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Abstract

Central nervous system tumors are the leading cause of cancer related death in children. Despite 

much progress in the field of pediatric neurooncology, modern combination treatment regimens 

often result in significant late effects, such as neurocognitive deficits, endocrine dysfunction, 

secondary malignancies, and a host of other chronic health problems. Precision medicine strategies 

applied to pediatric neurooncology target specific characteristics of individual patients’ tumors to 

This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article 
or any adaptations for non-commercial purposes. http://creativecommons.org/licenses/by-nc-nd/4.0/
*Corresponding Authors psw@cnsi.ucla.edu., sjonas@ucla.edu.
Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

The authors declare no competing financial interest.

HHS Public Access
Author manuscript
ACS Chem Neurosci. Author manuscript; available in PMC 2019 July 24.

Published in final edited form as:
ACS Chem Neurosci. 2018 January 17; 9(1): 11–28. doi:10.1021/acschemneuro.7b00388.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc-nd/4.0/


achieve maximal killing of neoplastic cells while minimizing unwanted adverse effects. Here, we 

review emerging trends and the current literature that have guided the development of new 

molecularly based classification schemas, promising diagnostic techniques, targeted therapies, and 

delivery platforms for the treatment of pediatric central nervous system tumors.

Graphical Abstract

Keywords

Precision medicine; pediatrics; neurooncology; review

Neoplasms of the central nervous system (CNS) constitute the majority of solid tumor 

diagnoses and remain the leading oncologic cause of mortality in children.1, 2 Aggressive 

multimodal treatments have yielded demonstrable improvements in survival in some cases.3 

However, the particular susceptibility of the pediatric population to the long-term effects of 

these treatments is well documented, necessitating refinement of treatment protocols.4, 5 

Late effects of existing chemotherapies and photon irradiation in young children include 

cognitive decline, endocrine dysfunction, secondary malignancy, vasculopathy, and other 

factors that impact quality of life significantly.6-8 Further, these outcomes may be 

progressive and irreversible, especially in patients aged 5 years or younger.4

The importance of tailoring therapies to address the requirements of the developing pediatric 

patient is a unique challenge. As it is recognized that CNS neoplasms found primarily in 

children harbor molecular and genetic signatures vastly different from those found in adult 

patients, the application of precision medicine in the diagnosis and management of pediatric 

CNS malignancies has received increased attention.9 In this Review, we highlight the impact 

that advances in precision medicine are making within pediatric neurooncology to drive 

progress in the development of innovative imaging and molecular technologies that achieve 

improved detection and targeting of CNS tumors. Insights gained from these efforts have 

motivated the updated World Health Organization (WHO) classification system for CNS 

tumors and led to the expanded role of next-generation profiling techniques to address 

heterogeneity and variability between tumors of a particular subgroup. In turn, these data are 

applied increasingly to guide the design of new targeted treatments, including emerging 

molecular, radiation, and immunotherapeutic strategies. Finally, to stimulate broader 
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interactions between experts in the physical and neurosciences with clinician colleagues, we 

review nanoscale platforms such as polymeric nanoparticles (PNPs), liposomes, nanoparticle 

albumin-bound technology, and molecular targeted nano-particles, which are currently being 

explored as therapeutic options for CNS tumors.10-18

CLASSIFICATION

The revised 2016 WHO system of classification for CNS neoplasms reflected a dramatic 

change in the characterization of CNS tumors. For the first time, molecular parameters were 

incorporated into a system that previously relied entirely on histology, demonstrating the 

capability for increasingly precise categorization availed by modern diagnostic techniques.19 

The three most common categories of pediatric CNS malignancies are embryonal tumors, 

which are comprised primarily of medulloblastoma, gliomas, and ependymal tumors (Figure 

1).20 Of these, gliomas and medulloblastomas underwent major restructuring under the new 

WHO classification system, whereby all three incorporated genetically defined entities that 

are highlighted below. It is hoped that the 2016 CNS WHO system will improve diagnostic 

accuracy, leading to more precise therapeutic planning (which will be detailed in a later 

section) and, ultimately, better outcomes for patients with brain tumors.

Medulloblastomas.

Medulloblastomas are currently divided into four distinct histologic and molecular 

subgroups: Wnt, Sonic Hedgehog (SHH), group 3, and group 4;21, 22 however, the clinical 

behavior of these malignancies remains heterogeneous. Integrated analyses have defined 

clinically significant subtypes within these subgroups, which may enable improved risk 

stratification over existing schema and more tailored treatment decisions.23 As an example, 

infant medulloblastoma is currently partitioned into two groups by histologic findings; 

however, there appears to be no difference in prognosis between the two strata. By 

combining gene expression with DNA methylation data, Cavalli et al. identified four infant 

SHH molecular subtypes with significant differences in survival.24 Two of these subtypes 

appear to be extremely low risk and may benefit from de-escalation of therapy in future 

clinical trials, sparing them from the adverse effects of more aggressive treatment regimens. 

These findings indicate that more in-depth studies directed at unraveling the heterogeneities 

observed within the medulloblastoma landscape are needed to establish more precise 

stratification schemes that better define risk and enable patient-specific guidance.

Gliomas.

Pediatric high-grade gliomas (HGGs) are composed primarily of anaplastic astrocytomas 

and glioblastoma and are associated with particularly poor prognoses, with 5-year survival 

rates of less than 20%. The 2016 CNS WHO classification system incorporated molecular 

variants of high-grade gliomas, including IDH-wildtype and IDH mutant glioblastoma, and 

H3.3K27M mutant diffuse midline glioma (which includes tumors previously referred to as 

diffuse intrinsic pontine glioma, DIPG).19 Due to their relative rarity, pediatric HGGs have 

traditionally been treated based on proven adult regimens, with minimal clinical benefit.
25, 26 Researchers have found that while phenotypically indistinguishable, pediatric HGGs 

manifest characteristic genetic alterations distinct from those seen in adult HGGs.27 Next-
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generation sequencing has revealed that somatic mutations in genes encoding histones are 

characteristic of pediatric high-grade gliomas, specifically H3F3A (replication-independent 

histone 3 variant H3.3) as well as in histone 3.1, whereas IDH mutant gliomas are extremely 

rare.28 In addition, ATRX (α-thalassemia/mental retardation syndrome X-linked) and 

DAXX (death-domain associated protein) in combination with TP53 mutations are 

frequently seen in pediatric HGGs.28, 29 Furthermore, approximately 80% of pediatric 

GBMs demonstrate activation of the PI3K/Akt/mTOR pathway;30 mutations in epidermal 

growth factor receptor (EGFR) 31 and platelet-derived growth factor receptor (PDGFR) 27, 32 

have also been associated. Thus, newer molecular diagnostic techniques make it evident that 

histopathologically identical entities such as pediatric HGG may harbor profoundly 

different, potentially targetable underlying mechanisms.

Diffuse midline glioma is a malignant, infiltrative glial neoplasm of the ventral pons 

associated with a dismal outcome. Patients present with rapid onset of symptoms, and the 

median survival is 9–12 months. Most patients do not live 2 years past diagnosis and 

chemotherapy has been ineffective. Radiation is considered the standard of care and is 

utilized for extension of the symptom-free period but no therapy has yet significantly 

changed overall outcome. Recent innovations in biopsy of the pons have resulted in 

fascinating new molecular findings in this disease. Investigators have identified that 80% of 

diffuse midline glioma cases harbor histone 3.3 or 3.1 mutations, most frequently 

H3.3K27M.33 These mutations result in hypomethylation of H3 proteins and alter epigenetic 

regulation of genes crucial for cell cycle function and oncogenesis. These histone mutations 

also co-occur predictably with other mutations.33-36 For example, H3.1 mutations co-occur 

with ACVR1 mutations most commonly while H3.3 mutations co-occur with p53 and 

PDGFRA mutations. Other accessory driver mutations have been identified including 

mutations in PIK3R1 and PIK3CA. H3.3K27M mutations, independent of histopathological 

features, are universally associated with poor survival outcomes in diffuse midline glioma; in 

fact, tumors possessing these anamolies were deemed a distinct entity in the 2016 WHO 

classification system. Researchers are searching for and studying targeted therapies actively.

Low-grade gliomas (LGGs), defined in the 2007 WHO CNS classification system as grades 

I and II based on histological criteria,37 comprise the most common type of pediatric CNS 

tumor.20 A heterogeneous group, LGGs consist of oligodendroglioma, pilocytic 

astrocytoma, subependymal giant cell astrocytoma, angiocentric glioma, and others. As a 

whole, pediatric LGGs are associated with excellent long-term survival compared to adults.
38, 39 While many historical studies treated LGGs as a single cohort, advances in molecular 

characterization techniques bolster support for individualized stratification to minimize long-

term treatment-related morbidities. For instance, neurofibromatosis type 1, a genetic 

syndrome caused by a mutation in the neurofibromin 1 gene, is associated with pilocytic 

astrocytoma and diffusely infiltrating astrocytoma40 and a number of other malignancies that 

may be amenable to biologically targeted treatments.41 Pilocytic astrocytomas have been 

found to harbor mutations in BRAF, neurotrophic tyrosine kinase type 2 (NTRK2), and 

histone H3; all of which are being specifically targeted in current pediatric clinical trials.
42, 43
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Ependymal Tumors.

Ependymoma is the third most common pediatric brain tumor type, and is frequently 

associated with poor long-term survival outcomes.44 The 2016 WHO classification system 

divides ependymal tumors into subependymoma, myxopapillary ependymoma; 

ependymoma; anaplastic ependymoma; and ependymoma, RELA fusion-positive. 

Ependymomas that have undergone chromo-thripsis (identified by the C11orf95-RELA 

fusion) were the lone genetically defined subtype accepted in the updated WHO criteria. The 

authors acknowledge that this classification system is imperfect and of little prognostic 

benefit, citing the need for more reproducible data before further changes can be made. The 

standard of care for ependymoma is maximal safe resection followed by focal radiation 

therapy. However, some studies suggest that in a subset of patients with ependymoma, 

surgery alone without radiation or chemotherapy may suffice.45 Emerging classification 

schemes based on methylation profiling data46 yield improved prognostic significance 

relative to conventional histologic grading and will be important to incorporate into future 

preclinical models and clinical trials targeting these pediatric CNS malignancies.47

IMAGING

Concern for radiation exposure in developing children continues to drive the integration of 

imaging and radiation therapy to make treatment of pediatric brain malignancies safer and 

more targeted. Several diagnostic imaging techniques have been reported that aid in the 

classification and prediction of outcomes in pediatric brain tumors. For example, advanced 

magnetic resonance imaging (MRI) techniques such as diffusion tensor imaging (DTI) and 

dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion have proven useful in 

glial tumors, particularly in their surgical management.48-51 Positron emission tomography 

(PET) is an imaging modality that enables noninvasive quantitation of biochemical processes 

such as glucose metabolism and oncogenic drivers such as receptor tyrosine kinases.52 The 

development of novel radiotracers for use in combination with PET improves delineation of 

active tissue within heterogeneous CNS tumors such as gliomas. By applying PET tracers 

specifically targeting factors linked to glioma-associated inflammation, such as the 

translocator protein (TSPO) and matrix metalloproteinases (MMP), Zinnhardt et al. 

characterized the tumor micro-environment in a murine model of human glioma non-

invasively, which matched histological findings.53 This method provided information that 

could not be detected by a single tracer and/or MRI alone, informing similar PET-based 

diagnostic approaches to characterize pediatric CNS malignancies.

Another perfusion-imaging technique, arterial spin labeling (ASL), represents an 

intriguiging alternative to MRI-based approaches such as DSC. In ASL, radiofrequency 

pulses are used to label endogenous protons within the arterial blood in order to measure 

cerebral blood flow, circumventing the need for intravenous gadolinium contrast agents, 

such as those required for DSC. In rare cases where the use of intravenous infusions of 

contrast agents may be contraindicated in the pediatric population (e.g., nephrogenic 

systemic fibrosis associated with acute and/or chronic renal impairment), ASL may provide 

similar data that may be useful in guiding clinical decision making for these patients.54
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PROMISING TUMOR PROFILING TECHNIQUES

In this section, novel molecular profiling techniques with the potential to migrate rapidly 

from preclinical settings into common clinical practice are discussed. These technologies are 

quickly reaching Clinical Laboratory Improvement Amendment (CLIA) approved status and 

impacting patient care. Note that the clinical utility of molecular biomarkers has already 

been established for a variety of cancers, including glioma, and specific well-established 

assays have had their analytical validity demonstrated for detection of those mutations in 

patient samples.55 Markers for glioma include: 1p/19q codeletion, analyzed by fluorescence 

in situ hybridization (FISH), array comparative genomic hybridization (aCGH), and 

multiplex ligation-dependent probe amplification (MPLA);56 IDH mutation established by 

immunohistochemistry (IHC), and DNA sequencing;57, 58 and MGMT methylation 

identified by methylation-specific (MS)-PCR, MS-pyrosequencing, and MS-MPLA.59

Molecular classification has also impacted the understanding of CNS primitive 

neuroectodermal tumors (CNS-PNETs), aggressive embryonal tumors occurring mostly in 

the pediatric population. These CNS malignancies often present challenges in 

neuropathological diagnosis due to a lack of defining molecular markers and histological 

overlap with other high-grade neuroepithelial tumors. Five subcategories of CNS-PNETs 

had been described by the WHO based on morphological features but more recent studies 

indicated that CNS-PNETs are molecularly heterogeneous, pointing to the need to classify 

this group better. To address this issue, Sturm et al. analyzed genome-wide DNA 

methylation profiles of tumors that had been institutionally classified as CNS-PNETs and 

found that over half of the samples did not form a distinct cluster, but rather displayed 

molecular profiles indistinguishable from other well-defined CNS tumor entities. From the 

remainder of the original CNS-PNETs, four new classifications were suggested based on 

genetic, histopathological, and clinical features of the tumor.60 Additionally, Johann et al. 

recently identified that atypical teratoid/rhabdoid tumors (AT/RTs), another group of 

pediatric CNS malignancy with poor prognoses, are comprised of three distinct epigenetic 

subgroups, with distinct clinical characteristics and regulatory networks that can potentially 

be targeted therapeutically.61 These studies reinforce the expanding importance of 

considering molecular profiling data when assigning a diagnosis to a CNS neoplasm given 

that this decision directs the selection of appropriate therapies to target aggressive pediatric 

brain cancers.

To address the issue of intratumoral heterogeneity in designing a treatment or assigning 

prognosis upon diagnosis, single-cell RNA-seq has been implemented as a useful technique 

to understand the tumor ecosystem and the diversity of cells therein.62 Patel et al. reported 

using the previously developed Smart-seq technique to profile 430 cells from five different 

primary glioblastomas, obtaining single cell full-length transcriptomes.63 Their results 

corroborate the idea that these tumors present variable expression of diverse transcriptional 

programs with regards to oncogenic signaling, proliferation, complement/immune response, 

and hypoxia. They also show that different glioblastoma subtype classifiers are found within 

different cells of a single tumor, an observation that may be critical for prognosis and choice 

of treatment protocols.64
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To address the challenges faced by low-input samples when using the aforementioned 

techniques, a portable, low-cost platform called Seq-Well has been developed by Gierahn et 

al. that enables high throughput, parallel single-cell RNA sequencing.65 This microwell-

based platform utilizes barcoded mRNA (mRNA) capture beads while single cells are sealed 

in subnanoliter wells by a semipermeable membrane that permits efficient cell lysis and 

transcript capture (Figure 2). Similar microfluidic approaches for single-cell multiplex 

processing are being developed, such as valve- and droplet-based platforms.66 Although the 

array of applications for these emerging techniques is vast, one may envision that they could 

be applied to a variety of cancer cells to understand tumor heterogeneity for the benefit of 

patient care.

While these increasingly precise technologies transition to the clinic, assessing genomic and 

epigenomic modifications that may have important implications in cancer biology still 

requires days to weeks for sample processing. Eukirchen et al. have validated the utility of a 

pocket-sized nanopore sequencing device that is capable of detecting copy number variants, 

point mutations, and methylation profiling within just 1 day for the analysis of brain cancer 

biopsies.67 Nanopore sequencing evaluates and interprets changes in ionic currents observed 

when single DNA or RNA molecules pass through a nanometer-size protein pore that can 

discriminate between nucleotides.68, 69 This platform can generate copy number variation 

data as well as detect single-base modifications, such as methylation profiles,70 concurrently 

in a single sequencing run. Even though this method has lower throughput than other 

technologies, it can yield ~0.1× genome coverage within 6 h and it is unique in that it 

enables low-cost, real-time reads outside of a laboratory setting. Furthermore, this platform 

was able to distinguish gliomas, medulloblastomas, and brain metastases of different 

primary sites from patient brain tumor biopsy samples, with copy number and epigenetic 

profiles that correlated well with matched microarray data.67

Even though many of the technologies discussed have not been applied widely to pediatric 

CNS malignancies, Ramkissoon et al. confirmed that a multiplexed targeted exome-based 

sequencing (OncoPanel) in combination with a clinical genome-wide aCGH assay 

(OncoCopy) can provide critical information for the treatment of pediatric brain tumors, by 

alerting pediatric oncologists to potential clinically relevant targets.71 These CLIA-certified 

platforms are a promising example of the clinical utility and validity of these emerging 

technologies.72 A novel genetic algorithm-based random forest modeling technique has also 

been developed that enables reduction in the complexity of large gene disease signatures.73 

This method has been explored for glioblastoma multiforme (GBM) samples, but it could 

potentially applied to other CNS neoplasms in order to facilitate interpretation of the 

increasing body of nucleotide-level information about these cancers. Other novel, potentially 

applicable methods of individualized analysis include the utilization of CRISPR-Cas9 to 

conduct large-scale genetic screening74 and patient-derived xenografts, which enable tumor 

profiling and drug screening.75 Some recent studies have translated pediatric tumor gemonic 

data to the clinic and were successful in identifying actionable findings that guided treatment 

approaches in a substantial proportion of the studied population, including in solid CNS 

tumors.76-78
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Finally, tumor-associated short noncoding RNAs found in CSF or blood are also thought to 

provide important insight into brain tumor biology due to the differences found between 

expression profiles in healthy individuals and patients (Figure 3). The aforementioned next-

generation sequencing platforms could be applied to analyze and to determine their utility in 

the diagnosis of pediatric brain malignancies and in disease surveillance.79

RADIATION THERAPY

Radiation therapy has been used for years in the treatment of childhood brain tumors and 

continues to be a mainstay in the management of some pediatric CNS malignancies. 

However, patients subjected to high doses of radiation are at increased risk of neurocognitive 

damage, growth arrest, damage to the cerebral vasculature and endocrine glands, inner ear 

dysfunction, as well as development of secondary cancers. Many efforts are therefore aimed 

at improving the precision and efficacy of radiation therapy treatments while reducing risks.
80, 81 One such modality is proton beam therapy, which is an alternative to photons to deliver 

therapeutic radiation to treat CNS tumors.82, 83

Both proton and photon radiotherapy function by depositing energy in cells, which causes 

damage to the cellular DNA through the formation of free radicals; when DNA damage is 

not repaired, the cell dies. Tumor cells are known for having decreased capacity for DNA 

damage repair, which makes them more susceptible to damage and death through this 

method. However, normal cells are not entirely spared in the process and thus are also 

subjected to short- and long-term toxicity; therefore, reducing exposure of normal tissue to 

radiation is critically important (Figure 4).84

Proton therapy has only recently been used in pediatric cases, demonstrating equivalent 

efficacy with the potential for reduced side effects.85 The key is that the properties of proton 

beams allow decreased doses to normal tissues surrounding the tumor when compared to 

conventional photon therapy.86 Trials using this technique have shown mixed results in terms 

of local control, progression-free survival and avoidance of decreased IQ or overall adaptive 

skills.87-92 This therapy has been used for CNS germ cell tumors,88 localized ependymomas,
89 low-grade gliomas,90 medulloblastomas,91 chordomas,93 and craniopharyngiomas.93

Other charged particle therapy technologies being developed utilize neutrons and carbon 

ions, but have not yet been implemented for pediatric tumors. Image-guided radiation 

therapy has also become increasingly common, and provides great improvements in 

radiotherapy accuracy. These techniques utilize high-quality images to guide target 

visualization with millimeter precision. Heightened precision enables reduction in the area 

of healthy tissue affected by therapy.84, 94

Nanoparticles have been developed in recent years that can work synergistically with 

radiation therapy to improve outcomes for brain tumor treatment. One of these approaches is 

boron neutron capture therapy, which relies on selectively concentrating boron compounds 

in tumor cells and then subjecting them to epithermal neutron beam radiation, thus 

depositing a large dose gradient between tumor cells and normal cells.95 Many other groups 

have also explored the use of gold nanoparticles to radiosensitize tumor cells. These efforts 
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have shown promising results in murine animal models of various brain tumors and include 

gold nanoparticles on their own,96, 97 coated with gadolinium chelates,98 pH-sensitive 

tumor-targetting peptides 99 and even in conjunction with superparamagnetic iron oxide in 

micelles;100 one study reports that silver nanoparticles can outperform gold nanoparticles for 

in vitro radiosensitization of glioma cells.101 Other groups have been successful in 

sensitizing brain tumor cells using nanoparticles that silence genome components. For 

instance, Zhang’s group has conducted nanoparticle-mediated siRNA knockdown of the 

DNA repair enzyme apurinic endonuclease 1 (Ape1) in a murine model of glioblastoma 102 

and in pediatric ependymoma and medulloblastoma cells in vitro, reporting improvements in 

circumventing radiation resistance in these tumors.103, 104

MOLECULAR THERAPY

Whereas conventional chemotherapy indiscriminately targets rapidly dividing cells, leading 

to a host of adverse effects, researchers are now seeking to exploit tumor-specific molecular 

pathways. One of the major challenges in pediatric neurooncology today is the paucity of 

efficacious treatments that target the growing list of molecular aberrations identified by 

increasingly sophisticated genomic and epigenomic technologies.105 Other treatments, while 

promising in their scientific rationale, have not demonstrated clinical benefit. Here, we 

briefly review a selection of targeted agents for some of the previously outlined tumors; the 

discussed, currently open clinical trials for pediatric brain tumors are listed in Table 1.

Embryonal Tumors.

For instance, a phase II trial evaluated vismodegib, a first-in-class smoothened receptor 

antagonist targeting the SHH pathway, demonstrating safety and possible activity in 

pediatric patients with recurrent SHH subtype medulloblastoma.106 The phase II SJMB12 

trial is currently stratifying patients with medulloblastoma based on clinical risk and 

molecular subtype, evaluating whether patients with low-risk Wnt tumors can be treated 

with lower doses of radiation and chemotherapy without impacting survival.107 TB-403, a 

monoclonal antibody against placental growth factor that showed activity in a murine 

medulloblastoma model,108 is currently being evaluated in a phase 1 and phase 2 trial in 

pediatric patients with relapsed or refractory medulloblastoma ().

Atypical teratoid rhabdoid tumor (AT/RT), a rare pediatric CNS embryonal tumor defined by 

biallelic inactivation of the INI-1 locus,109 is associated with a grim prognosis despite 

multimodal therapy.110 An ongoing phase I trial () is currently evaluating the effects of 

tazemetostat (an EZH2 inhibitor) in patients with relapsed or refractory INI1-negative 

malignancies, which include AT/RT. A phase II trial () is studying the effects of the auroa A 

kinase inhibitor alisertib in pediatric patients with AT/RT.

Gliomas.

Gene expression profiles of gliomas have been analyzed, searching for potentially 

exploitable driver mutations as the number of clinical trials investigating targeted therapies 

continues its rapid expansion.111, 112 As previously mentioned, sequencing of pediatric 

gliomas have identified mutations in the genes encoding histones 3.1 and 3.3, as well as 
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chromatin modifiers ATRX and DAXX. Histones play an integral part in the packaging of 

DNA within cells, regulating its expression at the epigenetic level.113 Given their frequency, 

researchers are attempting to utilize these mutations as targets for therapy. For example, a 

multihistone deacetylase inhibitor, panobinostat, subsequently showed therapeutic efficacy 

in H3.3K27M mutant diffuse midline glioma cell culture and xenograft models,114 and is 

currently undergoing a phase I trial in children (). Another phase I trial is evaluating 

H3.3K27M peptide vaccine conjugated with tetanus toxoid () in pediatric patients with 

diffuse midline glioma.

Other studies include a recently completed phase I trial of crenolanib (), a PDGFR inhibitor, 

in patients with recurrent, high-grade glioma and diffuse midline glioma and a molecular 

profiling individualized treatment plan trial for diffuse midline glioma (). Hopefully, these 

more targeted and personalized medicine approaches will result in improved outcome for 

these patients in the near future.

Epithelial growth factor receptor (EGFR) is overexpressed in a subset of astrocytic pediatric 

gliomas,115 and can be targeted by agents such as erlotinib, which demonstrated tolerability 

in a phase I study in pediatric patients with brainstem glioma,116 but little effect in phase II.
117 Multiple studies have evaluated a host of other agents with promise, but found little 

clinical benefit, including tipifarnib, a farnesyltransferase inhibitor, was studied in children 

with newly diagnosed diffuse midline gliomas but demonstrated no clinical advantage.118 

Enzastaurin, a protein kinase Cβ/PI3K/Akt pathway inhibitor, which showed some promise 

in a phase I pediatric trial.119

A frequent mutation identified in pediatric low-grade gliomas (LGG) involves BRAF, a gene 

that encodes a crucial enzyme involved in cell survival and growth signaling.30 Case reports 

have suggested some efficacy of vemurafenib against BRAFV600E mutant LGG in children;
120, 121 an early phase I trial is currently underway (). Promising results have also emerged 

from a phase I study of selumetinib, a MEK1 inhibitor, in pediatric patients with recurrent or 

refractory LGG.122 In vitro and in vivo model systems of BRAF mutant LGG lend support 

to combination regimens such as PLX4720 (a BRAF inhibitor) plus selumetinib, or mTOR 

with MEK blockade.123, 124 These findings in part motivate a currently open clinical trial 

exploring the therapeutic role for combination MEK and BRAF inhibition for pediatric 

HGGs ().

Tuberous sclerosis, a genetic disorder that affects multiple organ systems, leads to 

overactivation of the mammalian target of rapamycin (mTOR) signaling cascade, can result 

in subependymal giant cell astrocytoma with biallelic mTOR dysregulation.125 Everolimus, 

an mTOR inhibitor, demonstrated significant, sustained reductions in subependymal giant 

cell astrocytoma volumes in a phase III trial of patients with tuberous sclerosis.126-128

Ependymal Tumors.

More than 75% of pediatric ependymomas coexpress ERBB2 and ERBB4;129 

overexpression of VEGF has been associated with poor survival.130 A phase II trial 

combined lapatinib, a selective ERBB1 and ERBB2 inhibitor, and bevacizumab in children 

with recurrent/refractory ependymoma, demonstrating tolerability, but no effect. However, 
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the authors note that bevacizumab monotherapy has not been shown to be efficacious in 

pediatric cases of recurrent ependymoma and that intratumoral lapatinib concentrations were 

below the threshold needed to inhibit the epidermal growth factor receptor (EGFR) and 

ERBB receptors.131 Sequencing of pediatric, poor-prognosis posterior fossa ependymomas 

revealed a CpG island methylator phenotype that has demonstrated in vivo responsiveness to 

DNA and H3K27 methylation-targeting.132

Pediatric MATCH.

In July 2017, The National Cancer Institute (NCI) and the Children’s Oncology Group 

(COG) announced the opening of enrollment for a phase II precision medicine clinical trial, 

the NCI-COG Pediatric Molecular Analysis for Therapy Choice screening protocol 

(Pediatric MATCH, ). This trial will provide genetic testing for children with various types 

of tumors, including CNS neoplasms. Patients with mutations that may benefit from one of 

the more than eight targeted study drugs will be identified for potential directed therapy. 

Treatment arms that are currently enrolling include larotrectinib (a pan-TRK inhibitor), 

LY3023414 (a small-molecule inhibitor of class I PI3K isoforms), mTOR, and DNA-PK, 

plus six other arms. This strategy represents a novel shift in focus from blanket therapy for 

each disease to a focus on the particular molecular pathways specific to each patient’s case.
133

IMMUNOTHERAPY

Emerging therapies, including immune-targeted strategies, for CNS malignancies have 

mostly risen from the study of glioblastoma. Cancer immunotherapy encompasses a variety 

of approaches, with the potential to harness the specificity of adaptive immunity, mediated 

by T-cells and antibodies, as well as the diverse cytotoxic mechanisms of innate immunity. 

Immunotherapy strategies include active antitumor vaccination, adoptive transfer activated 

cytotoxic cells, and blockage of immune inhibitory checkpoints. Preclinical studies, as well 

as early clinical failures, stress the importance of a multimodal, combinatorial approach to 

integrating immunotherapy into cancer treatment. Unlike conventional cancer therapies, 

active immunotherapies hold the potential to induce immune memory.

Dendritic cells (DC) are the most potent antigen-presenting cells in the human immune 

system; as such, a number of studies have utilized dendritic cell-based immunotherapy in 

varied cancer types, including for CNS neoplasms. Three studies have evaluated its use in 

children with brain tumors, finding them to be safe and tolerable in pediatric patients; larger 

studies are needed to elucidate treatment effect.134-136 Another approach is to use 

engineered materials to deliver immune modulating molecules to tumors, cancer vaccines or 

host immune cells, one avenue being to induce DC activation and subsequent priming of 

cancer-specific T-cell responses.137, 138

Patients’ own T-cells can be engineered to seek out and to destroy tumor cells by attaching 

receptors with affinity to antigens specific to the cancer of interest. These chimeric antigen 

receptor (CAR) T-cells have demonstrated efficacy in hematologic malignancies such as 

acute lymphoblastic leukemia.139 CAR T-cell therapy has proven to be a more difficult 

venture in solid tumors and by extension, CNS neoplasms. In treating patients with 
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glioblastoma, researchers have attempted engineering CAR T-cells to target the tumor-

associated antigen interleukin-13 receptor alpha 2;140 epidermal growth factor receptor 

variant III-specific CAR T-cells have demonstrated efficacy in a murine model.141 Two 

major hurdles in utilizing CAR T-cell therapy for CNS tumors are trafficking and 

persistence:142 intratumoral T-cell delivery may require repeated intracranial injections, 

which may not be feasible in a child with a brainstem tumor. Attempts have been made to 

genetically modify CAR T-cells to respond more effectively to trafficking signals;143 

however, there is a significant need for improved delivery systems, particularly in a space as 

difficult to access as the CNS. One innovative platform that may be ported to pediatric CNS 

neoplasms is the CIVO microdosing system, which can precisely inject multiple standard-of-

care chemotherapy agents into cancerous lymph nodes (). Notably, CAR T-cells tend to lack 

long-term survival in the solid tumor microenvironment, often reaching a premature state of 

exhaustion due to lack of resources for energy production and a more mature phenotype.144 

One innovative engineering approach has been the development of artificial thymic 

organoids, which may enable the production of younger, more naïve, and efficacious T-cells 

for use in immunotherapy.145

Gene expression data have recently been utilized to identify patients with intratumoral 

cytokine profiles that may predict more robust responses to pembrolizumab, a PD-1 

monoclonal antibody that blocks a major pathway of tumor immune evasion, enabling 

patients’ own immune systems to eliminate cancerous cells more effectively.146 

Furthermore, studies have demonstrated that tumors with defects in mismatch repair 

pathways (and consequent accumulation of hundreds to thousands of somatic mutations) are 

more responsive to PD-1 blockade.147 This finding has been recapitulated in a study wherein 

two pediatric patients with recurrent, multifocal, biallelic mismatch repair deficient GBMs 

exhibited sustained responses to pembrolizumab.148

Woensel and colleagues designed siRNA targeting Galectin-1 loaded chitosan nanoparticles 

to silence Gal-1 in the tumor microenvironment. Gal-1 is overexpressed in GBM and drives 

chemo- and immunotherapy resistance. Intranasal delivery of these particles seemed to 

promote a switch in the tumor microenvironment composition with respect to myeloid and 

T-cells, as well as promote normalization of tumor vasculature and increased survival in the 

animal mouse model. Furthermore, combination of the particles with Temozolomide or 

immunotherapy (dendritic cell vaccination and PD-1 blocking) showed synergistic effects to 

improve mice survival outcomes.149 Vaccination therapies composed of peptides against 

glioma-associated antigens, which were identified to be overexpressed in LGGs, have also 

shown promise in children with recurrent LGGs.150 Myriad studies are currently evaluating 

various combinations of other immunotherapeutical approaches (e.g., , ).

NANOPARTICLES

Nanoparticle drug delivery platforms have been described in the literature as typically 

belonging to one of the following categories: liposomes, nanoparticle albumin-bound 

technology, polymeric nanoparticles (PNPs), and molecular targeted nanoparticles.11, 151, 152 

More recently, drug-encapsulated PNPs have showed promise in targeting aggressive 

pancreatic ductal adenocarcinoma cells.153 Nanoparticles targeting various cancers are 
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continuously being developed and have been described to accumulate preferentially in 

tumors due to the so-called enhanced permeability and retention (EPR) effect. This favorable 

effect is attributed to defective vascularization and reduced lymphatic drainage in the tumor 

microenvironment,154, 155 although it does not necessarily correlate with improvement in 

tumor cell uptake of these nanoparticles. Therefore, an employed strategy has been to 

modify the surface of PNPs for tumor-specific recognition and internalization.

Within the context of GBM, DNA aptamer probes have been selected in vitro that are able to 

bind to a variety of glioblastoma cells lines with dissociation constants in the nanomolar 

range, while showing little affinity for other cancer cells. Aptamers are short artificial, 

single-stranded oligonucleotides that bind with high affinity to their ligands by recognizing a 

specific three-dimensional structure.156-158 Since crossing the blood-brain barrier (BBB) 

poses a significant obstacle to delivering therapeutic molecules to the brain, a bifunctional 

aptamer has been developed that targets both the transferrin receptor in the BBB (for 

transcytosis) and the cancer cell surface receptor epithelial cell adhesion molecule, 

conferring specificity to the target cell. In vivo studies in mice showed successful 

penetration of the bifunctional aptamers into the brain.159

Monaco et al. have taken this idea one step further and developed PNPs with surface 

aptamers. A conjugated aptamer that specifically recognizes platelet-derived growth factor 

receptor β (PDGFRβ) on GBM cells was manufactured to act as a nanovector for the 

delivery of the chemotherapeutic drug dactolisib. In vivo studies were successful in inducing 

specific toxicity in U87MG GBM cells in mice, and these PNPs effectively cross the BBB to 

arrive at the target microenvironment.160

Gold nanoparticles (AuNPs) have been reported that were designed with surface peptides 

that target both epidermal growth factor and transferrin receptors on glioblastomas. These 

particles, which were loaded with a hydrophobic photo-sensitizer drug, showed superior 

specificity and intratumoral accumulation in glioblastoma cells as compared to untargeted 

and monotargeted AuNPs. In vivo and in vitro work showed increased selectivity and 

cytotoxicity in target cells, as they also cross BBB more effectively (Figure 5a,b).10

Nanodiamond drug delivery platforms have also been evaluated for intracranial tumor 

treatment. Xi et al. described a system which consisted of doxorubicin, a chemotherapeutic 

agent not usually considered for treatment of brain malignancies due to its poor BBB 

penetration, reversibly bound to nanodiamonds for sustained functional drug release, while 

resulting in reduced myelosuppresion.161 The nanodiamond-doxorubicin complexes were 

used with convection enhanced delivery, which is a well-described method to open the BBB 

transiently. Their results indicate that this system has efficacious tumor killing capacity in a 

bioluminescent rodent glioma model, especially when combined with convection enhanced 

delivery, showing improved drug distribution and retention in brain tissue compared to 

controls.

Theranostic strategies where nanoparticles are configured to provide diagnostic information 

and to deliver therapeutic nanoparticles have played important roles. Magnetic nanoparticles 

(MNPs) composed of ferromagnetic iron oxide (Fe3O4) can also be surface functionalized 
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with peptides or antibodies to target particular cancers and guided to a particular site using a 

magnetic field. If encapsulated with a drug, the MNPs can then release the agent at the 

desired site. This technique has been employed in in vivo models, both for therapeutic 

purposes as well as for MRI contrast enhancement, although BBB penetration still remains a 

challenge. Intracranial implantation of MNPs have also been used for targeted 

thermotherapy, in which temperature elevation (40–45 °C range) generated by an alternating 

magnetic field is used to cause cancer cell death.12-14

An interleukin (IL)-13 amino-coated gadolinium metallofullerene nanoparticle has been 

fabricated as an alternative to the commonly used gadolinium (Gd) containing materials 

used for MRI imaging. These nanoassemblies contain positively charged amino groups on 

their surfaces, which enable more efficient binding to the negatively charged phospholipid 

bilayers of cell surfaces compared to conventional negatively charged Gd contrast agents. 

This functionalized trimetallic nitride template endohedral metallofullerene (TNT EMF) was 

also conjugated with IL-13 (designated IL-13-Gd3 N@ C80(OH)x(NH2)y) peptide for 

specific targeting of GBM in a mouse model when delivered intravenously (Figure 5c).162 

Another group has developed Gd-functionalized nanographene oxide (NGO) nanoparticles, 

composed of poly(amidoamine) dendrimer-grafted gadolinium-functionalized nanographene 

oxide (Gd-NGO), that act as effective carriers for delivery of chemotherapeutic drugs and 

microRNAs to cancer cells also in a GBM mouse model. The particles could also be used as 

a contrast agent for MRI to explore BBB opening and the extent of drug delivery to target 

tissues.163

CONCLUSIONS AND PROSPECTS

Brain tumors continue to be a common oncologic diagnosis among the pediatric population, 

and remain the most common cause of childhood cancer-related mortality. While 

multimodal therapy with chemotherapy based on tumor classification has been the standard 

of care, the significant intratumoral heterogeneity and possibly debilitating late effects 

demand a more individualized approach. New molecularly based tumor classification for 

some the most common childhood brain tumors and newly discovered molecular targets 

have resulted in multiple clinical trials using personalized or targeted approaches. Rapid 

advances in genetic sequencing, imaging and therapy delivery, such as small molecules 

targeting specific aberrant pathways, microfluidic devices for single-cell processing, targeted 

radiotracers, and nanodiamond systems now offer unprecedented precision in tailoring 

therapy for each patient. The gap between new technologies and pediatric patients 

consequently looms especially large, and innovative means of bridging this gap are direly 

needed.164 Nevertheless, the striking need for individualized treatment has been 

demonstrably recognized in the raft of new personalized medicine institutes that have 

opened in recent years. Nowhere is this more important than in pediatric oncology, to enable 

every opportunity for leading basic scientists and clinicians to interact and to drive 

multidisciplinary efforts targeting the eradicatation of the scourge of cancer and the 

potentially devastating effects of its treatment.

Mochizuki et al. Page 14

ACS Chem Neurosci. Author manuscript; available in PMC 2019 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

Funding

I. F. and M.M. thank the National Institutes of Health for support through UCLA Medical Scientist Training 
Program grant T32 GM008042. S.J.J. acknowledges the support of the Eli and Edythe Broad Center of 
Regenerative Medicine and Stem Cell Research at UCLA Training Program through its Clinical Fellowship 
Training Award Program as well as Young Investigator Award funds from the Hyundai Hope on Wheels Foundation 
and the Alex’s Lemonade Stand Foundation for Pediatric Cancer Research. P.S.W. and S.J.J. acknowledge the 
David Geffen School of Medicine and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell 
Research at UCLA for seed funding.

ABBREVIATIONS

Akt protein kinase B

aCGH array comparative genomic hybridization

ASL arterial spin labeling

AT/RT atypical teratoid rhabdoid tumor

AuNP gold nanoparticle

BBB blood-brain barrier

CAR chimeric antigen receptor

CIMP CpG island methylator phenotype

CLIA Clinical Laboratory Improvement Amendment

CNS central nervous system

COG Children’s Oncology Group

DC dendritic cell

DIPG diffuse intrinsic pontine glioma

DNA DNA

DSC dynamic susceptibility-weighted contrast-enhanced

DTI diffusion tensor imaging

EGFR epidermal growth factor receptor

FISH fluorescence in situ hybridization

GBM glioblastoma multiforme

Gd gadolinium

HGG high-grade glioma

IL interleukin

Mochizuki et al. Page 15

ACS Chem Neurosci. Author manuscript; available in PMC 2019 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IHC immunohistochemistry

LGG low-grade glioma

MNP magnetic nanoparticle

MRI magnetic resonance imaging

mRNA mRNA

MS methylation-specific

mTOR mammalian target of rapamycin

MPLA multiplex ligation-dependent probe amplification

NCI National Cancer Institute

NGO nanographene oxide

NTRK2 neurotrophic tyrosine kinase type 2

PCR polymerase chain reaction

PD-1 programed cell death protein-1

PI3K phosphatidylinositol-4,5-bisphosphate 3-kinase

PDGFR platelet-derived growth factor receptor

PET positron emission tomography

PNP polymeric nanoparticle

RNA ribonucleic acid

SHH sonic hedgehog

UMI unique molecular identifier

WHO World Health Organization

REFERENCES

(1). Linabery AM, and Ross JA (2008) Trends in childhood cancer incidence in the U.S. (1992–2004). 
Cancer 112, 416–432. [PubMed: 18074355] 

(2). Qiu P, Simonds EF, Bendall SC, Gibbs KD Jr., Bruggner RV, Linderman MD, Sachs K, Nolan GP, 
and Plevritis SK (2011) Extracting a cellular hierarchy from high-dimensional cytometry data 
with SPADE. Nat. Biotechnol 29, 886–891. [PubMed: 21964415] 

(3). Weil AG, Wang AC, Westwick HJ, Ibrahim GM, Ariani RT, Crevier L, Perreault S, Davidson T, 
Tseng CH, and Fallah A (2017) Survival in pediatric medulloblastoma: a population-based 
observational study to improve prognostication. J. Neuro-Oncol 132, 99–107.

(4). Merchant TE, Conklin HM, Wu S, Lustig RH, and Xiong X (2009) Late effects of conformal 
radiation therapy for pediatric patients with low-grade glioma: prospective evaluation of 
cognitive, endocrine, and hearing deficits. J. Clin. Oncol 27, 3691–3697. [PubMed: 19581535] 

Mochizuki et al. Page 16

ACS Chem Neurosci. Author manuscript; available in PMC 2019 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(5). Vern-Gross TZ, Schreiber JE, Broniscer A, Wu S, Xiong X, and Merchant TE (2014) Prospective 
evaluation of local control and late effects of conformal radiation therapy in children, 
adolescents, and young adults with high-grade glioma. Neuro-Oncology 16, 1652–1660. 
[PubMed: 24908655] 

(6). Schagen SB, van Dam FS, Muller MJ, Boogerd W, Lindeboom J, and Bruning PF (1999) 
Cognitive deficits after postoperative adjuvant chemotherapy for breast carcinoma. Cancer 85, 
640–650. [PubMed: 10091737] 

(7). Anderson VA, Godber T, Smibert E, Weiskop S, and Ekert H (2000) Cognitive and academic 
outcome following cranial irradiation and chemotherapy in children: A longitudinal study. Br. J. 
Cancer 82, 255–262. [PubMed: 10646874] 

(8). Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, Friedman DL, 
Marina N, Hobbie W, Kadan-Lottick NS, Schwartz CL, Leisenring W, and Robison LL (2006) 
Chronic health conditions in adult survivors of childhood cancer. N. Engl. J. Med 355, 1572–
1582. [PubMed: 17035650] 

(9). Duffner PK, Krischer JP, Burger PC, Cohen ME, Backstrom JW, Horowitz ME, Sanford RA, 
Friedman HS, and Kun LE (1996) Treatment of infants with malignant gliomas: the Pediatric 
Oncology Group experience. J. Neuro-Oncol 28, 245–256.

(10). Dixit S, Miller K, Zhu Y, McKinnon E, Novak T, Kenney ME, and Broome AM (2015) Dual 
receptor-targeted theranostic nanoparticles for localized delivery and activation of photodynamic 
therapy drug in glioblastomas. Mol. Pharmaceutics 12, 3250–3260.

(11). Wang AZ, Langer R, and Farokhzad OC (2012) Nanoparticle delivery of cancer drugs. Annu. 
Rev. Med 63, 185–198. [PubMed: 21888516] 

(12). Thiesen B, and Jordan A (2008) Clinical applications of magnetic nanoparticles for hyperthermia. 
Int. J. Hyperthermia 24, 467–474. [PubMed: 18608593] 

(13). Meenach SA, Hilt JZ, and Anderson KW (2010) Poly(ethylene glycol)-based magnetic hydrogel 
nanocomposites for hyperthermia cancer therapy. Acta Biomater 6, 1039–1046. [PubMed: 
19840875] 

(14). Mahmoudi K, and Hadjipanayis CG (2014) The application of magnetic nanoparticles for the 
treatment of brain tumors. Front. Chem 2, 109. [PubMed: 25520952] 

(15). Miura Y, Takenaka T, Toh K, Wu S, Nishihara H, Kano MR, Ino Y, Nomoto T, Matsumoto Y, 
Koyama H, Cabral H, Nishiyama N, and Kataoka K (2013) Cyclic RGD-linked polymeric 
micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood-
brain tumor barrier. ACS Nano 7, 8583–8592. [PubMed: 24028526] 

(16). Mangraviti A, Tzeng SY, Kozielski KL, Wang Y, Jin Y, Gullotti D, Pedone M, Buaron N, Liu A, 
Wilson DR, Hansen SK, Rodriguez FJ, Gao GD, DiMeco F, Brem H, Olivi A, Tyler B, and Green 
JJ (2015) Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. 
ACS Nano 9, 1236–1249. [PubMed: 25643235] 

(17). Ali IU, and Chen X (2015) Penetrating the blood-brain barrier: promise of novel nanoplatforms 
and delivery vehicles. ACS Nano 9, 9470–9474. [PubMed: 26406936] 

(18). Cohen ZR, Ramishetti S, Peshes-Yaloz N, Goldsmith M, Wohl A, Zibly Z, and Peer D (2015) 
Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-
based nanoparticles. ACS Nano 9, 1581–1591. [PubMed: 25558928] 

(19). Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki 
H, Wiestler OD, Kleihues P, and Ellison DW (2016) The 2016 World Health Organization 
classification of tumors of the central nervous system: a summary. Acta Neuropathol 131, 803–
820. [PubMed: 27157931] 

(20). Ostrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C, and Barnholtz-Sloan JS 
(2016) CBTRUS statistical report: Primary brain and other central nervous system tumors 
diagnosed in the United States in 2009–2013. Neuro-Oncology 18, v1–v75. [PubMed: 28475809] 

(21). Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, Bouffet E, Clifford SC, 
Hawkins CE, French P, Rutka JT, Pfister S, and Taylor MD (2011) Medulloblastoma comprises 
four distinct molecular variants. J. Clin. Oncol 29, 1408–1414. [PubMed: 20823417] 

(22). Kool M, Korshunov A, Remke M, Jones DT, Schlanstein M, Northcott PA, Cho YJ, Koster J, 
Schouten-van Meeteren A, van Vuurden D, Clifford SC, Pietsch T, von Bueren AO, Rutkowski S, 

Mochizuki et al. Page 17

ACS Chem Neurosci. Author manuscript; available in PMC 2019 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



McCabe M, Collins VP, Backlund ML, Haberler C, Bourdeaut F, Delattre O, Doz F, Ellison DW, 
Gilbertson RJ, Pomeroy SL, Taylor MD, Lichter P, and Pfister SM (2012) Molecular subgroups 
of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and 
clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 123, 
473–484. [PubMed: 22358457] 

(23). Schwalbe EC, Lindsey JC, Nakjang S, Crosier S, Smith AJ, Hicks D, Rafiee G, Hill RM, Iliasova 
A, Stone T, Pizer B, Michalski A, Joshi A, Wharton SB, Jacques TS, Bailey S, Williamson D, 
and Clifford SC (2017) Novel molecular subgroups for clinical classification and outcome 
prediction in childhood medulloblastoma: a cohort study. Lancet Oncol 18, 958–971. [PubMed: 
28545823] 

(24). Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH, Luu B, Garzia L, Torchia J, Nor C, 
Morrissy AS, Agnihotri S, Thompson YY, Kuzan-Fischer CM, Farooq H, Isaev K, Daniels C, 
Cho BK, Kim SK, Wang KC, Lee JY, Grajkowska WA, Perek-Polnik M, Vasiljevic A, Faure-
Conter C, Jouvet A, Giannini C, Nageswara Rao AA, Li KKW, Ng HK, Eberhart CG, Pollack IF, 
Hamilton RL, Gillespie GY, Olson JM, Leary S, Weiss WA, Lach B, Chambless LB, Thompson 
RC, Cooper MK, Vibhakar R, Hauser P, van Veelen MC, Kros JM, French PJ, Ra YS, Kumabe T, 
Lopez-Aguilar E, Zitterbart K, Sterba J, Finocchiaro G, Massimino M, Van Meir EG, Osuka S, 
Shofuda T, Klekner A, Zollo M, Leonard JR, Rubin JB, Jabado N, Albrecht S, Mora J, Van Meter 
TE, Jung S, Moore AS, Hallahan AR, Chan JA, Tirapelli DPC, Carlotti CG, Fouladi M, Pimentel 
J, Faria CC, Saad AG, Massimi L, Liau LM, Wheeler H, Nakamura H, Elbabaa SK, Perezpena-
Diazconti M, Chico Ponce de Leon F, Robinson S, Zapotocky M, Lassaletta A, Huang A, 
Hawkins CE, Tabori U, Bouffet E, Bartels U, Dirks PB, Rutka JT, Bader GD, Reimand J, 
Goldenberg A, Ramaswamy V, and Taylor MD (2017) Intertumoral heterogeneity within 
medulloblastoma subgroups. Cancer Cell 31, 737–754. [PubMed: 28609654] 

(25). Cohen KJ, Pollack IF, Zhou T, Buxton A, Holmes EJ, Burger PC, Brat DJ, Rosenblum MK, 
Hamilton RL, Lavey RS, and Heideman RL (2011) Temozolomide in the treatment of high-grade 
gliomas in children: a report from the Children’s Oncology Group. Neuro-Oncology 13, 317–
323. [PubMed: 21339192] 

(26). Lashford LS, Thiesse P, Jouvet A, Jaspan T, Couanet D, Griffiths PD, Doz F, Ironside J, Robson 
K, Hobson R, Dugan M, Pearson AD, Vassal G, and Frappaz D (2002) Temozolomide in 
malignant gliomas of childhood: a United Kingdom Children’s Cancer Study Group and French 
Society for Pediatric Oncology Intergroup Study. J. Clin. Oncol 20, 4684–4691. [PubMed: 
12488414] 

(27). Paugh BS, Qu C, Jones C, Liu Z, Adamowicz-Brice M, Zhang J, Bax DA, Coyle B, Barrow J, 
Hargrave D, Lowe J, Gajjar A, Zhao W, Broniscer A, Ellison DW, Grundy RG, and Baker SJ 
(2010) Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key 
differences with the adult disease. J. Clin. Oncol 28, 3061–3068. [PubMed: 20479398] 

(28). Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso 
AM, Quang DA, Tonjes M, Hovestadt V, Albrecht S, Kool M, Nantel A, Konermann C, Lindroth 
A, Jager N, Rausch T, Ryzhova M, Korbel JO, Hielscher T, Hauser P, Garami M, Klekner A, 
Bognar L, Ebinger M, Schuhmann MU, Scheurlen W, Pekrun A, Fruhwald MC, Roggendorf W, 
Kramm C, Durken M, Atkinson J, Lepage P, Montpetit A, Zakrzewska M, Zakrzewski K, 
Liberski PP, Dong Z, Siegel P, Kulozik AE, Zapatka M, Guha A, Malkin D, Felsberg J, 
Reifenberger G, von Deimling A, Ichimura K, Collins VP, Witt H, Milde T, Witt O, Zhang C, 
Castelo-Branco P, Lichter P, Faury D, Tabori U, Plass C, Majewski J, Pfister SM, and Jabado N 
(2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric 
glioblastoma. Nature 482, 226–231. [PubMed: 22286061] 

(29). Khuong-Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM, Bouffet E, Bartels 
U, Albrecht S, Schwartzentruber J, Letourneau L, Bourgey M, Bourque G, Montpetit A, Bourret 
G, Lepage P, Fleming A, Lichter P, Kool M, von Deimling A, Sturm D, Korshunov A, Faury D, 
Jones DT, Majewski J, Pfister SM, Jabado N, and Hawkins C (2012) K27M mutation in histone 
H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine 
gliomas. Acta Neuropathol 124, 439–447. [PubMed: 22661320] 

(30). Mueller S, Phillips J, Onar-Thomas A, Romero E, Zheng S, Wiencke JK, McBride SM, Cowdrey 
C, Prados MD, Weiss WA, Berger MS, Gupta N, and Haas-Kogan DA (2012) PTEN promoter 

Mochizuki et al. Page 18

ACS Chem Neurosci. Author manuscript; available in PMC 2019 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



methylation and activation of the PI3K/Akt/mTOR pathway in pediatric gliomas and influence on 
clinical outcome. Neuro-Oncology 14, 1146–1152. [PubMed: 22753230] 

(31). Bax DA, Gaspar N, Little SE, Marshall L, Perryman L, Regairaz M, Viana-Pereira M, 
Vuononvirta R, Sharp SY, Reis-Filho JS, Stavale JN, Al-Sarraj S, Reis RM, Vassal G, Pearson 
AD, Hargrave, D, Ellison DW, Workman P, and Jones C (2009) EGFRvIII deletion mutations in 
pediatric high-grade glioma and response to targeted therapy in pediatric glioma cell lines. Clin. 
Cancer Res 15, 5753–5761. [PubMed: 19737945] 

(32). Bax DA, Mackay A, Little SE, Carvalho D, Viana-Pereira M, Tamber N, Grigoriadis AE, 
Ashworth A, Reis RM, Ellison DW, Al-Sarraj S, Hargrave D, and Jones C (2010) A distinct 
spectrum of copy number aberrations in pediatric high-grade gliomas. Clin. Cancer Res 16, 
3368–3377. [PubMed: 20570930] 

(33). Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, Li Y, Zhu X, Qu C, Chen X, Zhang J, Easton J, 
Edmonson M, Ma X, Lu C, Nagahawatte P, Hedlund E, Rusch M, Pounds S, Lin T, Onar-Thomas 
A, Huether R, Kriwacki R, Parker M, Gupta P, Becksfort J, Wei L, Mulder HL, Boggs K, 
Vadodaria B, Yergeau D, Russell JC, Ochoa K, Fulton RS, Fulton LL, Jones C, Boop FA, 
Broniscer A, Wetmore C, Gajjar A, Ding L, Mardis ER, Wilson RK, Taylor MR, Downing JR, 
Ellison DW, Zhang J, and Baker SJ (2014) The genomic landscape of diffuse intrinsic pontine 
glioma and pediatric non-brainstem high-grade glioma. Nat. Genet 46, 444–450. [PubMed: 
24705251] 

(34). Fontebasso AM, Papillon-Cavanagh S, Schwartzentruber J, Nikbakht H, Gerges N, Fiset PO, 
Bechet D, Faury D, De Jay N, Ramkissoon LA, Corcoran A, Jones DT, Sturm D, Johann P, 
Tomita T, Goldman S, Nagib M, Bendel A, Goumnerova L, Bowers DC, Leonard JR, Rubin JB, 
Alden T, Browd S, Geyer JR, Leary S, Jallo G, Cohen K, Gupta N, Prados MD, Carret AS, 
Ellezam B, Crevier L, Klekner A, Bognar L, Hauser P, Garami M, Myseros J, Dong Z, Siegel 
PM, Malkin H, Ligon AH, Albrecht S, Pfister SM, Ligon KL, Majewski J, Jabado N, and Kieran 
MW (2014) Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. 
Nat. Genet 46, 462–466. [PubMed: 24705250] 

(35). Taylor KR, Mackay A, Truffaux N, Butterfield Y, Morozova O, Philippe C, Castel D, Grasso CS, 
Vinci M, Carvalho D, Carcaboso AM, de Torres C, Cruz O, Mora J, Entz-Werle N, Ingram WJ, 
Monje M, Hargrave D, Bullock AN, Puget S, Yip S, Jones C, and Grill J (2014) Recurrent 
activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat. Genet 46, 457–461. 
[PubMed: 24705252] 

(36). Buczkowicz P, Hoeman C, Rakopoulos P, Pajovic S, Letourneau L, Dzamba M, Morrison A, 
Lewis P, Bouffet E, Bartels U, Zuccaro J, Agnihotri S, Ryall S, Barszczyk M, Chornenkyy Y, 
Bourgey M, Bourque G, Montpetit A, Cordero F, Castelo-Branco P, Mangerel J, Tabori U, Ho 
KC, Huang A, Taylor KR, Mackay A, Bendel AE, Nazarian J, Fangusaro JR, Karajannis MA, 
Zagzag D, Foreman NK, Donson A, Hegert JV, Smith A, Chan J, Lafay-Cousin L, Dunn S, 
Hukin J, Dunham C, Scheinemann K, Michaud J, Zelcer S, Ramsay D, Cain J, Brennan C, 
Souweidane MM, Jones C, Allis CD, Brudno M, Becher O, and Hawkins C (2014) Genomic 
analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent 
activating ACVR1 mutations. Nat. Genet 46, 451–456. [PubMed: 24705254] 

(37). Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, and 
Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta 
Neuropathol 114, 97–109. [PubMed: 17618441] 

(38). Bandopadhayay P, Bergthold G, London WB, Goumnerova LC, Morales La Madrid A, Marcus 
KJ, Guo D, Ullrich NJ, Robison NJ, Chi SN, Beroukhim R, Kieran MW, and Manley PE (2014) 
Long-term outcome of 4,040 children diagnosed with pediatric low-grade gliomas: an analysis of 
the Surveillance Epidemiology and End Results (SEER) database. Pediatr. Blood Cancer 61, 
1173–1179. [PubMed: 24482038] 

(39). Youland RS, Brown PD, Giannini C, Parney IF, Uhm JH, and Laack NN (2013) Adult low-grade 
glioma: 19-year experience at a single institution. Am. J. Clin. Oncol 36, 612–619. [PubMed: 
22892428] 

(40). Rodriguez FJ, Perry A, Gutmann DH, O’Neill BP, Leonard J, Bryant S, and Giannini C (2008) 
Gliomas in neurofibromatosis type 1: a clinicopathologic study of 100 patients. J. Neuropathol. 
Exp. Neurol 67, 240–249. [PubMed: 18344915] 

Mochizuki et al. Page 19

ACS Chem Neurosci. Author manuscript; available in PMC 2019 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(41). Hirbe AC, and Gutmann DH (2014) Neurofibromatosis type 1: a multidisciplinary approach to 
care. Lancet Neurol 13, 834–843. [PubMed: 25030515] 

(42). Bergthold G, Bandopadhayay P, Bi WL, Ramkissoon L, Stiles C, Segal RA, Beroukhim R, Ligon 
KL, Grill J, and Kieran MW (2014) Pediatric low-grade gliomas: How modern biology reshapes 
the clinical field. Biochim. Biophys. Acta, Rev. Cancer 1845, 294–307.

(43). Chalil A, and Ramaswamy V (2016) Low grade gliomas in children. J. Child Neurol. 31, 517–
522. [PubMed: 26286938] 

(44). Marinoff AE, Ma C, Guo D, Snuderl M, Wright KD, Manley PE, Al-Sayegh H, Sinai CE, Ullrich 
NJ, Marcus K, Haas-Kogan D, Goumnerova L, London WB, Kieran MW, Chi SN, Fangusaro J, 
and Bandopadhayay P (2017) Rethinking childhood ependymoma: a retrospective, multi-center 
analysis reveals poor long-term overall survival. J. Neuro-Oncol 135, 201.

(45). Venkatramani R, Dhall G, Patel M, Grimm J, Hawkins C, McComb G, Krieger M, Wong K, 
O’Neil S, and Finlay JL (2012) Supratentorial ependymoma in children: to observe or to treat 
following gross total resection? Pediatr. Blood Cancer 58, 380–383. [PubMed: 21370439] 

(46). Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F, Wani K, Tatevossian R, 
Punchihewa C, Johann P, Reimand J, Warnatz HJ, Ryzhova M, Mack S, Ramaswamy V, Capper 
D, Schweizer L, Sieber L, Wittmann A, Huang Z, van Sluis P, Volckmann R, Koster J, Versteeg 
R, Fults D, Toledano H, Avigad S, Hoffman LM, Donson AM, Foreman N, Hewer E, Zitterbart 
K, Gilbert M, Armstrong TS, Gupta N, Allen JC, Karajannis MA, Zagzag D, Hasselblatt M, 
Kulozik AE, Witt O, Collins VP, von Hoff K, Rutkowski S, Pietsch T, Bader G, Yaspo ML, von 
Deimling A, Lichter P, Taylor MD, Gilbertson R, Ellison DW, Aldape K, Korshunov A, Kool M, 
and Pfister SM (2015) Molecular classification of ependymal tumors across all CNS 
compartments, histopathological grades, and age groups. Cancer Cell 27, 728–743. [PubMed: 
25965575] 

(47). Pajtler KW, Mack SC, Ramaswamy V, Smith CA, Witt H, Smith A, Hansford JR, von Hoff K, 
Wright KD, Hwang E, Frappaz D, Kanemura Y, Massimino M, Faure-Conter C, Modena P, 
Tabori U, Warren KE, Holland EC, Ichimura K, Giangaspero F, Castel D, von Deimling A, Kool 
M, Dirks PB, Grundy RG, Foreman NK, Gajjar A, Korshunov A, Finlay J, Gilbertson RJ, Ellison 
DW, Aldape KD, Merchant TE, Bouffet E, Pfister SM, and Taylor MD (2017) The current 
consensus on the clinical management of intracranial ependymoma and its distinct molecular 
variants. Acta Neuropathol 133, 5–12. [PubMed: 27858204] 

(48). Lobel U, Ellison DW, Shulkin BL, and Patay Z (2011) Infiltrative cerebellar ganglioglioma: 
conventional and advanced MRI, proton MR spectroscopic, and FDG PET findings in an 18-
month-old child. Clin. Radiol 66, 194–201. [PubMed: 21216337] 

(49). Provenzale JM, Mukundan S, and Barboriak DP (2006) Diffusion-weighted and perfusion MR 
imaging for brain tumor characterization and assessment of treatment response. Radiology 239, 
632–649. [PubMed: 16714455] 

(50). Weber MA, Zoubaa S, Schlieter M, Juttler E, Huttner HB, Geletneky K, Ittrich C, Lichy MP, 
Kroll A, Debus J, Giesel FL, Hartmann M, and Essig M (2006) Diagnostic performance of 
spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 66, 1899–1906. 
[PubMed: 16801657] 

(51). Young RJ, and Knopp EA (2006) Brain MRI: tumor evaluation. J. Magn. Reson. Imaging 24, 
709–724. [PubMed: 16958058] 

(52). Clark PM, Ebiana VA, Gosa L, Cloughesy TF, and Nathanson DA (2017) Harnessing preclinical 
molecular imaging to inform advances in personalized cancer medicine. J. Nucl Med 58, 689–
696. [PubMed: 28385796] 

(53). Zinnhardt B, Pigeon H, Theze B, Viel T, Wachsmuth L, Fricke IB, Schelhaas S, Honold L, 
Schwegmann K, Wagner S, Faust A, Faber C, Kuhlmann MT, Hermann S, Schafers M, Winkeler 
A, and Jacobs AH (2017) Combined PET imaging of the inflammatory tumor microenvironment 
identifies margins of unique radiotracer uptake. Cancer Res 77, 1831–1841. [PubMed: 
28137769] 

(54). Armitage PA, Skipper N, Connolly DJ, and Griffiths PD (2017) A qualitative comparison of 
arterial spin labelling and dynamic susceptibility contrast MRI in 52 children with a range of 
neurological conditions. Br. J. Radiol 90, 20160495. [PubMed: 27858468] 

Mochizuki et al. Page 20

ACS Chem Neurosci. Author manuscript; available in PMC 2019 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(55). Febbo PG, Ladanyi M, Aldape KD, De Marzo AM, Hammond ME, Hayes DF, Iafrate AJ, Kelley 
RK, Marcucci G, Ogino S, Pao W, Sgroi DC, and Birkeland ML (2011) NCCN Task Force 
report: Evaluating the clinical utility of tumor markers in oncology. J. Natl. Compr. Cancer 
Network 9 (Suppl 5), S-1–S-32.

(56). Smith JS, Alderete B, Minn Y, Borell TJ, Perry A, Mohapatra G, Hosek SM, Kimmel D, 
O’Fallon J, Yates A, Feuerstein BG, Burger PC, Scheithauer BW, and Jenkins RB (1999) 
Localization of common deletion regions on 1p and 19q in human gliomas and their association 
with histological subtype. Oncogene 18, 4144–4152. [PubMed: 10435596] 

(57). Houillier C, Wang X, Kaloshi G, Mokhtari K, Guillevin R, Laffaire J, Paris S, Boisselier B, 
Idbaih A, Laigle-Donadey F, Hoang-Xuan K, Sanson M, and Delattre JY (2010) IDH1 or IDH2 
mutations predict longer survival and response to Temozolomide in low-grade gliomas. 
Neurology 75, 1560–1566. [PubMed: 20975057] 

(58). Dubbink HJ, Taal W, van Marion R, Kros JM, van Heuvel I, Bromberg JE, Zonnenberg BA, 
Zonnenberg CB, Postma TJ, Gijtenbeek JM, Boogerd W, Groenendijk FH, Smitt PA, Dinjens 
WN, and van den Bent MJ (2009) IDH1 mutations in low-grade astrocytomas predict survival but 
not response to Temozolomide. Neurology 73, 1792–1795. [PubMed: 19933982] 

(59). Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, 
Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, and Stupp 
R (2005) MGMT gene silencing and benefit from Temozolomide in glioblastoma. N. Engl. J. 
Med 352, 997–1003. [PubMed: 15758010] 

(60). Sturm D, Orr BA, Toprak UH, Hovestadt V, Jones DTW, Capper D, Sill M, Buchhalter I, 
Northcott PA, Leis I, Ryzhova M, Koelsche C, Pfaff E, Allen SJ, Balasubramanian G, Worst BC, 
Pajtler KW, Brabetz S, Johann PD, Sahm F, Reimand J, Mackay A, Carvalho DM, Remke M, 
Phillips JJ, Perry A, Cowdrey C, Drissi R, Fouladi M, Giangaspero F, Lastowska M, Grajkowska 
W, Scheurlen W, Pietsch T, Hagel C, Gojo J, Lotsch D, Berger W, Slavc I, Haberler C, Jouvet A, 
Holm S, Hofer S, Prinz M, Keohane C, Fried I, Mawrin C, Scheie D, Mobley BC, Schniederjan 
MJ, Santi M, Buccoliero AM, Dahiya S, Kramm CM, von Bueren AO, von Hoff K, Rutkowski S, 
Herold-Mende C, Fruhwald MC, Milde T, Hasselblatt M, Wesseling P, Rossler J, Schuller U, 
Ebinger M, Schittenhelm J, Frank S, Grobholz R, Vajtai I, Hans V, Schneppenheim R, Zitterbart 
K, Collins VP, Aronica E, Varlet P, Puget S, Dufour C, Grill J, Figarella-Branger D, Wolter M, 
Schuhmann MU, Shalaby T, Grotzer M, van Meter T, Monoranu CM, Felsberg J, Reifenberger G, 
Snuderl M, Forrester LA, Koster J, Versteeg R, Volckmann R, van Sluis P, Wolf S, Mikkelsen T, 
Gajjar A, Aldape K, Moore AS, Taylor MD, Jones C, Jabado N, Karajannis MA, Eils R, 
Schlesner M, Lichter P, von Deimling A, Pfister SM, Ellison DW, Korshunov A, and Kool M 
(2016) New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164, 
1060–1072. [PubMed: 26919435] 

(61). Johann PD, Erkek S, Zapatka M, Kerl K, Buchhalter I, Hovestadt V, Jones DT, Sturm D, 
Hermann C, Segura Wang M, Korshunov A, Rhyzova M, Grobner S, Brabetz S, Chavez L, Bens 
S, Groschel S, Kratochwil F, Wittmann A, Sieber L, Georg C, Wolf S, Beck K, Oyen F, Capper 
D, van Sluis P, Volckmann R, Koster J, Versteeg R, von Deimling A, Milde T, Witt O, Kulozik 
AE, Ebinger M, Shalaby T, Grotzer M, Sumerauer D, Zamecnik J, Mora J, Jabado N, Taylor MD, 
Huang A, Aronica E, Bertoni A, Radlwimmer B, Pietsch T, Schuller U, Schneppenheim R, 
Northcott PA, Korbel JO, Siebert R, Fruhwald MC, Lichter P, Eils R, Gajjar A, Hasselblatt M, 
Pfister SM, and Kool M (2016) Atypical teratoid/rhabdoid tumors are comprised of three 
epigenetic subgroups with distinct enhancer landscapes. Cancer Cell 29, 379–393. [PubMed: 
26923874] 

(62). Ramskold D, Luo S, Wang YC, Li R, Deng Q, Faridani OR, Daniels GA, Khrebtukova I, Loring 
JF, Laurent LC, Schroth GP, and Sandberg R (2012) Full-length mRNA-Seq from single-cell 
levels of RNA and individual circulating tumor cells. Nat. Biotechnol 30, 777–782. [PubMed: 
22820318] 

(63). Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, 
Curry WT, Martuza RL, Louis DN, Rozenblatt-Rosen O, Suva ML, Regev A, and Bernstein BE 
(2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. 
Science 344, 1396–1401. [PubMed: 24925914] 

(64). Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C, Filbin MG, Hovestadt V, Escalante LE, 
Shaw ML, Rodman C, Gillespie SM, Dionne D, Luo CC, Ravichandran H, Mylvaganam R, 

Mochizuki et al. Page 21

ACS Chem Neurosci. Author manuscript; available in PMC 2019 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mount C, Onozato ML, Nahed BV, Wakimoto H, Curry WT, Iafrate AJ, Rivera MN, Frosch MP, 
Golub TR, Brastianos PK, Getz G, Patel AP, Monje M, Cahill DP, Rozenblatt-Rosen O, Louis 
DN, Bernstein BE, Regev A, and Suva ML (2017) Decoupling genetics, lineages, and 
microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355, eaai8478. 
[PubMed: 28360267] 

(65). Gierahn TM, Wadsworth MH 2nd, Hughes TK, Bryson BD, Butler A, Satija R, Fortune S, Love 
JC, and Shalek AK (2017) Seq-Well: portable, low-cost RNA sequencing of single cells at high 
throughput. Nat. Methods 14, 395–398. [PubMed: 28192419] 

(66). Prakadan SM, Shalek AK, and Weitz DA (2017) Scaling by shrinking: empowering single-
cell ’omics’ with microfluidic devices. Nat. Rev. Genet 18, 345–361. [PubMed: 28392571] 

(67). Euskirchen P, Bielle F, Labreche K, Kloosterman WP, Rosenberg S, Daniau M, Schmitt C, 
Masliah-Planchon J, Bourdeaut F, Dehais C, Marie Y, Delattre JY, and Idbaih A (2017) Same-day 
genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing. Acta 
Neuropathol 134, 691. [PubMed: 28638988] 

(68). Fologea D, Gershow M, Ledden B, McNabb DS, Golovchenko JA, and Li J (2005) Detecting 
single stranded DNA with a solid state nanopore. Nano Lett 5, 1905–1909. [PubMed: 16218707] 

(69). Ayub M, Hardwick SW, Luisi BF, and Bayley H (2013) Nanopore-based identification of 
individual nucleotides for direct RNA sequencing. Nano Lett 13, 6144–6150. [PubMed: 
24171554] 

(70). Shim J, Kim Y, Humphreys GI, Nardulli AM, Kosari F, Vasmatzis G, Taylor WR, Ahlquist DA, 
Myong S, and Bashir R (2015) Nanopore-based assay for detection of methylation in double-
stranded DNA fragments. ACS Nano 9, 290–300. [PubMed: 25569824] 

(71). Ramkissoon SH, Bandopadhayay P, Hwang J, Ramkissoon LA, Greenwald NF, Schumacher SE, 
O’Rourke R, Pinches N, Ho P, Malkin H, Sinai C, Filbin M, Plant A, Bi WL, Chang MS, Yang E, 
Wright KD, Manley PE, Ducar M, Alexandrescu S, Lidov H, Delalle I, Goumnerova LC, Church 
AJ, Janeway KA, Harris MH, MacConaill LE, Folkerth RD, Lindeman NI, Stiles CD, Kieran 
MW, Ligon AH, Santagata S, Dubuc AM, Chi SN, Beroukhim R, and Ligon KL (2017) Clinical 
targeted exome-based sequencing in combination with genome-wide copy number profiling: 
precision medicine analysis of 203 pediatric brain tumors. Neuro-Oncology, now294.

(72). Bandopadhayay P, Ramkissoon S, Hwang J, Ramkissoon L, Dubuc A, Schumacher S, Janeway 
K, Pinches N, Malkin H, Sinai C, Manley P, Wright K, Filbin M, Goumnerova L, Alexandrescu 
S, Harris M, Ligon A, Kieran M, Chi S, Beroukhim R, and Ligon K (2016) EPT-20: Clinical 
targeted exome-based sequencing in combination with genome wide copy number profiling: A 
CLIA certified approach for precision medicine in 203 pediatric brain tumor patients. Neuro-
Oncology 18, iii28.22.

(73). Crisman TJ, Zelaya I, Laks DR, Zhao Y, Kawaguchi R, Gao F, Kornblum HI, and Coppola G 
(2016) Identification of an efficient gene expression panel for glioblastoma classification. PLoS 
One 11, e0164649. [PubMed: 27855170] 

(74). Wang T, Wei JJ, Sabatini DM, and Lander ES (2014) Genetic screens in human cells using the 
CRISPR-Cas9 system. Science 343, 80–84. [PubMed: 24336569] 

(75). Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, Clarke RB, de Jong S, 
Jonkers J, Maelandsmo GM, Roman-Roman S, Seoane J, Trusolino L, and Villanueva A (2014) 
Patient-derived xenograft models: An emerging platform for translational cancer research. Cancer 
Discovery 4, 998–1013. [PubMed: 25185190] 

(76). Harris MH, DuBois SG, Glade Bender JL, Kim A, Crompton BD, Parker E, Dumont IP, Hong 
AL, Guo D, Church A, Stegmaier K, Roberts CW, Shusterman S, London WB, MacConaill LE, 
Lindeman NI, Diller L, Rodriguez-Galindo C, and Janeway KA (2016) Multicenter feasibility 
study of tumor molecular profiling to inform therapeutic decisions in advanced pediatric solid 
tumors: The Individualized Cancer Therapy (iCat) study. JAMA Oncology 2, 608. [PubMed: 
26822149] 

(77). Mody RJ, Wu YM, Lonigro RJ, Cao X, Roychowdhury S, Vats P, Frank KM, Prensner JR, 
Asangani I, Palanisamy N, Dillman JR, Rabah RM, Kunju LP, Everett J, Raymond VM, Ning Y, 
Su F, Wang R, Stoffel EM, Innis JW, Roberts JS, Robertson PL, Yanik G, Chamdin A, Connelly 
JA, Choi S, Harris AC, Kitko C, Rao RJ, Levine JE, Castle VP, Hutchinson RJ, Talpaz M, 

Mochizuki et al. Page 22

ACS Chem Neurosci. Author manuscript; available in PMC 2019 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Robinson DR, and Chinnaiyan AM (2015) Integrative clinical sequencing in the management of 
refractory or relapsed cancer in youth. JAMA 314, 913–925. [PubMed: 26325560] 

(78). Parsons DW, Roy A, Yang Y, Wang T, Scollon S, Bergstrom K, Kerstein RA, Gutierrez S, 
Petersen AK, Bavle A, Lin FY, Lopez-Terrada DH, Monzon FA, Hicks MJ, Eldin KW, 
Quintanilla NM, Adesina AM, Mohila CA, Whitehead W, Jea A, Vasudevan SA, Nuchtern JG, 
Ramamurthy U, McGuire AL, Hilsenbeck SG, Reid JG, Muzny DM, Wheeler DA, Berg SL, 
Chintagumpala MM, Eng CM, Gibbs RA, and Plon SE (2016) Diagnostic yield of clinical tumor 
and germline whole-exome sequencing for children with solid tumors. JAMA Oncology 2, 616. 
[PubMed: 26822237] 

(79). Shalaby T, and Grotzer MA (2015) Tumor-associated CSF microRNAs for the prediction and 
evaluation of CNS malignancies. Int. J. Mol. Sci 16, 29103–29119. [PubMed: 26690130] 

(80). Brower JV, Indelicato DJ, Aldana PR, Sandler E, Rotondo R, Mendenhall NP, Marcus RB, and 
Su Z (2013) A treatment planning comparison of highly conformal radiation therapy for pediatric 
low-grade brainstem gliomas. Acta Oncol 52, 594–599. [PubMed: 23421953] 

(81). Hermanto U, Frija EK, Lii MJ, Chang EL, Mahajan A, and Woo SY (2007) Intensity-modulated 
radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade 
gliomas: Does IMRT increase the integral dose to normal brain? Int. J. Radiat. Oncol., Biol., 
Phys 67, 1135–1144. [PubMed: 17208388] 

(82). Zhu X, and El Fakhri G (2013) Proton therapy verification with PET imaging. Theranostics 3, 
731–740. [PubMed: 24312147] 

(83). Gridley DS, Grover RS, Loredo LN, Wroe AJ, and Slater JD (2010) Proton-beam therapy for 
tumors of the CNS. Expert Rev. Neurother 10, 319–330. [PubMed: 20136386] 

(84). Bindra RS, and Wolden SL (2016) Advances in radiation therapy in pediatric neuro-oncology. J. 
Child Neurol 31, 506–516. [PubMed: 26271789] 

(85). Merchant TE (2009) Proton Beam Therapy in Pediatric Oncology. Cancer J 15, 298–305. 
[PubMed: 19672146] 

(86). Mizumoto M, Oshiro Y, Yamamoto T, Kohzuki H, and Sakurai H (2017) Proton beam therapy for 
pediatric brain tumor. Neurologia medico-chirurgica 57, 343–355. [PubMed: 28603224] 

(87). Hoffman KE, and Yock TI (2009) Radiation therapy for pediatric central nervous system tumors. 
J. Child Neurol 24, 1387–1396. [PubMed: 19841427] 

(88). MacDonald SM, Trofimov A, Safai S, Adams J, Fullerton B, Ebb D, Tarbell NJ, and Yock TI 
(2011) Proton radiotherapy for pediatric central nervous system germ cell tumors: early clinical 
outcomes. Int. J. Radiat. Oncol., Biol., Phys 79, 121–129. [PubMed: 20452141] 

(89). Macdonald SM, Sethi R, Lavally B, Yeap BY, Marcus KJ, Caruso P, Pulsifer M, Huang M, Ebb 
D, Tarbell NJ, and Yock TI (2013) Proton radiotherapy for pediatric central nervous system 
ependymoma: clinical outcomes for 70 patients. Neuro-Oncology 15, 1552–1559. [PubMed: 
24101739] 

(90). Greenberger BA, Pulsifer MB, Ebb DH, MacDonald SM, Jones RM, Butler WE, Huang MS, 
Marcus KJ, Oberg JA, Tarbell NJ, and Yock TI (2014) Clinical outcomes and late endocrine, 
neurocognitive, and visual profiles of proton radiation for pediatric low-grade gliomas. Int. J. 
Radiat. Oncol., Biol., Phys 89, 1060–1068. [PubMed: 25035209] 

(91). Yock TI, Yeap BY, Pulsifer MB, Ebb D, MacDonald SM, Marcus KC, and Tarbell NJ (2011) 
Results from a prospective trial of proton radiotherapy for medulloblastoma: clinical outcomes 
including hearing and neurocognitive. Int. J. Radiat. Oncol., Biol., Phys 81, S113–S113.

(92). Kahalley LS, Ris MD, Grosshans DR, Okcu MF, Paulino AC, Chintagumpala M, Moore BD, 
Guffey D, Minard CG, Stancel HH, and Mahajan A (2016) Comparing intelligence quotient 
change after treatment with proton versus photon radiation therapy for pediatric brain tumors. J. 
Clin. Oncol 34, 1043–1049. [PubMed: 26811522] 

(93). Bishop AJ, Greenfield B, Mahajan A, Paulino AC, Okcu MF, Allen PK, Chintagumpala M, 
Kahalley LS, McAleer MF, McGovern SL, Whitehead WE, and Grosshans DR (2014) Proton 
beam therapy versus conformal photon radiation therapy for childhood craniopharyngioma: 
multi-institutional analysis of outcomes, cyst dynamics, and toxicity. Int. J. Radiat. Oncol., Biol., 
Phys 90, 354–361. [PubMed: 25052561] 

Mochizuki et al. Page 23

ACS Chem Neurosci. Author manuscript; available in PMC 2019 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(94). Ajithkumar T, Price S, Horan G, Burke A, and Jefferies S (2017) Prevention of radiotherapy-
induced neurocognitive dysfunction in survivors of paediatric brain tumours: the potential role of 
modern imaging and radiotherapy techniques. Lancet Oncol 18, e91–e100. [PubMed: 28214420] 

(95). Nedunchezhian K, Aswath N, Thiruppathy M, and Thirugnanamurthy S (2016) Boron neutron 
capture therapy - a literature review. J. Clin. Diagn. Res 10, ZE01–ZE04.

(96). Bobyk L, Edouard M, Deman P, Vautrin M, Pernet-Gallay K, Delaroche J, Adam JF, Esteve F, 
Ravanat JL, and Elleaume H (2013) Photoactivation of gold nanoparticles for glioma treatment. 
Nanomedicine 9, 1089–1097. [PubMed: 23643529] 

(97). Schuemann J, Berbeco R, Chithrani DB, Cho SH, Kumar R, McMahon SJ, Sridhar S, and 
Krishnan S (2016) Roadmap to clinical use of gold nanoparticles for radiation sensitization. Int. 
J. Radiat. Oncol., Biol., Phys 94, 189–205. [PubMed: 26700713] 

(98). Miladi I, Alric C, Dufort S, Mowat P, Dutour A, Mandon C, Laurent G, Brauer-Krisch E, Herath 
N, Coll JL, Dutreix M, Lux F, Bazzi R, Billotey C, Janier M, Perriat P, Le Duc G, Roux S, and 
Tillement O (2014) The in vivo radiosensitizing effect of gold nanoparticles based MRI contrast 
agents. Small 10, 1116. [PubMed: 24659273] 

(99). Antosh MP, Wijesinghe DD, Shrestha S, Lanou R, Huang YH, Hasselbacher T, Fox D, Neretti N, 
Sun S, Katenka N, Cooper LN, Andreev OA, and Reshetnyak YK (2015) Enhancement of 
radiation effect on cancer cells by gold-pHLIP. Proc. Natl. Acad. Sci U. S. A 112, 5372–5376. 
[PubMed: 25870296] 

(100). Sun L, Joh DY, Al-Zaki A, Stangl M, Murty S, Davis JJ, Baumann BC, Alonso-Basanta M, Kao 
GD, Tsourkas A, and Dorsey JF (2016) Theranostic application of mixed gold and 
superparamagnetic iron oxide nanoparticle micelles in glioblastoma multiforme. J. Biomed. 
Nanotechnol 12, 347–356. [PubMed: 27305768] 

(101). Liu P, Jin H, Guo Z, Ma J, Zhao J, Li D, Wu H, and Gu N (2016) Silver nanoparticles 
outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse 
model of glioma. Int. J. Nanomed 11, 5003–5014.

(102). Kievit FM, Wang K, Ozawa T, Tarudji AW, Silber JR, Holland EC, Ellenbogen RG, and Zhang 
M (2017) Nanoparticle-mediated knockdown of DNA repair sensitizes cells to radiotherapy and 
extends survival in a genetic mouse model of glioblastoma. Nanomedicine 13, 2131–2139. 
[PubMed: 28614736] 

(103). Kievit FM, Stephen ZR, Wang K, Dayringer CJ, Sham JG, Ellenbogen RG, Silber JR, and 
Zhang M (2015) Nanoparticle mediated silencing of DNA repair sensitizes pediatric brain tumor 
cells to gamma-irradiation. Mol. Oncol. 9, 1071–1080. [PubMed: 25681012] 

(104). Liu Z, Yan H, and Li H (2017) Silencing of DNA repair sensitizes pediatric brain tumor cells to 
gamma-irradiation using gold nanoparticles. Environ. Toxicol. Pharmacol 53, 40–45. [PubMed: 
28501783] 

(105). Mody RJ, Prensner JR, Everett J, Parsons DW, and Chinnaiyan AM (2017) Precision medicine 
in pediatric oncology: Lessons learned and next steps. Pediatr. Blood Cancer 64, e26288.

(106). Gajjar A, Stewart CF, Ellison DW, Kaste S, Kun LE, Packer RJ, Goldman S, Chintagumpala M, 
Wallace D, Takebe N, Boyett JM, Gilbertson RJ, and Curran T (2013) Phase I study of 
vismodegib in children with recurrent or refractory medulloblastoma: a pediatric brain tumor 
consortium study. Clin. Cancer Res 19, 6305–6312. [PubMed: 24077351] 

(107). Ramaswamy V, Remke M, Bouffet E, Bailey S, Clifford SC, Doz F, Kool M, Dufour C, Vassal 
G, Milde T, Witt O, von Hoff K, Pietsch T, Northcott PA, Gajjar A, Robinson GW, Padovani L, 
Andre N, Massimino M, Pizer B, Packer R, Rutkowski S, Pfister SM, Taylor MD, and Pomeroy 
SL (2016) Risk stratification of childhood medulloblastoma in the molecular era: the current 
consensus. Acta Neuropathol 131, 821–831. [PubMed: 27040285] 

(108). Snuderl M, Batista A, Kirkpatrick ND, Ruiz de Almodovar C, Riedemann L, Walsh EC, Anolik 
R, Huang Y, Martin JD, Kamoun W, Knevels E, Schmidt T, Farrar CT, Vakoc BJ, Mohan N, 
Chung E, Roberge S, Peterson T, Bais C, Zhelyazkova BH, Yip S, Hasselblatt M, Rossig C, 
Niemeyer E, Ferrara N, Klagsbrun M, Duda DG, Fukumura D, Xu L, Carmeliet P, and Jain RK 
(2013) Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of 
medulloblastoma. Cell 152, 1065–1076. [PubMed: 23452854] 

(109). Fleming AJ, Hukin J, Rassekh R, Fryer C, Kim J, Stemmer-Rachamimov A, Birks DK, Huang 
A, Yip S, and Dunham C (2012) Atypical teratoid rhabdoid tumors (ATRTs): The British 

Mochizuki et al. Page 24

ACS Chem Neurosci. Author manuscript; available in PMC 2019 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Columbia’s Children’s Hospital’s experience, 1986–2006. Brain Pathol 22, 625–635. [PubMed: 
22188464] 

(110). Athale UH, Duckworth J, Odame I, and Barr R (2009) Childhood atypical teratoid rhabdoid 
tumor of the central nervous system: A meta-analysis of observational studies. J. Pediatr. 
Hematol./Oncol 31, 651–663.

(111). Zhong S, Wu B, Han Y, Cao Y, Yang L, Luo SX, Chen Y, Zhang H, and Zhao G (2017) 
Identification of driver genes and key pathways of pediatric brain tumor and comparison of 
molecular pathogenesis based on pathological types. World Neurosurg 107, 990. [PubMed: 
28751139] 

(112). Panosyan EH, Lin HJ, Koster J, and Lasky JL 3rd (2017) In search of druggable targets for 
GBM amino acid metabolism. BMC Cancer 17, 162. [PubMed: 28245795] 

(113). Liu X, McEachron TA, Schwartzentruber J, and Wu G (2014) Histone H3 mutations in pediatric 
brain tumors. Cold Spring Harbor Perspect. Biol 6, a018689.

(114). Grasso CS, Tang Y, Truffaux N, Berlow NE, Liu L, Debily MA, Quist MJ, Davis LE, Huang 
EC, Woo PJ, Ponnuswami A, Chen S, Johung TB, Sun W, Kogiso M, Du Y, Qi L, Huang Y, Hutt-
Cabezas M, Warren KE, Le Dret L, Meltzer PS, Mao H, Quezado M, van Vuurden DG, Abraham 
J, Fouladi M, Svalina MN, Wang N, Hawkins C, Nazarian J, Alonso MM, Raabe EH, Hulleman 
E, Spellman PT, Li XN, Keller C, Pal R, Grill J, and Monje M (2015) Functionally defined 
therapeutic targets in diffuse intrinsic pontine glioma. Nat. Med 21, 555–559. [PubMed: 
25939062] 

(115). Khatua S, Peterson KM, Brown KM, Lawlor C, Santi MR, LaFleur B, Dressman D, Stephan 
DA, and MacDonald TJ (2003) Overexpression of the EGFR/FKBP12/HIF-2α pathway 
identified in childhood astrocytomas by angiogenesis gene profiling. Cancer Res 63, 1865–1870. 
[PubMed: 12702575] 

(116). Geoerger B, Hargrave D, Thomas F, Ndiaye A, Frappaz D, Andreiuolo F, Varlet P, Aerts I, 
Riccardi R, Jaspan T, Chatelut E, Le Deley MC, Paoletti X, Saint-Rose C, Leblond P, Morland B, 
Gentet JC, Méresse V, and Vassal G (2011) Innovative therapies for children with cancer 
pediatric phase I study of erlotinib in brainstem glioma and relapsing/refractory brain tumors. 
Neuro-Oncology 13, 109–118. [PubMed: 20974795] 

(117). Qaddoumi I, Kocak M, Pai Panandiker AS, Armstrong GT, Wetmore C, Crawford JR, Lin T, 
Boyett JM, Kun LE, Boop FA, Merchant TE, Ellison DW, Gajjar A, and Broniscer A (2014) 
Phase II trial of erlotinib during and after radiotherapy in children with newly diagnosed high-
grade gliomas. Front. Oncol 4, 67. [PubMed: 24744992] 

(118). Haas-Kogan DA, Banerjee A, Poussaint TY, Kocak M, Prados MD, Geyer JR, Fouladi M, 
Broniscer A, Minturn JE, Pollack IF, Packer RJ, Boyett JM, and Kun LE (2011) Phase II trial of 
tipifarnib and radiation in children with newly diagnosed diffuse intrinsic pontine gliomas. 
Neuro-Oncology 13, 298–306. [PubMed: 21339191] 

(119). Kilburn LB, Kocak M, Decker RL, Wetmore C, Chintagumpala M, Su J, Goldman S, Banerjee 
A, Gilbertson R, Fouladi M, Kun L, Boyett JM, and Blaney SM (2015) A phase 1 and 
pharmacokinetic study of enzastaurin in pediatric patients with refractory primary central nervous 
system tumors: a pediatric brain tumor consortium study. Neuro-Oncology 17, 303–311. 
[PubMed: 25431212] 

(120). Bautista F, Paci A, Minard-Colin V, Dufour C, Grill J, Lacroix L, Varlet P, Valteau-Couanet D, 
and Geoerger B (2014) Vemurafenib in pediatric patients with BRAFV600E mutated high-grade 
gliomas. Pediatr. Blood Cancer 61, 1101–1103. [PubMed: 24375920] 

(121). Robinson GW, Orr BA, and Gajjar A (2014) Complete clinical regression of a BRAF V600E-
mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer 14, 258. 
[PubMed: 24725538] 

(122). Banerjee A, Jakacki RI, Onar-Thomas A, Wu S, Nicolaides T, Young Poussaint T, Fangusaro J, 
Phillips J, Perry A, Turner D, Prados M, Packer RJ, Qaddoumi I, Gururangan S, Pollack IF, 
Goldman S, Doyle LA, Stewart CF, Boyett JM, Kun LE, and Fouladi M (2017) A phase I trial of 
the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-
grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study. Neuro-Oncology 19, 1135–
1144. [PubMed: 28339824] 

Mochizuki et al. Page 25

ACS Chem Neurosci. Author manuscript; available in PMC 2019 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(123). Olow A, Mueller S, Yang X, Hashizume R, Meyerowitz J, Weiss W, Resnick AC, Waanders AJ, 
Stalpers LJ, Berger MS, Gupta N, James CD, Petritsch CK, and Haas-Kogan DA (2016) BRAF 
status in personalizing treatment approaches for pediatric gliomas. Clin. Cancer Res 22, 5312–
5321. [PubMed: 27217440] 

(124). Zhang J, Yao TW, Hashizume R, Hariono S, Barkovich KJ, Fan QW, Prados M, James CD, 
Weiss WA, and Nicolaides T (2017) Combined BRAF(V600E) and MEK blockade for 
BRAF(V600E)-mutant gliomas. J. Neuro-Oncol 131, 495–505.

(125). Chan JA, Zhang H, Roberts PS, Jozwiak S, Wieslawa G, Lewin-Kowalik J, Kotulska K, and 
Kwiatkowski DJ (2004) Pathogenesis of tuberous sclerosis subependymal giant cell 
astrocytomas: Biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J. Neuropathol. 
Exp. Neurol 63, 1236–1242. [PubMed: 15624760] 

(126). Franz DN, Agricola K, Mays M, Tudor C, Care MM, Holland-Bouley K, Berkowitz N, Miao S, 
Peyrard S, and Krueger DA (2015) Everolimus for subependymal giant cell astrocytoma: 5-year 
final analysis. Ann. Neurol 78, 929–938. [PubMed: 26381530] 

(127). Franz DN, Belousova E, Sparagana S, Bebin EM, Frost MD, Kuperman R, Witt O, Kohrman 
MH, Flamini JR, Wu JY, Curatolo P, de Vries PJ, Berkowitz N, Niolat J, and Jozwiak S (2016) 
Long-term use of everolimus in patients with tuberous sclerosis complex: Final results from the 
EXIST-1 study. PLoS One 11, e0158476. [PubMed: 27351628] 

(128). Franz DN, Belousova E, Sparagana S, Bebin EM, Frost M, Kuperman R, Witt O, Kohrman MH, 
Flamini JR, Wu JY, Curatolo P, de Vries PJ, Whittemore VH, Thiele EA, Ford JP, Shah G, 
Cauwel H, Lebwohl D, Sahmoud T, and Jozwiak S (2013) Efficacy and safety of everolimus for 
subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a 
multicentre, randomised, placebo-controlled phase 3 trial. Lancet 381, 125–132. [PubMed: 
23158522] 

(129). Gilbertson RJ, Bentley L, Hernan R, Junttila TT, Frank AJ, Haapasalo H, Connelly M, Wetmore 
C, Curran T, Elenius K, and Ellison DW (2002) ERBB receptor signaling promotes ependymoma 
cell proliferation and represents a potential novel therapeutic target for this disease. Clin. Cancer 
Res 8, 3054–3064. [PubMed: 12374672] 

(130). Korshunov A, Golanov A, and Timirgaz V (2002) Immunohistochemical markers for prognosis 
of ependymal neoplasms. J. Neuro-Oncol 58, 255–270.

(131). DeWire M, Fouladi M, Turner DC, Wetmore C, Hawkins C, Jacobs C, Yuan Y, Liu D, Goldman 
S, Fisher P, Rytting M, Bouffet E, Khakoo Y, Hwang EI, Foreman N, Stewart CF, Gilbert MR, 
Gilbertson R, and Gajjar A (2015) An open-label, two-stage, phase II study of bevacizumab and 
lapatinib in children with recurrent or refractory ependymoma: a collaborative ependymoma 
research network study (CERN). J. Neuro-Oncol 123, 85–91.

(132). Mack SC, Witt H, Piro RM, Gu L, Zuyderduyn S, Stutz AM, Wang X, Gallo M, Garzia L, 
Zayne K, Zhang X, Ramaswamy V, Jager N, Jones DT, Sill M, Pugh TJ, Ryzhova M, Wani KM, 
Shih DJ, Head R, Remke M, Bailey SD, Zichner T, Faria CC, Barszczyk M, Stark S, Seker-Cin 
H, Hutter S, Johann P, Bender S, Hovestadt V, Tzaridis T, Dubuc AM, Northcott PA, Peacock J, 
Bertrand KC, Agnihotri S, Cavalli FM, Clarke I, Nethery-Brokx K, Creasy CL, Verma SK, 
Koster J, Wu X, Yao Y, Milde T, Sin-Chan P, Zuccaro J, Lau L, Pereira S, Castelo-Branco P, Hirst 
M, Marra MA, Roberts SS, Fults D, Massimi L, Cho YJ, Van Meter T, Grajkowska W, Lach B, 
Kulozik AE, von Deimling A, Witt O, Scherer SW, Fan X, Muraszko KM, Kool M, Pomeroy SL, 
Gupta N, Phillips J, Huang A, Tabori U, Hawkins C, Malkin D, Kongkham PN, Weiss WA, 
Jabado N, Rutka JT, Bouffet E, Korbel JO, Lupien M, Aldape KD, Bader GD, Eils R, Lichter P, 
Dirks PB, Pfister SM, Korshunov A, and Taylor MD (2014) Epigenomic alterations define lethal 
CIMP-positive ependymomas of infancy. Nature 506, 445–450. [PubMed: 24553142] 

(133). Allen CE, Laetsch TW, Mody R, Irwin MS, Lim MS, Adamson PC, Seibel NL, Parsons DW, 
Cho YJ, and Janeway K (2017) Target and agent prioritization for the Children’s Oncology 
Group - National Cancer Institute pediatric MATCH trial. J. Natl. Cancer Inst 109, djw274.

(134). Caruso DA, Orme LM, Neale AM, Radcliff FJ, Amor GM, Maixner W, Downie P, Hassall TE, 
Tang ML, and Ashley DM (2004) Results of a phase 1 study utilizing monocyte-derived dendritic 
cells pulsed with tumor RNA in children and young adults with brain cancer. Neuro-Oncology 6, 
236–246. [PubMed: 15279716] 

Mochizuki et al. Page 26

ACS Chem Neurosci. Author manuscript; available in PMC 2019 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(135). Ardon H, De Vleeschouwer S, Van Calenbergh F, Claes L, Kramm CM, Rutkowski S, Wolff JE, 
and Van Gool SW (2010) Adjuvant dendritic cell-based tumour vaccination for children with 
malignant brain tumours. Pediatr. Blood Cancer 54, 519–525. [PubMed: 19852061] 

(136). Lasky JL 3rd, Panosyan EH, Plant A, Davidson T, Yong WH, Prins RM, Liau LM, and Moore 
TB (2013) Autologous tumor lysate-pulsed dendritic cell immunotherapy for pediatric patients 
with newly diagnosed or recurrent high-grade gliomas. Anticancer Res 33, 2047–2056. [PubMed: 
23645755] 

(137). Cheung AS, and Mooney DJ (2015) Engineered materials for cancer immunotherapy. Nano 
Today 10, 511–531. [PubMed: 26640511] 

(138). Koshy ST, and Mooney DJ (2016) Biomaterials for enhancing anti-cancer immunity. Curr. Opin. 
Biotechnol 40, 1–8. [PubMed: 26896596] 

(139). Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng 
Z, Lacey SF, Mahnke YD, Melenhorst JJ, Rheingold SR, Shen A, Teachey DT, Levine BL, June 
CH, Porter DL, and Grupp SA (2014) Chimeric antigen receptor T cells for sustained remissions 
in leukemia. N. Engl. J. Med 371, 1507–1517. [PubMed: 25317870] 

(140). Krenciute G, Krebs S, Torres D, Wu MF, Liu H, Dotti G, Li XN, Lesniak MS, Balyasnikova IV, 
and Gottschalk S (2016) Characterization and functional analysis of scFv-based chimeric antigen 
receptors to redirect T cells to IL13Rα 2-positive glioma. Mol. Ther 24, 354–363. [PubMed: 
26514825] 

(141). Choi BD, Suryadevara CM, Gedeon PC, Herndon JE II, Sanchez-Perez L, Bigner DD, and 
Sampson JH (2014) Intracerebral delivery of a third generation EGFRvIII-specific chimeric 
antigen receptor is efficacious against human glioma. J. Clin. Neurosci 21, 189–190. [PubMed: 
24054399] 

(142). Kim S, and Moon EK (2017) Development of novel avenues to overcome challenges facing 
CAR T cells. Translational Research 187, 22–31. [PubMed: 28648487] 

(143). Craddock JA, Lu A, Bear A, Pule M, Brenner MK, Rooney CM, and Foster AE (2010) 
Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the 
chemokine receptor CCR2b. J. Immunother 33, 780–788. [PubMed: 20842059] 

(144). Irving M, Vuillefroy de Silly R, Scholten K, Dilek N, and Coukos G (2017) Engineering 
chimeric antigen receptor T-cells for racing in solid tumors: Don’t forget the fuel. Front. 
Immunol 8, 267. [PubMed: 28421069] 

(145). Seet CS, He C, Bethune MT, Li S, Chick B, Gschweng EH, Zhu Y, Kim K, Kohn DB, Baltimore 
D, Crooks GM, and Montel-Hagen A (2017) Generation of mature T cells from human 
hematopoietic stem and progenitor cells in artificial thymic organoids. Nat. Methods 14, 521–
530. [PubMed: 28369043] 

(146). Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng 
JD, Kang SP, Shankaran V, Piha-Paul SA, Yearley J, Seiwert TY, Ribas A, and McClanahan TK 
(2017) IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. 
Invest 127, 2930–2940. [PubMed: 28650338] 

(147). Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad 
NS, Laheru D, Biedrzycki B, Donehower RC, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Duffy 
SM, Goldberg RM, de la Chapelle A, Koshiji M, Bhaijee F, Huebner T, Hruban RH, Wood LD, 
Cuka N, Pardoll DM, Papadopoulos N, Kinzler KW, Zhou S, Cornish TC, Taube JM, Anders RA, 
Eshleman JR, Vogelstein B, and Diaz LA Jr (2015) PD-1 blockade in tumors with mismatch-
repair deficiency. N. Engl. J. Med 372, 2509–2520. [PubMed: 26028255] 

(148). Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, Durno C, Krueger J, 
Cabric V, Ramaswamy V, Zhukova N, Mason G, Farah R, Afzal S, Yalon M, Rechavi G, 
Magimairajan V, Walsh MF, Constantini S, Dvir R, Elhasid R, Reddy A, Osborn M, Sullivan M, 
Hansford J, Dodgshun A, Klauber-Demore N, Peterson L, Patel S, Lindhorst S, Atkinson J, 
Cohen Z, Laframboise R, Dirks P, Taylor M, Malkin D, Albrecht S, Dudley RW, Jabado N, 
Hawkins CE, Shlien A, and Tabori U (2016) Immune checkpoint inhibition for hypermutant 
glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J. Clin. 
Oncol. 34, 2206–2211. [PubMed: 27001570] 

(149). Van Woensel M, Mathivet T, Wauthoz N, Rosiere R, Garg AD, Agostinis P, Mathieu V, Kiss R, 
Lefranc F, Boon L, Belmans J, Van Gool SW, Gerhardt H, Amighi K, and De Vleeschouwer S 

Mochizuki et al. Page 27

ACS Chem Neurosci. Author manuscript; available in PMC 2019 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(2017) Sensitization of glioblastoma tumor microenvironment to chemo- and immunotherapy by 
Galectin-1 intranasal knock-down strategy. Sci. Rep 7, 1217. [PubMed: 28450700] 

(150). Pollack IF, Jakacki RI, Butterfield LH, Hamilton RL, Panigrahy A, Normolle DP, Connelly AK, 
Dibridge S, Mason G, Whiteside TL, and Okada H (2016) Immune responses and outcome after 
vaccination with glioma-associated antigen peptides and poly-ICLC in a pilot study for pediatric 
recurrent low-grade gliomas. Neuro-Oncology 18, 1157–1168. [PubMed: 26984745] 

(151). Farokhzad OC, and Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3, 
16–20. [PubMed: 19206243] 

(152). Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini 
L, Bestetti A, Brendel C, Bosi S, Carril M, Chan WC, Chen C, Chen X, Chen X, Cheng Z, Cui 
D, Du J, Dullin C, Escudero A, Feliu N, Gao M, George M, Gogotsi Y, Grunweller A, Gu Z, 
Halas NJ, Hampp N, Hartmann RK, Hersam MC, Hunziker P, Jian J, Jiang X, Jungebluth P, 
Kadhiresan P, Kataoka K, Khademhosseini A, Kopecek J, Kotov NA, Krug HF, Lee DS, Lehr 
CM, Leong KW, Liang XJ, Ling Lim M, Liz-Marzan LM, Ma X, Macchiarini P, Meng H, 
Mohwald H, Mulvaney P, Nel AE, Nie S, Nordlander P, Okano T, Oliveira J, Park TH, Penner 
RM, Prato M, Puntes V, Rotello VM, Samarakoon A, Schaak RE, Shen Y, Sjoqvist S, Skirtach 
AG, Soliman MG, Stevens MM, Sung HW, Tang BZ, Tietze R, Udugama BN, VanEpps JS, Weil 
T, Weiss PS, Willner I, Wu Y, Yang L, Yue Z, Zhang Q, Zhang Q, Zhang XE, Zhao Y, Zhou X, 
and Parak WJ (2017) Diverse applications of nanomedicine. ACS Nano 11, 2313–2381. 
[PubMed: 28290206] 

(153). Sanna V, Nurra S, Pala N, Marceddu S, Pathania D, Neamati N, and Sechi M (2016) Targeted 
nanoparticles for the delivery of novel bioactive molecules to pancreatic cancer cells. J. Med. 
Chem 59, 5209–5220. [PubMed: 27139920] 

(154). Matsumura Y, and Maeda H (1986) A new concept for macromolecular therapeutics in cancer 
chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent 
smancs. Cancer Res 46, 6387–6392. [PubMed: 2946403] 

(155). Nakamura Y, Mochida A, Choyke PL, and Kobayashi H (2016) Nanodrug delivery: Is the 
enhanced permeability and retention effect sufficient for curing cancer? Bioconjugate Chem 27, 
2225–2238.

(156). Lao YH, Phua KK, and Leong KW (2015) Aptamer nanomedicine for cancer therapeutics: 
barriers and potential for translation. ACS Nano 9, 2235–2254. [PubMed: 25731717] 

(157). Xiao Z, Levy-Nissenbaum E, Alexis F, Luptak A, Teply BA, Chan JM, Shi J, Digga E, Cheng J, 
Langer R, and Farokhzad OC (2012) Engineering of targeted nanoparticles for cancer therapy 
using internalizing aptamers isolated by cell-uptake selection. ACS Nano 6, 696–704. [PubMed: 
22214176] 

(158). Bayrac AT, Sefah K, Parekh P, Bayrac C, Gulbakan B, Oktem HA, and Tan W (2011) In vitro 
selection of DNA aptamers to glioblastoma multiforme. ACS Chem. Neurosci 2, 175–181. 
[PubMed: 21892384] 

(159). Macdonald J, Henri J, Goodman L, Xiang D, Duan W, and Shigdar S (2017) Development of a 
bifunctional aptamer targeting the transferrin receptor and epithelial cell adhesion molecule 
(EpCAM) for the treatment of brain cancer metastases. ACS Chem. Neurosci 8, 777–784. 
[PubMed: 28010059] 

(160). Monaco I, Camorani S, Colecchia D, Locatelli E, Calandro P, Oudin A, Niclou S, Arra C, 
Chiariello M, Cerchia L, and Comes Franchini M (2017) Aptamer functionalization of nano-
systems for glioblastoma targeting through the blood-brain barrier. J. Med. Chem 60, 4510–4516. 
[PubMed: 28471660] 

(161). Xi G, Robinson E, Mania-Farnell B, Vanin EF, Shim KW, Takao T, Allender EV, Mayanil CS, 
Soares MB, Ho D, and Tomita T (2014) Convection-enhanced delivery of nanodiamond drug 
delivery platforms for intracranial tumor treatment. Nanomedicine 10, 381–391. [PubMed: 
23916888] 

(162). Li T, Murphy S, Kiselev B, Bakshi KS, Zhang J, Eltahir A, Zhang Y, Chen Y, Zhu J, Davis RM, 
Madsen LA, Morris JR, Karolyi DR, LaConte SM, Sheng Z, and Dorn HC (2015) A new 
interleukin-13 amino-coated gadolinium metallofullerene nanoparticle for targeted MRI detection 
of glioblastoma tumor cells. J. Am. Chem. Soc 137, 7881–7888. [PubMed: 26022213] 

Mochizuki et al. Page 28

ACS Chem Neurosci. Author manuscript; available in PMC 2019 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(163). Yang HW, Huang CY, Lin CW, Liu HL, Huang CW, Liao SS, Chen PY, Lu YJ, Wei KC, and Ma 
CC (2014) Gadolinium-functionalized nanographene oxide for combined drug and microRNA 
delivery and magnetic resonance imaging. Biomaterials 35, 6534–6542. [PubMed: 24811259] 

(164). Mitragotri S, Anderson DG, Chen X, Chow EK, Ho D, Kabanov AV, Karp JM, Kataoka K, 
Mirkin CA, Petrosko SH, Shi J, Stevens MM, Sun S, Teoh S, Venkatraman SS, Xia Y, Wang S, 
Gu Z, and Xu C (2015) Accelerating the translation of nanomaterials in biomedicine. ACS Nano 
9, 6644–6654. [PubMed: 26115196] 

(165). Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, Fisher JM, Rodman C, 
Mount C, Filbin MG, Neftel C, Desai N, Nyman J, Izar B, Luo CC, Francis JM, Patel AA, 
Onozato ML, Riggi N, Livak KJ, Gennert D, Satija R, Nahed BV, Curry WT, Martuza RL, 
Mylvaganam R, Iafrate AJ, Frosch MP, Golub TR, Rivera MN, Getz G, Rozenblatt-Rosen O, 
Cahill DP, Monje M, Bernstein BE, Louis DN, Regev A, and Suva ML (2016) Single-cell RNA-
seq supports a developmental hierarchy in human oligodendroglioma. Nature 539, 309–313. 
[PubMed: 27806376] 

Mochizuki et al. Page 29

ACS Chem Neurosci. Author manuscript; available in PMC 2019 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
(a) Incidence of pediatric (age 0–19) central nervous system (CNS) tumors by histological 

subtype. Of the three main categories, gliomas are the most common (53.1% of diagnoses), 

followed by embryonal tumors (13.8%) ependymal tumors (5.8%). (b) Average annual age-

adjusted mortality rate of all primary brain and CNS tumors in comparison to other common 

cancers for children age 0–14 years. Reprinted from ref 20 by permission of Oxford 

University Press, Copyright 2016.
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Figure 2. 
(a) In Seq-Well, cells are obtained from complex tissues or clinical biopsies, and digested to 

form a single-cell suspension. Barcoded mRNA capture beads are added to the surface of a 

microwell device, settling into wells by gravity, and then a single-cell suspension is applied. 

The device is sealed using a semipermeable membrane that confines cellular mRNAs within 

wells while allowing efficient buffer exchange. Liberated cellular transcripts hybridize to the 

bead-bound barcoded poly deoxythymine (dT) primers that contain a cell barcode and a 

unique molecular identifier (UMI) for each transcript molecule. After hybridization, the 

beads are removed from the array and bulk reverse transcription is performed to generate 
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single-cell cDNAs attached to beads. Libraries are then made by a combination of 

polymerase chain reaction (PCR) and tagmentation, and then are sequenced. Afterward, 

single-cell transcriptomes are assembled in silico using the cell barcodes and UMIs. (b) 

Equipment and arrays used to capture and lyse cells, respectively, in Seq-Well. Scale bar = 

100 µm. (c) Sequencing mix of human and mouse cells demonstrates distinct transcript 

mapping and single-cell resolution. (d) Number of trancsripts and (e) genes detected in 

single-cell libraries generated by Seq-Well or Drop-seq. (f) Representative single-cell RNA-

seq of cancer and noncancer cells in six oligodendrogliomas. On the left, copy number 

variant profiles inferred from single-cell RNA-seq and DNA whole-exome sequencing of the 

six oligodendrogliomas. On the right, analysis of copy number variants identified two 

subclones of cells in tumors identified as MGH36 and MGH97. Panels (a)–(e) reprinted 

from ref 62 by permission from Macmillan Pubishers Ltd.: Nature Methods, Copyright 

2017. Panel (f) reprinted from ref 165 by permission from Macmillan Publishers Ltd.: 

Nature, Copyright 2016.
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Figure 3. 
Tumor and serum microRNA-720 expression in individual glioblastoma multiforme (GBM) 

patients. PCR-based microRNA microarrays and real-time qPCR were performed in 

triplicate on complementary DNA amplicons created from RNA extracted from each GBM 

tumor specimen and intraoperative serum sample using a human serum albumin-

microRNA-720 probe. Blue bars indicate mean tumor microRNA-720 fold-change 

expression, red bars indicate mean serum microRNA-720 fold-change expression. Asterisk 

(*) denotes >35-fold higher expression than the normative standard. Figure courtesy of A. C. 

Wang, preliminary data.
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Figure 4. 
(a) Illustration of helical tomotherapy as an intensity-modulated radiation therapy device 

where a linear accelerator continuously revolves around the patient, while slowly advancing 

the patient through the plane of rotation. For radiation therapy dose delivery, a collimator is 

used to allow only sections of the fan beam to reach the patient. The collimator pattern 

changes as a function of gantry position, which provides many degrees of freedom to deliver 

highly conformal dose distributions. (b) Representative dose volume histograms comparing 

conventional three-dimensional conformal radiotherapy (dashed line) versus intensity-

modulated radiotherapy (solid line) plans for a patient with a left parietal lobe tumor. Note 
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the dose reduction for uninvolved parts of the brain. (c) Comparison of dose distribution 

using a proton beam. Note that ionization increases as the proton beam enters the patient, 

reaches intended dose at the tumor, then declines as velocity decreases. (d) Comparison of a 

photon- and a proton-based radiation therapy plan for a pediatric patient with a 

supratentorial ependymoma. Representative axial, coronal, and sagittal slices are shown for 

each plan. Approximate percentage isodoses are shown for reference in the axial slices. 

PTV: planning target volume. Brain, GTV: total brain without gross tumor volume. External, 

PTV: total tissue volume without planning target volume. IMRT: intensity-modulated 

radiotherapy. Panel (b) is reprinted from ref 81 with permission from Elsevier, Copyright 

2007. Panel (c) is reprinted from ref 83 with permission from Taylor & Francis Ltd., http://

www.tandfonline.com, Copyright 2010. Panel (d) is reprinted from ref 80 by permission 

from Taylor & Francis Ltd., http://www.tandfonline.com on behalf of Acta Oncologica 

Foundation, Copyright 2013.

Mochizuki et al. Page 35

ACS Chem Neurosci. Author manuscript; available in PMC 2019 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.tandfonline.com
http://www.tandfonline.com
http://www.tandfonline.com


Figure 5. 
(a) Schematic illustrating the design of a dual-targeted gold nanoparticle (AuNP) system 

used to target glioblastoma (GBM) cells. The particles are functionalized with multiple 

receptor binding peptides to address intratumoral heterogeneity of GBM populations and the 

photosentizer phthalocyanine 4. (b) Transmission electron microscope image of hydrophobic 

gold nanoparticles used to prepare dual-targeted AuNPs. Scale bar = 100 nm. (c) Schematic 

illustrating nanoparticle targeting of U-251 glioblastoma cells. Localization of the 

gadolinium-tagged nanoparticles to glioblastoma cells implanted into mouse models is 

monitored via magnetic resonance imaging. Panels (a) and (b) reprinted with permission 

from ref 10. Copyright 2015 American Chemical Society. Panel (c) reprinted with 

permission from ref 162. Copyright 2015 American Chemical Society.
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