
UC Irvine
UC Irvine Previously Published Works

Title
Data structures and compression algorithms for high-throughput sequencing
technologies

Permalink
https://escholarship.org/uc/item/6ts356bt

Journal
BMC Bioinformatics, 11

ISSN
1471-2105

Authors
Daily, Kenny
Rigor, Paul
Christley, Scott
et al.

Publication Date
2010-10-14

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6ts356bt
https://escholarship.org/uc/item/6ts356bt#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

RESEARCH ARTICLE Open Access

Data structures and compression algorithms for
high-throughput sequencing technologies
Kenny Daily1,2, Paul Rigor1,2, Scott Christley1,3,4, Xiaohui Xie1,2,4, Pierre Baldi1,2,4,5*

Abstract

Background: High-throughput sequencing (HTS) technologies play important roles in the life sciences by allowing
the rapid parallel sequencing of very large numbers of relatively short nucleotide sequences, in applications ranging
from genome sequencing and resequencing to digital microarrays and ChIP-Seq experiments. As experiments scale
up, HTS technologies create new bioinformatics challenges for the storage and sharing of HTS data.

Results: We develop data structures and compression algorithms for HTS data. A processing stage maps short
sequences to a reference genome or a large table of sequences. Then the integers representing the short
sequence absolute or relative addresses, their length, and the substitutions they may contain are compressed and
stored using various entropy coding algorithms, including both old and new fixed codes (e.g Golomb, Elias
Gamma, MOV) and variable codes (e.g. Huffman). The general methodology is illustrated and applied to several
HTS data sets. Results show that the information contained in HTS files can be compressed by a factor of 10 or
more, depending on the statistical properties of the data sets and various other choices and constraints. Our
algorithms fair well against general purpose compression programs such as gzip, bzip2 and 7zip; timing results
show that our algorithms are consistently faster than the best general purpose compression programs.

Conclusions: It is not likely that exactly one encoding strategy will be optimal for all types of HTS data. Different
experimental conditions are going to generate various data distributions whereby one encoding strategy can be
more effective than another. We have implemented some of our encoding algorithms into the software package
GenCompress which is available upon request from the authors. With the advent of HTS technology and
increasingly new experimental protocols for using the technology, sequence databases are expected to continue
rising in size. The methodology we have proposed is general, and these advanced compression techniques should
allow researchers to manage and share their HTS data in a more timely fashion.

Background
Over the past four decades, sequencing technologies have
been one of the major driving forces in the life sciences
producing, for instance, the full genome sequences of
thousands of viruses and bacteria, and dozens of eukaryo-
tic organisms, from yeast to man [1]. This trend is being
accentuated by modern high-throughput sequencing
(HTS) technologies: several human genomes were recently
produced [2-5] and a project to sequence 1,000 human
genomes in the next few years is under way [6]. Different
HTS technologies are competing to be able to sequence
an individual human genome for less than $1,000 within a

few years [7] and reaching the point where human genome
sequencing will be a commodity. Furthermore, not only
are HTS technologies useful for sequencing and resequen-
cing genomes, but they are also instrumental to accurately
identify and measure mRNA and other nucleotide
sequences in new important high-throughput applications
such as digital expression microarrays, ChIP-Seq [8] and
SNP genotyping. In all cases, the amount of data produced
by HTS technologies as experiments scale up creates
significant bioinformatics challenges to understand, store
and share data. To address some of these challenges, we
develop data structures and compression algorithms for
the efficient management and storage of HTS data.
Several different HTS technologies have been conceived

and developed to differing degrees of maturity. They can
be classified into four broad classes: amplification followed

* Correspondence: pfbaldi@ics.uci.edu
1Department of Computer Science, University of California Irvine, Irvine, CA
92697 USA
Full list of author information is available at the end of the article

Daily et al. BMC Bioinformatics 2010, 11:514
http://www.biomedcentral.com/1471-2105/11/514

© 2010 Daily et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:pfbaldi@ics.uci.edu
http://creativecommons.org/licenses/by/2.0

by mass spectrometry, in vitro cloning, in vivo cloning, and
single molecule [9]. There are currently three commer-
cially advanced HTS systems: SOLiD (Applied BioSys-
tems), Solexa (Illumina), 454 (Roche), all based on the
in vitro cloning approach. Each system depends on a
sheared DNA sample which is diluted onto some type of
matrix, clonally amplified, and then transformed via repe-
titive enzymatic cycles into a series of four distinct fluores-
cent signals (each representing a different base) monitored
at each cycle by a CCD camera. The series of fluorescent
signals at each position is converted into a DNA sequence
and a quality score for each position. A typical run (or
lane) can generate tens of millions of sequence reads, and
with a set of experiments that includes biological repli-
cates, control and treatment samples, etc., then the total
number of reads can reach into the billions. Important
variations between technologies exist, for instance in
terms of the length and quality of the sequences. However,
all existing systems rely on the parallel sequencing of
many short sequences and produce outputs of very long
lists of relatively short sequences. Thus the fundamental
problem we wish to address is the storage and compres-
sion of such lists.
Because of the variations that may exist between dif-

ferent technologies and different constraints associated
with different deployment scenarios, our goal is not to
provide a single solution, but to describe general meth-
ods by which customized solutions can be developed.
Thus after presenting the basic idea, we review several
relevant representations and compression algorithms.
The approach is illustrated on several HTS data sets.

Methods
General Approach
In the standard text format, a file of N short sequences
of average length l requires N(l + 1) bytes (or 8N(l + 1)
bits) to store, using one ASCII byte per character, and
including a character (carriage return) to separate two
consecutive sequences. The ranges of N and l can vary
depending on the experiment and the technology, but to
fix the ideas one can imagine current values of N in the
105 - 109 range and of l in the 101 - 103 range, with
most typical values in the 20-100 range. Additional
information regarding, for instance, the quality of the
sequences can be included in the output files.
To store and compress this information, we imagine

first that the short sequences can be mapped to a refer-
ence genome. This is the typical situation for resequen-
cing experiments, including large-scale sequencing of
diploid human genomes using mapping software such as
Illumina’s ELAND, MAQ [10], ZOOM [11], or Bowtie
[12]. In this case, each short sequence si can be repre-
sented by its address ai in the reference genome. If the
length of each sequence is not fixed and known in

advance or stored in the header of the file, the length of
the sequence li must also be included. If the match is
not exact, variations from the genomic sequence must
also be included by recording their address and type.
For simplicity, we will assume only substitutions. Thus
something like “(1500, 25, 3C)” could be used to record
a short sequence whose starting point matches position
1500 in the reference genome, with a length of 25
nucleotides, and a substitution by a C in position 3.
Relative addresses, rather than absolute addresses, can
be used not only to record variations within sequences,
but also for the address of the sequences themselves.
The same sequence could be encoded by “(100,25,3C)”
to indicate that it is found 100 nucleotide downstream
of the previously occurring sequence, provided the file
has been preprocessed to reorder the sequences linearly
along the genome. With relative addresses, the dynamic
range of the integers to be encoded may be considerably
smaller than with absolute addresses. If a sequence can
be mapped equally well to multiple locations on the
genome, any one of them can be chosen to represent
the sequence. Finally, specific experiments could come
with additional information. For instance, in SNP map-
ping experiments, the locations and types of variations
could be constrained and leveraged to increase compres-
sion. It is worth noting that for this approach, the avail-
ability of a reference genome is not as restrictive as it
may seem; minimally, a reference of DNA sequences to
which experimental sequences can be reasonably
mapped is needed. For simplicity in this work, we focus
on the case of interest where a reference genome is
available.
The idea of compressing DNA sequences is not new.

Compression algorithms such as Biocompress-2 [13],
CTW [14], OffLine [15], DNACompress [16] and DNA
compressor [17] consider the task of directly compres-
sing large sequence strings. While others consider alter-
native compression tasks such as COIL [18] which
compresses a large database of unrelated sequences or
DNAzip [19] which compresses variations to a reference
genome. Our goal is different as we want to compress a
large number of very short sequences while using a
large reference sequence. Whether or not it is advanta-
geous over the standard text format, however, depends
on the details of the implementation and, more often
than not, the data being compressed. A successful
implementation of the basic idea depends crucially on
careful consideration of the encoding scheme. In parti-
cular, the choice of the function converting integers to
binary strings, has a great effect on the resulting com-
pression. For our application, these integers are the
absolute or relative addresses and lengths of sequence
reads. It is essential to understand that simply convert-
ing integers to their binary value (e.g. converting “25” to

Daily et al. BMC Bioinformatics 2010, 11:514
http://www.biomedcentral.com/1471-2105/11/514

Page 2 of 12

“11001”) does not work since one does not know where
one integer ends and the next starts. No symbol other
than 0 or 1 is available to separate consecutive integers.
Furthermore, such a simple encoding scheme does not
take into account any entropy considerations. Likewise,
a general purpose compression scheme for text data,
such as Lempel-Ziv (gzip [20]), is likely to be far from
optimal for HTS data. Thus we are interested in binary
encoding schemes for sequences of integers that can be
parsed automatically and, consistent with information
theory, are entropy efficient, in the sense that fewer bits
are used to encode more frequent events.
A simple back-of-the-envelope calculation, however,

can show why the situation is hopeful. Suppose the infor-
mation associated with the integer j representing an
address can be stored in about 2 log j bits (all logarithms
are taken to the base 2). This corresponds to a penalty
factor of two over the plain binary encoding and can be
achieved with the coding methods described in the next
section. Then the equality 8(l + 1) = 2 log j shows that
some degree of compression is achieved as long j is less
than 24(l+1). Even with l as small as 20, this yields 284

which is much larger than the length of any genome.
Assuming that the length of each sequence must also be
stored, this may require at most a fixed number of bits C.
If the lengths are between 20 and 36, for instance, they
can be described with 4 bits. From the relation 8(l + 1) =
4 + 2 log j we find again that compression is achievable
as long as j is less than 24l+2, which is again easily
achieved in the current environment. Furthermore, with
for instance l = 24 these relations show that a 20-fold or
so compression rate should be achievable with reasonable
values of j. A similar calculation can be made including
information about the number of substitutions, their
locations, and types for each sequence.

Specific Encoding Strategies
To begin with, we illustrate these issues here by consid-
ering how the integer addresses ai, relative or absolute,
can be encoded into a binary string. From Shannon’s
entropy coding theory [21,22], optimal encoding of
these integers from a compression standpoint depends
on their distribution in order to assign shorter binary
codes to more probable symbols (integers). For simpli-
city, we distinguish two broad classes of codes: fixed
codes, such as Golomb [23] and Elias codes [24] and
their more recent variants [25], and variable codes, such
as Huffman codes [26]. In a fixed code, the integer i is
always encoded in the same way, whereas in a variable
code the encoding changes.
Fixed Codes: Golomb and Golomb-Rice Codes
Both Golomb codes and Elias codes encode an integer j
by catenating two bit strings: a preamble p(j), that

encodes j’s scale, and a mantissa. Golomb codes were
specifically developed to encode stationary coin flips
with p ≠ 0.5. Thus they are known to be optimal and
asymptotically approach the Shannon limit if the data is
generated by random coin flips or, equivalently, if the
distribution over the integers is geometric, although
they can be used for any other distribution. The more
skewed the probability p is (towards 0 or 1) the greater
the level of compression that can be achieved.
Golomb codes have one integer parameter m. Given

m, any positive integer j can be written using its quoti-
ent and remainder modulo m as j = ⌊j/m⌋ + (j mod m).
To encode j, the Golomb code with parameter m
encodes the quotient and remainder by using:

• ⌊j/m⌋ 1-bits for the quotient;
• followed by a 0, as a delimiter (unary encoding of
⌊j/m⌋);
• followed by the phased-in binary code for j mod m
for the remainder (described below).

The encoding of integers 0, ..., m - 1 normally requires
B = ⌈log m⌉ bits. If m is not a power of two, then one
can sometimes use B - 1 bits. More specifically, in the
“phased-in” approach:

• if i <2B - m, then encode i in binary, using (B - 1)
bits;
• if i ≥ 2B - m, then encode i by i + 2B - m in binary,
using B bits.

For instance, for m = 5, i = 2 is encoded as “10” using 2
(= B - 1) bits, and i = 4 is encode as “111” using 3 (= B)
bits. Thus the encoding of j requires in total ⌊j/m⌋ + 1 +
⌊log m⌋ or ⌊j/m⌋ + 1 + ⌈log m⌉ bits and the codeword
for the integer j + m has one more bit than the codeword
for the integer j. Unless otherwise specified, all loga-
rithms are taken to base 2. We use also “[log m]” to
denote “⌊log m⌋.or ⌈log m⌉”.
Finally, Golomb-Rice codes are a particularly conveni-

ent sub-family of Golomb codes, when m = 2k. To
encode j, we concatenate ⌊j/2k⌋ 1-bits, one 0-bit, and
the k least significant bits of j. The length of the encod-
ing of j is thus ⌈j/2k⌉ + k + 1. The decoding of Golomb-
Rice codes is particularly simple. First, read and count
the number of 1 bits until the first 0 bit is found. The
number of 1 bits is the quotient q = ⌊j/m⌋. Then, read
the next log m bits to get the binary representation of
the remainder r = j mod m. The decoded value equals
j = (q * m) + r.
Elias Codes
In the Elias Gamma coding scheme, the preamble p(m)
is a string of zeroes of length ⌊log j⌋, and the mantissa

Daily et al. BMC Bioinformatics 2010, 11:514
http://www.biomedcentral.com/1471-2105/11/514

Page 3 of 12

m(j) is the binary encoding of j. More precisely, to
encode the scale and value of j:

• write ⌊log j⌋ 0-bits;
• followed by the binary value of j beginning with its
most significant 1-bit.

The length of the encoding of j is 2⌊log j⌋ + 1(Table 1).
The decoding is obvious: first read n 0-bits until the first
1-bit is encountered, then read n more bits to get the
binary representation of j.
Applying the relationship

− ≈ ⎢⎣ ⎥⎦ +log () logP j j2 1 (1)

to the integer probabilities, shows that Elias Gamma
encoding asymptotically approaches the Shannon limit
for P (j) ≈ Cj-2. This is a power law relationship with
exponent -2 and C is a normalizing constant. Note that
for both Golomb and Elias Gamma codes, several differ-
ent consecutive integers can be encoded into a bit vec-
tor with the same length, hence the relationships -log P
(j) ≈ length(j) is only approximate with respect to geo-
metric or power-law distributions over the integers.
Monotone Value Coding (MOV Coding)
More recently, new families of efficient fixed codes for
integers have been developed [25,27-29], for instance in
the case of increasing or quasi increasing sequences of
integers, by encoding only the deltas of the preambles.
Here we introduce a modification of the codes described
above, presented with the Elias Gamma codes, for mes-
sages consisting of monotone sequences of integers,
such as consecutive absolute addresses of sequence
reads. When the value of the integers being encoded
increases monotonically, additional lossless compression
can be obtained by encoding only the scale increases
and their location (Table 2).
More precisely, if a sequence of increasing addresses is

given by (j1, j2, ..., jK) with j1 < j2 ... <jK:

• encode j1 using Elias Gamma encoding;
• for i = 2, ..., K:

- write ⌊log ji⌋ - ⌊log ji-1⌋ 0-bits;.

- followed by the binary value of ji beginning
with its most significant 1-bit.

The MOV-encoded vector of addresses can be
decoded by a simple algorithm:

• set k = 1;
• decode each integer in succession by repeating the
following steps:
• increment k by the number of 0-bits in the input
stream before reaching the first 1-bit;
• counting this first 1-bit as the first digit of the
integer, read the remaining k - 1 bits of the integer
from the input stream.

Another variation called Monotone Length Coding
(MOL Coding) can be used for quasi-monotone sequence
tolerating occasional deviations from a monotone beha-
vior [25]. Another scheme that may be useful for encod-
ing integers but cannot be described for conciseness
reasons is the Binary Interpolation [27] scheme, together
with several variants.
Variable Codes
In genomic applications, in general the integers may not
have a well defined distribution, in which case it is
always possible to use a general entropy encoding
scheme, such as Huffman coding [21,22,26] which
essentially builds a prefix code by using a binary hier-
archical clustering algorithm starting from the events
(integers) with the lowest probability. While Huffman
coding achieves compression close to the entropy limit,
the price to pay over fixed coding schemes such as
Golomb and Elias Gamma, or the more recent codes
mentioned above, is the storage of the Huffman table
which can be quite large in some applications. However
this is a fixed cost with respect to the database size, and
therefore whether this cost is acceptable or not depends
on the specific application. Small gains in compression
over Huffman coding may be obtained using arithmetic

Table 1 Example of Elias Gamma (EG) Coding

Number Encoding

1 1

2-3 01x

4-7 001xx

8-15 0001xxx

16-31 00001xxxx

Each integer j is encoded by concatenating ⌊log j⌋ 0’s with the binary value of j.

Table 2 Example of Monotone Value (MOV) Coding

Number Encoding

1 1

2 10

3 11

9 1001

14 1110

26 11010

29 11101

The principle is illustrated using the vector of addresses (1, 2, 3, 9, 14, 26, 29).
Each integer j is converted to a binary representation of length ⌊log j⌋ which
begins with a 1-bit. 0-bits are used between two consecutive integers only
when the length (scale) increases. The number of 0-bits is equal to the
increase in the length. The final encoding of the vector is 1 0 10 11 00 1001
1110 0 11010 11101

Daily et al. BMC Bioinformatics 2010, 11:514
http://www.biomedcentral.com/1471-2105/11/514

Page 4 of 12

coding [30,31], but at a non-trivial price in the complex-
ity of computations. For more information about integer
encodings, refer to references [32] and [33].
Byte Arithmetic
Direct implementations of the decoding algorithms pro-
cess the compressed representations bit-by-bit; however,
it is possible to implement faster decoders, which
decode the compressed data byte-by-byte. These faster
decoders work by looking up information from pre-
computed tables. These tables are indexed by: (1) all
possible bytes B (ranging from 0 to 255); and (2) a bit-
index i (ranging from 0 to 7) which marks the position
of the decoder within the byte. These tables may store
quantities such as the binary value of byte B starting
from bit i, the number of bits turned on in byte B start-
ing from bit i, and the unary value of byte B starting
from bit i. The exact quantities stored depend on the
details of a particular decoder implementation.
In practice, byte arithmetic considerably increases

decoding speed, sometimes approaching as much as an
eight-fold improvement over the corresponding bit-by-
bit implementation. The exact value of the speedup
depends on several factors including the characteristic
of the data, the exact compression scheme, and the
hardware used.

Results and Discussion
For conciseness, we present a subset of representative
results focusing on Elias, MOV and Variable codes.
Golomb code results are in general comparable to Elias
Gamma results, typically with a slight decrease in per-
formance. Furthermore, Golomb’s code require tuning
one additional parameter (m) and thus are not reported
here.
For each data set, we transformed the data into a uni-

form flat file format, separating the location information
from the mismatch information for each read, then per-
formed encoding on the location and mismatch infor-
mation separately. The following sections describe the
different encoding strategies used for location and mis-
match data and their corresponding results.

Data Extraction and Statistics
We selected three data sets representative of typical
short read sequence data derived from different experi-
mental settings aimed at addressing different biological
questions, from genome sequencing to transcription fac-
tor binding site mapping. Each of the data sets corre-
spond to a different combination of genome coverage,
repetitiveness and locational specificity in the genome,
so that our encoding results provide insights into how
different strategies can be applied and tailored to differ-
ent data. Table 3 gives some basic statistics for each
data set, including the sizes for the original standard

text format for the sequence reads, the uniform flat file
format as described above, and the Bowtie alignment
output. The uniform flat file format sizes are further
split into the sizes of the location data and mismatch
data. The Bowtie alignment output contains additional
information beyond the minimal location and mismatch
data required to reconstitute the reads, so Table 3 pro-
vides compression sizes of that additional information
with a set generic compression tools. Those sizes will be
used later for comparison of compression results for
Bowtie output.
Dataset 1
The first data set is obtained from the laboratory of
Dr. Suzanne Sandmeyer at University of California
Irvine and comes from an experiment aimed at mapping
retrotransposon Ty3 insertion sites in the yeast genome.
It consists of 6,439,584 sequence reads, all of length
19 bp. By the nature of the underlying experiments, the
sequences in this data set are highly clustered, often
with a high degree of repetition. The reads have at most
two substitutions. The numbers of sequences with 0, 1,
and 2 substitutions are given by 3,468,077 (54%),
895,997 (14%), and 2,075,510 (32%) respectively.
Dataset 2
The second data set comes from a chromatin immuno-
precipitation assay (ChIP-Seq) used to map the in vivo
binding site locations of the neuron-restrictive silencer
factor (NRSF) in humans [34]. It consists of 1,697,990
sequence reads, all of length 25 bp and mapped to the
most recent human genome sequence (hg18). The reads
have at most two substitutions. The numbers of
sequences with 0, 1, and 2 substitutions are given by
1,297,153 (76%), 302,939 (18%), and 97,899 (6%) respec-
tively. Figure 1 shows the number of mismatches found
at each position along the read, as well as the types of
substitutions. The number of mismatches increases
towards the end of the read, as expected with the Solexa
sequencing technology where the error rate increases

Table 3 Statistics of Three High-Throughput Data Sets

Dataset 1 Dataset 2 Dataset 3

Reads (× 106) 6.4 1.7 31

Read length 19 25 23-44

Coverage Very sparse Sparse Full

File sizes

Raw Sequence 1,030,333,440 353,181,920 8,869,613,392

Uniform 912,352,288 252,540,968 4,946,059,912

Location 743,517,128 226,557,032 4,232,120,216

Mismatches 168,835,160 25,983,936 713,939,696

Bowtie 3,145,664,248 902,954,872 19,475,952,512

Bowtie Extra Fields

gzip 50,382,904 106,576,328 839,247,848

7zip 36,306,064 93,238,688 778,347,264

Daily et al. BMC Bioinformatics 2010, 11:514
http://www.biomedcentral.com/1471-2105/11/514

Page 5 of 12

further along the length of the read. Our interest is
encoding the read sequence as is without attempting to
differentiate between true SNPs and sequencing errors,
but the distribution clearly shows that the majority of
these mismatches are observed at the end of the read
which can be used to advantage when encoding the
variations.
Dataset 3
The third data set corresponds to a full diploid human
genome sequencing experiment for an Asian individual
[5]. This is a very large data set with enough reads to
provide 36-fold average coverage, and we utilized the
existing mapping of the reads provided by the YH data-
base [35] to the human reference genome. For illustra-
tive purposes, we report only the results corresponding
to the reads associated with chromosome 22. For chro-
mosome 22, there are 31,118,531 reads that vary in
length from 30 to 40 bp for a total of 1,108,701,700 bp
of sequence data. The numbers of sequences with 0, 1,
and 2 substitutions are given by 19,126,772 (61%),
6,166,549 (20%), and 5,825,210 (19%) respectively.

Encoding of Location Information
The location information for a mapped read consists of
a chromosome identifier, a position along that chromo-
some, the strand, the length of the read, and the num-
ber of mismatches it contains. In the flat file format,
each read is specified on a single line with the values
separated by a comma. One technique is to encode each
of the attributes individually. For this standalone

technique, we compute the frequency of occurrence of
each of the attributes, order them, and then use EG
encoding on their ordered index. An alternative method
is to combine all of the attributes together. The (C, S,
M)Lookup method takes the attributes combined
together as tuples, for example (chromosome, strand,
number of mismatch), then computes the frequency of a
subset of these. The combination method of REG
Indexed is described in detail below.
Table 4 gives the comprehensive set of compression

algorithm results. For the data sets where all of the
reads have the same length (1 and 2), we omit the
length of the read and assume it is specified in a header
structure for the data. The top part of Table 4 shows
the standalone and combined techniques for encoding
the location information, while the bottom part of Table
4 is for encoding the mismatch information described in
the next section. For the standalone methods, multiple
encoding techniques are tried for the start location
while only EG encoding is used on the other attributes.
The best standalone compression attainable is also
shown; this should be compared to the best compres-
sion attainable by the either of the combined methods
to determine which encoding method to use for encod-
ing the start location. This in combination with the mis-
match encoding gives the best total compression for the
dataset. Throughout the table, the best compression for
a specific technique is shown in italics.
All of the results are based upon theoretical calculations

without doing the actual encoding. In the Implementation

Figure 1 Dataset 2 Nucleotide Substitutions. Distribution of nucleotide substitutions at each read position in Dataset 2. The shading of the
bar indicates which nucleotide was present in the read.

Daily et al. BMC Bioinformatics 2010, 11:514
http://www.biomedcentral.com/1471-2105/11/514

Page 6 of 12

section, we describe our GenCompress software package
which implements some of the encoding methods. The
methods implemented in GenCompress are marked with
a † in Table 4, and the best compression achieved by Gen-
Compress is also shown. In the following, we describe in
more detail the various methods used for encoding the
location information.

1. Elias Gamma (EG) Absolute: We assume that the
reads cannot be reordered in any way and thus must
be processed exactly as specified. The chromosome,
absolute start coordinate, strand integer values, and
for Dataset 3 the read length were encoded using
Elias Gamma codes.
2. Elias Gamma (REG) Relative: We assume that the
reads can be ordered in any way in order to achieve
better compression results. We group all of the
reads for each chromosome together. Within each
chromosome, the reads are sorted by increasing
position number; therefore the relative distance
between adjacent reads is encoded rather than their
absolute positions. These relative addresses corre-
spond in general to significantly smaller integer
values than the absolute addresses, especially for

long chromosomes or reads with high-coverage. The
chromosome, strand integer values, number of mis-
matches, and the read length (only for Dataset 3),
were encoded using Elias Gamma codes.
3. Relative Elias Gamma Indexed (REG Indexed): We
again assume that the reads can be ordered in any
way in order to achieve better compression results.
We group all of the reads for each chromosome
together, then group reads for each strand together
within a chromosome, and further group them for
the number of mismatches they contain. Within each
bin of (chromosome, strand, number of mismatches),
we then encode the relative distances as stated above.
Because the reads are grouped by chromosome,
strand, and number of mismatches, there is no need
to encode that information for each read. Instead,
those values are stored along with a count of the
number of reads for that group in a header structure.
Thus, except for the additional read length informa-
tion for Dataset 3, only the relative distances between
the reads are encoded using Elias Gamma.
4. Monotone Value (MOV): Like the EG Relative
encoding above, we reorder the reads for Monotone
Value encoding according to chromosome and posi-
tion. However, we use MOV codes for the absolute
locations as the positions are now in increasing
order.
5. Huffman: We can use the start positions (or rela-
tive starts, denoted RHuffman) to compute a Huff-
man tree which we use to encode. The resulting size
encoding with this method also includes storing the
Huffman tree, which is needed for decoding.

Table 4 shows that significant compression of the loca-
tion information is achieved for all three data sets. The
REG Indexed encoding was best for all data sets. Slightly
better compression can be obtained on Dataset 1 by only
using unique positions in the chromosome, and encoding
the count of the number of occurences, (unique relative
Elias Gamma encoding), which might be expected from
the highly clustered and repetitive nature of the data
(data not shown). While the Relative Huffman coding
(RHuffman) performs the best compression on the actual
start position integers, the other columns of the location
must also be stored, making this method worse than the
REG Indexed method. On Dataset 1, the size of the
alphabet being encoded (the possible relative start dis-
tances) is small, due to the extreme sparseness of the
data. Huffman coding is known to be less efficient on
this type of data. As the size of the alphabet increases,
Huffman coding performs better relative to the run
length encoding methods (Dataset 2 has the largest
alphabet to use for building the Huffman tree, and has
the largest gain in performance relative to the other

Table 4 Compression Algorithm Results on Three High-
Throughput Data Sets

Dataset 1 Dataset 2 Dataset 3

Standalone Methods

Read Length 6,439,584 1,697,990 59,267,219

Chromosome 31,576,860 9,997,062 31,118,531

Strand 6,439,584 1,697,990 31,118,531

Mismatches 12,382,598 2,499,664 55,624,291

Total 50,399,042 14,194,716 117,861,353

Start Location

MOV† 121,565,953 44,200,254 787,554,494

EG† 236,691,716 86,701,276 1,543,990,407

REG† 10,745,562 26,180,752 76,430,489

Huffman 91,019,189 82,444,521 1,324,964,740

RHuffman 10,311,095 19,066,500 65,905,674

Best Standalone 60,710,137 33,261,216 183,767,027

Combined Methods

(C,S,M) Lookup 64,424,309 33,809,380 158,272,463

REG Indexed† 12,133,110 32,342,080 144,975,985

Mismatches

Nucleotide 13,917,023 1,307,870 53,441,350

From Start 30,028,807 4,177,576 159,433,004

From End 32,671,455 2,333,372 153,865,294

Total Start 43,945,830 5,485,446 212,874,354

Total End 46,588,478 3,641,242 207,306,644

Combined† 44,033,309 3,757,400 186,298,126

Best Compression 56,078,940 35,983,322 390,541,330

GenCompress 56,166,419 36,099,480 390,541,330

Daily et al. BMC Bioinformatics 2010, 11:514
http://www.biomedcentral.com/1471-2105/11/514

Page 7 of 12

methods). The high compression of almost 25 fold of
data for the human genome sequencing project (Dataset
3) is very encouraging as these are some of the largest
data sets being generated. This data set corresponds to
much of the data being generated by the 1000 genomes
project. The ChIP-Seq data (Dataset 2) has the lowest
compression fold of the three data sets, yet even so Table
4 shows that the total encoding of the data achieves over
an order of magnitude reduction in size, significantly
better than gzip.

Encoding of Mismatch Information
The mismatch information for a mapped read consists
of the positions of one or two mismatches located
somewhere along the read and the nucleotide value
(A, C, G, T) for the mismatch. The flat file format for
mismatch information has one read per line; the line is
blank if no mismatches otherwise it contains a comma
separated list of mismatches (e.g. 19A,22C for two
mismatches).
The sequence mismatches can be encoded in multiple

ways. One possibility is to encode the position of the
mismatch directly from the start of the read. However,
the mismatches have a clear tendency to occur towards
the end of the read as illustrated in Figure 1, so measur-
ing the mismatch from the end of the read can reduce
the number of bits to encode the position (i.e. a mis-
match at position 24 of a read of length 25 would be
measured as 1). For both strategies, the position is
encoded using Elias Gamma codes.
The nucleotide substituted at a particular position

must also be encoded; the straightforward naïve
approach is to map them to integers (A to 1, C to 2,
etc.). This can be optimized by ordering the nucleotides
by their frequency of occurrence, so the most frequent
substitution maps to the lowest integer. In both cases,
the value is encoded using Elias Gamma codes.
We also tried another strategy where the position and

nucleotide substitution are combined together into a
single value. The combination are ordered by frequency
and then encoded using Elias Gamma codes. This tech-
nique may possibly be effective if there is a large num-
ber of duplicate mismatches across all the reads.
We investigated all of these strategies and the results

can be seen in Table 4. For each data set, a different
method ended up having the best compression.

Final Encoding
With the location and mismatch information combined
together, we have a final encoding for a representative
set of short read sequence data produced by HTS tech-
nologies. Using encoding techniques that consider the
inherent structure of sequence data consistently perform
well for all the data sets we tested. For our test data

sets, it is interesting to note the size ratios for encoding
the location information versus the mismatches. For
data set 1, the mismatches clearly dominate the total
compression size while the location information is very
small due to the clustered nature of the reads on the
genome. On the other hand, data set 2 has much fewer
mismatches and the read locations are sparsely distribu-
ted across the genome, so the location information
dominates the total compression size. Data set 3 is
balanced between the two because it has full coverage of
the genome. For data sets 1 and 3 which have a large
number of mismatches, using dbSNP data as reference
variation data may offer the opportunity for further
compression.

Implementation
We have implemented a subset of the encoding techni-
ques describe in this article into a software package called
GenCompress. The implementation is primarily based on
the Relative Elias Gamma Indexed (REG Indexed) encod-
ing for the location information and the Combined
encoding for the mismatch information because they
offer the all around compression. Currently, the quality
scores are not yet encoded, and the decoded data recapi-
tulates only the location and mismatch information.
GenCompress performs two efficient passes on each
dataset obtaining statistics on the mismatches during the
first pass prior to actual encoding on the second pass.
A more advanced data structure is currently being devel-
oped to avoid these two passes. However, this implemen-
tation allows for stream processing with minimal
memory requirements. GenCompress is currently only
compatible with output of the bowtie short-read aligner.
A future implementation of a decoder will use the bowtie
libraries to obtain the actual genomic sequences in the
decoded output, and a framework exists for supporting
multiple aligner suites.
Table 5 provides a comparison of the compression

sizes and ratios for the three data sets for the best theo-
retical algorithm, our GenCompress implementation and
the general purpose programs of gzip, bzip2 and 7zip.
Data sizes for the raw sequence, uniform flat file format,
and the output file from the bowtie alignment program
are repeated from Table 3; and the compression ratios
for each method is shown with respect to the different
data formats. The bowtie alignment program produces
additional data beyond just location and mismatch
information, so that data is separated and compressed
with 7zip. For GenCompress and the theoretical algo-
rithm, the compression ratio of “Bowtie” is just for the
location and mismatch information, while the “Bowtie+”
ratio also includes the additional 7zip compressed data.
For the gzip, bizp2 and 7zip, the “Bowtie” results are for
the full bowtie alignment output file.

Daily et al. BMC Bioinformatics 2010, 11:514
http://www.biomedcentral.com/1471-2105/11/514

Page 8 of 12

Table 5 indicates the results are somewhat mixed. For
data set 1, the general purpose programs get a better
compression than GenCompress for the raw sequence
and the uniform flat file format. The number of mis-
matches dominates data set 2, so novel methods to
more efficiently encode those mismatches would be use-
ful. However, GenCompress is equivalent and up to 3×
better then the general purpose programs for data sets 2
and 3. Interestingly in all cases, GenCompress does the
best compression for the bowtie alignment data which is
significant because that data ends up being larger than
the original raw sequence reads by 2-3×.

Table 6 compares the timing results for compression
and decompression of the data sets for GenCompress
and the general purpose programs. GenCompress uses
REG Indexed and combined mismatches encoding
mismatches which corresponds to the compression
results in Table 5, and the general purpose programs
were invoked using default settings. We performed the
timing of compression and decompression ten times on
each dataset per method, and Table 6 provides the aver-
age timing for those ten runs. The hardware we use is a
Dell T7550 with two quad core Intel Xeon E5450, 24 GB
of RAM and four 146 GB SAS drives configured as RAID
1. The timing results show that both GenCompress and
gzip are consistently faster than bzip2 and 7zip.

Conclusions
We have presented a set of data structures and com-
pression algorithms for high-throughput sequencing
data. We have transformed the nucleotide sequences
into location and mismatch information through a map-
ping procedure to a reference genome, then applied
fixed codes to encode that location and mismatch infor-
mation in an efficient manner. We note that the map-
ping procedure does not need to be precise and find the
correct position in the genome. We require only that a
position is found because we use it only for the purpose
of compressing and later decompressing the sequence.
In fact, any arbitrary genome sequence can be used for
mapping the reads, but it is likely that the genome
which most closely matches the organism for the read
data will provide the best performance. The methodol-
ogy we have proposed is general, and we have illustrated
its effectiveness on a representative set of HTS data.
Results show that some of the information in the HTS
data can be compressed by a factor of 10 or more. The
proposed algorithms are comparable or slightly better
than the best general compression algorithms such as
bzip2 and 7zip, but those programs require a much
greater processing time compared to our algorithms.

Table 5 Comparison of Compression Results

Dataset 1 Dataset 2 Dataset 3

Original Data Sizes

Raw Sequence 1,030,333,440 353,181,920 8,869,613,392

Uniform 912,352,288 252,540,968 4,946,059,912

Bowtie 3,145,664,248 902,954,872 19,475,952,512

Bowtie Extra Fields
(7zip)

36,306,064 93,238,688 778,347,264

Best Compression 56,078,940 35,983,322 390,541,330

Raw Sequence 18 10 23

Uniform 16 7 13

Bowtie 56 25 49

Bowtie+ 34 7 17

GenCompress 56,166,419 36,099,480 390,541,330

Raw Sequence 18 9 23

Uniform 16 7 13

Bowtie 56 25 49

Bowtie+ 34 7 17

gzip

Raw Sequence 41,378,624 95,688,992 618,818,824

24 3 14

Uniform 42,918,256 54,762,528 603,836,784

21 4 8

Bowtie 459,640,264 236,156,432 1,640,587,416

7 4 12

bzip2

Raw Sequence 42,233,336 94,030,320 955,061,616

24 3 9

Uniform 36,400,576 54,656,000 649,419,632

25 4 7

Bowtie 250,373,616 171,835,792 1,609,317,768

13 5 12

7zip

Raw Sequence 30,651,664 83,319,584 411,811,520

33 4 21

Uniform 27,852,952 34,482,312 283,490,928

33 7 17

Bowtie 247,481,992 183,522,960 1,254,167,144

13 5 16

Table 6 Comparison of Compression and Decompression
Timing

Dataset 1 Dataset 2 Dataset 3

Compression (sec)

GenCompress 20 5 111

gzip 10 13 70

bzip2 78 20 422

7zip 107 77 447

Decompression (sec)

GenCompress 2 1 15

gzip 2 1 13

bzip2 7 4 53

7zip 4 2 21

Daily et al. BMC Bioinformatics 2010, 11:514
http://www.biomedcentral.com/1471-2105/11/514

Page 9 of 12

The term “post-genomic era” has become somewhat
fashionable, it is clear that the genomic era is far from
over, and may in fact be only at an early stage of develop-
ment. With the advent of HTS technology and increas-
ingly new experimental protocols for using the
technology, the sequence databases are only expected to
continue rising in size. While the local storage of this
data is not especially burdensome with inexpensive hard
drives of greater than 1 TB available, sharing and trans-
ferring the data is time-consuming because network
speeds are an order of magnitude slower than disk. Take
for example the Yan Huang genome [5] we used for
Dataset 3; the total amount of read data generated by the
project is almost 120 GB. Uncompressed, a typical uni-
versity network can upload this data in 120 hours at
roughly 1 GB per hour; that may actually take a couple of
weeks of real work time by a researcher handling the
upload process, and that doesn’t even consider restarts
that may occur due to network outages or that the net-
work has to be shared with many other users. Extrapolat-
ing the compression results we obtained for chromosome
22 would reduce the total read data down to 5 GB, rea-
sonable to upload in a single day. The situation becomes
worse for downloading as numerous researchers may
attempt to download the data, quickly saturating the ser-
ver network bandwidth; advanced compression techni-
ques such as we have introduced would allow more
researchers to obtain the data in a timely fashion.
It is not likely that exactly one encoding strategy will

be optimal for all types of HTS data. Different experi-
mental conditions are going to generate various data
distributions whereby one encoding strategy can be
more effective than another. For encoding the location
information, we have shown that two different strategies
are effective. Furthermore in this article, we have only
been able to consider Solexa data. It would be worth-
while to investigate both 454 data with its wide range of
read lengths and SOLiD with its color space representa-
tion as the sequencing error distributions may be differ-
ent for these technologies, thus affecting the mismatch
locations and the strategy used for encoding them. It
isn’t necessary that a single strategy be picked; our soft-
ware computes the respective compression metrics for
all of the strategies, so they can be compared and the
best one chosen automatically. We have focused exclu-
sively on the nucleotide sequence data of the short
reads from HTS; however, there is additional data that
is also present including read identifiers and quality
scores. A complete solution would require that this
information also be encoded so that it can be recovered
later. The quality scores are needed as they are used by
assembly programs for determining the statistical signifi-
cance of the final assembled sequence, and also by pro-
grams that call SNPs and other structural variations.

Read identifiers are often just sequential numbers with
little meaning, but they do become needed for cross
referencing when mate paired reads are sequenced.
However in both cases, the encoding techniques
described in this paper can be applied to significantly
reduce the size of this data.
The techniques we have described assume that the

reads have already been mapped to a reference genome
before they are encoded, and in our analysis we have
only discussed encoding mapped reads. However in all
sequencing experiments, there are reads which do not
map to the reference genome. In many cases, these
reads are contaminants such as bacteria and might not
be relevant for the particular experiment, but in other
cases those reads may be important if it is a de novo
sequencing project or the reference genome is unfin-
ished or has poor coverage. The simple solution is to
use a generic compression program like gzip for those
unmapped reads. Another possibility is to use multiple
reference genomes. If those reads map successfully to
other genomes, then equivalent levels of compression
can be expected with just a small amount of header
overhead required to reference the genome used.
It is also common for reads to map to multiple places

on the reference genome. Our current implementation
just takes the first best match, so additional optimization
might be worthwhile to investigate. For example, if a
read maps to one location which is very far from other
reads, but has another mapping which is close to other
reads, it would be advantageous to take the latter map-
ping because its relative starting position should be a
smaller number. Optimizing all of the reads in this fash-
ion is possibly a very difficult problem though because
minimizing the distances between reads corresponds to
doing clustering, and many optimal clustering algo-
rithms are known to be NP-complete. However, approx-
imate clustering which can be done with an online
algorithm may offer some advantage. There is other
data beside the read starting location which can be con-
sidered including the chromosome, strand and number
of mismatches. The REG Indexed strategy performed
consistently well, so taking alternative mappings for
reads might create denser data bins which can be effec-
tively encoded with fewer bits. Future research needs to
consider whether the extra computational expense of
performing these optimizations are a worthy compro-
mise to the compression gains.
One might consider that because there is a lot of

repetitive sequence within genomes, that an optimal
encoding strategy like Huffman codes directly on the
sequence itself would work very well. We investigated
this possibility by encoding k-mers for data sets 1 and 2,
the results can be seen in Table 7. The results seem to
bear this out. Data set 1 which is a mapping experiment

Daily et al. BMC Bioinformatics 2010, 11:514
http://www.biomedcentral.com/1471-2105/11/514

Page 10 of 12

of retrotransposons would be expected to have consider-
able repetitive sequence, and Huffman coding does a
very good job of compressing this data set. It does better
than our algorithms and the general purpose compres-
sion programs. On the other hand, Huffman coding gets
worse compression than our algorithms for data set 2.
Similar encoding ideas have been applied by us to a

related but different problem, the storage of entire gen-
omes [19]. Results indicate that almost 1000-fold com-
pression can be obtained for the human genome by
encoding only the variations of the genome against a
reference genome and a reference SNP database. These
techniques might be further improved if we consider that
most SNPs in the human genome are biallelic (exist in
only one of two forms), are clustered together into haplo-
types, and shared among many individuals. Instead of
storing the variation for each read, a SNP map might be
utilized which summarizes the variation across all of the
reads or subsets of reads. Implementation requires care-
ful consideration of the difference between true SNPs
and sequencing errors, and whether an existing database
like dbSNP is appropriate to use as reference (as it will
not include mismatches due to sequencing errors) or a
custom constructed database would work better.

Acknowledgements
Work supported by NIH Biomedical Informatics Training grant (LM-07443-01),
and NSF grants IIS 0513376 and CCF-0725370 to PB. SC is supported in part
by NIH P50 GM76516.

Author details
1Department of Computer Science, University of California Irvine, Irvine, CA
92697 USA. 2Institute for Genomics and Bioinformatics, University of
California Irvine, Irvine, CA 92697 USA. 3Department of Mathematics,
University of California Irvine, Irvine, CA 92697 USA. 4Center for Complex
Biological Systems, University of California Irvine, Irvine, CA 92697 USA.
5Department of Biological Chemistry, University of California Irvine, Irvine, CA
92697 USA.

Authors’ contributions
PB conceived the study and some of the basic compression algorithms. PB
and XX coordinated and supervised the study. PB, KD, SC, and PR drafted
the manuscript. KD and PR wrote the software and performed the
simulations. All authors analyzed the results and read and approved the final
manuscript.

Received: 28 December 2009 Accepted: 14 October 2010
Published: 14 October 2010

References
1. International Human Genome Sequencing Consortium: Initial sequencing

and analysis of the human genome. Nature 2001, 409:860-921.
2. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N,

Huang J, Kirkness EF, Denisov G, Lin Y, MacDonald JR, Pang AWC, Shago M,
Stockwell TB, Tsiamouri A, Bafna V, Bansal V, Kravitz SA, Busam DA,
Beeson KY, McIntosh TC, Remington KA, Abril JF, Gill J, Borman J,
Rogers YH, Frazier ME, Scherer SW, Strausberg RL, Venter JC: The diploid
genome sequence of an individual human. PLoS Biol 2007, 5(10):e254.

3. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W,
Chen YJ, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL,
Irzyk GP, Lupski JR, Chinault C, Song XZ, Liu Y, Yuan Y, Nazareth L, Qin X,
Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM: The
complete genome of an individual by massively parallel DNA
sequencing. Nature 2008, 452(7189):872-6.

4. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J,
Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J,
Carter RJ, Cheetham RK, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA,
Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS,
Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, Rasolonjatovo IMJ,
Reed MT, Rigatti R, Rodighiero C, Ross MT, Sabot A, Sankar SV, Scally A,
Schroth GP, Smith ME, Smith VP, Spiridou A, Torrance PE, Tzonev SS,
Vermaas EH, Walter K, Wu X, Zhang L, Alam MD, Anastasi C, Aniebo IC,
Bailey DMD, Bancarz IR, Banerjee S, Barbour SG, Baybayan PA, Benoit VA,
Benson KF, Bevis C, Black PJ, Boodhun A, Brennan JS, Bridgham JA,
Brown RC, Brown AA, Buermann DH, Bundu AA, Burrows JC, Carter NP,
Castillo N, Catenazzi MCE, Chang S, Cooley RN, Crake NR, Dada OO,
Diakoumakos KD, Dominguez-Fernandez B, Earnshaw DJ, Egbujor UC,
Elmore DW, Etchin SS, Ewan MR, Fedurco M, Fraser LJ, Fajardo KVF,
Furey WS, George D, Gietzen KJ, Goddard CP, Golda GS, Granieri PA,
Green DE, Gustafson DL, Hansen NF, Harnish K, Haudenschild CD, Heyer NI,
Hims MM, Ho JT, Horgan AM, Hoschler K, Hurwitz S, Ivanov DV,
Johnson MQ, James T, Jones TAH, Kang GD, Kerelska TH, Kersey AD,
Khrebtukova I, Kindwall AP, Kingsbury Z, Kokko-Gonzales PI, Kumar A,
Laurent MA, Lawley CT, Lee SE, Lee X, Liao AK, Loch JA, Lok M, Luo S,
Mammen RM, Martin JW, Mccauley PG, Mcnitt P, Mehta P, Moon KW,
Mullens JW, Newington T, Ning Z, Ng BL, Novo SM, O’neill MJ, Osborne MA,
Osnowski A, Ostadan O, Paraschos LL, Pickering L, Pike AC, Pike AC,
Pinkard DC, Pliskin DP, Podhasky J, Quijano VJ, Raczy C, Rae VH,
Rawlings SR, Rodriguez AC, Roe PM, Rogers J, Bacigalupo MCR, Romanov N,
Romieu A, Roth RK, Rourke NJ, Ruediger ST, Rusman E, Sanches-Kuiper RM,
Schenker MR, Seoane JM, Shaw RJ, Shiver MK, Short SW, Sizto NL, Sluis JP,
Smith MA, Sohna JES, Spence EJ, Stevens K, Sutton N, Szajkowski L,
Tregidgo CL, Turcatti G, Vandevondele S, Verhovsky Y, Virk SM, Wakelin S,
Walcott GC, Wang J, Worsley GJ, Yan J, Yau L, Zuerlein M, Rogers J,
Mullikin JC, Hurles ME, Mccooke NJ, West JS, Oaks FL, Lundberg PL,
Klenerman D, Durbin R, Smith AJ: Accurate whole human genome
sequencing using reversible terminator chemistry. Nature 2008,
456(7218):53-59.

5. Wang J, Wang W, Li R, Li Y, Tian G, Goodman L, Fan W, Zhang J, Li J,
Zhang J, Guo Y, Feng B, Li H, Lu Y, Fang X, Liang H, Du Z, Li D, Zhao Y,
Hu Y, Yang Z, Zheng H, Hellmann I, Inouye M, Pool J, Yi X, Zhao J, Duan J,
Zhou Y, Qin J, Ma L, Li G, Yang Z, Zhang G, Yang B, Yu C, Liang F, Li W,
Li S, Li D, Ni P, Ruan J, Li Q, Zhu H, Liu D, Lu Z, Li N, Guo G, Zhang J, Ye J,
Fang L, Hao Q, Chen Q, Liang Y, Su Y, San A, Ping C, Yang S, Chen F, Li L,
Zhou K, Zheng H, Ren Y, Yang L, Gao Y, Yang G, Li Z, Feng X, Kristiansen K,
Wong GKS, Nielsen R, Durbin R, Bolund L, Zhang X, Li S, Yang H, Wang J:
The diploid genome sequence of an Asian individual. Nature 2008,
456(7218):60-5.

6. Kaiser J: A Plan to Capture Human diversity in 1000 Genomes. Science
2008, 319:395.

Table 7 Sequence encoding using Huffman Trees

Dataset k Sequence bits Tree bits Total bits

1 1 31,674,558 40 31,674,598

2 28,340,409 324 28,340,733

3 27,708,166 1,951 27,710,117

4 22,565,417 10,471 22,575,888

5 19,126,288 53,178 19,179,466

6 21,056,658 256,303 21,312,961

2 1 94,680,841 52 94,680,893

2 81,954,644 549 81,955,193

3 81,038,827 4,303 81,043,130

4 80,554,549 27,458 80,582,007

5 83,570,470 148,206 83,718,676

6 79,977,714 622,784 80,600,498

The data is preprocessed by counting the frequencies of k-mers, and this is
used to build a Huffman tree. The tree is used to encode the data, and the
number of bits needed to store the data as well as the tree are given.

Daily et al. BMC Bioinformatics 2010, 11:514
http://www.biomedcentral.com/1471-2105/11/514

Page 11 of 12

7. Service RF: The Race for the $1000 Genome. Science 2006, 311:1544-1546.
8. Mardis ER: ChIP-seq: welcome to the new frontier. Nature Methods 2007,

4:613-614.
9. Hall N: Advanced Sequencing Technologies and their Wider Impact in

Microbiology. The Journal of Experimental Biology 2007, 209:1518-1525.
10. Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling

variants using mapping quality scores. Genome Res 2008, 18(11):1851-8.
11. Lin H, Zhang Z, Zhang MQ, Ma B, Li M: ZOOM! Zillions of oligos mapped.

Bioinformatics 2008, 24(21):2431-7.
12. Langmead B, Trapnell C, Pop M, Salzberg S: Ultrafast and memory-efficient

alignment of short DNA sequences to the human genome. Genome
Biology 2009, 10(3):R25[http://genomebiology.com/2009/10/3/R25].

13. Grumbach S, Tahi F: A new challenge for compression algorithms:
Genetic sequences. Information Processing & Management 1994,
30(6):875-886.

14. Matsumoto T, Sadakane K, Imai H: Biological sequence compression
algorithms. Genome informatics 2000, 11:43-52.

15. Apostolico A, Lonardi S: Off-Line Compression by Greedy Textual
Substitution. Proceedings of the IEEE 2000, 88(11):1733-1744.

16. Chen X, Li M, Ma B, Tromp J: DNACompress: fast and effective DNA
sequence compression. Bioinformatics 2002, 18:1696-1698.

17. Manzini G, Rastero M: A simple and fast DNA compressor. Softw Pract
Exper 2004, 34(14):1397-1411.

18. White WTJ, Hendy MD: Compressing DNA sequence databases with coil.
BMC Bioinformatics 2008, 9:242.

19. Christley S, Lu Y, Li C, Xie X: Human Genomes as Email Attachments.
Bioinformatics 2008, 25:274-275.

20. The gzip home page. [http://www.gzip.org].
21. McEliece RJ: The Theory of Information and Coding. Reading, MA:

Addison-Wesley Publishing Company 1977.
22. Cover TM, Thomas JA: Elements of Information Theory. New York: John

Wiley 1991.
23. Golomb SW: Run-Length Encodings. IEEE Transactions on Information

Theory 1965, 12(3):399-401.
24. Elias P: Universal Codeword Sets and Representations of the Integers.

IEEE Transactions on Information Theory 1975, 21(2):194-203.
25. Baldi P, Benz RW, Hirschberg D, Swamidass S: Lossless Compression of

Chemical Fingerprints Using Integer Entropy Codes Improves Storage
and Retrieval. Journal of Chemical Information and Modeling 2007,
47(6):2098-2109.

26. Huffman D: A method for the construction of minimum redundancy
codes. Proc IRE 1952, 40:1098-1101.

27. Moffat A, Stuiver L: Binary Interpolative Coding for Effective Index
Compression. Inf Retr 2000, 3:25-47.

28. Moffat A, Anh V: Binary codes for locally homogeneous sequences.
Information Processing Letters 2006, 99:175-180.

29. Hirschberg DS, Baldi P: Effective Compression of Monotone and Quasi-
Monotone Sequences of Integers. Proceedings of the 2008 Data
Compression Conference (DCC 08) Los Alamitos, CA: IEEE Computer Society
Press 2008.

30. Rissanen JJ, Langdonr GG: Arithmetic coding. IBM Journal of Research and
Development 1979, 23(2):149-162.

31. Witten IH, Neal RM, Clearly JG: Arithmetic Coding for Data Compression.
Communications of the ACM 1987, 30(6):520-540.

32. Kao MY: Encyclopedia of Algorithms. Secaucus, NJ, USA: Springer-Verlag
New York, Inc 2007.

33. Witten I, Moffat A, Cell TB: Managing Gigabytes: Compressing and
Indexing Documents and Images. Morgan Kauffman, Second 1999.

34. Johnson DS, Mortazavi A, Myers RM, Wold B: Genome-wide mapping of in
vivo protein-DNA interactions. Science 2007, 316:1497-1502.

35. Li G, Ma L, Song C, Yang Z, Wang X, Huang H, Li Y, Li R, Zhang X, Yang H,
Wang J, Wang J: The YH database: the first Asian diploid genome
database. Nucleic Acids Res 2009, 37:D1025-8.

doi:10.1186/1471-2105-11-514
Cite this article as: Daily et al.: Data structures and compression
algorithms for high-throughput sequencing technologies. BMC
Bioinformatics 2010 11:514.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Daily et al. BMC Bioinformatics 2010, 11:514
http://www.biomedcentral.com/1471-2105/11/514

Page 12 of 12

http://genomebiology.com/2009/10/3/R25
http://www.gzip.org

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	General Approach
	Specific Encoding Strategies
	Fixed Codes: Golomb and Golomb-Rice Codes
	Elias Codes
	Monotone Value Coding (MOV Coding)
	Variable Codes
	Byte Arithmetic

	Results and Discussion
	Data Extraction and Statistics
	Dataset 1
	Dataset 2
	Dataset 3

	Encoding of Location Information
	Encoding of Mismatch Information
	Final Encoding
	Implementation

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	References

