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Abstract. Cosmological models with Galileon gravity are an alternative to the standard

ΛCDM paradigm with testable predictions at the level of its self-accelerating solutions for the

expansion history, as well as large-scale structure formation. Here, we place constraints on

the full parameter space of these models using data from the cosmic microwave background

(CMB) (including lensing), baryonic acoustic oscillations (BAO) and the Integrated Sachs-

Wolfe (ISW) effect. We pay special attention to the ISW effect for which we use the cross-

spectra, CTg
` , of CMB temperature maps and foreground galaxies from the WISE survey.

The sign of CTg
` is set by the time evolution of the lensing potential in the redshift range of

the galaxy sample: it is positive if the potential decays (like in ΛCDM), negative if it deepens.

We constrain three subsets of Galileon gravity separately known as the Cubic, Quartic and

Quintic Galileons. The cubic Galileon model predicts a negative CTg
` and exhibits a 7.8σ

tension with the data, which effectively rules it out. For the quartic and quintic models the

ISW data also rule out a significant portion of the parameter space but permit regions where

the goodness-of-fit is comparable to ΛCDM. The data prefers a non zero sum of the neutrino

masses (
∑
mν ≈ 0.5eV) with ∼5σ significance in these models. The best-fitting models have

values of H0 consistent with local determinations, thereby avoiding the tension that exists

in ΛCDM. We also identify and discuss a ∼ 2σ tension that Galileon gravity exhibits with

recent BAO measurements. Our analysis shows overall that Galileon cosmologies cannot be

ruled out by current data but future lensing, BAO and ISW data hold strong potential to do

so.

Keywords: Dark Energy, Modified Gravity, Cosmological Tests, CMB-LSS correlations,

integrated Sachs-Wolfe effect

ar
X

iv
:1

70
7.

02
26

3v
3 

 [
as

tr
o-

ph
.C

O
] 

 1
7 

O
ct

 2
01

7

mailto:janina.renk@fysik.su.se
mailto:miguelzuma@berkeley.edu
mailto:francesco.montanari@helsinki.fi
mailto:barreira@mpa-garching.mpg.de


Contents

1 Introduction 1

2 Theoretical Spectra and Observables 3

3 Covariant Galileons 6

3.1 Action of the Model 6

3.2 The Galileon Subspace of Parameters 7

3.3 Observational Status of the Galileon Model and the ISW Effect 8

4 Methodology 10

4.1 MCMC constraints 11

4.2 Galaxy Bias Calibration 12

4.3 Fit to ISW Data 13

5 Results 14

5.1 Monte Carlo Cosmological Constraints 14

5.2 Serious Tension of the Cubic Galileon and the ISW Data 16

5.3 ISW Constraints on the Quartic and Quintic Galileon Models 17

5.4 Tension with BAO Data 20

5.5 On Additional Datasets: SNIa and Growth Rate Data 23

6 Summary and Conclusion 23

1 Introduction

Theories of gravity beyond General Relativity (GR), commonly referred to as modified gravity

models, have become the focus of growing attention in cosmological studies. The reason for

this is mostly twofold. First, modifications to the gravitational law on large scales appear as

a plausible alternative to the cosmological constant, Λ, to explain the accelerating expansion

of the Universe. Second, analysing the predictions of modified gravity scenarios helps to

understand the various types of observational signatures and therefore to improve the design

of more robust tests of gravity on cosmological scales. Active research on modified gravity

models has provided significant theoretical and observational advances over recent years (see

e.g. [1–5] for reviews).

The Covariant Galileon model [6–8] is a particularly interesting example of a theory of

modified gravity. In this model, at the level of the background cosmology, the acceleration

of the expansion of the Universe is driven by kinetic interactions of a scalar field whose

Lagrangian density is invariant under the so-called Galilean shift symmetry ∂µϕ→ ∂µϕ+ bµ,

where bµ is a constant four-vector and ϕ is called the Galileon field (cf. Eq. (3.1) below).

At the level of perturbations the non-linear nature of the said kinetic interactions effectively

couples the derivatives of the Galileon and metric fields together (in a process commonly

dubbed as “kinetic gravity braiding” [9, 10]). This changes the way gravitational potentials
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respond to density fluctuations which is why this model falls under the category of a modified

theory of gravity that aims to explain “dark energy” (see e.g. [11–14] for the first few studies

of cosmologies with Galileon gravity). One nice property of the Lagrangian of the Galileon

model is that the same non-linearities that drive the acceleration of the expansion of the

Universe are also responsible for ensuring that the model can pass the stringent Solar System

tests of gravity that have been consistent with GR to very good precision [15]. This occurs

via a mechanism known as Vainshtein screening [16–18] which effectively suppresses the size

of the spatial gradient of the Galileon field (known as the fifth force) in regions of high local

matter density (see e.g. [19–21] and references therein, for studies of Vainshtein screening in

the Galileon model). In this paper, we focus on length scales where linear theory holds and

hence, the effects of screening do not come into play.

The Covariant Galileon model does not have a ΛCDM limit, i.e., there is no choice

of model parameters for which the Galileon terms behave as a cosmological constant. This

feature of the model implies that when confronted against observational data one is almost

guaranteed to obtain best-fitting values of the cosmological parameters (e.g., the Hubble rate

today H0, cold dark matter density Ωcdmh
2, etc.) that are different from those in ΛCDM.

This means in particular that robust constraints on the model must come from analyses

in which many (if possible all) cosmological parameters are allowed to vary to explore all

possible degeneracies that may be at play. Such an extensive constraint analysis was carried

out by [22] in which the Galileon model was confronted against data from the full CMB

temperature and lensing power spectrum as well as lower-redshift geometrical probes such as

baryonic acoustic oscillations (BAO) data. In their results [22] found that there are regions

of the model parameter space that yield essentially the same goodness-of-fit to these data

as ΛCDM (albeit with different best-fitting cosmological parameter values). Amongst the

most interesting aspects of these constraints on Galileon gravity were (i) the best-fitting

values of H0, which (contrary to ΛCDM) are automatically compatible with local Universe

determinations; and (ii) the constraints on the summed neutrino masses Σmν which are

incompatible with Σmν = 0 with high significance (again, different than in ΛCDM).

Another critical difference between Galileon cosmologies and ΛCDM concerns the evolu-

tion of the gravitational potentials. In [22] the authors demonstrated that the modifications

to gravity in the Galileon model are such that the lensing potential can deepen with time

after matter domination, rather than strictly decaying as it is the case in standard ΛCDM.

This means that in ΛCDM the sign of the integrated Sachs-Wolfe (ISW) effect is always

positive, whereas it can be negative in the Galileon model. The sign of the ISW effect in a

specific redshift range can be probed by cross-correlating CMB temperature maps with the

number counts of foreground galaxies (denoted CTg
` throughout) [23]. Specifically, the am-

plitude and sign of this spectra is what is broadly referred to as the ISW amplitude and ISW

sign. Various sources of recent evidence have been shown to be in agreement with ΛCDM in

what concerns the sign of the ISW effect (see e.g. [24]) which makes these data particularly

useful to test the viability of the Galileon and other modified gravity models that strongly

alter the behaviour of the gravitational potentials [25–29]. Data analyses from galaxy sur-

veys correlated with the CMB temperature result in a ∼ 3σ detection of a positive ISW

amplitude (e.g. [23, 24, 30, 31]). This implies that MG models that have a strictly growing
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lensing potential on sub-horizon scales can be ruled out with at least 3σ significance since

they predict a negative ISW amplitude. The analysis of [22] suggested that this could well

be the case for their resulting best-fitting models but the discussion there was kept mostly

qualitative. More quantitatively [32] confirmed that these best-fitting models indeed predict

a negative CTg
` amplitude.

In this work, we aim to quantify more precisely the degree of the presumed tension of

Galileon gravity with the ISW data. To do so, we carry out Monte Carlo Markov Chain

(MCMC) explorations of the full parameter space in the Galileon model using CMB data

from Planck (including lensing) [33] and BAO measurements1. We then calculate CTg
` for

the accepted MCMC parameter space points to determine whether they are compatible with

the ISW data. In our investigation we use the data obtained by cross-correlating CMB

temperature maps with the galaxies from the Wide-field Infrared Survey Explorer (WISE )

[38]; we shall refer to these data as the WISE ISW signal, for short. Our analysis will follow

closely the steps described in [30, 31] for ΛCDM, but applied to the Galileon model and for

a large range of parameter values. In particular, before evaluating CTg
` , we first make use of

the cross-correlation of CMB lensing maps with the galaxy distribution to get an estimate for

the galaxy bias which would otherwise be completely degenerate with the Galileon effects on

the amplitude of CTg
` . One of our main results is that the ISW data do rule out a significant

portion of the Galileon parameter space but leave behind regions that fit these data as well as

ΛCDM. Although we find that the Galileon model can pass current ISW tests we identify and

discuss tensions with BAO measurements that were published after the constrain analysis of

[22]2. Our conclusion will be that the degree of tension with BAO is currently not strong

enough to rule out the Galileon model but future higher precision data should confidently do

so if the trend of current data gets confirmed.

The rest of the paper is organized as follows. In Section 2 we list the equations used

to evaluate the spectra that enter our analysis. Section 3 summarizes the main aspects of

Galileon gravity and the current knowledge of its overall observational viability. Our main

methodology steps are explained in Section 4 and our results are shown in Section 5. We

conclude with a summary and discussion in Section 6.

2 Theoretical Spectra and Observables

In this section we present the equations used to predict theoretical power spectra for any

metric theory of gravity in the linear regime of cosmological perturbation theory. We focus

on the spectra relevant to the ISW part of the analysis. In all our results these spectra are

evaluated using the hi class code3 [43]. This code is a modified version of the CLASS code4

1In the MCMC part of our analysis we consider the BAO compilation used in the Planck 2013 analysis:

SDSS DR7 LRG [34], BOSS DR9 CMASS [35] and the 6dF Galaxy Survey [36]. We do not include more recent

BAO measurements as some of these are in tension with the best-fitting Galileon models to the CMB data

which may prevent a consistent joint analysis [37]. Note however that we discuss these tensions separately in

section 5.4 by post-processing the MCMCs.
2From SDSS DR7 MGS [39], BOSS DR11 Lyα-auto [40], BOSS DR11 Lyα-cross [41] and BOSS DR12

Galaxy (combined LOWZ & CMASS) [42].
3www.hiclass-code.net
4www.class-code.net
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[44] that follows the cosmology of general Horndeski theories of gravity [45], of which the

covariant Galileon is a particular example. We shall be brief in this section but refer the

interested reader to [46–48] for a more complete account of the general expressions written

in a form consistent with the conventions of the hi class code [43].

We consider scalar perturbations around a spatially flat Friedmann-Lemâıtre-Robertson-

Walker (FLRW) spacetime in the longitudinal Newtonian gauge (we use natural units in

which c = 1):

ds2 = a2
[
− (1 + 2Ψ) dτ2 + (1− 2Φ) γijdx

idxj
]
, (2.1)

where τ is the conformal time, a is the scale factor and Ψ and Φ are the Bardeen potentials.

The spatial part of the metric can be written as γijdx
idxj =

[
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
.

The definition of the power spectrum of primordial curvature perturbationsR(k) is given

by 〈R(k)R?(k′)〉 = PR(k)δD(k−k′) (δD is the Dirac delta function and the star denotes com-

plex conjugation). It can be expressed in terms of the primordial amplitude As, pivot scale

kpivot and spectral index ns. Given the coefficients a`m(z) of a spherical harmonics expansion

at redshift z, the angular power spectra are defined as 〈a`m(zi)a
?
`m(zj)〉 = δ``′δmm′C`(zi, zj),

where δ``′ is the Kronecker delta. They are given in terms of transfer functions ∆Wi
` (k) as

C`(zi, zj) = 4π

∫
dk

k
∆Wi
` (k)∆

Wj

` (k)PR(k) . (2.2)

For calculations involving source number counts the relevant transfer function can be

written as

∆gi
` ≈ ∆Deni

` + other contributions, (2.3)

with

∆Deni
` =

∫ τ0

0
dτWi bg(τ)δ(τ, k)j` , (2.4)

where we use δ(τ, k) to denote the density perturbation at the Fourier mode k and j` = j`(x)

with x = k(τ0− τ) are Bessel functions. Consistently with hi class, we consider all transfer

functions to be normalized to the value of the curvature perturbation at some time kτini � 1,

e.g., δ(τ, k) ≡ δ(τ,k)/R(τini,k).

The terms not explicitly shown in Eq. (2.3) (“other contributions”) encompass correc-

tions from redshift-space distortions (RSD), lensing terms and contributions suppressed by

H/k that are small on sub-horizon scales (for the full computation of these terms, see [49–

51]). We have explicitly numerically verified that our results using the redshift distribution

of the WISE sample are almost insensitive to the inclusion of the RSD and lensing terms5

(less than 1% on all relevant scales and quantities). Hence, for all relevant practical purposes

in this paper it is sufficient to include only the density term in Eq. (2.3).

The bias of the WISE galaxies, bg(z), enters the calculation via Eq. (2.4) and we assume

it to be scale independent, since we are only considering scales ` < 400. The selection function

Wi is given by the observed number of sources per solid angle and per redshift dN
dzdΩ . We use

5This conclusion holds for a range of typical values of the magnification bias parameters s(z) [52, 53].
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the analytical approximation from [29] to the WISE galaxy selection function determined by

[54]. This approximation (in arbitrary normalization) is given by

dN

dzdΩ
= 61.3− 9.96

0.142 + z
− 85z , (2.5)

and set to zero where dN
dzdΩ(z) < 0. This distribution is shown in the left panel of Figure 1.

In our analysis we follow the steps from e.g. [24, 30, 31], and use the CMB lensing

convergence-galaxies cross-correlation Cκg
` to fix the bias of the WISE galaxies. Then we cal-

culate the CMB temperature-galaxy cross spectrum CTg
` to compare the Galileon predictions

to the ISW data and assess the sign of the ISW effect6. To compute these two spectra we

need the transfer functions associated with the lensing convergence κ and the ISW effects:

∆κ
` = −`(`+ 1)

2

∫ τ0

τ∗

dτ
τ − τ∗

(τ0 − τ)(τ0 − τ∗)
(Φ + Ψ) j` , (2.6)

∆ISW
` =

∫ τ0

τ∗

dτ
(
Φ′ + Ψ′

)
j` . (2.7)

Here τ∗ and τ0 are the conformal time at recombination and today, respectively, and we

omitted the arguments (k, τ) for the transfer functions. Primes denote derivatives with

respect to conformal time. The perturbation equations determining these transfer functions

are solved numerically by hi class and are directly affected by the modifications of gravity

[43]. We stress that in hi class the transfer function of the lensing convergence is evaluated

by using the definition of the convergence as the two-dimensional Laplacian of the lensing

potential κ = −1
2∆Ωψ. Given the direction of photon propagation n, the lensing potential is

given by [55]

ψ(n, z) = −
∫ r∗

0
dr̃
r∗ − r̃
r∗r̃

(Φ + Ψ) (r̃n, τ0 − r̃) . (2.8)

We do not use the popular relation κ ∝
∫

dτδ since it is only valid in GR. Note also the

dependence of ∆ISW
` on the time-derivatives of the Bardeen potentials, which is what char-

acterizes the ISW effect. Correlations of CMB lensing convergence and temperature with

low-redshift sources are well approximated, respectively, by

Cκg
` = 4π

∫
dk

k
∆κ
` (k)∆g

` (k)PR(k) , (2.9)

CTg
` = 4π

∫
dk

k
∆ISW
` (k)∆g

` (k)PR(k) , (2.10)

where we dropped the redshift index for number counts as it is now assumed that the galaxy

transfer function is integrated over the whole respective redshift range of the galaxy sample.

Finally, we note also that in the calculation of the spectra we make use of the Limber approx-

imation [56]. We numerically verified that the largest effect of applying this approximation

is ≈ 1% in the CTg
` and Cκg

` spectra and hence, not a source of concern for our analysis here.

6As commonly done in the literature (e.g. [24, 29–31]) we use the term “ISW Amplitude” to refer to the

sum of the spectrum CTg
` evaluated at a given set of multipoles ` (cf. Eq. (4.3)).
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3 Covariant Galileons

In this section we introduce the Galileon model and summarise the main aspects of its current

observational status. We will be brief in our descriptions and refer the reader to the literature

cited throughout for more details.

3.1 Action of the Model

The action of the minimally coupled covariant Galileon model is given by

S[gµν , φ] =

∫
d4x
√−g




5∑

i=2

Li[gµν , φ] + Lm[gµν , ψm]


 , (3.1)

with

L2 = c2X −
c1M

3

2
φ , (3.2)

L3 = 2
c3

M3
X�φ , (3.3)

L4 =

(
M2

Pl

2
+

c4

M6
X2

)
R+ 2

c4

M6
X
[
(�φ)2 − φ;µνφ

;µν
]
, (3.4)

L5 =
c5

M9
X2Gµνφ

;µν − 1

3

c5

M9
X
[
(�φ)3 + 2φ;µ

νφ;ν
αφ;α

µ − 3φ;µνφ
;µν�φ

]
. (3.5)

In the above equations g is the determinant of the metric gµν , R is the Ricci scalar, Gµν
is the Einstein tensor, X ≡ −∂µφ∂µφ/2, φ;µν = ∇µ∇νφ, �φ = ∇µ∇µφ and Lm denotes

the Lagrangian of some matter field ψm. The mass scale M3 ≡ MPlH
2
0 ensures that the ci

coefficients remain dimensionless (where MPl is the Planck mass).

A few noteworthy points about the structure of the Lagrangian densities in Eq. (3.1)

include:

• The terms involving only first derivatives of the metric (L2, L3 and the terms in L4,

L5 that do not involve R or Gµν) represent all the possible terms whose equations

of motion are invariant under a Galilean shift ∂µϕ → ∂µϕ + bµ and are kept up to

second-order in field derivatives in four-dimensional Minkowski space [6].

• The explicit couplings to R and Gµν in L4 and L5 are not Galilean invariant but were

included by [7] to keep the equations of motion second-order in fields derivatives in

a spacetime like FLRW and hence, leave the theory free from instabilities known as

Ostrogradski ghosts. Note however, that the addition of these couplings to curvature

(which effectively act as counter terms that cancel higher-derivatives arising from the

straightforward promotion of partial to covariant derivatives) is not necessary to yield

ghost-free scenarios [57–59].

• The model is minimally coupled to matter, i.e. the matter Lagrangian is constructed

out of gµν and matter ψm fields with no explicit occurrence of φ. This is different from

other models which often feature a coupling to the matter energy-momentum tensor

(see e.g. [60, 61] for the explicit Lagrangian).
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Below, we focus specifically on the model of Eq. (3.1). However, analyses such as

the one we perform here should also result in powerful constraints on other versions of the

Galileon model, including the beyond Horndeski covariantization [58, 62] and models with

non-minimal couplings to matter, in the sense that these models also generally exhibit non-

trivial evolutions of the lensing potential. This behaviour can be traced to generic properties

of modified gravity theories [32] that are present in all variants of Galileon gravity [62, 63].

3.2 The Galileon Subspace of Parameters

The dimensionless constants c1−5 are model parameters to be constrained by observational

data. The parameter c1 describes a linear potential term with no particularly interesting

dynamics and hence we will set it to zero. A rescaling of the scalar field φ by a constant

factor B, φ → Bφ, preserves the physics of the model as long as the Galileon parameters

are rescaled as ci → ci/B
i. If this unphysical degeneracy is not broken, then the Markov

chains cannot converge (see [64] for a more detailed discussion). To break the degeneracy,

we follow [22] and fix c2 = −1. This way, the L2 piece reduces to the standard scalar kinetic

term with a negative sign. The fact that c2 < 0 is an observational requirement [22, 64] and

does not necessarily lead to ghost-like instabilities. We stress that the physics of the model

are not affected by which parameter we choose to fix (for instance, [64] fixed c3 = 10 and

quoted constraints on combinations such as c4/c
4/3
3 ), or in other words, the constraints and

best-fitting values we obtain here can be straightforwardly translated to other choices of the

fixed parameter analytically.

When solving for the background evolution one must specify the initial condition of the

Galileon field time derivative φ̇ = dφ/dt (t is the physical time), which is in general a free

parameter. In [64] the authors found that in order for the model to yield satisfactory fits

to the CMB data, the background in the Galileon model must reach the so-called tracker

evolution before the energy density of the Galileon field starts to contribute non-negligibly to

the total energy density of the Universe (see e.g. Fig. 11 of [22]). The results are insensitive

to the exact time this tracker evolution starts to be followed, provided that the tracker is

reached before this critical time. This evolution is characterized by [13]

φ̇H

MPlH
2
0

≡ ξ = constant , (3.6)

where ξ is a constant free dimensionless parameter. Below, we assume that the Galileon field

is always on the tracker, which effectively means setting up the initial condition of φ̇ = dφ/dt

to satisfy Eq. (3.6). If Galileon dynamics are valid during inflation, then it is interesting to

note that they are naturally set extremely close to the tracker value in the early universe.

The existence of the tracker is a direct consequence of shift symmetry (φ → φ + c), by

virtue of which the evolution of the field is equivalent to the covariant conservation of the

shift-current [63] ∇µJ µ ⇒ J̇ 0 + 3HJ 0 = 0, where J 0 is defined in Eq. (3.8). The general

solution J 0 ∝ a−3 decays towards zero as the inverse volume of the universe. It can hence

be expected to have dropped to a negligible value by the end of inflation aend
aini
∼ e50−60, or

deep in the radiation era when hi class initial conditions are set.7

7In general, without assuming the tracker evolution, one could have allowed φ̇i = dφi/dt to be a free
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The functional form of the Hubble rate in the tracker solution of the Galileon model is

given by (
H(a)

H0

)2

=
1

2

[
Ωfluid(a) +

√
[Ωfluid(a)]2 + 4Ωφ0

]
, (3.7)

with which one can notice the lack of a ΛCDM limit. Here, Ωfluid is the energy density of

matter and radiation and Ωφ0 the fractional energy density of the Galileon field today. The

condition that the evolution is that of the tracker (3.6), together with the condition for the

Universe to be spatially flat (derived from Eq. (3.7)), result in the two following constraints

[22]:

Ωφ0 =
c2

6
ξ2 − 2c3ξ

3 + c4
15

2
ξ4 + c5

7

3
ξ5,

J 0 = c2ξ − 6c3ξ
2 + 18c4ξ

3 + 5c5ξ
4 = 0. (3.8)

These constraints allow to fix two Galileon parameters in terms of the others, effectively

reducing the dimensionality of the Galileon subspace of parameters by 2 (recall that c2 = −1).

To organize our discussions below we divide the Galileon subspace of parameters into

three sectors of increasing complexity:

1. Cubic Galileon (Gal3): c4 = c5 = 0 such that c3 and ξ are fixed by Eqs. (3.8). This

model has the same number of free parameters as standard ΛCDM.

2. Quartic Galileon (Gal4): c5 = 0, c3 and c4 fixed by Eqs. (3.8), with ξ left as a free

parameter. This model has one extra parameter relative to ΛCDM.

3. Quintic Galileon (Gal5): c4, c5 fixed by Eqs. (3.8), such that c3 and ξ are left as free

parameters. This is the most general case we consider which has two extra parameters

relative to ΛCDM.

In our analysis we always require all models to be free from ghost or Laplace instabilities on

scalar and tensor perturbations. These stability criteria (see e.g. [43]) depend only on the

background evolution and therefore can be checked before solving for the evolution of the

perturbations in hi class.

3.3 Observational Status of the Galileon Model and the ISW Effect

To the best of our knowledge the latest thorough account on the observational status of the

covariant Galileon model is that of [22]. There, the authors placed observational constraints

on the full (cosmological + Galileon) parameter space of the model using the CMB tem-

perature and CMB lensing data products from Planck 2013 [66] as well as a compilation of

parameter but the data will only put an upper bound on it (see [64] for an analysis varying the initial

condition). Below this upper bound the predictions are then always the same, which is why we can assume

the tracker evolution at all times. Recently in [65], the authors have placed constraints on the Galileon model

using cosmological data and found that the tracker evolution is less favoured by the data compared to more

general background evolutions. In [65] however, the constraints do not include data from the amplitude of

the CMB temperature power spectrum which plays the dominant role in setting constraints on the Galileon

model. The authors in [65] also did not consider the impact of massive neutrinos which play an important

role in the background expansion in the Galileon model (see e.g. [22]).
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BAO scale measurements at lower redshift8 that includes SDSS DR7 LRG [34], BOSS DR9

CMASS [35] and the 6dF Galaxy Survey [36]. We refer the reader to Section IV of [22] for a

summary of other past observational constraint analyses performed on the Galileon model.9

Overall, in [22] it was found that there are regions in the cosmological parameter space

of the Galileon model that yield the same goodness-of-fit as ΛCDM to the CMB temperature

and lensing power spectrum, as well as to the BAO data. A caveat that was pointed out,

however, is that the typical best-fitting models exhibit a growth of the lensing potential at

late times, which is in contrast with the well-known decay predicted by ΛCDM. In the latter

model the decay of the lensing potential is caused by the onset of the accelerated expansion

of the Universe. In the case of the best-fitting Galileon models the effects of the acceleration

on the lensing potential are insufficient to counteract the fast growing impact of the Galileon

field which can work very effectively to make the potentials deeper closer to the present-time

on large scales (cf. Figure 3 and 7 of [22]).

If the lensing potential decays with time, as it does in standard ΛCDM, then the ISW

effect causes a positive cross-correlation between the CMB temperature and the foreground

distribution of matter. This positiveness of the ISW effect is in line with various pieces of

observational evidence [24, 70]. If a negative ISW effect is a general prediction of the Galileon

model, then the ISW signal holds a great potential to rule out this theory of gravity or at

least place very tight constraints on it. In [22] the authors demonstrated that the lensing

potential grows with time for a few best-fitting Galileon models, and limited themselves to

arguing qualitatively that the ISW effect should be negative and, as a result of that, these

models would be ruled out. The work of [32] has subsequently confirmed that the said

best-fitting models had indeed a negative cross-correlation for galaxies distributed around

z ≈ 0.3. The effects of the non-linear Vainshtein screening mechanism do not help at easing

these observational tensions because the ISW signal is sensitive almost exclusively to linear

structure formation processes on scales & 10 Mpc/h, whereas the screening effects only

become important on scales . 1− 10 Mpc/h (see e.g. [19, 21, 71]).

The Galileon subspace of parameters, however, provides enough freedom to obtain evo-

8In the analysis of [22] the authors have also measured the impact of using SNIa data but such results are

not shown given that they had a sub-dominant impact on the overall constraints and conclusions.
9Galileon gravity can also be constrained by local and astrophysical tests of gravity. Spherically symmetric

solutions linear in time φlocal(t, r) = φ̇(t0) ·t+ϕ(r)+φ(t0) lead to strong constraints on the quartic and quintic

models, i.e. through time variation of the gravitational constant [67] or the orbital decay of binary pulsars

[68] if the local and cosmological time derivative of the scalar field have similar values φ̇local(t, ~x) ≈ φ̇cosmo(t).

This property of the local solution has been derived for shift-symmetric theories assuming that φ̈(t) = 0 on

the cosmological solution [67]. For Galileon gravity this statement is true asymptotically in the de Sitter limit

cf. (3.6,3.7). However, the second derivative in the attractor solution today

φ̈cosmo =
ξ

H2
0

3Ωm
2(1 + Ωgal)

≈ 0.25

ξ
φ̇2

cosmo , (3.9)

is non-negligible in general and introduces new terms that can affect the local solution. The quartic Galileon

equation (A1 of Ref. [69]) includes terms like Gµνφ;µν ∼ φ̈R00 that vanish if φ̈ = 0: these terms are enhanced

in the local solution, as Rlocal
00 ∝ ρlocal & 1030ρcosmo for the Earth and 1044 for a neutron star in a binary

pulsar. For those reasons, the connection between cosmological and local solutions in these theories does

require more detailed modeling than currently available. We proceed with focus on cosmology, but note that

these are considerations that should be revisited given their potentially critical importance in setting the

observational viability of the Galileon model.
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Figure 1: Lensing potential on scale k = 0.01/Mpc as a function of redshift (left panel) in

code units of CLASS and CMB temperature - WISE galaxy cross-correlation (right panel)

for ΛCDM and the Galileon models. The shaded region in the left panel indicates the WISE

redshift selection function dN/dzdΩ given in Eq. (2.5) with adjusted offset and normaliza-

tion for display. The black solid line shows the prediction of ΛCDM while the coloured

dashed/solid lines indicate examples of Galileon models with growing/decaying potentials

within the redshift range of the WISE selection function. Cubic models are shown in orange

(νGal3), quartic in purple (νGal4) and quintic (νGal5) in green. The temperature-galaxy

data are the Q-band measurements from [30].

lutions of the lensing potential that yield a positive ISW effect. This is illustrated in Figure 1.

The left panel shows the redshift evolution of the lensing potential for ΛCDM and represen-

tative Galileon models, as labelled. The shaded region depicts the redshift distribution of

the WISE galaxies we use in this paper. For the Galileon curves shown the dashed ones

correspond to cases with growing lensing potentials. The right panel shows the resulting CTg
`

spectrum which is negative and, hence, at odds with the WISE ISW data (grey points). On

the other hand there are choices of the Galileon parameters that yield decreasing potentials

(solid lines). An interesting point to note for these curves is that, although the potential can

grow in some redshift ranges (e.g. z ∼ 0.5 − 1) it is decaying in the redshift range spanned

by the WISE galaxies. This therefore yields a positive CTg
` , as shown in the right panel. A

main question that we address below is then: is the positiveness of the ISW effect in Galileon

cosmologies compatible with CMB and BAO data? We will see below that yes: there are

regions in the parameter space that yield an acceptable fit to the CMB, BAO and ISW data

considered in this paper10.

4 Methodology

In this section we outline the main steps taken in our analysis. The first step consists in

placing constraints on the parameter space of the Galileon model using data from the CMB

and BAO. This serves to pin down the parts of the parameter space that merit the subsequent

10There are some recent BAO scale determinations that are in tension wit Galileon gravity which we discuss

in Section 5.4.
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dedicated ISW analysis. The latter involves first calibrating the bias using data from the

Cκg
` spectrum and then analysing the predicted CTg

` spectrum to assess the goodness-of-fit

to the ISW data.

4.1 MCMC constraints

The MCMC exploration of the Galileon model parameter space is carried out using the

hi class and MontePython [72] codes. We use data from the CMB temperature power

spectrum and CMB lensing potential power spectrum from Planck (temperature, polarization

and lensing) [33] as well as BAO measurements from SDSS DR7 LRG [34], BOSS DR9

CMASS [35] and the 6dFGS [36]11. These BAO measurements are those which were used in

the cosmological constraint analysis of Planck 2013 [73] and to constrain the Galileon Models

in [22]. Admittedly, there are more recent BAO scale determinations but as we will discuss

in Section 5.4 they are in some tension with the Galileon models. Hence, to avoid risking

having biased best-fitting regions we opt to run the MCMC analysis with a BAO compilation

that is not in tension with the Galileon model (but that provides with enough constraining

power), and then subsequently check the goodness-of-fit of the best-fitting regions to more

recent BAO data. For short, we will refer to this dataset as CMB+BAO13.

We place separate constraints on the cubic, quartic and quintic Galileon models. For

all these models we vary the following cosmological parameters (in addition to the relevant

Galileon parameters; cf. Section 3.2):

{
100ωb, ωcdm, H0, ns, 109As, τreio,Σmν

}
, (4.1)

which are, respectively, the physical baryon matter density ωb = Ωb0h
2, the physical cold

dark matter density ωcdm = Ωcdm0h
2, the Hubble rate today H0 = 100h km/s/Mpc, the

scalar spectral index of the primordial power spectrum ns, its amplitude As at a pivot scale

kpivot = 0.05 Mpc−1, the optical depth to reionization τreio, and the summed mass of three

active neutrinos Σmν . Neutrino masses are in general an unknown parameter that should

be varied and constrained by the data; while direct searches provide model-independent

determinations of the total neutrino mass, the constraints are still not informative enough

for our purposes (0.06eV < Σmν < 6.6eV [74]). Rather than assuming a specific, possibly

biased prior, we take a more general approach and only require neutrino masses to be non-

negative. In the case of the Galileon model they even play a fundamental role in providing

acceptable fits to the data [22]. For this reason we explicitly include the symbol ν into the

Galileon model abbreviations (νGal3, νGal4 and νGal5) to emphasize that neutrino masses

are a free parameter (which is sometimes neglected in observational constraint analyses). For

all models we always consider a degenerate mass spectrum for the three families of active

neutrinos. Furthermore, despite the stability conditions on the Galileon parameters (see

Section 3.2) we impose uninformative priors.

This part of our analysis consists essentially in an update and validation of the analysis

done in [22]. These chains are then sampled to check the compatibility with the ISW data

as outlined next. We do not include the ISW data directly into the MCMC exploration

11The likelihoods we have used in MontePython are ’Planck highl’, ’Planck lowl’, ’Planck lensing’ and

’bao boss’ with the data points as stated above.
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due to computational costs: the precision needed to compute the CMB temperature-galaxy

distribution cross-spectrum slows down the computation considerably. To obtain converged

chains within a reasonable time limit we only include CMB+BAO data into the MCMC

analysis. Having a converged set of chains, we then downsample them by a factor of ∼10 to

inspect how the ISW amplitude varies across the parameter space allowed by the CMB+BAO

data.

4.2 Galaxy Bias Calibration

The amplitude of the cross-correlation of the CMB temperature with galaxies, CTg
` , is de-

generate with the bias of the galaxies which enters through ∆g
` (k) in Eq. (2.10). Therefore

one has to estimate the bias of the WISE galaxies first before assessing the impact of the

ISW data on the observational viability of the Galileon model. Here, we follow similar steps

as in [24, 30, 31] and use the cross-correlation between the CMB lensing potential and the

galaxy number counts, Cκg
` , on scales 100 . ` . 400 to fit for the bias.

In Eq. (2.9), we use linear theory to compute the transfer functions and consider a

simple redshift-dependent bias with b(z) = b0(1 + z), as done by the Planck Collaboration

[24] to estimate the WISE galaxy bias. Naturally, this treatment can be made more robust

(e.g. inclusion of non-linearities, and eventual scale-dependence of the bias), but this simple

modelling is sufficient for our purposes here. For any given point in parameter space analysed

we fit for the value of b0 by maximizing the following Gaussian likelihood function

L(d; t(b),C) ∝ exp

[
−1

2
(d− t)TC−1(d− t)

]
, (4.2)

where t is the theoretical prediction which is evaluated according to Eq. (2.9). The data

vector, d, and the associated covariance, C, are both taken from [30]; in the latter the

authors use the reconstructed lensing potential map from the Planck 2013 results [66]12, the

CMB temperature map of the WMAP 9-year results [77]13and the galaxy catalogue from the

WISE survey [38].

Figure 2 shows the best-fitting Cκg
` for ΛCDM and for representative cubic, quartic

and quintic Galileon models. The agreement between the theoretical spectra and the data

is not perfect. For the case of ΛCDM, better fits are obtained if instead of using linear

theory to evaluate the transfer function in Eq. (2.9) one uses non-linear prescriptions like

Halofit [78, 79]. This reduces the best-fitting value of b0 by about 25%, which translates

into a decrease in the amplitude of the ISW signal (AISW in Eq. (4.3) below) of the same

order. Such non-linear prescriptions are not available for Galileon gravity and thus we have

to rely on linear theory. We note, however, that for our goals in this paper it is sufficient to

determine only roughly the value of b0 to break the degeneracy with the effects of the Galileon

field on the amplitude of CTg
` . Our main conclusion, that Galileon cosmologies admit good

fits to ISW data, is not sensitive to the exact value of b0, but the precise best-fitting Galileon

parameter values are.

12The update to the lensing potential map from Planck 2015 [75] would only lead to a minor decrease of

the bias; see Fig. 7 of [76].
13Differences between the Planck 2015 and the WMAP 9-year CMB temperature map are negligible for

the purpose of this analysis on scales ` . 100.
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Figure 2: Lensing convergence-galaxy cross-correlation for ΛCDM and for a representative

cubic, quartic and quintic model with the best-fitting values of b0 for the redshift dependent

bias model b(z) = b0(1 + z) indicated in the legend; note that the Galileon curves are

overlapping and indistinguishable. The data points are from [30].

4.3 Fit to ISW Data

Finally, the last step in the search for Galileon models consistent with ISW data concerns

the actual calculation of the cross-correlation between the CMB temperature and the WISE

galaxies, CTg
` . We define the amplitude of the ISW effect AISW as

AISW =

∑
i ti∑
i di

, (4.3)

where t and d are the vectors containing the theoretical predictions and the data as measured

in [30], respectively, and the index i runs over the multipoles of the data (cf. Figure 1). The

sign of AISW provides a quick diagnostic of the overall sign of the ISW (provided the spectra

does not oscillate non-trivially around zero), but it is not very informative about the overall

goodness-of-fit to the data. To determine this we also compute the following χ2
ISW quantity

χ2
ISW = (d− t)TC−1(d− t) , (4.4)

where C is the covariance matrix from [30].

To determine the level of agreement/tension of a given model we can calculate the best-

fitting amplitude, Abf , by rescaling the theoretical prediction as t→ ft and then fit f to the

data. The minimization dχ2/ df = 0 can be carried out analytically to yield

Abf = dTC−1t/
(
tTC−1t

)
, (4.5)

with variance

σ2
bf = 1/

(
tTC−1t

)
. (4.6)
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For a given model, the value of |Abf − AISW |/σbf gives a measure of the level of agreement

between theory and observations.

The calculation of the WISE ISW signal requires knowledge of the redshift selection

function of the survey. We use Eq. (2.5) as an analytical approximation to the selection

function originally put forward in [54] (see their Fig. 4). In the Galileon model the evolution

of the lensing potential and consequently the ISW signal may depend sensitively on the

redshift range analysed, as can be seen in the left panel of Figure 1. We numerically verified

that the use of the analytical approximation compared to the distribution determined by

[54] does not affect our results by more than 1% in the best-fitting b0 or AISW values. To

account for the uncertainties in the precise redshift range spanned by the WISE galaxies we

follow the steps from [30] who shifted the whole selection function by ∆z = ±0.1 as a test.

In [30], the authors found that in ΛCDM the change of Abf is only about 5% corresponding

to ∼ 15%σbf ; as expected from the evolution of the lensing potential shown in Figure 1 the

effect on the Galileon amplitudes are more significant and can result in a change of Abf
of ∼ 20%. Nevertheless, we verified that our general conclusions are unaffected by this:

the change of the central redshift of the selection function in the Quintic Galileon model

results only in an effective shift in the Galileon parameter space of the models that provide

a good fit to the ISW data. Owing to this degeneracy the overall goodness-of-fit to the

CMB+BAO13+ISW data remains unaffected compared to the unshifted distribution. This

makes us confident that our overall conclusions are not dependent on the exact modelling of

the redshift distribution of the WISE galaxies. Although we note that precise determinations

of bounds on best-fitting Galileon parameters may be specific to the precise modelling of the

redshift distribution function.

5 Results

In this section we present the results of the methodology outlined in the previous section for

Cubic, Quartic and Quintic Galileons.

5.1 Monte Carlo Cosmological Constraints

The one-dimensional marginalized constraints obtained with the CMB+BAO13 dataset for

the Galileon models are listed in Table 1. In agreement with [22], we find that the constraints

on the cosmological parameters (cf. Eq. (4.1)) are practically the same across the cubic,

quartic and quintic models. This is because these constraints are largely set by H(a), which

on the tracker, is independent of the values of the Galileon parameters ci, ξ and hence it is

the same for all three sectors of the model. Table 1 shows also the corresponding results for

ΛCDM to help appreciate the difference in the resulting best-fitting parameter values. Two

noteworthy such differences are those associated with the constraints on H0 and Σmν , as

illustrated in the left panel of Figure 3 and on which we comment next.

In Galileon gravity cosmologies the data require non-zero neutrino mass values which is

in sharp contrast with the result in ΛCDM [33, 81]. Specifically, in Galileon cosmologies the

data rule out Σmν 6= 0 with ≈ 5σ significance; while in ΛCDM Σmν = 0 is favoured by the

data. As explained first in [22], given the tracker expansion rate of Eq. (3.7), high neutrino

mass values are needed for the model to simultaneously fit the peak positions of the CMB at
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ΛCDM νGal3 νGal4 νGal5

100ωb 2.222+0.041
−0.039 2.199+0.041

−0.040 2.205+0.040
−0.039 2.204+0.040

−0.039

ωcdm 0.1183+0.0030
−0.0031 0.1203+0.0032

−0.0031 0.1198+0.0030
−0.0031 0.1198+0.0031

−0.0030

H0 67.6+1.6
−1.8 71.6+2.1

−2.1 72.4+2.0
−2.0 72.3+2.1

−2.1

10+9As 2.16+0.13
−0.12 2.10+0.14

−0.14 2.10+0.14
−0.13 2.09+0.14

−0.14

ns 0.9649+0.0099
−0.0099 0.9604+0.0097

−0.0096 0.9607+0.0097
−0.0091 0.9607+0.0096

−0.0097

τreio 0.073+0.033
−0.031 0.056+0.035

−0.037 0.056+0.035
−0.035 0.055+0.035

−0.037∑
mν [eV] < 0.351(2σ) 0.56+0.21

−0.19 0.51+0.19
−0.19 0.51+0.21

−0.19

Ωsmg −− 0.710+0.021
−0.023 0.718+0.020

−0.021 0.718+0.020
−0.022

ξ −− 2.064+0.031
−0.033 2.41+0.20

−0.20 2.39+0.61
−0.68

c2 −− -1 -1 -1

c3 −− −0.0807+0.0012
−0.0013 −0.1042+0.0096

−0.0077 −0.074+0.27
−0.077

c4 −− 0 −0.0048+0.0018
−0.0014 0.008+0.11

−0.026

c5 −− 0 0 −0.013+0.023
−0.12

χ2
CMB 11,273.7 11,288.0 11,275.1 11,274.0

χ2
BAO13 1.75 0.90 0.83 0.87

Table 1: One-dimensional marginalized CMB+BAO13 constraints at 95% confidence level

on the parameters of the cubic, quartic and quintic Galileon models studied in this paper,

together with ΛCDM. The constraints correspond to a dataset that comprises temperature

and lensing data from Planck, as well as BAO13 constraints. Bold values indicate values that

are fixed, i.e., not varied in the MCMC analysis. The last lines indicates the goodness-of-fit

to CMB and BAO13 data separately.

early redshift and BAO features at low redshift. These constraints on Σmν open the route

for cosmological-independent terrestrial determinations of the absolute neutrino mass scale

to help distinguish between ΛCDM and Galileon cosmologies. Currently, these efforts are

limited to a sensitivity of
∑
mν < 6 eV [74], but future experiments are expected to improve

this significantly.

The value ofH0 preferred by the CMB+BAO13 dataset in the constraints of the Galileon

model is in agreement with the measurement in the local Universe reported in [80] (see also

[82–88]). This agreement occurs without adding any prior on H0. As for Σmν , the different

constraints on H0 can be traced back to the details of the evolution of H(a) in the ΛCDM

and Galileon models. This difference to ΛCDM gains particular relevance when interpreted

in light of the current 3.4σ tension in ΛCDM between the CMB inferred value of H0 and the

local determination which has been the subject of recent investigation [89, 90].
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Figure 3: 1-3 σ contours in the 2-D marginalized H0 − Σmν plane (left panel) and in the

ξ − c3 plane (right panel) from the MCMCs with CMB and BAO13 data for ΛCDM, Cubic,

Quartic and Quintic Galileons. The horizontal shaded regions in the left panel indicate

the constrains on H0 from local (distance ladder) measurements [80]. We have omitted the

quartic model in the H0 − Σmν plane for the purpose of clearness since the constrains are

almost indistinguishable from the quintic case. The red, dotted lines in the right panel point

to the contours of Cubic Galileons.

The right panel of Figure 3 shows the two-dimensional marginalized constraints on

the c3-ξ plane. Note that these two parameters are only independent in the quintic case

(cf. Section 3.2); the contours of the νGal3 model are barely visible at ξ ≈ 2.1 and c3 ≈
−0.08. We note also that, in addition to the constraints from the CMB+BAO13 dataset, the

parameter space of the quintic Galileon model is also severely constrained by the stability

conditions (cf. Figure 12 of [22]).

Our goal in this paper is not to undergo a detailed analysis of these cosmological con-

straint results. Instead, we limit ourselves to noting that Figure 3 serves as a useful reminder

that cosmological parameter constraints are model-dependent in general and that some of

the observational tensions that have been reported in ΛCDM may be circumvented by alter-

native theoretical models. Below, we analyse with more detail the ISW predictions of these

best-fitting regions and what they imply for the viability of the Galileon model.

5.2 Serious Tension of the Cubic Galileon and the ISW Data

Overall, we find that the phenomenology of the Cubic Galileon is not flexible enough to fit

the ISW data. More specifically, sampling from the points accepted in the MCMC analysis

we found no single point with a positive value of AISW, i.e., the lensing potential in these

cubic Galileon models always grows during the redshift range covered by the WISE galaxies.

The model with the smallest tension (ξ = 2.04, c3 = −0.08) has an ISW amplitude of

AISW = −2.39. This prediction is in a 7.8σ tension with the best fit amplitude (Eqs. (4.5)
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Figure 4: ISW amplitude AISW across the c3 − ξ plane of the Quartic Galileon parameter

space. The solid contours denote the two-dimensional marginalized 1σ and 2σ confidence

regions from the MCMCs with CMB+BAO13 data. The dots correspond to points accepted

in the MCMCs and are colour coded by their corresponding χ2
ISW values. We use different

colourbars for points with positive and negative AISW to facilitate interpreting the figure.

Note that all models leading to a χ2
ISW > 30 are shown in dark red. The rhombus, triangle

and star symbols in purple indicate the models that give the best fit to the CMB+BAO13

dataset, ISW data alone and the combined CMB+BAO13+ISW set, respectively.

& (4.6)) to the WISE ISW signal. The orange dashed line in Figure 1 shows the ISW signal

for this poor best-fitting case (with galaxy bias as in Figure 2).

Given this very strong and apparently unavoidable tension with the ISW data we can

conclude that the covariant Cubic Galileon is not a viable cosmological model. In [26] the

authors have also reached similar conclusions for a model of gravity that has the Cubic

Galileon as a specific limit; our analysis is however more robust as (i) we analyse the regions

of the parameter space that best fit the CMB and BAO13 data, which include having non-

zero neutrino masses; and (ii) we perform the calibration of the bias of the WISE galaxies

(cf. Section 4.2), which, if not done, constitutes a source of error on the overall ISW signal

prediction.

5.3 ISW Constraints on the Quartic and Quintic Galileon Models

In the quartic and quintic Galileon models the additional terms introduced in the Lagrangian

and extra degrees of freedom (ξ in the quartic model and ξ, c3 in the quintic; cf. Section 3.2)
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Figure 5: Same as Figure 4 but for the quintic Galileon model. See the main text for

comments about the sampling at the tips of the contours.

100ωb ωcdm Ωsmg H0 10+9As ns τreio
∑
mν ξ c3

νGal4 2.193 0.1195 0.7264 73.08 2.04 0.957 0.0439 0.44 2.60 -0.11

νGal5 2.204 0.1193 0.7093 71.39 2.13 0.963 0.0647 0.63 2.58 -0.11

Table 2: Best-fitting cosmological and Galileon parameters to CMB, BAO13 and ISW data

sets for Quartic and Quintic Galileons, with χ2
CMB = 11, 277.9, χ2

BAO13 = 1.85, χ2
ISW = 1.55

and χ2
CMB = 11, 276.6, χ2

BAO13 = 0.98, χ2
ISW = 2.39, respectively. Both models are within

the ≈ 1σ confidence region of the MCMC constraints.

allow for a time evolution of the lensing potential that results in positive AISW values in

the redshift range of the WISE survey (see [91] for a discussion about the importance of

c4, c5 6= 0 in the sign of the ISW effect.). In Figure 4 and Figure 5 we show the two-

dimensional marginalized constraints in the c3-ξ plane of the quartic and quintic models.

These two figures show also some accepted MCMC points colour coded by the respective

χ2
ISW values; we use two colourbars for points with AISW > 0 and points with AISW < 0 to

visualize which regions of the parameter space predict a positive/negative ISW signal. The

purple symbols mark the location of the best-fitting model to the CMB+BAO13 data only

(rhombus), ISW data only (triangle) and to the combined data sets (star). By summing

the χ2 values of CMB, BAO13 and ISW (assuming that the likelihoods are independent) we

obtain the global best fits shown in Table 2.

For both, the quartic and quintic models, there are parameter space regions that are
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good fits to simultaneously the CMB+BAO13 dataset and the CTg
` spectra of the WISE

galaxies: the best-fitting models to this combined data are in fact within the ≈ 1σ limits

of the original CMB+BAO13 constraints. The CTg
` spectra and lensing potentials of the

best-fitting models to the CMB+BAO13 dataset (purple rhombus) and to its combination

with ISW (purple stars) are shown by the dashed and solid lines in Figure 1, respectively.

The corresponding best-fitting galaxy bias values for the latter models are given in Figure 2.

As a technical remark, we note that the low-ξ/high-c3 tail of the distribution in Fig-

ure 5 is hard to sample by standard MCMC algorithms because it is very narrow and the

neighbouring regions correspond to points associated with ghost and Laplace instabilities

(whenever these unstable points are sampled they are immediately rejected before even ob-

taining predictions for them). In the other tip of the contours (high-ξ/low-c3), the parameter

space is also sharply cut off by the stability conditions; in fact, the algorithm that determines

the confidence contours cannot resolve these fine details of the Galileon parameter space. For

us, the main point to retain is that there are parts of the Galileon subspace of parameters

that yield a good fit to the ISW signal of the WISE galaxies.

The CMB temperature and lensing potential power spectrum of the best-fitting Galileon

models to the CMB+BAO13 data set (dashed) and its combination with ISW data (solid)

are shown in Figure 6, together with the data points and errorbars from the Planck 2015 data

release [66, 92], as labelled. The figure illustrates the overall good fit of the Galileon models

that survive the WISE ISW test. In the right panel, the two data symbols shown correspond

to a conservative and a more aggressive treatment of the power spectrum of the reconstructed

lensing potential maps. In the official Planck lensing likelihood only the conservative points

are included and as a result, the Galileon models and ΛCDM display similar goodness-of-fit.

It is interesting to note that, compared to ΛCDM, the Galileon models predict a markedly

larger amplitude at low-`. However, systematics on the determination of the data points at

low−` are currently less well understood compared to high-`. Hence, including these points

in a constraint analysis could lead to potentially biased results (as a matter of fact, CMB

lensing data are not included in the analysis of the Planck paper dedicated to dark energy

and modified gravity [93]). For the time being we limit ourselves to noting that a more robust

understanding of the CMB lensing potential power spectrum at low-` could prove very useful

in distinguishing between ΛCDM and Galileon gravity.

As noted already above, the positiveness of the WISE ISW signal in the Quartic and

Quintic Galileons follows directly from the fact that the lensing potential in these models is

decaying during the redshift range covered by the WISE galaxies, as illustrated in the left

panel of Figure 1. The same panel also shows, however, that the lensing potential can grow

at other epochs: z ∼ 0.5 − 1 for the best-fitting quartic and quintic cases shown there. A

prediction of these models is therefore that the sign ofAISW is in general a function of redshift;

this is different than in ΛCDM in which the potentials always decay after the onset of the

acceleration of the Universe. An interesting observational test to perform is therefore that

of computing AISW at a sufficiently fine series of redshift bins ∆z by measuring CTg
` using

galaxy samples that cover those same redshift bins. To the best of our knowledge, there are

currently no such measurements to readily perform such a test. As a check, we have computed

the prediction of the quartic and quintic Galileon models for the cross-correlation of CMB
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Figure 6: CMB temperature (left panel) and lensing potential (right panel) power spectrum

for ΛCDM and the Galileon models. Dashed lines correspond to Galileon models that provide

the best fit to CMB+BAO13 data only, while solid lines are the models with the best fit to

CMB+BAO13 data combined with measurements of the ISW effect obtained with the WISE

galaxy survey. Error bars from Planck 2015 are indicated in grey/blue. In the right panel

the blue, shades regions correspond to the lensing potential obtained with “conservative”

binning while the grey bars show the low ` data from the “aggressive” binning method from

Table 1 of [92]. Note that the latter points are not included in the Planck likelihood.

χ2
MGS χ2

DR12 χ2
Lyα−auto χ2

Lyα−cross

data points 1 6 2 2

ΛCDM 1.98 5.02 4.95 4.78

νGal4 5.82 12.69 5.35 3.61

νGal5 3.45 12.90 6.05 4.26

Table 3: Goodness-of-fit to the BAO measurements not included in the MCMCs for ΛCDM

and for the best-fitting (to CMB+BAO13+ISW data) quartic and quintic Galileon model

from Table 2.

temperature with the galaxy distribution of the NRAO VLA Sky Survey (NVSS) [94], as

well as with the CMB lensing maps. These two probes are sensitive to the time-evolution

of the potentials during a much wider redshift range compared to the WISE galaxy sample.

The NVSS selection function peaks around z ∼ 0.3 and spreads out to redshift z ∼ 5, while

with CMB lensing one is sensitive out to the redshift of recombination via the lensing kernel

(see Fig. 3 of [24] for an illustration). We find that the predicted signals for the best-fitting

models from Table 2 are within the corresponding 1σ bounds reported in the Planck paper

[24] (upper left panel for NVSS and lower right panel for lensing in Figure 6 there).

5.4 Tension with BAO Data

The redshift dependence of three distance scales constrained by BAO analyses is shown in

Figure 7: DM (z) = (1 + z)DA, DH(z) = c/H(z) and DV (z) =
[
zDH(z)DM (z)2

]
, where

DA(z) is the physical angular diameter distance. The result is shown for ΛCDM and for the
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Figure 7: Redshift dependence of the DM , DV and DH distance scales for ΛCDM and

for the best-fitting νGal4 and νGal5 models to the CMB+BAO13+ISW data, as labelled.

The symbols with errorbars represent the determinations from the surveys indicated in the

legend: 6dFGS [36], SDSS DR7 LRG [34], BOSS DR9 CMASS [35], SDSS DR7 MGS [39],

BOSS DR11 Lyα-auto [40], BOSS DR11 Lyα-cross [41] and BOSS DR12 Galaxy [42]. The

symbols left unfilled comprise the BAO13 dataset used in our MCMCs. The distances are

divided by the sound horizon (computed whit hi class) at the end drag epoch, rd = 147.31

Mpc, rd = 147.16 Mpc and rd = 147.44 Mpc for ΛCDM, νGal4 and νGal5, respectively. The

scaling by z,
√
z serve to bring all curves to a similar dynamical range in the y-axis.

best-fitting Quartic and Quintic Galileons to the CMB+BAO13+ISW data, as labelled. The

symbols with errorbars display the determinations obtained by various BAO analyses. The

BAO compilation that we used in our MCMC analysis is marked with unfilled symbols and,

as already noted, both ΛCDM and the Galileon models provide good fits to these data.

The determinations of the BAO distance scales that are more recent than those in our

BAO13 compilation are marked by the filled symbols. As we have anticipated before when

leaving these data out of our MCMCs, the figure shows that the predictions of the best-fitting

Galileons are in tension with these data. The χ2 values listed in Table 3 illustrate this more

quantitatively. The strongest of the tensions is with the SDSS MGS value [39]: the νGal4 and

νGal5 are ≈ 2.4σ and ≈ 1.9σ away from this measurement, respectively. For the case of the

BOSS DR12 points (BAO-only column in table 7 of [42]), the tension is approximately at the

1.5σ level for both νGal4 and νGal5 (estimated as
√
χ2/dof ; note also that the 6 data points

are correlated, which makes this only a rough estimate). Although at face value, 1.5σ is not

a significant tension for the fit to the 6 BOSS DR12 data points, we note that the χ2 ≈ 13

values are dominated by the higher-z DH points, which the Galileon model fits poorly. This

is why we dub this as a tension. The BAO determinations from analyses of the Lyα forest of
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Data Sets νGal4 νGal5

CMB+BAO13+ISW 1/25 3/100

CMB+BAO13+ISW+H0 12/1 5/1

CMB+BAO17+ISW 1/5000 1/5000

CMB+BAO17+ISW+H0 3/50 1/25

Table 4: Relative likelihood of the best-fitting quartic and quintic Galileon model compared

to ΛCDM for a combination of different data sets computed with the Akaike Information Cri-

terion; the relative likelihood is given by exp((AICΛCDM −AICGal)/2), indicating by which

factor a model is more or less likely than ΛCDM. BAO17 includes all BAO measurements

from Figure 7. According to the AIC Galileons are favoured when considering the local H0

measurement, but not when simultaneously taking into account new BAO data. The respec-

tive values for the cubic models are all disfavoured by a factor of more than 1/1016 due to

the strong tension with the WISE ISW data. As a rule of thumb [96], if these values are

smaller than ≈ 1/13 and ≈ 1/150, then this constitutes “strong” and “decisive” preference

by the data for ΛCDM over the Galileon model, respectively.

BOSS quasars [40, 41] are in tension with Galileon model as well as with ΛCDM. Here, our

results suggest that if the current tension in ΛCDM persists in future higher-fidelity analysis,

then the tension is unlikely to be resolved by Galileon-like modifications to gravity alone.

The χ2 values quoted in Table 3 and the curves shown in Figure 7 correspond to the

specific case of the best-fitting quartic and quintic models to the CMB+BAO13+ISW dataset.

We have explicitly checked nonetheless that the degree of tension for DR12 and Lyman α

data is representative of all points within the 2σ contours obtained with the MCMC with

CMB+BAO13 data; although we note that in the quintic case the tension to the MGS data

point can be relieved (χ2
MGS < 1.5) within the ISW-compatible 1σ contours from the MCMCs.

Appreciable as the tensions identified above are, they do not yet allow us to confidently

conclude that they rule out the Galileon cosmologies. The different BAO distance scales in

LCDM and Galileon gravity depicted in Figure 7 do assign, however, to future BAO data

great potential to distinguish between these cosmological models.

For completeness we apply a simple model selection criterion that takes into account

the extra degrees of freedom of the Galileon models compared to ΛCDM. We use the Akaike

Information Criterion (AIC)14 [95] to compute the relative likelihood for the best-fitting

quartic and quintic Galileon model w.r.t. to ΛCDM for different combinations of data sets,

which we assume to be independent15. Here, we also consider the local H0 measurement

from [80], where H0 = 73.24± 1.74. The results are shown in Table 4.

Owing to the extra degrees of freedom, Galileon models are disfavoured when considering

14AIC= 2k + Σiχ
2
i , with the number of model parameters k and χ2

i being the χ2 values for the different,

independent data sets i. The relative likelihood – quantifying by which factor a model is more likely than the

fiducial model – is given by exp((AICfid −AICm)/2).
15Strictly speaking the assumption of independence it not true when considering all BAO data points: the

BOSS CMASS sample enters not only from DR9 but is also included in the DR12 Galaxy sample. However,

we neglect this correlation in this rough estimate as it just serves to build an intuition about the “cost” of

introducing one/two more parameters w.r.t. ΛCDM.
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only CMB, BAO and ISW data. It is interesting to note however, that the inclusion of the

local measurement of the Hubble constant from [80] eases this disfavour16. More robust model

comparison analyses can be performed by computing the actual Bayesian evidence [98] of the

competing models. Such a dedicated model comparison analysis would also benefit from the

use of a wider dataset than that considered in this paper (adding to it for example lensing

shear, growth rate, additional ISW data; see below).

5.5 On Additional Datasets: SNIa and Growth Rate Data

In this paper, we did not explicitly include constraints from type Ia supernovae (SNIa).

This was motivated to reproduce/corroborate the constraint analysis of [22] who also do not

show results from SNIa constraints. To validate that there are not tensions arising from also

considering SNIa data we carried out additional MCMC analyses for the Galileon models

with CMB data and 740 SNIa supernova from the “Joint Light-curve Analysis” (JLA) data

set [99]. We found in this check: (i) BAO data have more constraining power than SNIa and

(ii) we found no tension in the Galileon models between the two data sets.

Measurements of the growth rate of structure f = dlnδ/dlna (where δ is the linear

density contrast) could also play an important role in the constraints of the Galileon model.

These estimates of the growth rate, which is normally quoted as the combination fσ8, are ob-

tained from galaxy clustering data by fitting to it a model of RSD, galaxy bias and non-linear

clustering (RSD-bias-nonlinear model; see e.g. [100] for an example of such analysis from the

BOSS survey). Modified gravity theories can then only be constrained with these fσ8 es-

timates if they are compatible with the assumptions that go into the RSD-bias-nonlinear

model. Normally, these latter modelling steps are based on GR (see [101–103] for recent

exceptions to this), and as a result their performance on other theories of gravity is not guar-

anteed to be unbiased. The standard way to test these RSD-bias-nonlinear models is to build

mock catalogues based on N-body simulations of the various theories of gravity and check

whether the model recovers the fσ8 value of the input cosmology. Such a recent analysis was

carried out in [104] for the normal branch of the Dvali-Gabadadze-Porrati (DGP) [105] model

using the RSD-bias-nonlinear used in [100]. In the case of the Galileon model extra com-

plications arise because of the non-negligible scale-dependency induced on the growth rate

from the large fraction of massive neutrinos. This is also not normally taken into account in

the observational determinations of fσ8 and thus, prevents us from using the current data

to constraint Galileon gravity further.

6 Summary and Conclusion

We have carried out an investigation of the observational viability of cosmologies with covari-

ant Galileon gravity as alternatives to standard ΛCDM using CMB, BAO and ISW data. In

the Galileon model the departures from standard GR are controlled by a scalar field whose

couplings to the metric field (i) modify the gravitational force law and hence leave signatures

16If local measurements of the Hubble constant with larger errorbars are considered, as e.g. H0 = 70.6±3.3

km/s/Mpc from [97], the Galileon models will keep being disfavoured due to their extra degrees of freedom.

The respective values for the quartic case are 1/18 (BAO13) and 1/4300 (BAO17). For the quintic case one

obtains 1/19 (BAO13) and 1/3000 (BAO17).
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on observables sensitive to structure formation in the Universe; and (ii) naturally yield self-

accelerating background solutions, i.e., can explain the observed acceleration of the expansion

of the Universe without a cosmological constant. The Galileon model does not have a ΛCDM

limit and has a rich phenomenology, which makes it extremely predictive and testable.

A few previous accounts on the observational status of the Galileon model [22, 64]

pointed out that ISW-related data plays a particularly powerful role in tests of this theory of

gravity. An example is the low-` part of the CMB temperature power spectrum, which places

tight bounds on the values of the Galileon parameters, ci, and constraints the expansion rate

at late-times to follow the so-called tracker evolution (cf. Eq. (3.7)). The CMB temperature

power spectrum is, however, insensitive to the sign of the ISW effect which is positive if the

lensing potential decays at late times (as it does in ΛCDM), and negative if it gets deeper.

In [22], the authors have noted that the lensing potential in the Galileon model can have

non-trivial evolutions and argued qualitatively that data sensitive to the sign of the ISW

effect (such as the cross-correlation of CMB temperature with foreground galaxies) may help

put even tighter constraints, potentially ruling out this entire theory of gravity.

In this paper, we set out precisely to quantify the degree of tension (if any) between

the Galileon model and ISW data. For the latter we considered the data from [30] for the

cross-correlation of CMB temperature maps with the distribution of galaxies in the WISE

survey. To carry out our investigation we have first performed a MCMC constraint analysis

on the Galileon model using CMB temperature and lensing data from Planck and BAO data

(called CMB+BAO13 dataset here, c.f. Section 4.1). Then, we have re-sampled the resulting

Markov chains to inspect the corresponding ISW predictions and to see how they compare

to the measured WISE ISW signal. In order to compute the cross-correlation between CMB

temperature and WISE galaxies, CTg
` (cf. Section 4.3), one must first fit for the bias of

the WISE galaxies. We have done this by using the cross-correlation of the CMB lensing

convergence maps with the WISE galaxies, Cκg
` (cf. Section 4.2).

Our analysis steps were applied separately to the cubic, quartic and quintic sectors of

the Galileon model (cf. Section 3.2). The results can be summarized as follows:

1. Our constraints recover the fact that in Galileon cosmologies there is a strong prefer-

ence for non-zero neutrino masses and that the resulting best-fitting values of H0 are

compatible with local measurements. Both these two aspects are very different than

what happens in standard ΛCDM (cf. Figure 3).

2. In the cubic Galileon model the amplitude of the WISE ISW signal is always negative

within the regions of parameter space preferred by the CMB+BAO13 data. The degree

of the tension is at the 7.8σ level which effectively rules out the simpler “corner” of

Galileon gravity.

3. In Quartic and Quintic Galileons the WISE ISW signal also rules out a significant

portion of the parameter space, but not all of it. For these more general Galileon

models there are regions of parameter space that yield good fits to the CMB, BAO13

and ISW data (cf. Figure 4, Figure 5).

4. The quartic and quintic Galileon models that “survive” the WISE ISW tests exhibit

some tensions with recent BAO data. The significance of these tensions can reach the

– 24 –



1.5σ − 2.4σ levels (cf. Figure 7, Table 3), which suggest that future BAO data may

prove particularly powerful at constraining further Galileon gravity.

Of the four bullet points above, the last three are new compared to the previous constrain

analysis of [22].

A general prediction of the quartic and quintic models is that the sign of the ISW

amplitude is a redshift-dependent quantity. While we found no tension of the Galileon

models with ISW measurements from the NVSS galaxy sample that spans a broad redshift

range (up to z ∼ 5), data from galaxy samples in narrow redshift bands around between

z ∼ 0 − 1 could provide useful information to test these models further. A difficulty here,

that is general to all ISW-related observables, is that they are only important on very large

scales where the signal-to-noise of the data is significantly limited by cosmic variance.

Furthermore, future BAO measurements could increase the tension of the Covariant

Galileon to the data to a confidence level that also rules out the quartic and quintic sector

of the model. In typical BAO analysis the reconstruction of the density field of the galaxies

plays a crucial role to reduce the error bars of the BAO measurements (see e.g. [106]).

However, current reconstruction implementations have assumed GR. As statistics improve

in BAO scale determinations it may be worthwhile to revisit the impact of assuming GR in

the reconstruction procedure [106] and what systematic biases (if any) this might introduce

in constrains of modified gravity models17.

Compared to ΛCDM, the Galileon model has many more distinct signatures that can

be further probed with cosmological data. At the background level, in addition to future

BAO data, future higher-precision model-independent determinations of H0 will also help to

distinguish between these competing cosmological models. At the level of large scale structure

formation, the higher amplitude of the CMB lensing potential at low-` (cf. Figure 6) can

help place tight constraints in the Galileon model, potentially ruling it out if future and

more robust analyses on the largest angular scales of the sky confirm the current trend of

the data. The lensing signal associated with cosmic voids is also a potentially powerful way

to further test these models. In [108], the authors demonstrated that for the Cubic Galileon

the differences to ΛCDM are appreciable because screening effects are not at play in these

under-dense regions. It would therefore be interesting to extend the analysis of [108] to the

more general quartic and quintic sectors (similar lines of reasoning apply to the lensing signal

of galaxy troughs [109, 110]).

In future work it would also be interesting to check whether in Galileon cosmologies the

CMB constraints on the Ωm − σ8 plane are consistent with those coming from lensing shear

data (see e.g. [111] for an investigation of the impact of departures from ΛCDM in allevi-

ating the tension that currently exists between these two datasets). The next generation of

galaxy surveys can also prove useful in pinpointing the competing time- and scale-dependent

effects of neutrino masses and the enhanced gravitational strength in the Galileon model (see

e.g. [112, 113]). Further, investigations of non-linear structure formation in these models

17Non-linear effects on the BAO scale have been studied in the context of Galileon gravity, showing that

both the BAO shift and the perturbation theory kernel can depart significantly from the standard prediction

[107].
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(using e.g. the N-body code developed in [21] for the Quartic Galileon) are also welcomed

to better understand the phenomenology of Galileons and design novel observational tests in

regimes where screening becomes important. Such efforts with N-body simulations should

include modelling of massive neutrinos.

The covariant Galileon can also be tested by several non-cosmological observables, in-

cluding gravitational waves, astrophysical tests, terrestrial neutrino experiments and local

gravity experiments. In Quartic and Quintic Galileons the scalar field induces an anomalous

speed in the gravitational wave propagation [114–116]: the observation of gravitational wave

events with electromagnetic counterparts would lead to a phenomenally precise test of the

model using Earth or space-based detectors [116]. Galileon gravity can also be put to test

by confronting the appreciable neutrino mass fractions preferred by cosmological data with

future laboratory experiments that aim to be sensitive to sub-eV absolute mass values: the

KATRIN experiment [74, 117] will probe
∑
mν & 0.6eV, while more into the future, Project

8 might reach sensitivities of mνe & 40meV (
∑
mν & 0.1eV) [118]. Finally, as any modified

gravity model, astrophysical, Solar System and laboratory tests [119] should all serve to test

the validity of the model in complementary ways. Here, the challenges lie in designing ex-

periments that are sensitive to the small values of the modifications to gravity in strongly

screened regimes; or in a more robust understanding of the local value of φ̇ (cf. footnote 9),

which if sizeable could well rule out the quartic and quintic Galileon models by means of

lunar laser ranging experiments [67] or gravitational waves from binary pulsars [68].

All these considerations point out that Galileon gravity offers a testable and concrete

working case model to help explore typical observational signatures of theories beyond GR

in cosmological and non-cosmological set-ups.
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