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Abstract
A simple equation modelling an inextensible elastic lining of an inner-lined tube subject to an
imposed pressure difference is derived from a consideration of the idealised elastic properties of
the lining and the pressure and soft-substrate forces. Two cases are considered in detail, one with
prominent wrinkling and a second one in which wrinkling is absent and only buckling remains.
Bifurcation diagrams are computed via numerical continuation for both cases. Wrinkling,
buckling, folding, and mixed-mode solutions are found and organised according to
system-response measures including tension, in-plane compression, maximum curvature and
energy. Approximate wrinkle solutions are constructed using weakly nonlinear theory, in excellent
agreement with numerics. Our approach explains how the wavelength of the wrinkles is selected as
a function of the parameters in compressed wrinkling systems and shows how localised folds and
mixed-mode states form in secondary bifurcations from wrinkled states. Our model aims to
capture the wrinkling response of arterial endothelium to blood pressure changes but applies
much more broadly.

1. Introduction

Lateral compression of a finite thin floating elastic sheet generates periodic wrinkles whose wavelength is
the result of a balance between elastic forces and the restoring weight of the entrained liquid. On further
compression, the sheet undergoes a transition from the wrinkled state to one characterised by a single fold
[1]. However, wrinkling is not exclusive to floating elastica: the weight of the liquid can be replaced by other
forces and used to generate wrinkling in both two-dimensional circular and three-dimensional spherical
and curved geometries. Examples are provided by laterally compressed [2] or curved bilayer materials [3],
as well as vertically loaded floating circular sheets [4–6] and spring-loaded interfaces [7]. In contrast,
compressed or deflated spherical shells [8, 9] exhibit buckling with no preferred length scale, as do elastic
rings supporting a soap film [10–13]. Constrained buckling of elastic rings exhibits similar properties [14].

Understanding how surfaces wrinkle and then fold in different geometries under specific forces usually
requires solving complicated systems of partial differential equations. The thin floating sheet in one
dimension provides an exception. This system is not only modelled by a simple equation for in-plane
deformations, but also turns out to be completely integrable in the limit of infinite extent [15–19]. As a
result the remarkable shapes of both wrinkles and folds on thin floating sheets can be described using
stunningly simple mathematical expressions [16, 17], which naturally implies closed formulas for the
wrinkling/folding thresholds in parameter space.

In this article we study the competition between in-plane wrinkling and buckling in a circular geometry
within a similar framework. The results lead to greater understanding of a number of different systems
where such competition is present. These include in-plane wrinkling of the elastic lining of an artery where
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Figure 1. (a) Schematic view of a tube undergoing pressure-driven wrinkling with wavenumber m = 5. (b) and (c) Force
exerted on the lining by the exterior substrate.

wrinkled-to-unwrinkled cycles driven by diastolic-to-systolic blood pressure changes may prevent clogging
and adhesion of platelets via large changes in the local curvature of its endothelium [20, 21]. Such cycling is
likely to prove useful in other applications. A similar wrinkling instability is present in a rotating Hele-Shaw
cell when a higher density fluid in the center is separated from a lower density fluid on the outside by an
elastic membrane [22–24].

We construct an idealised two-dimensional model for this class of systems and compute strongly
deformed states up to the point of self-contact, analyse their stability, and organise the results in the form of
bifurcation diagrams. These diagrams describe the response of the system (compression, tension, maximum
curvature) as a function of a control parameter, for example, the imposed pressure difference. We use the
results to identify a transition from unwrinkled to periodic wrinkled states and then to folded states similar
to what is observed in spring-loaded linings or tubular chitosan hydrogel surfaces [7, 25]. Fold states arise
via secondary bifurcations from the wrinkled state as in the one-dimensional case. Two cases are considered
in detail, one with prominent wrinkling and a second one in which wrinkling is absent and only buckling
remains.

2. The model

To represent the lining on the inside of a soft tube, we consider an inextensible, infinitely thin membrane of
length L = 2πR attached to a soft substrate as shown in figure 1. We suppose that in equilibrium (P = 0)
the unlined soft tube has an inner radius r0 < R (figure 1(b)) and hence that, when lined, the lining is
forced to wrinkle. We model this force by an inward normal force per unit area Fs =

1
2 K

(
r(s)2 − r2

0

)
n (s)

(figure 1(c)). Here r = r(s) denotes the lining profile (r is the distance from the tube centre) and s is the
arclength. The substrate force Fs is the simplest nonlinear model that is differentiable at r = 0 and that
behaves like the classical Winkler foundation [26] when expanded around r0, with constant stiffness
k = Kr0. Moreover, the quadratic contribution to the force vanishes in the flat-foundation limit, i.e. as
r0 →∞, again recovering a Winkler-type foundation response. Although higher-order models [27], and in
particular models that include nonlocal contributions [2], may provide a more realistic representation of
the substrate forces, the Winkler model has been used extensively in studies of substrate-supported elastica
and has provided important insights into the instabilities responsible for both wrinkled and localised states
[7, 28, 29].

For in-plane deformations the resulting system is then described by

B
(

1

2
κ3 + ∂2

s κ

)
− Tκ− P +

1

2
K

(
r2

0 − r2
)
= 0, (1)

2
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where κ ≡ ∂sφ is the local curvature. Here φ is the angle between the tangent plane and the horizontal or
x-axis (figure 1(a)). In terms of Cartesian coordinates (x, y) with origin at the tube center, ∂sx = cosφ,
∂sy = sinφ and r2 ≡ x2 + y2. The constants in (1) are the bending modulus B and the (unknown) tension
T required to maintain the length L of the lining (T < 0 implies tangential compression). A brief derivation
of (1) similar to that in [12] can be found in appendix A. In the following we absorb the constant term
1
2 Kr2

0 in the pressure P. The resulting system is then similar to a rotating Hele-Shaw cell filled with two
fluids separated by an elastic membrane, with a higher density interior [22–24].

We define the natural length scale

λ ≡
(
B
K

) 1
5

, (2)

and introduce a dimensionless parameter that measures the perimeter of the lining in terms of λ, � ≡ R/λ.
We scale (1) according to s ∼ R, κ ∼ R−1, r ∼ R, T ∼ B/R2, P ∼ B/R3, yielding

∂3
s φ+

1

2
(∂sφ)3 − T∂sφ− P − 1

2
�5r2 = 0. (3)

The area within the lining, scaled relative to the area of the circle, is conveniently written via Stokes theorem
as

S =
1

2π

∮ [
x sin φ− y cos φ

]
ds, (4)

and, accordingly, its compression is Δ ≡ 1 − S. The total energy, also scaled relative to the circle, is given by

E =
2

π (4 + �5)

∮ [
(∂sφ)2 +

1

4
�5r2

(
x sin φ− y cos φ

)]
ds. (5)

3. Linear and weakly nonlinear theory

The simplest solution to (3) is the circle:

φ0 (s) = s + π/2, x0 (s) = cos s, y0 (s) = sin s. (6)

This solution requires a simple relationship between the imposed pressure and the resulting tension,

T0 =
1

2

(
1 − �5

)
− P0, (7)

and serves as the starting point (order zero) for linear and weakly nonlinear analysis. Introducing a small
parameter ε measuring the amplitude of a perturbation of the circle solution, we expand φ, x, y, T and P as
follows:

φ(s) =
N∑

j=0

εjφj(s), x(s) =
N∑

j=0

εjxj(s), y(s) =
N∑

j=0

εjyj(s),

T =
N∑

j=0

ε2jT2j, P =
N∑

j=0

ε2jP2j.

The coefficients of odd powers of ε in P and T vanish owing to the invariance of the system under rotations
by half a wavelength. Substituting these expansions into (3) and the equations for x and y leads, at O(ε), to

L[φ1, x1, y1] ≡ ∂3
s φ1 +

(
3

2
− T0

)
∂sφ1 − �5

(
x1x0 + y1y0

)
= 0.

To eliminate x1 and y1, we compute (∂2
s L+ L)[φ1, x1, y1]:

∂5
s φ1 +

(
2 + P0 +

�5

2

)
∂3

s φ1 +

(
1 + P0 +

3�5

2

)
∂sφ1 = 0.

This equation reduces to an algebraic equation for the wavenumber m on assuming that
φ1(s) ∝ sin(ms + δ):

m5 −
(

2 + P0 +
�5

2

)
m3 +

(
1 + P0 +

3�5

2

)
m = 0. (8)

3
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Figure 2. The wrinkle wavenumber m as a function of the pressure P0 for �5 = 576 (blue curve, m∗ = 5), �5 = 320 (yellow
curve, m∗ = 4) and �5 = 0.005 (green curve, m∗ = 2).

Modes with m = 0 (axisymmetric expansion) and m = 1 (translations) are excluded by inextensibility and
pinning, respectively. Thus m � 2 and solutions with integer m correspond to periodic states we refer to as
wrinkles (Wm); δ corresponds to a rigid rotation of the solution, and can be set to zero. Thus

φ1 = sin(ms), (9)

x1 + iy1 =
m cos (ms) − i sin (ms)

m2 − 1
exp (is) . (10)

Equation (8) is an important expression as it can be used to determine the critical pressure P∗
0 for the

onset of the wrinkling instability as the pressure increases and the wavenumber m = m∗ of the resulting
wrinkles for a given �. Figure 2 depicts P0 as a function of m for three different � values. The figure shows
how the circular tube becomes wrinkled as P0 overcomes the threshold P∗

0 ≡ (−�5 + 4�5/2)/2 and the
interior depressurises. It also shows how the choice of � determines the order of appearance of new unstable

wavenumbers. A simple formula gives the critical wavenumber at P∗
0: m∗ =

√
1 +

√
�5. When �5 < 9 the

onset wavenumber is m∗ = 2 since m = 1 corresponds to translations (figure 2).
In terms of physical parameters,

P∗
0 =

1

2
K

(
r2

0 − R2
)
+ 2

(
BK

R

)1/2

, (11)

providing a key formula relating the critical pressure P∗
0 for the onset of wrinkling to the geometry of the

tube and the physical properties of the substrate and the lining. Expression (11) also indicates that the
critical pressure can be tuned by a proper choice of r0 and R, for instance, to generate lining wrinkles at
pressure equilibrium (P0 = 0). As mentioned, this requires r0 < R, i.e. that the lining has an excess of length
over the unlined tube inner perimeter. Likewise, for large �, the critical wavelength of the wrinkles in terms

of physical parameters simplifies to λ∗ = 2πR/m∗ = 2π
(
B/ [KR]

)1/4
, where KR can be identified with the

foundation stiffness k if R ≈ r0.
We extend the above approach to compute periodic states with wavenumber m to higher order in ε (see

appendix B). We display the O(ε2) expressions for φ2, x2, y2, P2 and T2 below:

φ2 =
1

8m
sin(2ms),

x2 + iy2 =

[
−1

4
+

i

8m
sin(2ms)

]
exp (is),

P2 =
2m4 − 9m2 + 3

8(m2 − 1)2 �5 +
3
(
m2 − 1

)
8

,

T2 =
3

8 (m2 − 1)
�5 +

3
(
m2 + 1

)
8

.

We computed the expansion to O
(
ε7

)
using computer algebra. From these results, we can compute the

slope ∂P/∂T of the primary wrinkle branches at the bifurcation points given by (8). This slope is always
positive unless m = 2 and �5 � 81. The mode m = 2 is special, because of its maximum wavelength; this

4
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Figure 3. Bifurcation diagram for �5 = 576 (corresponding to m∗ = 5) showing the compression Δ as a function of the
pressure P. The unperturbed circle state corresponds to Δ = 0; the primary branch W5 corresponding to states with
wavenumber m = 5 is shown as a thin purple line. Subsequent primary wrinkle solutions Wm are labelled by their wavenumber
(m < 5, cyan; m > 5, blue), while the secondary solutions are labelled F or M according to their type (fold or mixed mode).
Branches are presented up to the point of self-contact. Sample solutions at the locations indicated in the main plot are shown
alongside with the different wrinkle profiles for each m superposed. All solutions are reflected across the x axis for ease of
visualization (solutions F and M have been rotated by 90◦ and 45◦ for convenience; the +/× symbols at the center of each profile
indicate the orientation of the axes). The mixed mode branches extend between Mm1,m2 where the first subscript indicates the
primary wavenumber and the second the new wavenumber introduced at the secondary bifurcation. The subscripts ± on F refer
to the folded states with an extrusion (+) or intrusion (−). The subscripts s and a indicate whether these protrusions occur on
the axis or off it. The letter B labels the buckling mode m = 2. A scale bar of unit length is included on the right. The inset shows
the same results but over a larger range of P.

mode is the first one to emerge in the absence of the intrinsic scale � [30], and we therefore refer to it as the
buckling mode (B).

In the following we extend the above results using numerical continuation and consider two cases. In the
first (section 4) substrate forces are substantial and wrinkling is present. In the second (section 5) these
forces are much weaker, wrinkling is absent and only buckling remains.

4. Numerical continuation: �5 = 576

To compute strongly nonlinear solutions, we implemented (3) as a boundary value problem in AUTO [31]
(see appendix C for details) and numerically continued different wrinkle states for a given � starting from
the circle branch satisfying (7). Each increment in P requires the solution of a nonlinear eigenvalue problem
for the response T. The results show that the weakly nonlinear theory is remarkably accurate, even when
ε = O(1) (see appendix C for a comparison up to O(ε7) when �5 = 576). The continuation approach also
allows the computation of secondary branches of mixed modes (M) and folds (F).

Figure 3 shows the compression Δ as a function of the imposed pressure difference P for primary
wrinkle states Wm with different wavenumbers m, starting with W5 corresponding to the onset wavenumber
m∗ = 5. The figure shows not only the pressure required to initiate collapse of the tube (corresponding to
Δ = 0) but also its subsequent response to quasistatic increase in P, i.e. the figure represents the tube law
describing the mechanical response for different modes of instability for the chosen value �5 = 576. Figure 4
shows another measure of the response of the system, the tension T, also as a function of P. The (P, T)
formulation provides the natural framework for numerical continuation. Both figures also show a number
of secondary branches (the mixed states M and the fold states F) that bifurcate from the W states at finite
amplitude, together with sample solution profiles at the locations indicated in the figures. All our plots use
the same convention (colours and symbols).

While the circle solution (Δ = 0 in figure 3, black line in figure 4) exists for any pressure P, we observe
primary branches Wm of wrinkle states with different integer wavenumbers m only above the critical
pressure P∗

0. Wrinkle solutions with wavenumbers below m∗ are interspersed with those above m∗; the
wavenumber of the former decreases as P increases until m = 2; thereafter only wrinkle solutions with
wavenumbers above m∗ are present and m increases monotonically with the pressure P. When m∗ is not an

5
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Figure 4. Bifurcation diagram for �5 = 576 (corresponding to m∗ = 5) showing the tension T resulting from an imposed
pressure difference P following the same colour scheme and labels as in figure 3. The thick black line corresponds to the circle
solution (7). The primary branch W5 is shown as a thin purple line. The inset shows a zoom of the region near the primary
bifurcation. The profiles corresponding to the labelled locations along each branch can be found in figure 3. An animation of the
solutions along many of the solution branches in this figure is provided in the supplementary material
https://stacks.iop.org/NJP/24/013026/mmedia [32].

integer, the primary instability corresponds to the integer m nearest to m∗ provided m∗ � 2. Figure 3 shows
that the compression Δ is almost proportional to the applied pressure P for all the wrinkle modes, i.e. that
the modulus Y ≡ ∂P/∂Δ is approximately constant. Each Wm branch ultimately results in self-contact and
at this point the continuation is terminated. Self-contact forces can be included as in [30, 33], see also
[14, 34], but this has not been done here.

Besides wrinkle modes, numerical continuation reveals two types of secondary branches. Most
commonly, secondary branches connect a primary mode with m � m∗ to another primary mode with
m < m∗. Figure 3 shows that all intermediate solutions along the mixed-mode branch connecting m = 11
and m = 2 primary branches, i.e. connecting the points M11,2 to M2,11, exhibit modulation at both
wavenumbers. In fact, most of these interconnecting branches also result in self-contact, although longer,
fully realisable interconnecting branches become possible as � (and hence m∗) increases and the number of
connections between W branches above and below m∗ grows.

Secondary bifurcations that do not connect different primary modes are also present. These correspond
to localised folds and come in pairs. The first pair Fs± bifurcates from W5 with Fs+ representing a localised
protrusion while Fs− represents localised invagination. Both branches reach self-contact at almost the same
point (figures 3 and 4). A family Fa of asymmetric folds is also expected, but these states cannot be
computed by AUTO with the imposed boundary conditions. Arrays of folds with different symmetries,
analogous to those of [19], have also been found, with consistently higher degeneracy (see the yellow
branches, e.g. Fs+s− in figures 3 and 4). Figure 3 also reveals that the modulus Y drops dramatically along
the F branches, a well-known consequence of the appearance of folds. In the case of the M branches, the
modulus Y can be negative as is the case for the buckling mode B.

We also examined the energy E of the different wrinkled, folded and buckled states as a function of the
compression Δ. For small compression the lowest energy solution corresponds to m∗ = 5, the natural
wavenumber of the system for �5 = 576, as shown in figure 5. However, as the compression increases, the

6
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Figure 5. The energy E of the solutions in figures 3 and 4 across the full range of physical compression Δ. Points of self-contact
are marked with crosses. All branches start from the circle solution at Δ = 0. The inset shows a zoom of the region where the
fold state Fs+ becomes the global energy minimum.

localised states Fs± bifurcate from the m∗ = 5 state, and the lowest energy state becomes Fs+ , with Fs− at a
slightly higher energy. This secondary bifurcation thus defines the wrinkle-to-fold transition, with threshold
at Δc ≈ 0.084 for the particular case �5 = 576. The direction of branching of Fs+ and Fs− is consistent with
that leading to spatially localised states in the bistable Swift–Hohenberg equation [35]. For higher
compressions, the Fs± are no longer realisable and other localised states correspond to global energy minima
(figure 5).

Finally, in figure 6 we plot the maximum curvature of the different states we have studied. A rapid
increase in maximum curvature can be observed along all wrinkle branches after their bifurcation from the
constant curvature circle solution. Larger m values result in faster increase in κmax. Folds and some mixed
states display even faster increase in curvature after they emerge from secondary bifurcations. The transition
between the wrinkle state W5 and the fold states Fs± , the first one to take place, occurs at P = −217.7
(figure 4) and corresponds to κmax ≈ 3.09.

5. Numerical continuation: �5 = 0.005

When � = 0 our problem becomes a pure buckling problem with no intrinsic length scale [30, 33]. In this
case it is known that the first buckling mode corresponds to m = 2 with more complex buckling modes
requiring larger and larger pressures as the wavenumber m increases. Moreover, in this regime the
governing equation involves the curvature κ only and the problem is analytically solvable [36–38].

To confirm that our model possesses the correct limiting behaviour and thereby validate our numerical
continuation approach we take �5 to be very small and compare our results with those for � = 0 and
�5 = 576. Specifically, we take �5 = 0.005 and document the corresponding nonlinear results in figure 7 for
comparison with figures 3–6.

As expected, the first solution to emerge from the circle when �5 = 0.005 is m = 2, i.e. the buckling
mode B, and the wavenumber of the subsequent solutions that emerge increases monotonically with the
pressure difference P. Moreover, the appearance of these states requires positive values of P and the
corresponding branches all behave in a similar fashion. These solutions are thus the expected buckled states.
In figure 7 these states are still labelled W but this is only because � is not identically zero. For these small
values of � there are no mixed modes or folds prior to self-contact. In fact, such secondary bifurcations

7



New J. Phys. 24 (2022) 013026 B Foster et al

Figure 6. Maximum curvature κmax as a function of the pressure P across the full range of compression for �5 = 576.
Self-contact of the solutions is marked with crosses. The black horizontal line shows the R = 1 circle solution with κmax ≡ 1.

move farther and farther out along each primary branch and beyond the point of self-contact as �5 → 0,
and conversely, down each primary branch and towards the circle solution when �5 increases. This process
leads, for sufficiently large �, to the appearance of secondary bifurcations prior to self-contact and for
negative values of P, as in figure 4.

Figure 7(a) shows the compression Δ as a function of P for �5 = 0.005 for comparison with figure 3
while figure 7(b) shows the tension T, also as a function of P. Figure 7(a) reveals that for smaller values of �5

the compression increases much more rapidly with P than for larger values �5, a consequence of the absence
of the stiffening effect of the substrate. These results are corroborated in figure 7(b). The results in both
figures are in accord with the weakly nonlinear theory: the modulus Y = ∂P/∂Δ is now positive for all
wavenumbers m (figure 7(a)) and likewise all primary branches have positive slopes ∂P/∂T (figure 7(b)),
even for m = 2, as predicted by the theory.

Figure 7(c) shows the energy E as a function of the compression Δ for �5 = 0.005 for comparison with
figure 5. In contrast to the latter, E is now a monotonically increasing function of Δ and the wavenumber
m: for small �5 the bending energy dominates the substrate energy and its contribution grows with
increasing compression. Thus the lowest energy state at a given compression is that with the lowest overall
curvature, i.e. the wavenumber m = 2 state is the minimum energy state and so is stable until self-contact
(cross). After this point, stability is transferred to the next lowest wavenumber solution, m = 3, etc.

In figure 7(d), we plot the maximum curvature as a function of P for comparison with figure 6. The
figure shows that for small �5 maximum curvature is reached much earlier as P increases than for larger �5.
However, in each case, the maximum value of κmax necessarily coincides with the point of self-contact. This
value is identical to the corresponding curvature when �5 = 576 and is therefore independent of �.

All this is in substantial contrast to the behaviour identified at larger �5 described in figures 3–6 but
confirms that the solutions of (1) converge to the correct pure buckling limit as �→ 0.

Finally, the two lowest panels in figure 7 compare the profiles of the m = 2 and m = 5 solutions for the
two different values of � considered in this work. The comparison is made at a point 10% from the critical
pressure P0 for m = 5 and 2% from the critical pressure for m = 2 and again at the point of self-contact for
both (red × and ∗ symbols, respectively). We see that when � is large the amount of compression for given
ΔP is substantially less than for smaller �. Thus the wrinkling or buckling process occurs over a smaller
interval of P as � decreases. However, at the point of self-contact the profiles in the two cases are identical
and independent of the parameter � as suggested by the weakly nonlinear analysis.

Evidently, as �5 decreases and the influence of the substrate wanes the bifurcation diagrams simplify
dramatically and in the absence of the second length scale the system approaches the corresponding result
for the unsupported ring (� = 0). This simplification arises because the secondary branches leading to both
mixed modes and the folded states move past the point of self-contact thereby ceasing to be realisable. In
this case the first primary mode is the lowest wavenumber mode, m = 2. Subsequent primary modes now
come in monotonically with increasing m and all behave in a similar fashion. However, despite these
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Figure 7. Bifurcation diagrams for �5 = 0.005 for comparison with the case �5 = 576 (figures 3–6) showing the circle state in
black and all bifurcations from it, following the same colour scheme and labels as in figure 3. The first primary branch is now the
m = 2 buckling mode (B, thin purple line). Solution branches are shown up to the point of self-contact (crosses). (a) The
compression Δ as a function of the pressure P. The modulus Y = ∂P/∂Δ is much smaller than in figure 3, but positive for all
wavenumbers m including m = 2. (b) The tension T resulting from an imposed pressure difference P. All primary branches have
positive slope ∂P/∂T in accord with the weakly nonlinear theory. (c) The energy E as a function of the compression Δ. The
energy increases with increasing Δ for all primary branches until self-contact; the m = 2 buckled state (B, thin purple line) is the
global minimum energy state. (d) The maximum curvature κmax as a function of P. The circle solution corresponds to κmax = 1
(black horizontal line). Self-contact is reached for much smaller pressure changes than for �5 = 576. The bottom two panels
depict the m = 2 and m = 5 solution profiles when P is increased from P0 by 10% (ΔP = 24, �5 = 576) and 2% (|ΔP| = 1.86,
�5 = 0.005). This point is indicated by a red × in the figure: the tube is substantially more compressed when �5 is smaller. We
also depict the m = 2 and m = 5 solutions overlaid at the point of self-contact for both � values (red ∗ the only point at which
different � values can be precisely compared). The figure shows that for both m = 2 and m = 5 the profiles at this point are
identical, i.e. the profiles at the point of contact are independent of �.

changes the primary branches continue to bifurcate subcritically, in the sense that the lining loosens
(tension T becomes less negative) as P increases.

On the other hand when �5 increases the wavenumber m∗ of the mode that first sets in also increases
(figure 2). This fact leads to repeated mode jumping. For example, m∗ = 4 for �5 = 320 while m∗ = 5 for
�5 = 576. Thus the mode m∗ = 4 remains dominant only over a finite interval of �5, and as �5 increases
m∗ = 4 is replaced by a new dominant mode, m∗ = 5. This transition is associated with a so-called
codimension-two point where the dispersion relation (8) is simultaneously solved by two adjacent values of
m, here m∗ = 4 and m∗ = 5. A similar situation occurs in the planar case, as described in detail in
[19, figure 5]. In particular, when m∗ = 4 the folds F bifurcate from W4; as �5 increases towards the
codimension-two point �5

4,5 = 360 the secondary bifurcations leading to the folds move down along the W4

branch and reach zero amplitude when �5 = �5
4,5. For �5 > �5

4,5 the dominant mode is m∗ = 5 and the
secondary bifurcation to the fold state now takes place on W5. As �5 increases this bifurcation moves up
along W5 to a maximum amplitude before moving down again as the next codimension-two point is
approached. This process repeats as �5 continues to increase, and Δc, the threshold for the onset of the fold
state, therefore both oscillates and jumps from branch to branch. This behaviour is shown in figure 8(a) and
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Figure 8. (a) The compression Δc at the secondary bifurcation from the primary wrinkled state to the first fold state as a
function of �5, showing the behaviour of this bifurcation point with changing wavenumber of the wrinkled state. The vertical
lines show the codimension-two points �5

m,m+1 ≡ (m − 1)m(m + 1)(m + 2) when m = 3 and 4. (b) The corresponding plot of
Pc as a function of �.

is similar to that found in the planar case [19, figure 5]; we expect that the tube problem studied here
approaches the planar case once �5 is sufficiently large (sufficiently large tube radius).

6. Conclusion

In this article, we provided a simple model of an inextensible elastic lining of an inner-lined tube subjected
to an imposed pressure difference, and described its buckled, wrinkled and folded solutions. We showed
that wrinkling is statically generated by a competition between bending, soft-substrate forces and the
applied pressure, and explored the limiting behaviour of our model as the strength of the substrate support
is reduced eliminating the possibility of wrinkling. We showed that for sufficiently strong substrate support,
increasing the applied pressure leads not only to a wrinkle-to-fold transition, but also to mixed states. The
energies of these states were calculated using weakly nonlinear theory and by numerical continuation for
strongly nonlinear solutions. The wrinkle state with wavelength closest to natural is initially the state with
the least energy and is thus stable until a single-fold state bifurcates from it. As �5 increases, additional
mixed modes arise prior to self-contact, and states with an increasing number of localised folds become
possible. The solution profiles match well with observations and resemble structures in growing composite
rings [7]. Our approach explains how the wavelength and amplitude of the wrinkles are selected as a
function of parameters in pressure-driven wrinkling systems. This is in turn key to understanding, for
example, the artery self-cleaning process arising from wrinkled-to-unwrinkled cycles triggered by blood
pressure changes [20, 21] and can be a good starting point for more refined models that include adhesion.
A natural question that arises is how the bending modulus, the size of the system and the substrate
properties may be optimised to maximise in-plane curvature, thereby optimising the self-cleaning
properties for a given pressure jump, while avoiding the wrinkle-to-fold transition. For weaker substrate
support the first primary bifurcation is to the m = 2 buckling mode, and the secondary bifurcations move
to large amplitudes, beyond the point of self-contact. Thus all bifurcation diagrams simplify and
wavenumber of the primary branches increases monotonically with increasing pressure.

Applications of this work to the time-dependent artery problem and to other systems exhibiting
competition between buckling, wrinkling and folding will be described elsewhere.
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Appendix A. Derivation from Kirchhoff equations

In equilibrium, the forces acting on an element of the lining can be expressed in terms of the static
Kirchhoff equations [12, 39]:

∂sF +

[
P − 1

2
K

(
r2

0 − r2
)]

n = 0, (A.1)

∂sM + t × F = 0, (A.2)

where F and M are the force and moment acting on the centerline of the element. The extra pressure in
square brackets in (A.1) is due to the force per unit of area exerted by the substrate, modelled by a Winkler
foundation [26] with a nonlinear quadratic term.

The moment is related to the local curvature of the ring by the constitutive relation M = (B∂sφ) k,
where φ is the angle between a tangent to the ring and fixed horizontal axis, and k is normal to the plane.
Thus ∂sr = (cos φ, sin φ). The unit vectors t and n are given by t = ∂sr = (cos φ, sin φ) and
n = (− sin φ, cos φ); n points towards the interior of the enclosed region. Accordingly, the system can be
written in terms of five differential equations:

∂sx = cos φ,

∂sy = sin φ,

B∂ssφ = Fx sin φ− Fy cos φ,

∂sFx = +

[
P − 1

2
K

(
r2

0 − r2
)]

sin φ,

∂sFy = −
[

P − 1

2
K

(
r2

0 − r2
)]

cos φ.

The problem is defined after imposing the closed-curve boundary condition φ (L, t) = φ (0, t) + 2π,
L = 2πR, and periodic boundary conditions on ∂sφ, x, y, Fx and Fy. We show that this system of equations is
equivalent to (3) of the text. For this purpose, we rewrite (A.2) using the constitutive relation M = (B∂sφ) k
and the identity (∂sφ) k = ∂sr × ∂ssr,

∂sr × (B∂sssr + F) = 0,

which is solved by F = −B∂sssr + λ∂sr, where we have introduced the Lagrange multiplier λ(s) to
incorporate inextensibility. The latter expression, substituted in (A.1), yields

−B∂sssr + λ∂ssr + ∂sλ∂sr +

[
P − 1

2
K

(
r2

0 − r2
)]

n = 0.

To simplify this expression, we use the following identities: ∂st = (∂sφ) n, ∂sn = − (∂sφ) t, ∂sr = t,
∂ssr = (∂sφ) n, ∂sssr = (∂ssφ) n − (∂sφ)2t and ∂ssssr =

(
∂sssφ− [∂sφ]3

)
n − (3∂sφ∂ssφ) t. The result is

(
−B∂sssφ+ B[∂sφ]3 + λ∂sφ+ P − 1

2
K

(
r2

0 − r2
))

n + (3∂sφ∂ssφ+ ∂sλ) t = 0.

Since n and t form an orthonormal basis, the two terms in parentheses must both vanish. From the second,
we obtain a differential equation for λ whose solution is

λ (s) = −3

2
(∂sφ)2 + T,

where T is a constant. Replacing λ (s) in the first set of parentheses by the above expression, we finally
obtain:

− B∂sssφ− 1

2
B(∂sφ)3 + T∂sφ+ P − 1

2
K

(
r2

0 − r2
)
= 0, (A.3)

leading to equation (3).
The same equation can also be derived from a constrained Lagrangian as done for the planar elastic

sheet in [16].
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Figure B1. Comparison between numerical continuation for �5 = 576 (solid lines) and the corresponding O(ε7) weakly
nonlinear analysis (open circles) demonstrating excellent agreement between perturbation theory and numerically exact
solutions extending to ε = O(1) at the top of the figure (cf figure C1 and appendix D).

Appendix B. Weakly nonlinear analysis

At each order in the weakly nonlinear analysis, we obtain a linear problem of the form

L[φj, xj, yj] ≡ ∂3
s φj +

(
3

2
− T0

)
∂sφj − �5

(
x0xj + y0yj

)
= Nj,

for j = 1, 2, . . . , with the first three Nj given by

N1 =0

N2 =−
(

3

2
(∂sφ1)2 +

1

2
�5(x2

1 + y2
1) − P2 − T2

)

N3 =−
(

1

2
(∂sφ1)3 + 3(∂sφ1)(∂sφ2) + �5(x1x2 + y1y2)

)
+ T2∂sφ1.

To eliminate xj and yj from L[φj, xj, yj], we compute (∂2
s L+ L)[φj, xj, yj]:

∂5
s φj +

(
5

2
− T0

)
∂3

s φj +

(
3

2
− T0

)
∂sφj + �5

[
2(∂sx0)(∂sxj) + 2(∂sy0)(∂syj) + x0∂

2
s xj + y0∂

2
s yj

]

= (∂2
s + 1)Nj.

Expansion of the geometric identities ∂sx = cosφ and ∂sy = sinφ now results in

∂5
s φj +

(
5

2
− T0

)
∂3

s φj +

(
3

2
− T0 + �5

)
∂sφj = Gj + (∂2

s + 1)Nj, (B.1)
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Figure C1. Comparison between numerical solutions on the W5 branch and weakly nonlinear solutions at O(ε2) and O(ε7)
when �5 = 576.

where the first three Gj are given by

G1 = 0

G2 =
1

2
�5(∂sφ1)2

G3 = �5

(
1

2
φ2

1∂sφ1 − φ1φ2

)
.

Solving (B.1) for j = 1, 2 subject to the requirement that the solution is periodic yields the expressions for
φ1, A1 and for φ2, A2, P2, T2 given in the text. For j even, the solvability condition imposed on
Gj + (∂2

s + 1)Nj generates Pj(Tj), while for j odd, it generates Tj−1(m, �5). Higher order expressions were
obtained through symbolic calculations using the software Maple.

Appendix C. Numerical continuation with AUTO

We implemented the problem (1) in AUTO [31] as a five-dimensional boundary value problem on the
domain s ∈ [0,π], representing one half of the lining, with the boundary conditions φ (0) = π/2,
φ (π) = 3π/2, x (0) = x0, x (π) = x1 and y (0) = y (π) = 0 together with the force-free conditions
φ′′ (0) = φ′′(π) = 0 [12]. The boundary conditions constrain the rotation symmetry in φ and eliminate
translations in y, while the force-free boundary conditions permit reflection in y = 0 to generate solutions
on the full circle. A five-dimensional system with eight boundary conditions requires four degrees of
freedom in the parameters [40], so we perform our continuation in (P, T, x0, x1). This procedure allows T to
adjust to increments in P and the endpoints x1, x2 to change in accordance with the zero-force condition.
Figure 3 of the text shows the resulting full circle profiles.

The imposed boundary conditions prevent the computation of asymmetric states Fa that are also
expected to appear via secondary bifurcations from wrinkled states.

Appendix D. Comparisons

In figure B1, we compare the results from numerical continuation of (3) of the text with the above
boundary conditions and the corresponding results obtained above from weakly nonlinear theory carried
out to O(ε7). The ε values corresponding to the maximum displayed extent of each branch are summarized
in table D1. The results demonstrate excellent agreement between perturbation theory and the numerically
exact solutions for ε � 1. Equally good agreement is found for the solution profiles as shown in figure C1.
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Table D1. Wavenumber m and maximum ε used in figure B1.

m 2 3 4 5 6 7 8 9 10 11 12 13 14
εmax 1.96 1.54 1.32 1.17 1.25 1.29 1.35 1.37 1.37 1.25 1.18 1.04 0.96
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