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Development and evaluation of [18F]Flotaza for Aβ plaque 
imaging in postmortem human Alzheimer’s disease brain

Harsimran Kaur, Megan R. Felix, Christopher Liang, Jogeshwar Mukherjee*

Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine 92697, 
USA

Abstract

Positron emission tomographic (PET) studies of amyloid β (Aβ) accumulation in 

Alzheimer’s disease (AD) have shown clinical utility. The aim of this study was to 

develop and evaluate the effectiveness of a new fluorine-18 radiotracer [18F]Flotaza 

(2-{2-[2-[18F]fluoroethoxy]ethoxy}ethoxy)-4′-N,N-dimethylaminoazobenzene), for Aβ plaque 

imaging. Nucleophilic [18F]fluoride was used in a one-step radiosynthesis for [18F]flotaza. Using 

post mortem human AD brain tissues consisting of anterior cingulate (AC) and corpus callosum 

(CC), binding affinity of Flotaza, Ki = 1.68 nM for human Aβ plaques and weak (>10−5 M) 

for Tau protein. Radiosynthesis of [18F] Flotaza was very efficient in high radiochemical yields 

(>25%) with specific activities >74 GBq/μmol. Brain slices from all AD subjects were positively 

immunostained with anti-Aβ. Ratio of [18F]Flotaza in gray matter AC to white matter CC was 

>100 in all the 6 subjects. Very little white matter binding was seen. [18F]Flotaza binding in AC 

strongly correlated with anti-Aβ immunostains. [18F]Flotaza is therefore a suitable fluorine-18 

PET radiotracer for PET imaging studies of human Aβ plaques.
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Introduction

Successful clinical research studies using [11C]PIB for diagnostic evaluation of amyloid 

β (Aβ) plaques in Alzheimer’s disease (AD) patients and therapeutic efficacy assessment 

of drugs for AD has accelerated the development and translation of positron emission 

tomography (PET) radiotracers for clinical use.1 Substantial studies on the accumulation 

of Aβ plaques in the brains of patients with AD have been carried out in the Alzheimer’s 

disease neuroimaging initiative.2 further supporting previous pathological findings (Braak et 

al., 2011).3
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The diagnostic value of imaging Aβ plaques accelerated the development of fluorine-18 

labeled longer half-life radiotracers for easier translation to clinical use. [18F]Florbetapir 

(Fig. 1; 2) was the first fluorine-18 agent approved for clinical use in AD.4 This was 

followed by [18F]florbetaben (Fig. 1; 3) and [18F]flutemetamol (Fig. 1; 4). Although 

the fluorine-18 offers advantages of the longer half-life, high white matter binding of 

these radiotracers resulting in low standard uptake values (SUV) in the cortex of AD 

patients compared to normal subjects has been an issue. Thus, an agent that can provide a 

significantly higher SUV in the AD cortex may be an improvement towards clinical value. 

There has been continued interest in the development of Aβ plaque imaging agents.5 With 

increasing efforts to find treatments and cure for AD, there is much research into imaging 

plaques essential to the diagnosis and clinical management of AD.6

We previously reported [11C]TAZA as a radiotacer for Aβ plaques (Fig. 1; 5).7 The 

following unique properties of [11C]TAZA were observed: (1). Increased signal to noise 

ratio. In postmortem human AD brain sections, [11C]TAZA exhibited higher binding to 

the Aβ-plaques compared to [11C]PIB. The increased signal to noise ratio may increase 

sensitivity of detection of Aβ-plaques in PET studies. (2). Decreased white matter binding. 

A lower amount of white matter binding was seen with [11C]TAZA due to the heteroatoms 

in the “azo” functionality. This improved difference between grey matter and white matter 

may improve earlier delineation of AD, MCI and normal controls.

In order to obtain a fluorine-18 analog of [11C]TAZA, two options included incorporation 

of fluiorine-18 on the aromatic ring or use the polyethylene glycol 3 (PEG3) strategy used 

for florbetaben and florbetapir. Because of structural similarity of TAZA backbone with 

the stilbene derivatives incorporation of PEG3 would be an appropriate strategy. Thus, 

2-{2-[2-Fluoroethoxy]ethoxy}ethoxy)-4′-N,N-dimethylaminoazobenzene (Flotaza; Fig. 1; 

6) was considered an appropriate fluorinated analog of TAZA, which may potentially bind to 

Aβ plaques with high affinity.

Synthesis of Flotaza is shown in Fig. 2 starting with 4-hydroxy-4′­

dimethylaminoazobenzene (7). Pegylated alcohol, 8 was successfully prepared by reacting 7 
with bromo-PEG3-alcohol in moderate yields.8 Reaction of the alcohol 8 with diethylamino 

sulfur trifluoride (DAST) led to a complex mixture, which may have been due to the high 

reactivity of DAST. Therefore, the alcohol was first converted to the corresponding tosylate 

9,9 followed by nucleophilic fluoride displacement using tetrabutylammonium fluoride.10 

This reaction was cleaner and provided Flotaza 10, in good yields. Overall, the synthesis of 

Flotaza and tosylate precursor was simplified compared to that of florbetaben and florbetapir 

because of the N,N-dimethyl functionality not requiring protection and deprotection.

Using our previously reported methods, in vitro binding affinity of Flotaza in human AD 

brain slices using [3H]PIB for Aβ plaques11,12 and [125I]IPPI for Tau13,14 were carried out. 

The affinity of Flotaza was marginally weaker than TAZA for Aβ plaques (Ki = 1.68 nM 

for Flotaza versus 0.54 nM for TAZA), suggesting that fluoropegylation is well tolerated in 

the TAZA backbone. Flotaza did not have any significant effect on the binding of [125I]IPPI 

confirming weak Tau binding (Fig. 3). Thus, Flotaza is a selective Aβ plaque agent.
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Compared to the two other fluoropegylated derivatives, florbetaben and florbetapir, Flotaza 

has comparable, good affinity.7 This is indicative of the good prospects of [18F]Flotaza of 

serving as an imaging agent for Aβ plaques. Additionally, the diaza functionality in Flotaza 

provides unique flexibility in binding to the Aβ plaques. This was observed in our reported 

results of increased [11C]TAZA binding to human Aβ plaques compared to [11C]PIB and 

[11C]Dalene.7

Similar to our previously reported alkyl tosylates used for nucleophilic fluorine-18 

labeling,15 The tosylate precursor, 9 served as an excellent precursor for one-step 

nucleophilic fluorine-18 radiolabeling. Radiosynthesis of [18F]Flotaza was efficiently 

carried out and purified on reverse-phase HPLC.16 RadioTLC confirmed radiochemical 

purity of >95% for [18F]Flotaza (Fig. 4) and was obtained in amounts of 370–740 MBq in 

specific activities generally >37 TBq/mmol.16 [18F]Flotaza was found to be stable in 10% 

ethanolic saline solution for in vitro studies.

Radiosynthesis of [18F]Flotaza is simpler because it can be accomplished in a single step 

without the need for a deprotection step, which is the case with the other fluorine-18 

labeled Aβ plaque radiotracers shown in Fig. 1. The precursor tosylate is easier to make 

from commercially available reagents and these reagents, including [18F]Flotaza are not 

propreitory, unlike the other fluorine-18 radiotracers shown in Fig. 1. Thus, this should 

enable easier access to an excellent fluorine-18 PET radiotracer for Aβ plaque imaging 

studies.

Well characterized brain samples were obtained from Banner Health Research Institute.17 

Brain slices from six AD subjects included anterior cingulate (gray matter, GM) and corpus 

callosum (white matter, WM) as shown for one subject in Fig. 5A. The AD brain sections 

of the six AD subjects were further confirmed to contain Aβ plaques in the GM regions by 

immunostaining with anti-Aβ Biolegend (known to stain Aβ1–16) as shown in Fig. 5B.18

Extensive binding of [18F]Flotaza was seen in the grey matter regions of all the AD 

subjects.19 Figure-5C shows brain slice of one subject with binding of [18F]Flotaza in the 

anterior cingulate, while white matter had very little binding. This grey matter binding was 

significantly reduced when the brain sections were treated with PIB. Figure-5E shows [18F] 

Flotaza binding through the cortical layers, showing greater binding in the outer layers. 

Similarly, high levels of binding in the gray matter were seen in all the six subjects (Fig. 

5D) and was consistent with immunostaining in adjacent sections. White matter binding was 

very small across all the subjects and ratios between gray matter and white matter was found 

to be >100 in all the subjects. It must be noted that in these experiments, after [18F]Flotaza 

binding, the slices were washed with 50% alcohol in PBS buffer. The white matter binding 

increased significantly when the slices were washed only with PBS buffer.

The high degree of binding of [18F]Flotaza in AD brain slices is similar to our reported 

studies with [11C]TAZA.7 However the ratio of gray matter to white matter was significantly 

higher for [18F]Flotaza compared to [11C]TAZA. The GM/WM ratios of [11C]TAZA ranged 

between 20 and 30 in hippocampal AD brain sections. Similarly, [11C]PIB showed lower 

GM/WM ratios in the hippocampal brain sections, compared to [11C]TAZA. Thus, “AZA” 
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functionality renders unique properties to the molecule yielding higher binding to Aβ 
plaques. Fluoropegylation is known to reduce lipophilicity of molecules and gives additional 

advantage to [18F]Flotaza compared to [11C]TAZA. Molecular modeling analysis of the 

binding of TAZA and Flotaza revealed very similar binding energies to preferred sites on the 

Aβ amyloid fibrils.

The olefin analog of the [11C]TAZA, [11C]Dalene exhibited highest amount of white matter 

binding.7 Since [11C]Dalene is a close fluoropegylated structural analog of [18F]florbetaben, 

our results suggest that [18F]Flotaza, which is a fluoropegylated analog of [11C]TAZA is 

likely to yield higher GM/WM ratios compared to [18F]florbetaben. The most significant 

structural difference between [18F]Flotaza and [18F] florbetaben is the presence of the 

“AZA” functionality replacing the olefin (Fig. 1).

Previous studies with “AZA” group containing PDB derivatives suggested that the 

“benzothiazole moiety” present in the PDB derivatives may be contributing to their affinity 

to Tau.20 Using [125I]IPPI labeled brain slices, flotaza did not have any significant effect on 

[125I]IPPI binding thus suggesting poor affinities of Flotaza for Tau (Fig. 3).

Binding profile of [18F]Flotaza to Aβ plaques and [125I]IPPI to Tau on adjacent brain slices 

containing anterior cingulate and corpus callosum of the same subject were compared (Fig. 

6). Immunostaining of adjacent slices confirmed the presence of Aβ plaques (Fig. 6A and 

C) and Tau (Fig. 6D and F). Both, [18F]Flotaza (Fig. 6B) and [125I]IPPI (Fig. 6E) bound 

to anterior cingulate extensively in adjacent slices, and was consistent throughout the gray 

matter regions. This binding is consistent with the immunostaining of the two biomarkers 

and supports the usefulness of [18F]Flotaza in the diagnostic use of Aβ plaques in AD.

Our previous PET studies with [11C]TAZA in rats demonstrated good in vivo brain 

permeability.7 PEGylation is a suitable approach to enhance targeted drug delivery by 

extending circulating times, reducing lipophilicity and altering metabolic clearance of the 

drugs. Thus, compared to [11C]TAZA, we anticipate [18F]Flotaza may be more brain 

permeable. Greater clearance of [18F]Flotaza from nonspecific white matter regions due 

to the presence of the fluoropegylated side chain may be expected. This increased clearance 

from nonspecific binding regions is likely to result in greater target-to-nontarget ratios.

In summary [18F]Flotaza is a new PET radiotracer for imaging Aβ plaques in the human 

brain. Although in vitro ratios do not directly translate to in vivo measures, the findings 

reported here indicate that [18F]Flotaza may be expected to give a significantly higher target 

to nontarget ratios in PET studies. Our goal is to complement metabolic studies in transgenic 

mice models of AD21 and Parkinson’s disease22 with imaging of disaggregated proteins. 

Thus, we plan to carry out [18F] Flotaza PET imaging studies in transgenic 5XFAD mice to 

examine the suitability of [18F]Flotaza in imaging mice Aβ plaques. If Aβ plaque imaging in 

the 5XFAD transgenic mice is successful with [18F]Flotaza, it will then enable evaluation of 

therapeutic drugs designed to lower Aβ plaque burden in the transgenic mice models.23
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Fig. 1. 
Chemical structures of select Aβ plaque binding PET radiotracers: Carbon-11 labeled: 

[11C]PIB and [11C]TAZA; Fluorine-18 labeled: [18F]Florbetapir; [18F] Florbetaben; 

[18F]Flutmetamol; [18F]Flotaza.
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Fig. 2. 
Synthesis scheme of Flotaza: 4-hydroxy-4′-dimethylaminoazobenzene (7) was reacted 

with bromo-PEG3-alcohol (Br(CH2CH2O)3H) in dimethylformamide (DMF) in the 

presence of potassium tert-butoxide (K+OtBu). Tosylate 9 was obtained by reacting 

toluenesulfonyl chloride (TsCl) with 2-{2-[2-Hydroxyethoxy]ethoxy}ethoxy)-4′-N,N­

dimethylaminoazobenzene (8) in dichloromethane (CH2Cl2). Flotaza (10) was prepared by 

reaction of tosylate 9 with tetrabutylammonium fluoride (Bu4NF) in tetrahydrofuran (THF).

Kaur et al. Page 9

Bioorg Med Chem Lett. Author manuscript; available in PMC 2022 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Binding Affinity of Flotaza: Human postmortem AD brain sections (10 μm) were 

radiolabeled with [3H]PIB for Aβ plaques or [125I]IPPI for NFT for competition assay with 

Flotaza. Flotaza Ki = 1.68 nM for Aβ plaques and >10 μM for NFT.
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Fig. 4. 
One-step radiosynthesis of [18F]Flotaza: Tosylate (9) reacted with [18F]fluoride, Kryptofix 

and potassium carbonate (K2CO3) in acetonitrile (CH3CN) to provide [18F]Flotaza (11). 

Thin layer radio-chromatograph of purified [18F]Flotaza confirming radiochemical purity.
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Fig. 5. 
Postmortem human brain autoradiography [18F]Flotaza in AD subjects: A. AD brain slice 

showing gray matter (GM), anterior cingulate and white matter (WM) corpus callosum; 

B. Anti-Aβ immunostained adjacent section showing presence of Aβ plaques (inset at × 

40 magnification); C. [18F]Flotaza binding in the gray matter regions in adjacent slices, 

consistent with the presence of Aβ plaques; D. High levels of [18F]Flotaza binding in gray 

matter in six AD subjects with very little white matter binding; E. A 5 mm long plot through 

cortex (red lines shown in C) showing high amounts of [18F]Flotaza in the outer layers of the 

cortex, with almost background levels in white matter.

Kaur et al. Page 12

Bioorg Med Chem Lett. Author manuscript; available in PMC 2022 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
[18F]Flotaza for Aβ plaques and [125I]IPPI NFT in same AD subject: A. Anti-Aβ 
immunostained section showing presence of Aβ plaques (×4 magnification, C); B. 

[18F]Flotaza binding in the anterior cingulate in adjacent slices, consistent with the presence 

of Aβ plaques; D. Anti-Tau immunostained section showing presence of total Tau protein 

(×4 magnification, F); E. [125I]IPPI binding in the anterior cingulate in adjacent slices, 

consistent with the presence of NFT.

Kaur et al. Page 13

Bioorg Med Chem Lett. Author manuscript; available in PMC 2022 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.



