//journal.frontiersin.org/Article/10.3389/frobt.2015.00023/abstract

[7] R. Rowlingson and Q. Ltd, “A Ten Step Process for Forensic Readiness,”
International Journal of Digital Evidence Winter, vol. 2, no. 3, 2004.

[8] V. K. Veitas and S. Delaere, “In-vehicle data recording, storage and access
management in autonomous vehicles,” arXiv preprint arXiv:1806.03243,
2018.

[9] G. Becker, “Merkle signature schemes, merkle trees and their cryptanal-
ysis,” Ruhr-University Bochum, Tech. Rep, 2008.

[10] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: www.bitcoin.org

[11] BitFury Group and J. Garzik, “Public versus Private Blockchains. Part 2:
Permissionless Blockchains,” pp. 1–23, 2015. [Online]. Available: http://
bitfury.com/content/5-white-papers-research/public-vs-private-pt2-1.pdf

[12] ——, “Public versus Private Blockchains. Part 1: Permissioned
Blockchains,” pp. 1–23, 2015. [Online]. Available: http://bitfury.com/
content/5-white-papers-research/public-vs-private-pt1-1.pdf

[13] K. J. O’Dwyer and D. Malone, “Bitcoin mining and its energy
footprint,” IET Conference Proceedings, pp. 280–285(5), January 2014.
[Online]. Available: http://digital-library.theiet.org/content/conferences/
10.1049/cp.2014.0699

[14] V. Dhillon, D. Metcalf, and M. Hooper, The Hyperledger Project.
Berkeley, CA: Apress, 2017, pp. 139–149. [Online]. Available:
https://doi.org/10.1007/978-1-4842-3081-7 10

[15] D. Butin, M. Chicote, and D. L. Mtayer, “Log design for accountability,”
pp. 1–7, May 2013.

[16] J. Benet, “IPFS-content addressed, versioned, P2P file system,”
arXiv preprint arXiv:1407.3561, 2014. [Online]. Available: http:
//arxiv.org/abs/1407.3561

[17] N. Anderson, “Blockchain Technology: A Game-Changer
in Accounting?” pp. 1–5, 2016. [Online]. Avail-
able: https://www2.deloitte.com/content/dam/Deloitte/de/Documents/
Innovation/Blockchain A%20game-changer%20in%20accounting.pdf

[18] P. Snow, B. Deery, J. Lu, D. Johnston, and P. Kirby, “Factom
business processes secured by immutable audit trails on the blockchain,”
Whitepaper, Factom, November 2014. [Online]. Available: https://github.
com/FactomProject/FactomDocs/raw/master/Factom{ }Whitepaper.pdf

[19] J. Cucurull and J. Puiggalı́, “Distributed Immutabilization of Secure
Logs,” ser. Lecture Notes in Computer Science, G. Barthe, E. Markatos,
and P. Samarati, Eds. Springer International Publishing, 2016, vol. 9871,
no. 2, pp. 122–137.

[20] M. Bartoletti and L. Pompianu, “An analysis of bitcoin op return
metadata,” in International Conference on Financial Cryptography and
Data Security. Springer, 2017, pp. 218–230.

[21] R. Matzutt, J. Hiller, M. Henze, J. H. Ziegeldorf, D. Müllmann,
O. Hohlfeld, and K. Wehrle, “A quantitative analysis of the impact of
arbitrary blockchain content on bitcoin,” in Proceedings of the 22nd
International Conference on Financial Cryptography and Data Security
(FC). Springer, 2018.

[22] A. Sutton and R. Samavi, “Blockchain enabled privacy audit logs,” in
International Semantic Web Conference. Springer, 2017, pp. 645–660.

[23] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun, “Tampering
with the Delivery of Blocks and Transactions in Bitcoin,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security - CCS ’15, 2015, pp. 692–705. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2810103.2813655

[24] P. Szalachowski, “(short paper) towards more reliable bitcoin times-
tamps,” in 2018 Crypto Valley Conference on Blockchain Technology
(CVCBT), June 2018, pp. 101–104.

[25] S. A. Crosby and D. S. Wallach, “Efficient data structures for
tamper-evident logging,” in Proceedings of the 18th Conference
on USENIX Security Symposium, ser. SSYM’09. Berkeley, CA,
USA: USENIX Association, 2009, pp. 317–334. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855768.1855788

[26] V. K. Veitas and S. Delaere, “Policy scan and technology strategy design
methodology,” arXiv preprint arXiv:1806.03235, 2018.

[27] S. Taurer, B. Dieber, and P. Schartner, “Secure data recording and bio-
inspired functional integrity for intelligent robots,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Oct
2018, pp. 8723–8728.

[28] M. Bellare, “New proofs for nmac and hmac: Security without collision
resistance,” Journal of Cryptology, vol. 28, no. 4, pp. 844–878, Oct
2015. [Online]. Available: https://doi.org/10.1007/s00145-014-9185-x

[29] S. Popov, “The tangle,” Whitepaper, IOTA, February 2018.
[Online]. Available: https://assets.ctfassets.net/r1dr6vzfxhev/
4i3OM9JTleiE8M6Y04Ii28/d58bc5bb71cebe4adc18fadea1a79037/
Tangle White Paper v1.4.2.pdf

http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2016189
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2016189
http://illmatics.com/Remote Car Hacking.pdf
http://www.usenix.org/events/security/tech/full{_}papers/Checkoway.pdf
http://www.usenix.org/events/security/tech/full{_}papers/Checkoway.pdf
http://illmatics.com/remote attack surfaces.pdf
http://journal.frontiersin.org/Article/10.3389/frobt.2015.00023/abstract
http://journal.frontiersin.org/Article/10.3389/frobt.2015.00023/abstract
www.bitcoin.org
http://bitfury.com/content/5-white-papers-research/public-vs-private-pt2-1.pdf
http://bitfury.com/content/5-white-papers-research/public-vs-private-pt2-1.pdf
http://bitfury.com/content/5-white-papers-research/public-vs-private-pt1-1.pdf
http://bitfury.com/content/5-white-papers-research/public-vs-private-pt1-1.pdf
http://digital-library.theiet.org/content/conferences/10.1049/cp.2014.0699
http://digital-library.theiet.org/content/conferences/10.1049/cp.2014.0699
https://doi.org/10.1007/978-1-4842-3081-7_10
http://arxiv.org/abs/1407.3561
http://arxiv.org/abs/1407.3561
https://www2.deloitte.com/content/dam/Deloitte/de/Documents/Innovation/Blockchain_A%20game-changer%20in%20accounting.pdf
https://www2.deloitte.com/content/dam/Deloitte/de/Documents/Innovation/Blockchain_A%20game-changer%20in%20accounting.pdf
https://github.com/FactomProject/FactomDocs/raw/master/Factom{_}Whitepaper.pdf
https://github.com/FactomProject/FactomDocs/raw/master/Factom{_}Whitepaper.pdf
http://dl.acm.org/citation.cfm?doid=2810103.2813655
http://dl.acm.org/citation.cfm?id=1855768.1855788
https://doi.org/10.1007/s00145-014-9185-x
https://assets.ctfassets.net/r1dr6vzfxhev/4i3OM9JTleiE8M6Y04Ii28/d58bc5bb71cebe4adc18fadea1a79037/Tangle_White_Paper_v1.4.2.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/4i3OM9JTleiE8M6Y04Ii28/d58bc5bb71cebe4adc18fadea1a79037/Tangle_White_Paper_v1.4.2.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/4i3OM9JTleiE8M6Y04Ii28/d58bc5bb71cebe4adc18fadea1a79037/Tangle_White_Paper_v1.4.2.pdf

	Introduction
	Related Work
	Distributed Ledgers Technology
	Immutable Logs
	Event Data Recorders

	EDR Roles, Requirements and Primitives
	Obligated Roles and Observing Parties
	Recording, Storage and Access Requirements
	Defined Primitives and System Properties

	Approach
	Incremental Integrity Proof
	Smart Contract

	Implementation
	Checkpoint Integration
	Transaction Family for EDR Smart Contracts
	Performance Profiling and QoS Tuning

	Conclusion
	References

