
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Interplay between Floer homology and Hamiltonian dynamic

Permalink
https://escholarship.org/uc/item/6ts3z0p4

Author
Banik, Mita

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6ts3z0p4
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
SANTA CRUZ

INTERPLAY BETWEEN FLOER HOMOLOGY AND
HAMILTONIAN DYNAMICS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

MATHEMATICS

by

Mita Banik

September 2022

The Dissertation of Mita Banik
is approved:

Professor Viktor Ginzburg, Chair

Professor Jie Qing

Professor Basak Gürel

Peter Biehl
Vice Provost and Dean of Graduate Studies



Copyright © by

Mita Banik

2022



Contents

Abstract v

Acknowledgments vi

1 Introduction 1

2 Dynamics characterization of complex projective spaces 9
2.1 Floer homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Novikov rings and quantum homology . . . . . . . . . . . 14
2.1.2 Pair-of-pants product . . . . . . . . . . . . . . . . . . . . . 16

2.2 Pseudo-rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Chance-McDuff conjecture and pseudo-rotations . . . . . . 19
2.2.2 Toric pseudo-rotations . . . . . . . . . . . . . . . . . . . . 21

2.3 Extremal partitions . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Definiton and examples . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Extremal partitions and zero energy solutions . . . . . . . 26

2.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Topological entropy 34
3.1 Floer theoretic setup . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Filtered floer homology . . . . . . . . . . . . . . . . . . . . 38
3.2 Persistent homology and barcodes . . . . . . . . . . . . . . . . . . 39

3.2.1 Barcode entropy . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Crofton’s inequality . . . . . . . . . . . . . . . . . . . . . 44

3.3 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Toric domains and equivariant capacities 50
4.1 Symplectic capacities . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Equivariant capacities . . . . . . . . . . . . . . . . . . . . 53
4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Ellipsoids . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Toric domains . . . . . . . . . . . . . . . . . . . . . . . . . 56

iii



4.3 Pseudo-rotations in the Reeb case . . . . . . . . . . . . . . . . . . 58
4.4 Examples of toric domains with non-zero spectral gaps at infinity 62

Bibliography 66

iv



Abstract

Interplay between Floer homology and Hamiltonian dynamics

by

Mita Banik

In this thesis we primarily focus on the interplay between Floer homology and

Hamiltonian dynamics. This has been an active area of research since the late

1980s with the introduction of pseudo-holomorphic curves by Gromov and Floer

homology by Floer. The Floer Homology has been a very powerful tool to study

dynamics on a symplectic or contact manifold and the subject is very broad.

Here primarily we concentrate on three aspects of the connections of Floer

Homology and dynamics. Firstly, the connection between Hamiltonian dynamics

and symplectic topology of the underlying manifold by studying special kind of

Hamiltonians such as toric pseudo-rotations. We further study two Floer-theoretic

invariants of symplectic and contact dynamics: “barcode entropy” and symplectic

capacities. We use these invariants to understand various Hamiltonian dynamics

behaviours such as pseudo-rotations (Hamiltonians with finitely many orbits) or

other extremes (Hamiltonians with infinitely many orbits or very chaotic dynam-

ics).

v



Acknowledgments

Firstly, I would like to thank my advisor, Viktor Ginzburg for his patience, gen-

erosity, and wisdom, and for supplying many valuable suggestions in guiding me

throughout my PhD duration and the course of writing of this thesis. It is diffi-

cult to imagine a better advisor than Viktor, and this thesis would not be possible

without him.

I have been fortunate to attend some great courses at UCSC offered by Dan

Cristofaro-Gardiner, Jie Qing and Richard Montgomery; I would like to thank

them for the wisdom and mathematical insights they have imparted through stim-

ulating conversations both in the classroom as well outside of it. Additionally, I

am grateful to Dan Cristofaro-Gardiner for his support and valuable mathematical

inputs, as well as partial funding support from his NSF grant during the research

period of this thesis.

I would also like to thank Jie Qing and Basak Gürel for serving in my commit-

tee. From attending my oral exam and providing perspective on mathematics, to

generously offering their insights into any problems I have discussed with them, I

count myself lucky to have had their assistance throughout my degree.

It takes a village to raise a PhD, but I’d like to thank some of my friends and

peers by name - Yufei, Alejandro, Prateek, Erman, Elijah and Cisil - for all the

mathematical support and camaraderie I have found in their warm company in

these years.

Lastly, I would like to thank my partner Arghya, my parents and my brother

for their continuous support and encouragement throughout my graduate studies.

vi



Chapter 1

Introduction

In this thesis we primarily concentrate on the interplay between Floer homol-

ogy and Hamiltonian dynamics. This has been an active area of research since

the late 1980s with the introduction of pseudo-holomorphic curves by Gromov and

Floer homology by Floer. The Floer Homology has been a very powerful tool to

study dynamics on a symplectic or contact manifold and the subject is very broad.

Here primarily we focus on three aspects of the connections of Floer Homology

and dynamics.

In the first chapter we delve into the connection between a special type of

pseudo-rotations called toric pseudo-rotations and the topology of a symplectic

manifold. Pseudo-rotations, roughly speaking, are Hamiltonian diffeomorphisms

with finite and minimal number of periodic orbits. Pseudo-rotations have a special

place in dynamics and several properties of their dynamics have been studied by

Floer theoretic methods. Notable examples include Bramham’s results on C0-

rigidity of pseudo-rotations with Lioville rotation number, [Bra15] and Ginzburg-

Gürel’s results on C0-rigidity of pseudo-rotations of CPn with Lioville mean index

vector, [GG18].
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Recently Çineli-Ginzburg-Gürel [ÇGG20] and independently Skelukhin [She20]

studied connections of dynamics to symplectic topology. Before their work the

connection was mostly explored in one direction: symplectic topology to dynamics.

One of the interesting problems studied in this direction is the Conley Conjecture.

The Conley Conjecture roughly states that for many symplectic manifolds every

Hamiltonian diffeomorphism has infinitely many periodic orbits. The conjecture

has been proved in many cases and the state of the art result is that it holds for M

unless there exists A ∈ π2(M) such that ⟨ω,A⟩ > 0 and ⟨c1(TM), A⟩ > 0, [GG15;

GG19] that it holds for M unless there exists . In particular, the conjecture holds

whenever M is symplectically aspherical or negative monotone or ω |π2(M)= 0.

Çineli-Ginzburg-Gürel, [ÇGG20], showed that a symplectic manifold admitting a

Hamiltonian pseudo-rotation must have non-vanishing Gromov-Witten invariants

and moreover its quantum product is deformed. Further they and Shelukhin,

[She20], independently showed that if M admits a pseudo-rotation, then N ≤ 2n,

where N is the minimal Chern number.

In [Ban20], we studied the connection between toric pseudo-rotations and the

quantum homology of the underlying manifold. By definition, a pseudo-rotation

φ is toric if at one of its fixed points the eigen-values of Dφ satisfy no resonance

relations, beyond the conditions that they come in complex conjugation pairs.

For instance, pseudo-rotations obtained by the conjugation method from toric

symplectic manifolds are toric. While the toric condition might appear generic,

in fact the very existence of a toric pseudo-rotation φ imposes strong restrictions

on the symplectic topology of the manifold M. (For example, when φ is a toric

true rotation, essentially by definition M is toric). In [Ban20], we showed that

a closed weakly-monotone symplectic manifold M2n, which has minimal Chern

number N ≤ n+ 1 and admits a Hamiltonian toric pseudo-rotation, is necessarily
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monotone and its quantum homology is isomorphic to that of CPn.

In Chapter 1, we recall the definition of Hamiltonian Floer Homology - one of

the essential tools to prove the above result which would also be an important tool

for the later chapters. Then we recall the construction of the pair-of-pants product

and the quantum product on Floer Homology and the quantum homology respec-

tively and finally, the PSS isomorphism between them. Another key ingredient

in proving the main result above and relating the dynamics of pseudo-rotations

is the machinery of extremal partitions. This is a combinatorial tool that allows

us to detect non-vanishing Gromov-Witten invariants by studying energy zero

regular pseudo-holomorphic curves. In the final section of this chapter we prove

the main result, [Ban20], from the previous paragraph. Furthermore using the

results of Ohta-Ono, [OO96; OO97], we prove that if a closed symplectic manifold

M has dimension 4 with minimal Chern number N ≥ n + 1 and admits a toric

pseudo-rotation, then M is symplectomorphic to CPn.

In the second chapter we study another aspect of the Floer homology and

its impact on dynamics. Using Hamiltonian Floer theory we define a numerical

invariant, called “barcode entropy”, for compactly supported Hamiltonian diffeo-

morphisms of open symplectic manifolds convex at infinity. Furthermore we prove

an inequality between barcode entropy and topological entropy, the latter coming

from dynamics of the Hamiltonian diffeomorphism of the manifolds. Our main re-

sult in this chapter is closely related to the Çineli-Ginzburg-Gürel’s, see [ÇGG21],

recent results on connecting topological entropy with barcode entropy on closed

symplectic manifolds. However, here we mainly concentrate on open symplectic

manifolds and developing the machinery for studying barcode entropy for these

manifolds.
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Topological entropy is studied widely in the context of dynamical systems.

It measures the evolution of distinguishable orbits over time, thereby providing

an idea of how complex the orbit structure of a system is. Dynamical systems

with positive topological entropy are often considered chaotic, such as the Smale

horseshoe map. The horseshoe map is a hallmark of chaos: it has infinitely

many periodic orbits with arbitrarily long periods and the number of periodic

orbits grows exponentially with the period. Dynamical systems with this kind

of behaviour are rather ubiquitous in nature and topological entropy is an useful

machinery to detect this phenomenon.

Barcode entropy can be thought of as a Floer theoretic counterpart of topolog-

ical entropy which computes the rate of exponential growth under iterations of the

number of bars (of length greater than ϵ > 0) in the barcode of the Floer complex.

The construction relies on persistent homology, which is a well-established tool in

itself. It is primarily used in topological data analysis to understand the structure

of high-dimensional data in real world applications, see [Car09]. A close analog

of persistent homology in understanding topology of a manifold is Morse theory,

where we detect changes of homology as we vary the level sets, giving us a lower

bound on the number of critical points of a function on a manifold.

The crux of this chapter lies in defining the barcode entropy for a compactly-

supported Hamiltonian on an open symplectic manifold convex at infinity. Our

definition is motivated and very similar to that [ÇGG21] in the closed case where

the authors connect barcode entropy to topological entropy. Defining Floer Ho-

mology on open symplectic manifold encounters many problems, the foremost

being that the compactness for the Gromov’s pseudo-holomorphic curves is not

satisfied. We therefore consider open symplectic manifolds convex at infinity which

gives us enough control on the periodic orbits beyond a compact set and the com-
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pactness condition is satisfied. Another important part of the barcode entropy

definition is that the barcode entropy is also well-defined for degenerate Hamilto-

nians. The numbers of bars in a barcode is finite only when the Hamiltonian is

non-degenerate. In the degenerate case, the barcode entropy is well-defined since

we work here with bars of length greater than ϵ > 0 (and this is always finite).

Summarizing, in the second chapter we briefly recall the setup of Floer homol-

ogy for open symplectic manifolds. Using the natural action filtration we define

the filtration on the Floer complex. Then we count the number of bars (of length

greater than ϵ > 0), denoted by bϵ(φk), of the k-th iteration of the Floer com-

plex where φ is a compactly suported Hamiltonian diffeomorphism. The barcode

entropy is defined as

ℏ(φ) := lim
ϵ↘0

ℏϵ(φ) ∈ [0, ∞],

where

ℏϵ(φ) := lim sup
k→∞

log+ bϵ

(
φk
)

k
.

To connect the barcode entropy with the topological entropy we construct tomo-

graphs, following [ÇGG20], and use the Crofton’s inequality to prove the final

result:

ℏ(φ) ≤ htop(φ),

where htop(φ) is the topological entropy of the Hamiltonian diffeomorphism φ.

In the third chapter we explore the connection of Floer theory with dynamics

of Reeb flows on hypersurfaces on R2n. Another computational tool we use here

to study dynamics is symplectic capacities. These invariants have been used to

prove C0-rigidity of flows, multiplicity results (the minimal number of periodic

orbits of Reeb flows on a hypersurface) and finding obstructions to embedding
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in symplectic geometry, see e.g., [HZ90; EH90; GH18; Cri19] for various types

of symplectic capacities and their applications. In this chapter we focus on how

the existence of pseudo-rotations on hypersurfaces on R2n impact these capacities.

Here by pseudo-rotations we refer to Reeb flows with finite and the hypothetically

minimal number of periodic orbits.

There are various types of symplectic capacities, e.g., the Gromov width, the

Hofer-Zehnder capacity, the ECH capacity in four dimensions, the Ekeland-Hofer

capacity, the Gutt-Hutchings capacity. Symplectic capacities have been useful not

only to answer important questions in dynamics, see [HZ90; CH16; CHP19], but

also in addressing many embedding questions such as symplectically embedding a

ball into an ellipsoid or an ellipsoid into a polydisk, etc. Here we primarily focus

on the Gutt-Hutchings capacities, [GH18]. These capacities are motivated by the

ECH capacities in four dimensions and they were defined in order to generalise

the ECH capacities to higher dimensions. These capacities are conjecturally equal

to the historical Ekeland-Hofer capacities, [EH90], and they agree with them in

simple cases such as the ellipsoids, polydisks etc. The Ekeland-Hofer capacities

are very interesting in their own rights. They provide a sequence of numbers asso-

ciated to a convex hypersurface and sometimes even provide sharper obstructions

to embeddings than the ECH capcities in four dimensions, e.g., to embedding

of a four-dimensional polydisk into an ellipsoid. However, the Ekeland-Hofer ca-

pacities have been incredibly difficult to compute beyond the simple cases. The

Gutt-Hutchings capacities however have been calculated for a wider class such as

concave and convex toric domains in R2n.

Another sequence of invariants which appear to agree with the Gutt-Hutchings

capacities are the spectral invariants defined by Ginzburg-Gürel, [GG20], using

equivariant Floer theory. These invariants were used to prove multiplicity results
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for convex hypersurfaces on R2n. For example, they showed that for a closed

contact type, dynamically convex hypersurface in R2n there are least r simple

closed characteristics x1, . . . , xr where r = ⌈n/2⌉ + 1 in general and r = n in

the non-degenerate case, see also [Lon02; LZ02]. Using their index-recurrence

relations (this is a huge field of study by itself, see e.g. [Lon02; LZ02; DLW16])

we prove in this chapter that in the non-degenerate case, when the contact form

α is dynamically convex and has exactly n Reeb orbits, then

cki+n−1 − cki
→ 0,

for some sequence ki → ∞, where ck’s are spectral invariants. Computationally,

it was known that the above behavior failed only for polydisks, using the Ekeland-

Hofer capacities. The primary reason is that the these capacities/spectral invari-

ants previously couldn’t be calculated for any other examples. However, using

such invariants, various characterizations of the Besse property of contact man-

ifolds have been obtained. A closed connected contact manifold is called Besse

when all its Reeb orbits are closed, and in such a case the Reeb orbits admit a

common period by a theorem of Wadsley, [Wad75]. For a convex hypersurface, it

roughly says that n-consecutive spectral numbers are same (i.e, ci(Σ) = cn−i+1(Σ))

for some i ∈ N if and only if Σ is Besse and ci(Σ) is a common period of all its

Reeb orbits; see [CM20; GGM21].

In this chapter we show computationally that for some hypersurfaces such as

concave and convex toric domains when they are not ellipsoids the above behav-

ior fails. Just to emphasize we only computed some examples of concave and

convex toric domains and presented them in this chapter and the list of exam-

ples is in no way expansive of all the convex/concave toric domains. We use the
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Gutt-Hutchings capacities on convex/concave toric domains to demonstrate this

behavior. We can do this mainly because the Gutt-Hutchings capacities for such

domains are combinatorial in nature and therefore somewhat computationally

tractable. Such computations were not previously possible using similar numbers

such as the Ginzburg-Gürel’s spectral invariants or the Ekeland-Hofer capacities.

The behaviour is rather surprising since the dynamics on the convex and concave

toric domains is rather simple and in fact the underlying Reeb flows are integrable

systems.
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Chapter 2

Dynamics characterization of

complex projective spaces

In this chapter we study the connection between the dynamics of toric pseudo-

rotations and the quantum homology of complex projective spaces. We recall from

the introduction that pseudo-rotations are Hamiltonian diffeomorphisms with fi-

nite and minimal possible number of periodic orbits. The connections between

their dynamics and the topology of the underlying symplectic manifold have been

recently studied in [GG18; ÇGG20; She20], to name a few.

By definition, a pseudo-rotation φ is toric if at one of its fixed points the

eigenvalue of Dφ satisfy no resonance relations beyond the conditions that they

come in complex conjugation pairs. To be more precise, the requirement is that

the semi-simple part of Dφ topologically generates an n-dimensional torus in

Sp(2n). For instance, pseudo-rotations obtained by the conjugation method from

toric symplectic manifolds are toric, see [AK70; LS22].

Let us outline the sections of this chapter briefly. In the first section we lay

the foundations for Floer theoretic tools, recalling Novikov rings and quantum

9



homology, the pair-of-pants product for Floer homology. Then we discuss pseudo-

rotations and toric rotations with the known examples from the literature. In the

following section we introduce our main combinatorial tool: extremal partitions,

[ÇGG20], and recall their applications in finding regular energy-zero curves. In

the final section we prove our main theorem 2.2.9 which says that a closed weakly-

monotone symplectic manifold M2n, which has minimal Chern number N ≥ n+1

and admits a Hamiltonian toric pseudo-rotation is necessarily monotone and its

quantum homology is isomorphic to the quantum homology of CP n, [Ban20].

2.1 Floer homology

In this section firstly we discuss the common conventions and notations in this

chapter and then we further discuss the Floer theoretic setup necessary for our

purposes, closely following to that in [ÇGG20] and [Ban20].

Notations and Convention

In this chapter, we will assume that (M2n, ω) is a closed symplectic manifold

which is weakly monotone in the sense of [HS95]. The minimal Chern number,

i.e., the positive generator of the group ⟨c1(TM), π2(M)⟩ ⊂ Z, is denoted by N .

When this group is trivial, N = ∞.

A Hamiltonian diffeomorphism is the time-one map φ = φH of the time-

dependent flow φt
H of a 1-periodic in time Hamiltonian H : S1 × M → R, where

S1 = R/Z. The Hamiltonian vector field XH of H is defined by iXH
ω = −dH.

For any two time-one maps φH and φK , their composition φH ◦ φK is the time-

one map for the Hamiltonian H#K. In fact, the time-one maps form the group

Ham(M,ω) of Hamiltonian diffeomorphisms of M .

10



In this chapter we will only focus on contractible periodic orbits for a Hamil-

tonian diffeomorphism. Let x : S1 → M be a contractible loop. A capping of x

is an equivalence class of maps A : D2 → M such that A |S1= x. Two cappings

A and A′ of x are equivalent if the integrals of ω and c1(TM) over the sphere

obtained by attaching A to A′ are equal to zero. We will equip a closed curve

x by an equivalence class of cappings and the corresponding capped closed curve

will be denoted x̄ throughout this chapter.

The action of a Hamiltonian H on a capped closed curve x̄ = (x,A) is

AH(x̄) = −
∫

A
ω +

∫
S1
Ht(x(t)) dt.

The critical points of action functional AH on the space of closed curves with

capping are exactly the capped one-periodic orbits of XH .

An one-periodic orbit x of H is said to be non-degenerate if the linearized

return map dφH : Tx(0)M → Tx(0)M has no eigenvalues equal to one. A Hamil-

tonian H is non-degenerate if all its one-periodic orbits are non-degenerate. For

any non-degenerate capped period orbit x̄, we can associate an integer called the

Conley–Zehnder index. The Conley–Zehnder index µ(x̄) ∈ Z is defined, up to

a sign, the rigorous definition can be found in [Sal99; SZ92] . Throughout this

chapter, aligning to common conventions, we would normalize µ so that µ(x̄) = n

when x is a non-degenerate maximum (with trivial capping) of an autonomous

Hamiltonian with small Hessian. For an uncapped non-degenerate periodic orbit

x, the Conley–Zehnder index µ(x) is well defined as an element of Z/2NZ.

For a capped periodic orbit x̄, even if it is degenerate we can associate a real

number so called mean index µ̂(x̄) ∈ R; see [Lon02; SZ92] for a rigorous definition

and properties of the mean index. Roughly, it measures the rotation number of
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certain (Krein-positive) eigenvalues along the flow of the capped periodic orbit

x̄. The mean index µ̂(x̄) depends continuously on the Hamiltonian H and the

periodic orbit x̄. Furthermore for a non-degenerate periodic orbit x̄, we have

∣∣∣µ̂(x̄) − µ(x̄)
∣∣∣ ≤ n.

Similar to the Conley-Zehnder index, the mean index µ̂(x) is also well defined as

an element of S1
2N := R/2NZ, however non-degeneracy is not a prior requirement

here.

We can also define k-periodic orbits of a Hamiltonian diffeomorphism φH .

These points are in one-to-one correspondence with the k-periodic orbits of H,

i.e., of the time-dependent flow φt
H . A k-periodic orbit of H is called simple or

prime if it is not iterated. For a capped orbit x̄, we denote its k-th iteration as

x̄k. The capping of x̄k is obtained from the capping of x̄ by taking its k-fold cover

branched at the origin. The action functional is homogeneous with respect to

iteration: AH♮k

(
x̄k
)

= kAH(x̄).

A k-periodic orbit x of H is said to be non-degenerate if the linearized return

map dφk
H : Tx(0)M → Tx(0)M has no eigenvalues equal to one. We call x strongly

non-degenerate if all iterates xk are non-degenerate. A Hamiltonian H is strongly

non-degenerate if all periodic orbits of H (of all periods) are non-degenerate.

Similar to the action functional, the mean index is homogeneous with respect to

iteration: µ̂
(
x̄k
)

= kµ̂(x̄).

Floer Theoretic Setup

Now, we are finally in a position to establish the setup of the Floer Homology.

Let φ = φH be a non-degenerate Hamiltonian diffeomorphism, viewed as an ele-

12



ment of the universal cover H̃am(M). The Floer complex and homology of φ will

be denoted by CF∗(φ) and HF∗(φ); see, e.g., [HS95; MS12; Sal99], and we will

also fix our a ground ring F to be Z2 in this chapter. The Floer complex CF∗(φ)

is generated by the capped one-periodic orbits x̄ of H. It is a filtered complex

induced by the natural action filtration of H and graded by the Conley–Zehnder

index.

The Floer trajectories are defined as follows. Let J = Jt be a time-dependent

almost complex structure on M . A Floer anti-gradient trajectory u is a map

u : R × S1 → M satisfying the equation

∂u

∂s
+ Jt(u)∂u

∂t
= −∇Ht(u).

Here the gradient is taken with respect to the time-dependent Riemannian metric

ω(·, Jt·). Denote by u(s) the curve u(s, ·).

The energy of u is defined as

E(u) =
∫ ∞

−∞

∥∥∥∥∥∂u∂s
∥∥∥∥∥

2

L2(S1)
ds =

∫ ∞

−∞

∫
S1

∥∥∥∥∥∂u∂t − J∇H(u)
∥∥∥∥∥

2

dt ds.

We say that u is asymptotic to x± ∈ P1(H) as s → ±∞, or connecting x− and

x+, if lims→±∞ u(s) = x±. In this case

AH(x−) − AH(x+) = E(u).

We denote the space of Floer trajectories connecting x− and x+, with the topology

of uniform C∞-convergence on compact sets, by MH(x−, x+, J). This space car-

ries a natural R-action (τ · u)(t, s) = u(t, s+ τ) and we denote by M̂H(x−, x+, J)

the quotient MH(x−, x+, J)/R.

13



2.1.1 Novikov rings and quantum homology

In this chapter we will use the following formulation for Novikov rings (here

we take only contractible orbits into account). In chapter 3 we slightly modify

the definition of Novikov rings when we also work in the general case for non-

contractible orbits.

Let H∗(M) := H∗(M,Z2) and HS
2 (M,Z) be the group of integral spheri-

cal homology classes, i.e. the image of the Hurewicz homomorphism π2(M) →

H2(M,Z). Set

π̄2(M) = HS
2 (M,Z)/ ∼,

where by definition A ∼ B iff ω(A) = ω(B) and c1(A) = c1(B). Here ω(−) and

c1(−) are the integrals of ω and c1(TM) over the spherical homology classes.

Denote Γ = [ω](HS
2 (M,Z)) ⊂ R the subgroup of periods of the symplectic

form on M on spherical homology classes. Let s and q be formal variables. Define

the field KΓ whose elements are generalized Laurent series in s of the following

form:

KΓ = {
∑
θ∈Γ

zθs
θ, zθ ∈ Z2, #{θ > c | zθ ̸= 0} < ∞, ∀c ∈ R }. (2.1.1)

Define a graded ring ΛΓ := KΓ[q, q−1] by setting the degree of s to be zero and

the degree of q to be 2N . (Note that the latter convention differs from that in

[EP08] where the deg of q is 2.)

The (small)quantum homology of M is denoted by HQ∗(M). This is a graded

algebra over the Novikov ring ΛΓ ([EP08]) and as a ΛΓ-module HQ∗(M) =

H∗(M) ⊗Z2 ΛΓ. The grading on HQ∗(M) is given by the gradings on H∗(M)

and ΛΓ :
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deg(a⊗ zθs
θqm) = deg(a) + 2Nm.

The algebra HQ∗(M) is equipped with quantum product: given a ∈ Hk(M)

and b ∈ Hl(M), their quantum product is a class a ∗ b ∈ HQk+l−2n(M) such that

a ∗ b =
∑

A∈π̄2(M)
(a ∗ b)A ⊗ s−ω(A)q−c1(A)/N

where (a ∗ b)A ∈ Hk+l−2n+2c1(A)(M) is defined by

(a ∗ b)A ◦ c = GW Z2
A (a, b, c) ,∀c ∈ H∗(M).

Here ◦ is the intersection product and GW Z2
A (a, b, c) denotes the Gromov-Witten

invariant.

The Floer complex and the Floer homology are denoted by CF∗(φ,ΛΓ) and

HF∗(φ,ΛΓ) respectively. Let P̃ (H) be the free Z2-module generated by the set of

capped one-periodic orbits x̃ of H. Consider the free ΛΓ-module P̃ (H)⊗Z2 ΛΓ and

let R be a ΛΓ-sub module of P̃ (H)⊗Z2 ΛΓ generated by A#x̃⊗1−x̃⊗sω(A)qc1(A)/N ,

A ∈ π̄2(M).

The grading on ΛΓ and the grading µ on P̃ (H) given by the Conley-Zehnder

index give rise to the grading

deg(x̃⊗ zθs
θqm) = µ(x̃) + 2Nm.

Then deg(A#x̃⊗1) = deg(x̃⊗sω(A)qc1(A)/N) = µ(A#x̃). Hence we get the graded

ΛΓ-module CF∗(φ,ΛΓ) := P̃ (H) ⊗Z2 ΛΓ/R and the Floer homology HF∗(φ,ΛΓ)

is defined as usual. We will denote the Novikov ring by Λ and HF∗(φ,ΛΓ) by

HF∗(φ), suppressing the Novikov ring into the notation.

We have the canonical isomorphism between Floer Homology and quantum
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Homology

HF∗(φ) ∼= HQ∗(M)[−n], (2.1.2)

[Sal99; MS12] and references therein.

2.1.2 Pair-of-pants product

For a pair of Hamiltonian diffeomorphisms φ and ψ we have the pair-of-pants

product

HF∗(φ) ⊗ HF∗(ψ) → HF∗(φψ). (2.1.3)

This product, which we denote by ∗, has degree −n, i.e., |α∗β| = |α|+ |β|−n.

We refer the reader to the standard literature in [AS10; MS12; PSS96] for details

on the pair-of-pants product. On the level of Floer complexes, when φ = φ1 . . . φr,

the product

CF∗(φ1) ⊗ . . .⊗ CF∗(φr) → CF∗(φ)

“counts” the number of solutions u : Σ → M of a Floer equation (suitably defined

and when certain regularity conditions are satisfied), where the domain Σ is the

(r + 1)-punctured sphere; see e.g., [AS10; MS12].

Under the identification 2.1.2, the pair-of-pants product turns into the quan-

tum product on HQ∗(M) (recall from previous section and the PSS isomorphism

[PSS96]), which will also be denoted by ∗. The pair-of-pants product 2.1.3 can be

generalized by setting φk = φk1 . . . φkr where k1 + . . .+ kr = k,

HF∗
(
φk1

)
⊗ . . .⊗ HF∗

(
φkr

)
→ HF∗

(
φk
)
,

and this product can be identified with the quantum product on HQ∗(M). Then
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we have the degree formula,

|α1| + . . .+ |αr| − |α1 ∗ . . . ∗ αr| = (r − 1)n.

For Hamiltonians H and K and their composition defined by H#K, and

corresponding capped orbits x̄, ȳ and z̄ then,

AH(x̄) + AK(ȳ) − AH#K(z̄) = E(u) where E(u) :=
∫

Σ
||∂su||2dsdt.

where u : Σ → M is the corresponding pair-of-pants curve (see picture below).

x̄

ȳ

z̄

Here the domain Σ of a pair-of-pants curve u is treated as a double cover of the

cylinder, branching at one point. The domain Σ naturally carries the “coordi-

nates” (s, t) lifted from the cylinder, which are true coordinates on the three open

half-cylindrical parts of the domain (as represented in the figure above), and on

each of these parts the pair-of-pants curve u satisfies the Floer equation for the

corresponding Hamiltonian H or K or H#K.

2.2 Pseudo-rotations

Definition 2.2.1 (Pseudo-rotations). A Hamiltonian diffeomorphism φ : M →

M is called a pseudo-rotation (over F) if φ is strongly non-degenerate, and the

differential in the Floer complex of φk over F vanishes for all k ∈ N.
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The differential in the Floer complex depends on the almost complex structure,

but it is easy to see that its vanishing is a well-defined condition. We can else ob-

serve that for a pseudo-rotation all periodic orbits are automatically one-periodic

and that an iterate of a pseudo-rotation is again a pseudo-rotation.

Remark 2.2.2. The definition here 2.2.1 is slightly different from the one in

[GG18] although it captures the same phenomenon we discussed above. The reader

can refer to [GG18] for detailed discussions of various definitions of a pseudo-

rotation.

Now, we present two well-known examples of pseudo-rotations from the liter-

ature. In fact, all known examples of pseudo-rotations are of these types.

Example 2.2.3. The first example of a pseudo-rotation is when the Hamiltonian

diffeomorphism φ is strongly non-degenerate and all its periodic orbits are elliptic.

Example 2.2.4. The second example is when the Hamiltonian diffeomorphism φ

is a true rotation. The Hamiltonian diffeomorphism φ is a true rotation, when,

by definition φ generates a compact (but not finite) subgroup G of Ham(M).

Strongly non-degenerate true rotations are pseudo-rotations. For examples of

pseudo-rotations which are obtained from such true rotations by the conjugation

method, the reader can refer to [AK70; FK04; LS22]. In fact, pseudo-rotations

obtained using conjugation method from toric symplectic manifolds are toric.

The crux of this section is that when φ is a pseudo-rotation we have natural

isomorphisms between the Floer complex, the Floer homology and the quantum

homology,

CF∗(φ) ∼= HF∗(φ) ∼= HQ∗(M)[−n].
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Any iterate φk is then also a pseudo-rotation, and hence

CF∗
(
φk
) ∼= HF∗

(
φk
) ∼= HQ∗(M)[−n]. (2.2.1)

This follows by the PSS isomorphism [PSS96] between Floer and quantum

homology and by the definition of pseudo-rotations 2.2.1. We will be using these

isomorphisms ubiquitously in this chapter to obtain some of the main results.

2.2.1 Chance-McDuff conjecture and pseudo-rotations

The Conley Conjecture, roughly states that for many symplectic manifolds

every Hamiltonian diffeomorphism has infinitely many periodic orbits. The con-

jecture has been proved in many cases and currently it holds for M unless there

exists A ∈ π2(M) such that ⟨ω,A⟩ > 0 and ⟨c1(TM), A⟩ > 0 [GG15; GG19].

In particular, the conjecture holds whenever M is symplectically aspherical or

negative monotone or ω |π2(M)= 0.

An example when the Conley conjecture fails is : an irrational rotation of S2

about the z-axis has only two periodic points: these are the fixed points – the

Poles. Along the similar lines, the conjecture fails for some other manifolds such

as complex projective spaces, Grassmannians and flag manifolds, symplectic toric

manifolds, and most of the coadjoint orbits of compact Lie groups. In fact, the

conjecture fails for all manifolds admitting a Hamiltonian circle (or torus) action

with isolated fixed points – a generic element of the circle or the torus gives rise to

a Hamiltonian diffeomorphism with finitely many periodic points. In particular,

pseudo-rotations are counterexamples to the Conley conjecture and, in fact, they

are the only known counterexamples.

Delving further into the failure of Conley conjecture there is an outstanding
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problem, referred to as the Chance McDuff Conjecture. It states that whenever

the Conley Conjecture fails some Gromov-Witten invariants are non-zero.

It is well-known that there is a strong connection between the symplectic

topology of M (e.g., Gromov–Witten invariants or the quantum product) and the

dynamics (periodic orbits) of Hamiltonian diffeomorphisms φ of M . However, this

connection is explored and usually utilized only in one direction: from symplectic

topology to dynamics. The opposite direction was first explored in the work

[McD90], where it was shown that a symplectic manifold admitting a Hamiltonian

circle action is uniruled, i.e., has a non-zero Gromov–Witten invariant with one

of the homology classes being the point class.

Recently variants of Chance-McDuff conjecture for pseudo-rotations have been

proved by Çineli-Ginzburg-Gürel [ÇGG20] and independently by Egor Shelukhin

[She20]. Namely, [ÇGG20] showed that, under certain additional conditions when

a manifold M admits a pseudo-rotation then it must have deformed quantum

product and in particular, some non-vanishing Gromov-Witten invariants. Their

assumptions were that N > 1, where N is the minimal Chern number. We recall

their main result here, for the additional conditions in theorem 2.2.5 below the

reader can refer to [ÇGG20] .

To state the theorem 2.2.5, let us recall some terminologies. We denote by

HQ∗(M) the (small) quantum homology of M , by ∗ the quantum product, and

by |α| the degree of an element α ∈ HQ∗(M). The quantum product is said to be

deformed if it is not equal to the intersection product.

Theorem 2.2.5. [ÇGG20] Assume that M2n admits a pseudo-rotation φ with an

elliptic fixed point x which, for some r ∈ N, satisfies certain conditions. Then
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there exist r elements α1, . . . , αr in HQ∗(M) of even degree such that

α1 ∗ . . . ∗ αr ̸= 0 (2.2.2)

and

|αi| ̸≡ 2n mod 2N for all i = 1, . . . , r. (2.2.3)

Further Çineli-Ginzburg-Gürel and indepedently Shelukhin showed the follow-

ing topological constraint when a symplectic manifold admits a pseudo-rotation.

Proposition 2.2.6. [ÇGG20; She20] Assume that M2n admits a pseudo-rotation.

Then N ≤ 2n, where N is the minimal Chern number of M .

2.2.2 Toric pseudo-rotations

Now, we introduce toric pseudo-rotations, a special kind of pseudo-rotations.

By definition, a pseudo-rotation φ is toric if at one of its fixed points the eigen-

value of Dφ satisfy no resonance relations beyond the conditions that they come

in complex conjugation pairs. To be more precise, the requirement is that the

semi-simple part of Dφ topologically generates an n-dimensional torus in Sp(2n).

For instance, pseudo-rotations obtained by the conjugation method from toric

symplectic manifolds are toric. While the toric condition appear generic, in fact

the very existence of a toric pseudo-rotation φ imposes strong restrictions on the

symplectic topology of the manifold M . (For example, when φ is a toric true

rotation, essentially by definition M is toric). One case when the conditions of

Theorem 2.2.5 are automatically satisfied is when a pseudo-rotation behaves as a

generic element of the Hamiltonian Tn-action on a toric symplectic 2n-dimensional

manifold.
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Definition 2.2.7 (Toric Pseudo-rotations). A pseudo-rotation φ of a closed sym-

plectic manifold M2n is said to be toric if it has a fixed point x with dim Γ(x) = n.

Note that in this case x is necessarily strongly non-degenerate. Here Γ(x) is

a compact abelian subgroup of Sp(2n) generated by P̃ , where P̃ is isospectral to

P = Dφ|x and semisimple. Alternatively, since P is elliptic all the eigenvalues

of P lie on the unit circle. Let θ⃗ := (θ1, ..., θn) ∈ Tn be the collection of Krein-

positive eigenvalues of P , ref. [SZ92]. The group Γ(x) is naturally isomorphic to

the subgroup of the torus Tn generated by θ⃗. Then the above definition of being

a toric pseudo-rotation is equivalent to that the sequence {kθ⃗ | k ∈ N} ⊂ Tn is

dense in Tn.

Since conditions of 2.2.5 are automatically satisfied for a toric pseudo-rotation,

we have the following corollary.

Corollary 2.2.8. [ÇGG20] Assume that M admits a toric pseudo-rotation and

N > 1. Then the quantum product is deformed and, in particular, some Gromov–

Witten invariants of M are non-zero.

In fact, the corollary can be further refined as follows.

Theorem 2.2.9. [ÇGG20] Assume that M2n admits a toric pseudo-rotation.

Then, for every r ≥ 1, there exists α ∈ HQ2n−2(M) such that αr ̸= 0.

The proof of these results rely on the combinatorial tool called extremal par-

tition which help us identifying zero-energy Floer solutions that are regular. We

will explore these details in the next section. Before that we recall an example

due to [ÇGG20] which motivates the definition of extremal partitions.

Example 2.2.10 (Irrational Rotations of S2). Let φ be a Hamiltonian diffeomor-

phism on S2 which is an irrational rotation by an angle θ, where π < θ < 2π.
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Since the rotation is irrational, the only one-periodic orbits of φ are the North

and South Poles, denoted as y and x respectively. In fact, upon iterations the only

k-periodic points are xk and yk. To compute the Conley-Zehnder indices, we fix

the trivial cappings on the periodic orbits. In that case, µ(x) = −1, µ(y) = 1 and

µ
(
x2
)

= −3. (this is due to the choice of angle θ). Under the identification of the

Floer complex CF∗(φ) with the quantum homology HQ∗

(
S2
)
[−1] (ref 2.2.1), the

North Pole y represents the fundamental class [S2], the South Pole x represents

[pt] and [x2] represents the class q[S2]. Here q is the generator of the Novikov ring

with degree |q| = −4.

There is only one pair-of-paints curve from (x, x) to x2 – the constant curve.

Indeed, later we will see that this a zero-index, regular pair-of-pants curve, there-

fore we have,

x ∗ x = x2 + . . . ,

where ∗ is the pair-of-pants product and the dots stand for capped periodic orbits

with action strictly smaller than the action of x2. On the quantum side, then we

have that

[pt] ∗ [pt] = q[S2] + . . . ̸= 0.

This implies that the quantum product is indeed deformed (i.e, it does not agree

with the intersection product). Otherwise, we will have [pt] ∗ [pt] = 0. This also

implies that are non-vanishing Gromov-Witten invariants, i.e,

GWA

(
[pt], [pt], [pt]

)
̸= 0,

where A is the “positive” generator of H2(S2).

Remark 2.2.11. In this example, 1 + 1 = 2 is an extremal partition of length 2,
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with

µ(x) + µ(x) − µ(x2) = −1 − 1 − (−3) = 1 = (2 − 1)1 = 1

the pair-of-pants curve from (x, x) to x2 is the constant curve which is regular.

As we shall see below, the definition of extremal partition is directly motivated by

observing the deformed quantum product in this example.

2.3 Extremal partitions

In this section we will introduce a combinatorial tool called extremal partition

central to the proof of the main results in the following section.

2.3.1 Definiton and examples

We fix a path Φ ∈ S̃p(2n). For the sake of simplicity, we will assume that

Φ is elliptic and strongly non-degenerate, i.e., the iterate end-point Φk(1) is non-

degenerate for all k ∈ N.

Definition 2.3.1 (Extremal Partitions). A partition k1 + . . .+ kr = k, ki ∈ N, of

length r is said to be extremal (with respect to Φ) if

µ
(
Φk1

)
+ . . .+ µ

(
Φkr

)
− µ

(
Φk
)

= (r − 1)n. (2.3.1)

In the equation 2.3.1 the right hand side can be thought as defect of the left

hand side expression. For Φi ∈ S̃p(2n), we assume that all Φi and their partial

products Φ1 · . . . · Φℓ, ℓ ≤ r, are non-degenerate. The defect is defined as,

D = D(Φ1, . . . ,Φr) :=
∑

µ
(
Φi

)
− µ

(
Φ1 · . . . · Φr

)
. (2.3.2)
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Then, as is shown in [DDP08], that,

|D| ≤ (r − 1)n.

Just a quick note, the non-degeneracy requirement is essential for the inequality

above. The extremal partitions maximize the defect; and therefore they are called

extremal.

Another crucial point to note that the defect D depends only on the end-points

Φ1(1), . . . ,Φr(1). Therefore recalling the notation from the definition 2.2.9 of a

toric pseudo-rotation we set Γ(Φ) := Γ
(
Φ(1)

)
, where Γ(Φ) is a compact abelian

subbgroup of Sp(2n) generated by Φ̃, where Φ̃ is isopectral to Φ and semisimple.

We can observe that composing any one of the maps Φi with a loop changes

both terms in 2.3.2 by the mean index of the loop. As a result, the defect D

only depends on the end-points Φ1(1), . . . ,Φr(1). More particularly, the chosen

partition and the end point Φ(1) determines the left-hand side of the equation

2.3.1.

Now we present two examples, these examples would serve as important mo-

tivations for portions of our proof of the main theorem 2.4.1.

Example 2.3.2. Assume that Φ ∈ S̃p(2n) is the direct sum of n counterclockwise

rotations exp
(
2π

√
−1λit

)
, where λi > 0 are small and t ∈ [0, 1]. Then µ

(
Φr
)

= n

as long as rmax λi < 1, and 1 + . . . + 1 = r is an extremal partition with 2.3.1

taking form rn− (r − 1)n = n.

Example 2.3.3. Assume that Φ ∈ S̃p(2n) is toric, i.e., dim Γ(Φ) = n. Then Φ

admits extremal partitions of arbitrarily large length. We use this notion in the

last section, it is not hard to see this as a consequence of our previous example

2.3.2.
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2.3.2 Extremal partitions and zero energy solutions

In this section we will recall the relation between extremal partitions and zero

index energy-zero regular curves. These energy-zero regular curves would help us

identify non-vanishing Gromov Witten invariants in theorem 2.4.1, connecting the

dynamics of toric-pseudo rotations with the topology of the underlying manifold.

Recall that the pair-of-pants product

CF∗(φ1) ⊗ . . .⊗ CF∗(φr) → CF∗(φ)

“counts” the number of solutions u : Σ → M of the Floer equation, with the

domain Σ being the (r + 1)-punctured sphere; see, e.g., [AS10; MS12].

Let M be the moduli space of such solutions u “connecting” x̄1, . . . , x̄r to ȳ.

Here x̄i is a capped one-periodic orbits of φi and ȳ a capped periodic orbit of φ.

The virtual dimension of M is

dim M = µ(x̄1) + . . .+ µ(xr) − µ(ȳ) − (r − 1)n. (2.3.3)

Assume that this dimension is zero and the regularity conditions are met. Then

the coefficient of ȳ in the product x̄1 ∗ . . .∗ x̄r equals to the number of points (here,

we take F = Z2) in the moduli space of such u “connecting” x̄1, . . . , x̄r to ȳ.

Even when the regularity condition is not satisfied, we necessarily have

AH1(x̄1) + . . .+ AHr(x̄r) − AH(ȳ) = E(u) ≥ 0,
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where E(u) is the energy of u, see [AS10]. The energy E(u) = 0 if and only if

AH1(x̄1) + . . .+ AHr(x̄r) = AH(ȳ). (2.3.4)

This happens, if and only if x1(0) = . . . = xr(0). Without loss of generality we

may assume that the orbits xi are constant; see, e.g., [Gin10, Sect. 2.3]. Then

2.3.4 holds if and only E(u) = 0 and if and only if u is a constant map. Now, we

move onto the discussion of the regularity of these energy zero curves with zero

index.

Regularity for zero-energy solutions

Our goal in this section is to show that zero index, zero energy pair-of-pants

solutions of the Floer equation are automatically regular. Let x be a strongly

non-degenerate one-periodic orbit of H and let u : Σ → M be a zero index and

energy-zero solution asymptotic to x̄k1 . . . x̄kr and x̄k where k1 + . . . kr = k. As

discussed above, we may assume that x is a constant one-periodic orbit, and hence

u is a constant solution of the Floer equation mapping Σ to x.

Recall that the E1 is the space of W 1,p-sections of u∗TM with p > 1 and E0 is

the space of Lp-sections.

Proposition 2.3.4. [ÇGG20] Let D : E1 → E0 be the linearized Floer equation

along u. Then we have,

kerD = 0.

Here u : Σ → M be a pair-of-pants curve asymptotic to x̄k1 . . . x̄kr and x̄k where

k1 + . . . kr = k.

This proposition is quite standard and variants of this proposition for Floer
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cylinders is established in [Sal99, Sect. 2.3] and for closed holomorphic curves in

[MS12, Lemma 6.7.6].

The operator D has the form ∂̄ + S, where S is an automorphism of u∗TM ,

and is Fredholm due to the non-degeneracy assumption.

We omit the details of the proof the proposition 2.3.4 here. It can be shown

by using graph construction passing to Lagrangian Floer theory following an ar-

gument by [Sei15].

We will now employ proposition 2.3.4 to identify regular zero-energy pseudo-

holomorphic curves. Indeed, by theory of pseudo-holomorphic curves, a curve u

is regular when D is onto, i.e., cokerD = 0. The Fredholm index of the operator

D is given by 2.3.3,

dim kerD − dim cokerD = µ
(
x̄k1
)

+ . . .+ µ
(
xkr

)
− µ

(
x̄k
)

− (r − 1)n.

Thus, in our situation since kerD = 0, cokerD = 0 whenever the index of D is

zero. Therefore, the following useful result on extremal partitions can be obtained.

Corollary 2.3.5. [ÇGG20] Assume that

µ
(
x̄k1
)

+ . . .+ µ
(
xkr

)
− µ

(
x̄k
)

− (r − 1)n = 0,

i.e., k1 + . . . + kr = k is an extremal partition (see Definition 2.3.1). Then the

zero energy solution is automatically regular.

Summarizing these discussions, we have the following theorem, due to [ÇGG20],

relating the quantum product with extremal partitions.

Theorem 2.3.6. [ÇGG20] Let x̃ be a capped one-periodic orbit of a pseudo-

rotation φ, and let k = k1 + k2 + · · · + kr be an extremal partition of length r
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with respect to Φ = Dφt|x̃. Set αi = [x̃k
i ⊗ 1] ∈ HQ∗(M). Then |αi| = n+ µ(Φki)

and the following holds

α1 ∗ · · · ∗ αr ̸= 0.

In fact when Φ is toric, i.e. dim Γ(Φ) = n, then we have a extremal partition

for every r ∈ N and thus we have ubiquitous number of non-vanishing Gromov-

Witten invariants.

Lemma 2.3.7. [ÇGG20] Assume Φ is toric. Then for every r ≥ 1, there exists

an extremal partition m+m+ · · · +m = k of length r(i.e., m.r = k) such that

µ(Φm) ≡ n− 2 mod 2N

This lemma essentially proves Theorem 2.2.9 in the essence of Theorem 2.3.6.

Now we move onto the next section, where we state the main results of this

chapter connecting dynamics of a toric pseudo-rotation with the topology of its

underlying manifold.

2.4 Main results

In this section we present the proof of our main theorem where we relate the

dynamics of a toric pseudo-rotation and the quantum homology of the underlying

manifold. For the statement of the theorem, we fix the base field F = Z2 for our

coefficients.

Theorem 2.4.1. [Ban20] Assume that a weakly-monotone symplectic manifold

M2n admits a toric pseudo-rotation with minimal Chern number N ≥ n+1. Then

N = n+ 1, M is monotone and the quantum homology HQ∗(M) is isomorphic to

HQ∗(CP n).
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Remark 2.4.2. Note that N ≥ n+ 1 in all known examples of closed monotone

manifolds and CP n is the only such known manifold with N = n + 1. (How-

ever proving this in the symplectic setting for n > 2 appears to be currently out

of reach). However, in Thm 2.4.1 the manifold M is not a priori assumed to

be monotone and thus can have large N . For monotone manifolds admitting a

pseudo-rotation, N ≤ 2n ([ÇGG20], [She20]), and N ≤ n + 1 in all known ex-

amples of weakly monotone manifolds with pseudo-rotations. Thus Thm 2.4.1

establishes in particular the latter fact for toric pseudo-rotations.

In [OO96], [OO97] Ohta-Ono proved proved that the diffeomorphism type of

any closed monotone symplectic 4-manifold is CP 1 × CP 1 and CP 2#kCP 2 for

0 ≤ k ≤ 8 based on the work of McDuff [McD90] and Taubes [Tau00]. We

also have the uniqueness of monotone symplectic structures on CP 1 × CP 1 and

CP 2#kCP 2 for 0 ≤ k ≤ 8 (see the survey [Sal99]). The quantum homology

HQ∗(M) is isomorphic to HQ∗(CP n). Thus, as a consequence of our result and

the references presented above, we have the following corollary.

Corollary 2.4.3. [Ban20] Assume that a closed connected symplectic 4-manifold

with minimal Chern number N ≥ 3 admits a toric pseudo-rotation. Then M is

symplectomorphic to CP 2.

The first step in proving theorem 2.4.1 is showing the invertibility of the [pt]⊗1

class with respect to the quantum product in HQ∗(M). We begin by establishing

the following lemma.

Lemma 2.4.4. [Ban20] Let φ be a toric pseudo-rotation of M2n with minimal

Chern number N ≥ n+ 1. Then ([pt] ⊗ 1)r ̸= 0 for all r ≥ 1.

Proof. Let Φ be the linearized flow Dφt|x̃ along a capped orbit x̃ such that

dim Γ(x) = n, i.e. Γ(x) = Tn.
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When Φ(1) is semi-simple we can decompose Φ as a product ϕξ where ϕ is a

loop and ξ is a direct sum of n “short paths” t 7→ exp(π
√

−1λt) where t ∈ [0, 1)

and |λ| < 1, ref, [[GG22], Sect. 4]. We set loop(Φ) := µ̂(ϕ) where µ̂(ϕ) is the

mean index, which is twice the Maslov index of ϕ. For any iteration Φk(1) we

have µ(Φk) = k loop(Φ) + µ(ξk).

All the eigenvalues of Φ(1) are necessarily distinct and in particular Φ(1) is

semi-simple. Therefore, Φ(1)k k ∈ N is dense in Tn. For some l ∈ N, we can choose

Φ(1)l to be sum of small rotations exp(π
√

−1θi) such that θi < 0 for all i = 1, ..., n

and θi’s are very close to each other. Iterating again to bring exp(π
√

−1mθi) close

to 1 ∈ S1. The choice of “m” is such that the loop(Φm) = −2n + d (with 2N |d)

and if λi’s be the end points of the “short paths” in ξm then we have λi > 0 and

small. We have

µ(Φm) = −2n+ d+ n = −n+ d.

Also ensuring rmax|λi| < 2 we have,

µ(Φrm) = r(−2n+ d) + n.

And m+ ...+m = rm is an extremal partition since

rµ(Φm) − (r − 1)n = r(−n+ d) − (r − 1)n = r(−2n+ d) + n = µ(Φrm).

Since µ(Φm) = µ(x̃m) = −n (mod 2N) therefore for some element λ ∈ KΓ,

x̃m ⊗ λ = [pt] ⊗ 1 (since N ≥ n+ 1). Thus ([pt] ⊗ 1)r ̸= 0 by Theorem 2.3.6.

Corollary 2.4.5. [Ban20] Assume that a weakly-monotone symplectic manifold

M2n admits a toric pseudo-rotation and N ≥ n+ 1, then [pt⊗ 1] is invertible and

the [pt⊗ 1] class satisfies the following conditions:

([pt] ⊗ 1)N = [M ] ⊗ α, (2.4.1)
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where α is invertible in KΓ and deg(α) = −2Nn.

Proof. By the previous lemma we have ([pt] ⊗ 1)N ̸= 0. We have deg([pt] ⊗ 1)N

=−2n(N − 1) and since N ≥ n + 1, therefore ([pt] ⊗ 1)N = [M ] ⊗ α where

deg(α) = −2Nn. The class α is of the form (∑θ∈Γ zθs
θ)q−n. Therefore α is

invertible since KΓ is a field.

The invertibility of the [pt] ⊗ 1 class is crucial to the arguments below. By do-

ing a simple degree analysis we immediately get some obstructions to the minimal

Chern number. For the later part of the theorem invertibility gives us uniqueness

of the homology classes.

Proof of Theorem 2.4.1

Proof. Let us begin by proving that when a weakly-monotone M2n admits a toric

pseudo-rotation, then N ≤ n + 1. We recall from [ÇGG20] that when M ad-

mits a toric pseudo-rotation there is a non zero class u ∈ H2n−2(M) such that

([u] ⊗ 1)r ̸= 0 for every r ≥ 1. Since [pt] ⊗ 1 satisfies (2), ([pt] ⊗ 1) ∗ ([u] ⊗ 1) ̸= 0.

By doing degree computation we see deg(([pt] ⊗ 1) ∗ ([u] ⊗ 1)) = −2 thus if

N > n+ 1, then ([pt] ⊗ 1) ∗ ([u] ⊗ 1) = 0 which is a contradiction.

For the final part of the proof we will show that when N = n+ 1, then

dim(H2n−2i(M)) = 1 for 1 ≤ i ≤ n.

Let us first establish the result for i = n− 1.

Let u1, u2 be two non-zero classes in H2(M), consider ([pt] ⊗ 1)n−1 ∗ ([ui] ⊗ 1).

Now deg(([pt]⊗1)n−1∗([ui]⊗1)) = 2n+−2(n+1)(n−1) and ([pt]⊗1)n−1∗([ui]⊗1) ̸=
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0 since [pt] ⊗ 1 satisfies (2). Therefore ([pt] ⊗ 1)n−1 ∗ ([ui] ⊗ 1) = [M ] ⊗λi for some

invertible element λi ∈ KΓ.

Multiplying [pt]2 ⊗ 1 with both sides and using invertibility of α we obtain

[u1] ⊗ 1 = [u2] ⊗ λ−1
2 λ1. This shows the classes [u1] and [u2] are linearly depen-

dent, hence the dimension of H2(M) is 1. This also implies that dimH2(M,Z) = 1

and thus M is monotone.

Let class A0 be the obvious generator for HS
2 (M,Z). We set q′ = (s−ω(A0)q−1)

with deg(q′) = −2(n + 1) We will rename q′ by q which is the generator of the

Novikov ring and denote A⊗ α by αA for α ∈ KΓ and A ∈ H∗(M).

Now let us prove the result for i > 1. We have ui ̸= 0 with deg(ui) = 2n− 2i.

Let β be another non-zero class in H2n−2i(M), then deg([pt]i ∗β) = 2n−2i−2ni =

2n− 2i(n+ 1) and thus [pt]i ∗ β = λqiM . By similar arguments as above and us-

ing (2), β and ui are linearly dependent and hence the dimension ofH2n−2i(M) is 1.

So by above arguments it follows that HQ∗(M) is generated by u ∈ H2n−2(M).

The identity un+1 = q[M ] readily follows since deg(un+1) = −2 = −2(n+ 1) + 2n,

and the theory of extremal partition asserts the coefficient is 1. This establishes

the isomorphism with that of the quantum homology of CP n.
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Chapter 3

Topological entropy

In this chapter we will concentrate on another aspect of the interplay between

Floer homology and Hamiltonian dynamics. Following [ÇGG21], we introduce a

Floer-theoretic invariant called barcode entropy of compactly-supported Hamilto-

nian diffeomorphisms, and show that it is bounded above by topological entropy

for open symplectic manifolds convex at infinity. Our setup is quite different to

what we had encountered the last chapter. We will concentrate on a special kind

of symplectic manifolds which are not closed, namely they are convex at infinity

and we will further assume that they are either atoroidal or toroidically monotone.

To be more specific, a cohomology class ω is atorodial if and only if for every

map v : T2 → M the integral of ω over v vanishes: ⟨ω, [v]⟩ = 0. A symplectic

manifold (M,ω) is said to be toroidally monotone when for some constant λ ≥ 0

the class ω = [ω] − λc1(TM) is atoroidal. The constant λ is referred to as the

toroidal monotonicity constant. We call the positive generator NT of the group

generated by the integrals ⟨c1(TM), [v]⟩ for all tori the minimal toroidal Chern

number of M. We set NT = ∞ when this group is {0}, i.e., c1(TM) is atoroidal.

The assumption that our underlying symplectic manifold (M,ω) is convex at

34



infinity means that there is a compact domain M1 ⊂ M such that

(M \M1, ω) ∼= (Σ × (1,∞), d(r2α))

where (Σ = ∂M1, α) is a closed contact manifold and r denotes the coordinate on

[1,∞). Then one works with Hamiltonians Ht on M that are of the form

Ht(x, r) = ar2 + b,

for large r. Here and throughout this chapter we assume to be a > 0 and small.

We make this assumption so that the Hamiltonian flow φ1
H does not have any

fixed points outside the compact domain M1. Also, for such Hamiltonians the r-

component of a solution of the Floer equation is necessarily subharmonic (i.e. the

maximum principle is satisfied, [Wen13]), and this prevents such solutions from

escaping to infinity.

The main result of this chapter is the following: let φ : M → M be a compactly

supported Hamiltonian diffeomorphism on an open symplectic manifold convex at

infinity, then

ℏ(φ) ≤ htop(φ).

Here ℏ(φ) is the barcode entropy defined below and htop(φ) is the topological

entropy.

Let us now briefly outline the sections in this chapter. In the first section we

recall the construction of Floer homology from the first chapter with some slight

modifications of the Novikov ring. We then introduce the filtered-version of Floer

homology that would be necessary to define the barcode entropy. In the second

section we briefly recall the notion of persistent homology and the necessary tools
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for defining barcodes on the filtered Floer complex and finally define barcode

entropy. In this section we further setup the construction of the tomographs and

recall Crofton’s inequality: necessary tools for proving our main theorem 3.3.1.

In the last section we prove our main theorem 3.3.1 connecting barcode entropy

with the topological entropy.

3.1 Floer theoretic setup

In this section we recall the setup of Hamiltonian Floer homology necessary

for our purposes. The setup is similar to that in first chapter except we use the

“universal” Novikov ring to take into account the non-contractible orbits. We

then define the filtered version for this homology: a necessary tool to define the

barcodes in the following section.

Hamiltonian Floer Homology

Let H : S1 ×M → R be a compactly supported Hamiltonian on the symplectic

manifold M convex at infinity. Consider a Hamiltonian Qr0 such that for r ≥ r0

we have Qr0(r) = ar2 + b and Qr0 is zero otherwise. We also require Qr0 to vanish

on suppH. We consider the new Hamiltonian H = HQ = H+Q and take a small

non-degenerate perturbation of it.

We denote by π̃1(M) be the set of homotopy classes of free loops in M . The

free homotopy class of a loop x is denoted by [x]. The Hamiltonian vector field

XH is defined by the equation iXH
ω = −dH. The time-dependent flow of XH is

denoted by φt
H and in particular, the time-one map, a Hamiltonian diffeomorphism

is denoted by φH = φ1
H .

For a class f ∈ π̃1(M), let us fix a reference loop z ∈ f. A capping of x : S1 → M

36



with free homotopy class f is a cylinder (i.e., a homotopy) Π: [0, 1] × S1 → M

connecting x and z taken up to a certain equivalence relation. Namely, two

cappings Π and Π′ are equivalent if the integral of c1(TM), and hence of ω, over

the torus obtained by attaching Π′ to Π is equal to zero.

The action of H on a capped loop x̄ = (x,Π) is

AH(x̄) = −
∫

Π
ω +

∫
S1
Ht(x(t)) dt.

Clearly, AH(x̄) is well defined. Moreover, the critical points of AH are exactly the

capped one-periodic orbits of H in the homotopy class f. The action spectrum

S(H, f) is the set of critical values of AH . It has zero measure.

For the reference loop z ∈ f we fix a trivialization of TM |z. Using this triv-

ialization, we can define the Conley–Zehnder index µCZ(H, x̄) ∈ Z of a capped

non-degenerate orbit x̄. Similarly to the contractible case, the Conley-Zehnder

µCZ(H, x) of an orbit without capping is defined only modulo 2NT .

The constructions from this section readily carry over to the case where a

single free homotopy class f is replaced by a collection of free homotopy classes.

For instance, one can specify the collection of free homotopy classes of loops by

prescribing a homology class.

Replacing the one-periodic orbits of H by the capped one-periodic orbits, one

could define the Floer complex and the homology of H as an ungraded module

over the Novikov ring Λ. By our choice of Hamiltonian, the Floer complex is

a finite-dimensional vector space over the “universal” Novikov field Λ formed by

formal sums

λ =
∑
j≥0

fjT
aj ,
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where fj ∈ F and aj ∈ R and the sequence aj (with fj ̸= 0) is either finite

or aj → ∞. The possible recapping contributes to the term T ω(v) by the torus

v : T2 → M with the symplectic area ω(v).

To be more precise if we denote the generators of the Floer complex by xi,

then

CF (H) = ⊕Λxi.

This complex is not graded due to the choice of the Novikov ring, or only

Z2-graded. We will denote the Floer homology, i.e, the homology of CF (H) by

HF (H). This is also a finite dimensional vector space over Λ.

3.1.1 Filtered floer homology

The Hamiltonian action of a capped loop x̄ = (x,Π) is given by

AH(x̄) = −
∫

Π
ω +

∫
S1
Ht(x(t)) dt.

For λ ∈ Λ, given by λ = ∑
j≥0 fjT

aj , we define

ν(λ) := min aj, where fj ̸= 0.

The Floer differential is strictly action-decreasing, and we obtain the required

action filtration on the complex CF (H) by defining

A(
∑

λixi) := max
i

A(λixi), where A(λixi) := A(xi) − ν(λi).

The Floer homology HF (H), as a vector space over the field F, inherits this

action filtration and therefore we will call this as Filtered Floer Homology.
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Remark 3.1.1. As we can see, the action filtration depends on the choice of the

reference paths from the previous section. A change of the reference paths would

shift the filtration by a constant. Thus the filtration is well-defined only up to

these shifts. We will see in the next section, the number of bars of a given length

in the barcode of the Floer homology HF (H) does depend on the reference paths

and therefore bϵ(φH) is well defined.

3.2 Persistent homology and barcodes

Persistent homology is a well-established tool in the field of topological data

analysis. In the algebraic setup, one starts with “persistent modules”, i.e. struc-

tures V consisting of a module Vt associated to each t ∈ R with homomorphisms

σst : Vs → Vt whenever s ≤ t satisfying the functoriality properties that σss = IVs ,

the idenitity map on module Vs, and σsu = σtu◦σst. One natural example of persis-

tent modules in topology arises when one considers a continuous map f : X → R

on a topological space X. For a field κ one can then consider the homology of the

t-sublevel set by Vt = H∗({f ≤ t};κ), with the σst being the inclusion-induced

maps. In real-word situations, see e.g. Carlsson [Car09], if X = Rn and the func-

tion f : Rn → R is given by the minimal distance to a finite collection of points

samples from one subset S ⊂ Rn, then Vt is the homology of the union if balls of

radius t around the points of the sample.

Under the finiteness hypotheses on the modules Vt, provided the coefficient ring

is a field κ, it can be shown that the persistence module V is isomorphic to a direct

sum of “interval modules” κI , where I ⊂ R is an interval and by defintion (κI)t =

κ for t ∈ I and {0} otherwise. The barcode of V is then defined to be the multiset

of intervals appearing in this direct sum decomposition. We can similarly extract
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barcode from filtered Morse homology groups defined using a Morse function f :

X → R on X which is a smooth compact manifold. For compact symplectic

manifold M , when it is aspherical we can also extract the barcode of the filtered

Floer complex for a non-degenerate Hamiltonian diffeormorphism φH since the

finiteness hypothesis holds.

However, in our situation while the filtered Floer homology gives a persistence

module, the finiteness hypothesis is not longer satisfied. So the above discussion

for defining barcodes does not translate here. We will therefore slightly vary

and follow closely Usher-Zhang, [UZ16], and Çineli-Ginzburg-Gürel, [ÇGG21], for

defining barcodes in the general Floer theoretic setting over Novikov rings. We

briefly recall Singular Value Decomposition for the Floer chain complex and then

define barcodes in our case.

Singular value decomposition

We consider the filtered Floer complex CF (H) with the action filtration,

A(
∑

λixi) := max
i

A(λixi).

Indeed the complex CF (H) forms a non-Archimedean normed vector space over

Λ, see [UZ16; ÇGG21]. It is an orthogonalizable Λ-space and an orthogonal set

is necessarily linearly independent over Λ. Thus, (see [UZ16]) we can define a

singular-value decompositon of CF (H) over Λ.

Definition 3.2.1. [UZ16] A basis Σ = {αi, ηi, γi} of C∗(H) over Λ is said to be

a singular value decomposition if :

• ∂Hαi = 0.
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• ∂Hγi = ηi.

• the basis is orthogonal (in the non-Archimedian sense).

We can order the finite bars as

AH(γ1) − AH(η1) ≤ AH(γ2) − AH(η2) ≤ . . .

The infinite bars correspond to the dimΛ HF∗(H). Together they form the

barcode of HF∗(H).

Persistence and Hofer’s metric

For any compactly supported ϕ = ϕ1
H ∈ Ham(M,ω) the Hamiltonian diffeo-

morphism group we have the well-known Hofer’s metric dH . First, we define the

Hofer norm,

||ϕ||H = inf{
∫ 1

0
(max

X
H(t, .) − min

X
H(t, .))dt | ϕ = ϕH}.

Suppose we have two Hamiltonians H1 and H2 with respective Hamiltonian dif-

feomorphisms ϕ, ψ ∈ Ham(M,ω) such that for large r > 0, H1(x, r) = H2(x, r) =

ar2 + b. Then we define the Hofer’s metric for ϕ, ψ ∈ Ham(M,ω) by,

dH(ϕ, ψ) = ||ϕ−1 ◦ ψ||.

This is a bi-invariant metric on Ham(M,ω) (see [Pol01]) with fixed choices of r, a

and b leading to Hofer’s geometry.
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Barcode distance

We introduce a distance on barcodes, in the spirit of Gromov-Hausdroff metric.

A barcode consists of a collection of finite intervals and infinite intervals. We will

denote our barcodes as ([0], L) where L ∈ [0,∞] is the length of the bar. Here the

bars are as in [ÇGG21] which are not pinned.

Definition 3.2.2. (δ- matching) For two barcodes (viewed as multisets) S and T ,

we say that an δ-matching between S and T consist of:

• (Short multisets Sshort and Tshort) consisting of finite bars, where the length

L ≤ 2δ.

• A bijection σ : S \ Sshort → T \ Tshort such that for each σ([0], L) = ([0], L′)

where for all ϵ > 0 the representative ([0], L′) can be chosen, such that either

L = L′ = ∞ or | L− L′ |≤ δ + ϵ.

In order S and T to be δ-matched, there should be equal number of infinite-length

bars from S and T .

Definition 3.2.3. (Bottle-Neck distance) For two barcodes S and T , the bottle-

neck distance between S and T is,

dB(S, T ) = inf{δ ≥ 0 | there is a δ-matching between S and T}.

We have the following theorem which is a Lipschitz-comparison between the

bottle-neck distance and the Hofer’s norm for Hamiltonian Floer Homology.

Theorem 3.2.4. [UZ16] For any two Hamiltonians H1 and H2 with barcodes BH1

and BH2 respectively, we have

dB(BH1 , BH2) ≤ dH(ϕ1
H1 , ϕ

1
H2)
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3.2.1 Barcode entropy

Let M be an open symplectic manifold which is convex at infinity and either

atoroidal or toroidically monotone.

Let H : S1 × M → R be a compactly supported Hamiltonian on M and the

Hamiltonian diffeomorphism is denoted by φ = φH . Consider a fixed Hamiltonian

Qr0 such that for r ≥ r0, Qr0(r) = ar2 + b and otherwise Qr0 is zero. Here r0 is

determined by the support of H and b is a constant determined by r0 such that

Qr0(r0) = 0.

Let ϵ > 0, and ψ(ϵ,k) be a non-degenerate ϵ
2 -perturbation of φQφ

k. Denote

B(ψ(ϵ,k)) be the barcode of the Floer complex of CF(ψ(ϵ,k)) over the Novikov ring

Λ. Then denote,

bϵ(φk) = |{bars of length greater than ϵ in B(ψ(ϵ,k))}|.

It is easy to see that bϵ(φk) is independent of the perturbation as long as it is

small.

Definition 3.2.5 (Barcode Entropy). The ϵ-barcode entropy of φ is

ℏϵ(φ) := lim sup
k→∞

log+ bϵ

(
φk
)

k

and the barcode entropy of φ is

ℏ(φ) := lim
ϵ↘0

ℏϵ(φ) ∈ [0, ∞]

Here again ℏϵ(φ) is increasing as ϵ ↘ 0, and hence the limit in the definition

of ℏ(φ) exists.
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Remark 3.2.6. One can show that the barcode entropy does not depend on the

choice of Qr0 when a > 0 is small.

3.2.2 Crofton’s inequality

In this section we will discuss the setup for Crofton’s inequality. The proof

follows similar reasoning as in [ÇGG21], so we will omit it here.

Setup:

Here we describe the setup for Crofton’s inequality necessary for our purposes.

Let L be a manifold and B be an open ball in Rm for some m with finite radius.

We denote the projection into the first component by π : E = B × L → B. Let

Ψ : E → P

be a smooth map to some manifold P . Suppose there exists a compact submanifold

C of L with boundary ∂C such that Ψ is a submersion on B × C◦, where C◦ :=

C \ ∂C. We also require that the map Ψs = Ψ|s×C be an embedding for all s.

The images of C under the embedding are denoted by Ψs(C) = Cs which are also

compact submanifolds with boundary. Further the images of L under the map Ψs

is denoted by Ls.

Now, we let L′ be a closed submanifold of P with

codimL′ = dimL

and L′ ∩ (Ψ(B × (L \ C◦))) = ϕ. Since Ψ is a submersion in B × C◦, we have

Ψ ⋔ L′.
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This implies Ψs ⋔ L′ for almost all s ∈ B and

N(s) =| Ls ∩ L′ |

is a finite number and N is an integrable function on B. Using arguments from

[ÇGG21] one can show that the following inequality holds.

Lemma 3.2.7. (Crofton’s Inequality) [ÇGG21] We have,

∫
B
N(s)ds ≤ c · vol(L′),

where c is a constant which depends on ds, Ψ and the metric on P , but doesn’t

depend on L′.

Construction of the tomograph

We are now in a position to construct a partial “tomograph” of the diagional

∆ = {(x, x) | x ∈ M} submanifold of the symplectic manifold M × M . In our

setup M is convex at infinity, which means that there is a compact domain M1

and a contact manifold (Σ, α) with contact form α, such that (M \ M1, ω) ∼=

(Σ × (1,∞), d(r2α)), where Σ = ∂M1.

We will work with Hamiltonians H : S1 ×M → R such that Ht(x, r) = ar2 + b

when r is large and (x, r) /∈ M1. We further can choose a, b such that ϕ1
H has no

fixed points outside M1.

We choose a collection of functions {gi}i=1,...,n and a compact submanifold C

with boundary ∂C such that M1 ⊂ C such that,

• {gi} generate TpM for all p ∈ C◦ = C \ ∂C.

• gi ≡ 0, for all points outside C◦.
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We consider functions with the form

fs = s1g1 + · · · + sngn

where si, . . . , sn ∈ B = Bn(0, d) for some d. We can squeeze the ball B such that

Ψ : B ×M → M ×M defined by

Ψ(s, x) = dfs(x)

where dfs is the graph of the function fs. The function Ψ is a submersion onB×C◦,

for our choice of functions {gl} and Hamiltonian H with ϕ1
H(M) ∩ (Ψ(B × M \

C◦)) = ∅.

To apply Crofton’s inequality we will replace L′ by graph of Hamiltonian dif-

feomorphism ϕH , P will be replaced by M × M and Ls would be replaced by

Ψs(M). In this case the function N(s) is integrable and the above lemma 3.2.7 is

satisfied.
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3.3 Main theorem

The main goal of this section is to prove the following theorem.

Theorem 3.3.1. Let φ : M → M be a compactly supported Hamiltonian diffeo-

morphism on an open symplectic manifold convex at infinity, then

ℏ(φ) ≤ htop(φ).

We fix a autonomous Hamiltonian Q such that for r ≥ r0 where r0 is deter-

mined by the support of φ = φH and Q ≡ 0 in the support of H. Denote by the

graphs of diffeomorphisms by φQφ
k by ,

Lk = {(x, φQφ
k(x)) | x ∈ M} ⊂ M ×M.

Before we prove the above theorem; we prove the following lemmas necessary

to prove the theorem.

Lemma 3.3.2. Let f be a Hamiltonian such that f ≡ 0 outside a compact set

containing the support of H and the graph of its time-one map Lf = {(x, φf (x)) |

x ∈ M} intersects Lk transversely,

| Lf ∩ Lk |≥ bϵ(φ−1
f φQφ

k
H)

for any ϵ > 0.

Proof. | Lf ∩Lk | is the number of one-periodic orbits of φ−1
f φQφ. Since Lf inter-

sects Lk the Hamiltonian diffeomorphism φ−1
f φQφH is non degenerate and since

f is zero outside a compact set the Hamiltonian Floer homology HF∗(φ−1
f φQφH)

is well-defined.
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Let b(φ−1
f φQφH) be the total number of finite bars in the Floer homology

HF∗(φ−1
f φQφH). Then,

| Lf ∩ Lk | = dimΛCF (φ−1
f φQφH)

= 2b(φ−1
f φQφH) − dimΛ HF (φ−1

f φQφH)

≥ b(φ−1
f φQφH).

This implies that for any ϵ > 0, | Lf ∩ Lk |≥ bϵ(φ−1
f φQφ

k
H).

Proof of 3.3.1. Fix ϵ > 0 and assume that

h2ϵ(φ) ≥ α for some α > 0.

This implies there is a sequence ki → ∞, such that,

b2ϵ(φki) ≥ const 2αki .

We need to show that vol (Lki
) ≥ const 2αki . This implies that α ≤ htop(φ).

Passing to the limit as ϵ > 0, we have α 7→ ℏ(φ).

We construct our tomograph such that the functions {gi}i=1,2,...,n and ball

Bn(r), r > 0 are dependent on the choice of Q and further satisfies the additional

condition that

dH(φfs , id) < ϵ, where fs = s1g1 + · · · + sngn

for (s1, . . . , sn) ∈ Bn(r). Then Ls = {(x, φ1
fs

(x)) | x ∈ M} is transversal to Lk for
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all k and for all almost all s ∈ Bn(r). Therefore

Nk(s) := |Ls ∩ Lk|

the number of intersections between Ls and Lk are finite for almost all s and all

k. By Crofton’s Inequality we already have

∫
B
Nk(s) ds ≤ c · vol(Lk)

for all k ∈ N. From previous lemma we have Nk(s) ≥ bϵ(φ−1
fs
φQφ

k
H). Since

dH(φfs , id) < ϵ,

dB(B(φ−1
fs
φQφ

k
H), B(φQφ

k
H)) ≤ dH(φfs , id) < ϵ

we have a ϵ-matching between bars of length L ≥ 2ϵ. Therefore bϵ(φ−1
fs
φQφ

k
H)) ≥

b2ϵ(φ−1
fs
φQφ

k
H)) = b2ϵ(φQφ

k
H)) = b2ϵ(φk

H) (by definition, here one might have to

take a small perturbation of φQφ
k
H so that barcode entropy is well defined). This

completes the proof.
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Chapter 4

Toric domains and equivariant

capacities

In this chapter we present examples of integrable Reeb flows where the “spec-

tral gaps” are bounded away from zero . These Reeb flows are not pseudo-rotations

(i.e the number of periodic orbits are more than the hypothetical minimal number

possible). In fact in our examples we have infinitely many periodic orbits.

A contact manifold is a pair (Σ, λ), where Σ is a manifold of dimension 2n−1,

and λ is a 1-form on Σ such that λ ∧ (λ)n−1 is nowhere vanishing. Throughout

this chapter, all contact manifolds are assumed to be closed and connected. For

a contact form λ, we denote by R the Reeb vector field on (Σ, λ), defined by

λ(R) ≡ 1 and dλ(R, ·) ≡ 0.

Using symplectic capacities such as the Ekeland-Hofer and the ECH capacities,

various characterizations of the Besse property of contact manifolds have been

shown, see [CM20; GGM21]. A closed connected contact manifold is called Besse

when all its Reeb orbits are closed, and in such a case the Reeb orbits admit a

common period by a theorem of Wadsley, [Wad75]. For a convex hypersurface, it
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roughly says that n-consecutive spectral numbers are same (i.e, ci(Σ) = cn−i+1(Σ))

for some i ∈ N if and only if Σ is Besse and ci(Σ) is a common period of all its

Reeb orbits, see [CM20; GGM21]. The Ekeland-Hofer capacities are not easy to

calculate, they are only known for ellipsoids and polydisks. In the case of rational

ellipsoids there is a subsequence for which the consecutive differences (spectral

gaps) are zero. However for polydisks they are always bounded below away from

zero.

In this chapter, we show that for Reeb flows on star-shaped domains in Rn

which are pseudo-rotations and dynamically convex, there is a subsequence of

spectral gaps converging to zero, using index recurrence and resonance relations.

In this result we do not have any information about the periods of the Reeb flows,

we only assume that there are finitely many orbits (with the minimal number

possible). As mentioned above the Ekeland Hofer capacities only provide examples

such as polydisks for which the spectral gaps are bounded below away from zero.

In this chapter, we also present some computational examples using the Gutt-

Hutchings capacities for which the spectral gaps are bounded away from zero.

These capacities are conjecturally equal to the Ekeland Hofer capacities. These

examples along with polydisks suggest that indeed when the Reeb flow fails to be

a pseudo-rotation then we should no longer expect the spectral gaps converging

to zero.

4.1 Symplectic capacities

In this section we begin by defining some S1-equivariant symplectic capaci-

ties due to [GH18], see also [GG20]. These capacities were introduced by Gutt-

Hutchings using the idea to imitate the ECH capacities, [Hut14], for higher di-
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mensions. Ginzburg-Gürel also introduced similar capacities which they treated

as certain spectral invariants and these numbers appear to be equal. A very inter-

esting aspect of the Gutt-Hutchings capacties is that they equal the well-known

historical Ekeland-Hofer capacities for simple cases such as ellipsoids and poly-

disks and it is conjectured they are equal for compact star-shaped domains. The

Ekeland-Hofer capacities are very difficult to calculate for other cases but the

Gutt-Hutchings capacities were calculated for convex and concave toric domains

and we will use these numbers in the later sections.

We will digress a little bit and talk about another form of capacities that have

been studied in the last decade: the ECH capacities. The ECH capacities are only

defined for four-dimensional manifolds, for example they have been computed

for concave toric domains, [Cho+14], and convex toric domains, [Cri19]. The

ECH capacities, among other applications in understanding dynamics of Reeb

flows, see [CH16], give sharp obstructions to symplectically embedding a four-

dimensional ellipsoid into an ellipsoid, [McD11], or polydisk, [Hut11], or more

generally a four-dimensional concave toric domain into a convex toric domain,

[Cri19]. In some other situations, such as for some cases of symplectically em-

bedding a four-dimensional polydisk into an ellipsoid, the ECH capacities do not

give sharp obstructions, and the Ekeland-Hofer capacities are better. Therefore

when the Gutt-Hutchings capacities are shown to be equal to the Ekeland-Hofer

capacities, we can expect many more interesting embedding obstructions.

Nice star shaped domains

We define a nice star-shaped domain in R2n to be a compact 2n-dimensional

submanifold X of R2n = Cn with smooth boundary Y , such that Y is transverse
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to the radial vector field

ρ = 1
2

n∑
i=1

(
xi

∂

∂xi

+ yi
∂

∂yi

)
.

In this case, the 1-form

λ0 = 1
2

n∑
i=1

(xi dyi − yi dxi)

on Cn restricts to a contact form on Y . If γ is a Reeb orbit of λ0|Y , define its

symplectic action by

A(γ) =
∫

γ
λ0 ∈ (0,∞).

If we further assume that λ0|Y is nondegenerate, i.e. each Reeb orbit of λ0|Y is

nondegenerate, then each Reeb orbit γ has a well-defined Conley-Zehnder index

CZ(γ) ∈ Z.

We state the properties of equivariant capacities introduced by Gutt-Hutchings,

[GH18], see also Ginzburg-Gürel, [GG20]. These capacities are similar and con-

jecturally agree with the Ekeland-Hofer [EH90] capacities.

4.1.1 Equivariant capacities

The capacities ck for nice star-shaped domains in R2n satisfy the following

axioms:

(Conformality) If X is a nice star-shaped domain in R2n and r is a positive real

number, then c(rX) = r2c(X).

(Increasing) c1(X) ≤ c2(X) ≤ · · · < ∞.

(Monotonicity) If X and X ′ are nice star-shaped domains in R2n, and if there
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exists a symplectic embedding X → X ′, then ck(X) ≤ ck(X ′) for all k.

(Reeb Orbits) If λ0|∂X is nondegenerate, then ck(X) = A(γ) for some Reeb

orbit γ of λ0|∂X with CZ(γ) = 2k + n− 1.

The capacities ck can extended to star-shaped domains which are not necessarily

nice (such as polydisks) as follows: If X is a star-shaped domain in R2n , then

ck(X) = sup{ck(X ′)},

where the supremum is over nice star-shaped domains X ′ in R2n such that there

exists a symplectic embedding X ′ → X.

Remark 4.1.1. The capacities ck were first introduced by Ekeland-Hofer in,

[EH90], using min-max formulation for the gradient flow on H1/2 space and Fadell-

Raboniwitz index. They calculated the capacities explicitly for polydisks and ellip-

soids.

Remark 4.1.2. The numbers ck were introduced in, [GH18], using the idea to

imitate the ECH capacities for higher dimensions and they were calculated them

for convex and concave toric domains in R2n. We will use these capacities for our

computational examples to non-vanishing spectral gaps.

Remark 4.1.3. The capacities ck were discussed in [GG20] as spectral invariants

with applications to multiplicity results for simple Reeb orbits. They are equal to

the Gutt-Hutching’s capacities for ellipsoids and appear to be equal for other star

shaped domains.
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4.2 Examples

In this section we present some examples of star-shaped domains, namely el-

lipsoids, polydisks and concave and convex toric domains and their corresponding

Gutt-Hutchings capacities. We recall the necessary details of the Gutt-Hutchings

capacities for these manifolds. We will use these capacities for convex and con-

cave toric domains in the last section to present examples of non-vanishing spectral

gaps.

4.2.1 Ellipsoids

We begin by the simplest case of star-shaped domains, the ellipsoids. They

are as follows: If a1, . . . , an > 0, define the ellipsoid

E(a1, . . . , an) =
{
z ∈ Cn

∣∣∣∣∣
n∑

i=1

π|zi|2

ai

≤ 1
}

and the polydisk

P (a1, . . . , an) =
{
z ∈ Cn

∣∣∣∣∣ π|zi|2 ≤ ai, ∀i = 1, . . . , n
}
.

The ball is defined as B(a) = E(a, . . . , a).

The Gutt-Hutchings symplectic capacities for these manifolds agree with the

Ekeland-Hofer capacities and were calculated by Ekelend and Hofer using calculus

of variations for the symplectic action functional on the loop space of R2n. To

state the computations we introduce the following sequence, if a1, . . . , an > 0,

let (Mk(a1, . . . , an))k=1,2,... denote the sequence of positive integer multiples of

a1, . . . , an, arranged in nondecreasing order with repetitions. We then have:
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• [GH18; EH90] The equivariant capacities of an ellipsoid are given by

ck(E(a1, . . . , an)) = Mk(a1, . . . , an).

• [GH18; EH90] The equivariant capacities of a polydisk are given by

ck(P (a1, . . . , an)) = k · min(a1, . . . , an).

4.2.2 Toric domains

The capacities ck were explicitly computed by Gutt-Hutchings using S1-equivariant

symplectic homology for convex and concave toric domains.

We define the moment map µ : Cn → Rn
≥0 by

µ(z1, . . . , zn) = π(|z1|2, . . . , |zn|2).

If Ω is a domain in Rn
≥0, define the toric domain

XΩ = µ−1(Ω) ⊂ Cn,

and some special toric domains defined as Ω ⊂ Rn
≥0 given by,

Ω̂ =
{
(x1, . . . , xn) ∈ Rn

∣∣∣ (|x1|, . . . , |xn|) ∈ Ω
}
.

Definition 4.2.1. A convex toric domain is a toric domain XΩ such that Ω̂ is a

compact convex domain in Rn.

Definition 4.2.2. A concave toric domain is a toric domain XΩ such that Ω is
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a compact and Rn
≥0 \ Ω is convex.

The dynamics on the convex and concave toric domains are relatively simple,

in fact they are integrable systems. Particularly, when XΩ is a nice star-shaped

compact toric domain, i.e. XΩ is compact with smooth boundary. We give a short

description of their Reeb dynamics when n = 1. The boundary ∂+Ω is a smooth

arc from some point (0, b) with b > 0 to some point (a, 0) with a > 0. There are

three types of simple Reeb orbits on ∂XΩ, see [GHR22]:

• There is a simple Reeb orbit corresponding to (a, 0), whose image is the

circle in ∂XΩ with π|z1|2 = a and z2 = 0.

• Similarly, there is a simple Reeb orbit corresponding to (0, b), whose image

is the circle in ∂XΩ with z1 = 0 and π|z2|2 = b.

• For each point µ ∈ ∂+Ω where ∂+Ω has rational slope, there is an S1 fam-

ily of simple Reeb orbits whose images sweep out the torus in ∂XΩ where

π(|z1|2, |z2|2) = µ.

Now we recall the calculations of the Gutt-Hutchings capacities ck for convex

and concave toric domains as follows.

For convex toric domain XΩ in R2n, we define the dual norm for a vector

v ∈ Rn
≥0 with all components non-negative as

∥v∥∗
Ω = max{⟨v, w⟩ | w ∈ Ω},

where ⟨·, ·⟩ is the Euclidean inner product. Let N denote the set of non-negative

integers.
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Suppose that XΩ is a convex toric domain in R2n. Then the Gutt-Hutchings

capacities are

ck(XΩ) = min
{

∥v∥∗
Ω

∣∣∣∣∣ v = (v1, . . . , vn) ∈ Nn,
n∑

i=1
vi = k

}
.

In the similar vein, suppose that XΩ is a concave toric domain. Let Σ denote

the closure of the set ∂Ω ∩Rn
>0. Similarly to the dual-norm, if v ∈ Rn

≥0, define the

anti-norm by

[v]Ω = min
{
⟨v, w⟩

∣∣∣ w ∈ Σ
}
.

Then the Gutt-Hutchings capacities ck for convex toric domain XΩ are

ck(XΩ) = max
{

[v]Ω
∣∣∣∣∣ v ∈ Nn

>0,
∑

i

vi = k + n− 1
}
.

Note that in the above equation all components of v are required to be positive,

while in the convex toric domain case, we only require that all components of v

be non-negative.

4.3 Pseudo-rotations in the Reeb case

The Gutt-Hutchings capacities and the Ginzburg-Gürel spectral invariants

have very similar constructions. They have been shown to be equal for ellip-

soids and appear to be equal for other star-shaped domains in R2n. In the case of

Ginzburg-Gürel capacities, we can show that for pseudo-rotations (i.e, Reeb flows

with finitely many periodic orbits) that are dynamically convex, the “spectral

gaps” converge to zero. In this section we will prove this theorem.

Definition 4.3.1. The Reeb flow on a (2n − 1)-dimensional contact manifold is
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said to be dynamically convex if every closed Reeb orbit is dynamically convex,

i.e. µCZ(x) ≥ n+ 1 for all closed Reeb orbits x.

Remark 4.3.2. The Reeb flow on a strictly convex hypersurface in R2n is dynam-

ically convex, see [HWZ98].

Using the index-recurrence theorem for non-degenerate case and resonance

relations from [GG20], we will prove the following theorem in this section.

Theorem 4.3.3. Let (M2n−1, α) be a closed contact-type dynamically convex hy-

persurface in R2n bounding a Liouville domain. Suppose that α is non-degenerate,

carrying exactly n periodic orbits then ∃ ki → ∞, such that

cki+n−1 − cki
→ 0.

Remark 4.3.4. We will refer to ck+n−1 − ck as the kth spectral gap. It has been

shown in [GGM21], that when the kth spectral gap vanishes, the Reeb flow is Besse

(i.e. all Reeb orbits are closed) and ck is the common period of its Reeb orbits.

We will use the following index recurrence result from [GG20], to prove the

theorem. Studying index recurrence relations is a huge field in itself, we refer the

reader to [Lon02; LZ02; DLW16] for further details and references. We begin by

recalling that the mean index of a continuous path Φ : [0, 1] → Sp(2m) beginning

at Φ(0) = I, denoted by µ̂(Φ) ∈ R, is a homotopy invariant of the path with fixed

end-points. Roughly the mean index measures the total rotation angle of certain

unit eigenvalues of Φ(t), we omit the details here.

Theorem 4.3.5. [GG20] Consider a finite collection of strongly non-degenerate

elements Φ1, . . . ,Φr in S̃p(2m) such that all mean indices ∆i := µ̂(Φi) are non-

zero and positive. Then for any ϵ > 0 and any ℓ0 ∈ N, there exists an integer

59



sequence dj → ∞ and r integer sequences kij, i = 1, . . . , r, at least one of which

goes to infinity, such that for all i and j, and all ℓ ∈ Z in the range 1 ≤ |ℓ| ≤ ℓ0,

we have

(i)
∣∣∣µ̂(Φkij

i ) − dj

∣∣∣ < ϵ, and

(ii) µCZ(Φkij+ℓ
i ) = dj + µCZ(Φℓ

i).

We can also ensure that kij → ±∞ as j → ∞ for all i, and that for any N ∈ N

we can make all dj and kij divisible by N .

Further when the paths Φ1, . . . ,Φr are dynamically convex dj → ∞ and kij →

∞ as j → ∞ , and for all l ∈ N,

• µCZ(Φkij+ℓ
i ) ≥ dj + 2 +m,

• µCZ(Φkij−ℓ
i ) ≤ dj − 2 −m.

This theorem is proved in Ginzburg-Gürel [GG20], where they obtain mul-

tiplicity results for dynamically convex hypersurfaces in R2n. They prove that

when (M2n−1, α) is a closed contact type, dynamically convex hypersurface in

R2n bounding a simply connected Liouville domain, then M carries at least r

simple closed characteristics x1, . . . , xr when r = ⌈n/2⌉ + 1 in general and r = n

when α is non-degenerate.

Proof of 4.3.3. We assume that the Reeb flow of (M2n−1, α) is non-degenerate

and has only finitely many simple closed orbits denoted by x1, . . . , xn. The set of

closed Reeb orbits P(α) comprises all iterations xk
i , k ∈ N, of the orbits xi.

Consider the map

ψ : I = {n+ 1, n+ 3, n+ 5, . . .} → P(α), d 7→ yd,
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which denotes the action selectors of the capacities ck, where we relabeled the

domain of ψ by the index. (In other words, this map is obtained by composing

the map in the corollary with the bijection d 7→ (d+ 1 −n)/2 from I to N.) Thus

the orbits denoted by y1, y2, . . ., where ck = Aα(yk) are now yn+1, yn+3, . . .. Since

the orbits are non-degenerate

µCZ(yd) = d.

Let Φi ∈ S̃p(2m), m = n− 1, be the linearized Poincaré return map along xi;

without loss of generality we can assume that the paths Φi are parametrized by

[0, 1]. Fixing a small parameter ϵ > 0 and a sufficiently large ℓ0 ∈ N, let us apply

theorem 4.3.5 to the paths Φi. Since our orbits xi are strongly non-degenerate,

for all ℓ ∈ N, we have

• µCZ(xkij+ℓ
i ) ≥ dj + n+ 1,

• µCZ(xkij−ℓ
i ) ≤ dj − n− 1, and

•
∣∣∣µ̂(xkij

i ) − dj

∣∣∣ < ϵ

Let us denote L the index interval [dj − n, dj + n] ∩ I. Then for any d ∈ L

the orbit yd must have the form x
kij

i , and therefore at most one iteration of xi can

occur as yd with d ∈ L.

Using the resonance relations [GG20], since the set {Aα(x)
µ̂(x) } is discrete and all

the orbits are reoccurring (i.e the iterations of a orbits occur infinitely many times

in the image of the injection ψ), for two Reeb orbits x and y we have

Aα(x)
µ̂(x) = Aα(y)

µ̂(y) .

This implies that for any a1, a2 ∈ L,
∣∣∣Aα(ya1) − Aα(ya2)

∣∣∣ < 2Cϵ, where C is a
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constant. Since for any epsilon ϵ > 0 we can choose a very large dj such that the

above reasoning work, this implies that there exists a sequence ki → ∞ such that∣∣∣cki+n−1 − cki

∣∣∣ → 0.

4.4 Examples of toric domains with non-zero spec-

tral gaps at infinity

In this section we present some computational examples of convex and concave

toric domain with non-zero spectral gaps at infinity, in the spirit of theorem 4.3.3.

These examples illustrate the fact that the finiteness of the number of Reeb orbits

is probably necessary, otherwise we cannot expect theorem 4.3.3 to hold true.

Recall that the Gutt-Hutchings capacities introduced in Section 2 are equal

to the Ginzburg-Gürel spectral invaraints for ellipsoids and appear to be equal

for other star shaped domains. Here we use Python computing to calculate the

spectral gaps for the Gutt-Hutchings capacities for convex and concave domains.

• Example 1 : Convex toric domain with non-smooth boundary. For n = 2,

XΩ is a convex toric domain if and only if

Ω = {(x1, x2) | 0 ≤ x1 ≤ A, 0 ≤ x2 ≤ g(x1) }, (4.4.1)

where

g : [0, A] → R≥0

is a concave function (there is a general notion of convex toric domain due

to [Cri19] where Ω is convex and Ω̂ is not required to be convex).
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• Example 2 : Convex toric domain with smooth boundary, in fact in this

case the Reeb flow is also dynamically convex.

By computing examples in many smooth cases we can see that the spectral

gaps would converge to the cube capacity as k → ∞.

Cube capacity

We will digress slightly into the discussion of the cube capacity and show

their significance with respect to convex and concave domains and more

generally star-shaped domains.

Given δ > 0, define the cube

□n(δ) = P (δ, . . . , δ) ⊂ Cn,
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or equivalently

□n(δ) = {z ∈ Cn | max
i=1,...,n

{π|zi|2} ≤ δ}.

Definition 4.4.1. Given a 2n-dimensional symplectic manifold (X,ω), de-

fine the cube capacity as

c□(X,ω) = sup{δ > 0 | there exists a symplectic embedding □n(δ) → (X,ω)}.

Immediately from the definition, it is clear that the cube capacity c□ is a

symplectic capacity.

Remark 4.4.2. For a convex or concave toric domain XΩ ⊂ Cn, the cube

capacity is the largest δ such that □n(δ) is a subset of XΩ; one cannot

do better than this obvious symplectic embedding by inclusion. Indeed we

observe this is in the Example 2 and 4 respectively.

For the convex or concave toric domain (see [GH18]), we have

c□(XΩ) = max{δ | (δ, . . . , δ) ∈ Ω}.

The cube capacity also has a nice relationship with the Gutt-Hutchings

capacities when the following condition is satisfied. To state the condition

we first need to conisder the non-disjoint union of n symplectic cylinders,

Ln(δ) = {z ∈ Cn | min
i=1,...,n

{π|zi|2} ≤ δ}.
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For a star-shaped domains, the cube capacity is equal (see [GH18]) to

c□(X) = lim
k→∞

ck(X)
k

when the following condition is satisfied

□n(δ) ⊂ X ⊂ Ln(δ).

• Example 3 : Concave toric domain with non-smooth boundary. For a con-

cave toric domain XΩ is a concave toric domain if and only if Ω is given by

(4.4.1) where g : [0, A] → R≥0 is a convex function where g(A) = 0.

• Example 4 : Concave toric domain with smooth boundary. Here also as

in Example 2 we can computationally see that the spectral gaps would con-

verge to the cube capacity.
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