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ABSTRACT OF THE DISSERTATION

Motion Planning for 3D Navier Stokes Equations

and

Stability of Nonholonomic Source Seeking Algorithms

by

Jennie Eleanor Cochran

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2008

Professor Miroslav Krstić, Chair

Two different problems are discussed: Motion planning and trajectory generation

for the 3D Navier Stokes system and then source seeking with nonholonomic vehicles

that have no position information.

Taking ideas from robotics, motion planning for the Navier Stokes system of

PDEs is examined. In the context of a channel flow, the problem consists of finding

the reference velocity input for all time, for each point in space at one wall that

guarantees desired output reference skin friction and pressure trajectories (also for

all time and for each point in space) at the other wall. In addition to the open

loop reference velocity input that depends on a specific initial condition, a feedback

component that augments the open loop reference velocity input and stabilizes the

system about the entire reference state trajectory is also designed. This controller,

which was developed using PDE backstepping, is different from previously developed

controllers in that it was developed for the full infinite dimensional system instead

of a discretized version of the system and it is explicit with symbolically computed

gains.

For use in environments where position information is unavailable, the extremum

seeking method is applied to autonomous vehicles as a means of navigating to find

the source of some signal which the vehicles can measure locally. The signal is

xv



maximum at the source and decreases with distance away from the source. This

work is distinct from previous work in that the vehicles have no position information,

no communication and are nonholonomic. Detailed convergence analysis and full

characterization of vehicle behavior for the method applied to nonholonomic 2D and

3D vehicles are provided. All vehicles are based on the 2D unicycle with constant

forward velocity and actuated angular velocity. Using these ideas, the extremum

seeking method is also applied to vehicles which are modeled as either three-link

fish or Joukowski airfoils. A control law, based on extremum seeking, guides the

biomimetic vehicle to seek the source of a signal, to move to a point in space and to

follow a predetermined path.

xvi
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Introduction

This work consists of two separate topics: flow control and navigation of non-

holonomic vehicles. Thus this dissertation is divided into self-contained chapters

which each contain abstract, introduction, results and conclusion sections. I first

address motion planning for the 3D Navier Stokes system using the PDE backstep-

ping method and then continue the rest of the dissertation by addressing source

seeking with nonholonomic vehicles using the extremum seeking method.

1.1 Motion Planning for the Navier Stokes Sys-

tem

I first started working on this topic by developing a controller to stabilize the 3D

Navier Stokes system around the parabolic Poiseuille velocity profile in a channel

flow. Vazquez [80] had previously designed a controller for the 2D system using

the PDE backstepping method [72]. This controller is different from previously de-

veloped controllers in that it was developed for the full infinite dimensional system

instead of a discretized version of the system and it is explicit with symbolically com-

puted gains. After extending this controller to three dimensions, I started looking at

motion planning and developed open and closed loop controllers which are presented

in Chapter 2. Though stabilization for turbulence suppression is an active area of

research in fluid dynamics [34, 16, 7, 1, 9, 6, 11, 30, 83, 10, 66, 31, 81, 29, 64, 85, 2],

1
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motion planning is not a common concept in fluid dynamics. It is, however, a central

subject in robotics. I take ideas from this area and apply them to the Navier Stokes

system of PDEs. Motion planning has been considered for other systems modeled

by partial differential equations, [47, 46, 59, 68, 54] though it has not been consid-

ered for the Navier Stokes system in the sense that I examine it1. In the context of

a channel flow, infinite in the streamwise and spanwise directions and bounded in

the normal direction, I study the problem of finding the reference velocity input for

all time, for each point in space at one wall that guarantee desired output reference

skin friction and pressure trajectories (also for all time and for each point in space)

at the other wall. We chose skin friction and pressure as the output variables as

they are linked to aerodynamics quantities of interest such as forces and moments

exerted on vehicles. In the process of finding the reference input velocities, I find

the unique functions that govern the entire velocity field (reference state trajectory)

and ensure the output reference skin friction and pressure trajectories.

In addition to the open loop reference velocity input that depends on a specific

initial condition, I also design a feedback component that augments the open loop

reference velocity input and stabilizes the system about the entire reference state

trajectory. I then go on to examine more closely particular closed form solutions

and the behavior of the solution as wavenumbers grows or the Reynolds number

grows.

1.2 Source Seeking with Nonholonomic Vehicles

This work started with the idea of applying the extremum seeking method [5]

to autonomous vehicles as a means of navigating without the use of position in-

formation. This is a useful concept in environments where GPS is unavailable and

inertial navigation is too expensive, such as urban environments, under water, un-

der ice and in caves. It was first applied to vehicles modeled as point masses whose

goal is finding the source of some signal which the vehicles can measure locally [87].

1While the work presented here gives the first solution for motion planning for a broad family
of time-varying trajectories at the boundary of the channel flow system, [79] solves the problem of
moving the system from rest to a given Poiseuille profile (equilibrium-to-equilibrium transfer).
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We assume the signal is maximum at the source and decreases with distance away

from the source. The control law guides the vehicle up the gradient of the signal

to find the source. The method was then extended to the nonholonomic unicycle

with a constant angular velocity and a forward velocity tuned by extremum seeking

[86]. I started working on this topic when we extended the method to the unicycle

with a constant forward velocity and an angular velocity that is tuned by extremum

seeking.

I start examining this topic in Chapter 3 where I discuss a modification of the

previously employed control law and the proof that, when guided by this new control

law, the 2D unicycle with a constant forward velocity and a tuned angular velocity

locally exponentially converges to an annulus around the source. I examine both the

case where the vehicle center and sensor are not collocated and the case where they

are. In addition, I provide full characterizations of the vehicle behavior. I continue

in Chapter 4 with further applications of extremum seeking to the 2D unicycle

such as tracking diffusive sources, tracing level sets, and implementing decoupled

extremum seeking. Chapter 5 extends the method to two different vehicles which

operate in three dimensions. I include a stability analysis for the control law applied

to one vehicle and simulation results for the control law applied to the other vehicle.

Finally, I use ideas from Chapters 3, 4 and 5 to apply the extremum seeking method

to vehicles which are modeled as either a three-link fish or a Joukowski airfoil. I

show how to apply extremum seeking to guide the vehicle to a point in space or

along a predetermined path.
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Motion Planning and Trajectory

Tracking for 3-D Poiseuille Flow

2.1 Abstract

We present the first solution to a boundary motion planning problem for the

Navier Stokes equations, linearized around the parabolic equilibrium in a 3-D chan-

nel flow. The pressure and skin friction at one wall are chosen as the reference

outputs as they are the most readily measurable “wall-restricted” quantities in ex-

perimental fluid dynamics and also because they play a special role as performance

metrics in aerodynamics. The reference velocity input is applied at the opposite

wall. We find the exact (method independent) solution to the motion planning

problem using the PDE backstepping theory. The motion planning solution results

in open-loop controls, which produce the reference output trajectories only under

special initial conditions for the flow velocity field. To achieve convergence to the

reference trajectory from other (nearby) initial conditions, we design a feedback

controller. We also present a detailed examination of the closed form solutions for

gains and the behavior of the motion planning solution as the wavenumbers grow or

the Reynolds number grows. Numerical results are shown for the motion planning

problem.

4
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2.2 Introduction

What is Motion Planning? Motion planning, or trajectory generation, is

not a common concept in fluid dynamics. However, it is a central subject in another

area of mechanics—robotics. By motion planning we are referring to the following

problem. Suppose one is interested in producing a particular spatio-temporal wave-

form on a flow boundary for some specific flow variables. Such variables may be skin

friction and pressure, which are linked to aerodynamic quantities of interest such as

forces and moments exerted on an aerial vehicle. These boundary flow variables are

referred to as output variables, and their desired profile is referred to as the reference

output. Now suppose a part of the flow boundary is instrumented with actuators

such as velocity actuators. The actuated quantities, in this case the velocities at the

boundary, are referred to as the flow inputs and their evolution over time is likewise

called the reference input. Motion planning is defined as the problem of determining

the spatio-temporal functions governing the reference inputs that generate the ref-

erence output. In our example this means determining how to actuate the velocities

at the flow boundary to enforce specific skin friction and pressure output profiles.

To find the functions that govern the flow input, one must first find the unique

functions that govern the entire velocity field. This solution is referred to as the

state reference trajectory as it defines the trajectory (for all space and time) that the

system states (the velocity field) must take in order to satisfy the system equations

and the reference output. From this solution one finds the reference input.

The solution of a motion planning problem formulated in this way could be

used to produce the exact temporal profiles of forces and moments acting on an

aerial vehicle, using flow actuators (rather than moving flaps). Such capability is

of interest for achieving low radar detectability of aircraft, but it is of just as much

interest in its own right, as a fundamental problem in fluid mechanics and control

theory.

As the solution to the motion planning problem is defined for all time, at the

specific time t = 0, the velocity field needs to have a particular spatial profile in

order for the reference input to produce the reference output. This is almost never

going to be the case, as the initial velocity cannot be chosen by the designer, it is
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given. For this reason, the open-loop reference inputs designed to solve the motion

planning problem cannot be used alone. The reference trajectory of the system state

needs to be stabilized by adding a feedback component to the (open-loop) reference

input. The design of the feedback component of the controller is referred to as

trajectory tracking.

The two problems, motion planning design and trajectory tracking design, are

independent. The solution to the former is a function (vector-valued) of time and of

the spatial coordinates, whereas the solution to the latter is a function of the spatial

coordinates only. This function is referred to as a gain function and multiplies the

(time-dependent) velocity field in the feedback law. Even for linearized Navier-

Stokes equations (around an equilibrium profile), and even for a simple geometry as

the channel flow, motion planning and trajectory tracking are extremely challenging

problems. Since the objective in the motion planning problem is exact, its solution

is unique — and thus method independent — whereas the solution to the trajectory

tracking problem is not unique and thus is method dependent. This chapter presents

motion planning and trajectory tracking designs for skin friction and pressure at the

wall opposite to the actuated wall.

Relation to Flow Control for Stabilization. Most of the research on model-

based flow control so far has been on problems of stabilization type. The channel

flow geometry has occupied a special place in this research. The work on feedback

design for turbulence suppression in channel flow by boundary control was initiated

with the papers by [34] and [16], which employed linear quadratic optimal control

techniques, and was followed by the work by [7] and [1], which employed Lyapunov

techniques. This topic continues to enjoy interest, as reflected through the steady

improvement of the available results [9, 6, 11, 30, 83, 10, 66, 31, 81, 80]. In parallel,

stabilization problems in other (non-channel) geometries are being pursued, such as,

for example, in [29, 64, 85, 2].

Designs for stabilization are of “feedback” type and do not solve the main prob-

lem that we consider here—the motion planning problem. Motion planning, though

new for Navier-Stokes systems, has already been considered for more accessible types

of systems modeled by partial differential equations, particularly those of parabolic
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type studied by [47, 46, 59, 68, 54]. While this chapter presents the first solution

for motion planning for a broad family of time-varying trajectories at the boundary

of the channel flow system, [79] solve the problem of moving the system from rest

to a given Poiseuille profile (equilibrium-to-equilibrium transfer).

The “Backstepping” Approach. The approach that we consider here is

generally referred to as “backstepping for PDEs” and it was introduced for 1-D

parabolic PDEs in the work by [72]. In the work by [81, 80] this method was extended

to linearized Navier-Stokes equations, at arbitrary Reynolds numbers, which we use

as a starting point for our efforts in developing motion planning. Backstepping is an

approach that employs a particular form of a Volterra transformation in the spatial

variable(s) and in a boundary control law. The combination of the transformation

and the boundary control allow one to transform the system being controlled, which

is typically complex, into a simple “target” system. The basic heat equation PDE is

often employed as the target system. By employing the backstepping approach, we

reduce the motion planning problem for the 3-D Navier-Stokes channel problem to

a motion planning problem for two 1-D heat equations. In this way, backstepping

finds the unique solution to the motion planning problem. Backstepping is also

employed to solve the trajectory tracking problem.

Organization of the Chapter. We start by reviewing the 3-D channel flow

linearized model and giving an informal argument explaining why the solution to

the motion planning problem is unique in Section 2.3. We then state and prove the

solution to the motion planning problem in Section 2.4. The solution relies on sev-

eral changes of variable, including the 2D Fourier transform, the change to normal

velocity and vorticity for variables, and, most importantly, the PDE backstepping

transformations. A control law which stabilizes the system around the desired tra-

jectory is introduced and discussed in Section 2.5. We then go on to look more

closely at particular closed form solutions in Section 2.6 and then the behavior of

the solution as the wavenumbers grow or Reynolds number grows in Section 2.7.

We conclude in Section 2.8.
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Figure 2.1: 3-D Channel Flow.

2.3 System Model

We consider the 3-D channel flow that is infinite in the x and z directions and

bounded by walls at y = 0 and y = 1 as seen in Figure 2.1. The governing equations

for the dimensionless velocity field of the incompressible channel flow are the Navier

Stokes equations

Ut =
1

Re
4U−U · ∇U−∇P (2.1)

∇ ·U = 0 (2.2)

where U = (U,W, V ) and U(y, x, z, t) is the streamwise velocity, W (y, x, z, t) is the

spanwise velocity, V (y, x, z, t) is the wall-normal velocity, P (y, x, z, t) is the pressure

and Re is the Reynolds number. The velocities at far wall y = 0 satisfy the standard

no-slip no penetration boundary condition,

U|y=0 = 0. (2.3)

These equations are linearized around the equilibrium parabolic Poiseuille profile

U e = 4y(1− y) (2.4)

W e = V e = 0 (2.5)

P e = P0 −
8

Re
x . (2.6)

After defining the fluctuation variables

u = U − U e , p = P − P e (2.7)
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the linearized system is

ut =
1

Re
4u− U eux − U e

yV − px (2.8)

Wt =
1

Re
4W − U eWx − pz (2.9)

Vt =
1

Re
4V − U eVx − py (2.10)

ux + Vy +Wz = 0 (2.11)

u|y=0 = 0 W |y=0 = 0 V |y=0 = 0 . (2.12)

The Dirichlet conditions at the far wall y = 0 satisfy the standard no-slip and no-

penetration boundary conditions. However, it is the Neumann boundary variables

at the same wall that are used as the reference outputs. They are denoted by

Y and given by the desired skin friction and pressure trajectories, ur
y(0, x, z, t),

W r
y (0, x, z, t), pr(0, x, z, t). We must solve for the reference inputs, denoted by U ,

and given by ur(1, x, z, t), W r(1, x, z, t), V r(1, x, z, t). These inputs are actuated at

the near wall y = 1.

We assume all three velocities to be actuated. We stress that there is no con-

sensus in the literature as to which velocities are physically reasonable or mathe-

matically necessary to actuate. The possibility of both wall-normal and tangential

(“lateral”) air injection using synthetic jets is discussed in [26]. We emphasize that

the three velocity components at the boundary that our control laws command are

neither mutually independent nor arbitrary but satisfy the Navier-Stokes PDEs.

It is important to understand what type of a mathematical problem one is facing

when trying to find U for a given Y . If we exchange the role of t and y, then the

equations, expressed in terms of u,W, p, are

uyy = −uxx − uzz +Re
(
ut + U eux + U e

yV + px

)
(2.13)

Wyy = −Wxx −Wzz +Re (Wt + U eWx + pz) (2.14)

pyy = −pxx − pzz + 2U e
yVx . (2.15)

Note that the left side is a partial derivative of order two in y and on the right the

partial derivatives with respect to t, x, z are of order two or less. The now “initial

conditions” at y = 0 are given by Y , the no slip condition (u = W = 0) and
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py|y=0 = − 1
Re

∂
∂x
uy|y=0 − 1

Re
∂
∂z
Wy|y=0, (where uy|y=0,Wy|y=0 are again given by Y).

Set up in this way, this is a problem of Cauchy/Kowalevski type. As such we can

expand the PDE using a formal power series in y and define recurrence relations for

the coefficients (as functions of the remaining independent variables). As the first

and second coefficients of this series are given through the “initial conditions”, the

recurrence relations define the series without any ambiguity. The normal velocity V

is also defined without ambiguity through Vy = −ux−Wz and V |y=0 = 0. Therefore,

if the series converges, we have a solution to u,W, V, p given Y and that solution is

unique.

As standard for channel flow, we make use of the 2D Fourier Transform in the

x and z directions to reduce the spatial dimension of the system from three to one.

It results in a continuum of 1-D systems, each paramaterized by kx and kz, the

wavenumbers in the x and z directions respectively. As the 3D PDE system is

linear, each 1-D system is uncoupled from the others, though the subsystems within

the 1-D system remain coupled. As the transformation between Fourier/wave space

and physical space is standard, we continue the rest of the chapter (unless explicitly

stated) in wavespace. For convenience we drop the dependence on kx and kz in the

functions. The equations that result from the transformation are (in wavespace)

ut =
1

Re
4ku− 2πikxU

eu− U e
yV − 2πikxp (2.16)

Wt =
1

Re
4kW − 2πikxU

eW − 2πikzp (2.17)

Vt =
1

Re
4kV − 2πikxU

eV − py (2.18)

2πikxu+ 2πikzW + Vy = 0 (2.19)

u|y=0 = 0 W |y=0 = 0 V |y=0 = 0 (2.20)

where 4k = ∂2

∂y2 − α2 and α2 = 4π2(k2
x + k2

z). The velocities u(y, t), W (y, t), V (y, t)

and pressure p(y, t), as well as the reference output trajectories ur
y|y=0, W

r
y |y=0,

pr|y=0 are parameterized by the wavenumbers kx and kz.
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2.4 Motion Planning

The desired reference output Y =
{
ur

y|y=0, W
r
y |y=0, p

r|y=0

}
for the skin friction

and pressure is chosen within the following class of functions of (t, kx, kz):

ur
y|y=0 =

∑
m

Ameϕmt, W r
y |y=0 =

∑
m

Bmeϕmt (2.21)

pr|y=0 =
∑
m

Cmeϕmt (2.22)

where Am, Bm, Cm and ϕm can all depend on the wavenumbers kx, kz. Indeed, ϕm

can be complex - thus any sinusoid can be represented by (2.21)–(2.22).

In general these sums must be chosen such that∑
m

Xm

√
ε

ϕm

sinh
(√

ϕm

ε

)
eϕmt < ∞ ∀kx, kz

where Xm ∈ {Am, Bm, Cm}. If ϕm = imϕ0, then Xm must be the Fourier coefficients

of a function that is smooth and periodic in t. In addition the terms Xm(kx, kz) need

to decay “fast enough” in kx, kz, for example, to be square integrable in kx, kz (in

which case they correspond to the Fourier Transform of square integrable functions

in x, z). We will discuss this more in Section 2.7 where we analyze the growth of

the motion planning solution.

Before stating the main result of this chapter, we introduce Volterra operators

and other notation. The Volterra operator is a “spatially causal” or lower triangular

change of variable which starts from the lower wall y = 0 and is marched forward

continuously in space towards the near wall y = 1. This type of approach has been

effective in control of finite-dimensional nonlinear systems such as robotics and flight

dynamics and it is known under the names of feedback linearization [33], dynamic

inversion, and integrator backstepping [45]. The extension to infinite-dimensional

systems was developed recently and results in explicit formulae for the gain functions

[72]. This method is based on a functional transformation f 7→ g ,

f (y) = g (y)−
∫ y

0
K(y, η)g (η)dη ,

where the second term is a Volterra integral operator with a kernel K(y, η). This

transformation is invertible and its inverse involves another Volterra operator,

g (y) = f (y) +
∫ y

0
L(y, η)f (η)dη ,
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where the kernels L(y, η) and K(y, η) are related through a (non-Volterra type)

integral equation

L(y, η) = K(y, η) +
∫ y

η
K(y, σ)L(σ, η)dσ .

We introduce a compact Volterra operator notation as

V
(
K, f

)
(y) =

∫ y

0
K(y, η)f (η)dη

where the operator output is a function of y, the upper limit of integration is the

first argument of the first function, and the integration is over the second argument

of the first function and the first argument of the second function. (If the second

function has more than one argument, such as time or wavenumbers, all but the

first are ignored as far as the integration is concerned.) We also define

W y
η (K,L) =

∫ y

η
K(y, σ)L(σ, η)dσ

which is similar to V (·, ·) except that 1) the lower limit of integration is the second

argument of the second function and 2) the operator output is a function of both y

and η.

Next we present the main result of the chapter — the full reference trajectory

(for input and state), valid for all individual wavenumbers, satisfying the reference

output profiles for the skin friction and pressure at the far wall (2.21)-(2.22), and

consisting of a linear combination of two Volterra integrals of explicit functions

with spatial gain kernels. The linear combination results from the use of the nor-

mal velocity and vorticity while the Volterra operators arise from the use of PDE

backstepping theory. 1

Theorem 2.1 The PDE system (2.16)–(2.20) with desired output (2.21)–(2.22) is

satisfied by the following functions defined for (y, t) ∈ [0, 1]× [0,∞),

ur =
−1

2πi

kxY
r + kzω

r

k2
x + k2

z

(2.23)

W r =
−1

2πi

kzY
r − kxω

r

k2
x + k2

z

(2.24)

V r(y, t) =
∫ y

0
Y r(η, t)dη = V (1, Y r) (2.25)

1The solution is method independent – we simply employ backstepping to find it. Therefore,
the pattern of dependence on Reynolds and wave numbers (which is examined in Section 2.7) is
not a result of the method but is inherent to the motion planning problem itself.
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where Y r(y, t) and ωr(y, t) are

Y r = Ψr − F + V (L,Ψr − F ) (2.26)

ωr = Ωr −G+ V (Φ,Ωr −G) + V (Θ,Ψr − F ) , (2.27)

the functions Ψr(y, t),Ωr(y, t), F (y, t), G(y, t) are defined by

Ψr = −2πi
∑
m

(kxAm + kzBm)eϕmt

√
ε

ϕm

sinh
(√

ϕm

ε
y
)

(2.28)

Ωr = −2πi
∑
m

(kzAm − kxBm)eϕmt

√
ε

ϕm

sinh
(√

ϕm

ε
y
)

(2.29)

F = −
∑
m

CmeϕmtV
(
σm,V (K, qp)− qP

)
(2.30)

G = −
∑
m

CmeϕmtV
(
σm,V (Γ, qp)

)
(2.31)

where σm(y, η) =
sinh(
√

ϕm
ε

(y−η))
√

ϕmε
and the kernels L(y, η), Θ(y, η), Φ(y, η), K(y, η),

Γ(y, η) are defined by the following well-posed PDEs [72] in the region
{
(y, η) : 0 ≤

η ≤ y ≤ 1
}

εLyy = εLηη − φ(y)L− f εKyy = εKηη + φ(η)K − f

−W y
η (f, L) + W y

η (K, f) (2.32)

εL|η=y = −1

2
V (1, φ)− g(0) εK|η=y = −1

2
V (1, φ)− g(0) (2.33)

εL|η=0 = −g(y) εK|η=0 = V (K, g)− g(y) (2.34)

εΘyy = εΘηη − φ(y)Θ− h εΓyy = εΓηη + φ(η)Γ− h

−W y
η (h, L) + W y

η (Γ, f) + W y
η (Π, h) (2.35)

εΘ|η=y = 0 εΓ|η=y = 0 (2.36)

εΘ|η=0 = 0 εΓ|η=0 = V (Γ, g) (2.37)

εΦyy = εΦηη − φ(y)Φ εΠyy = εΠηη + φ(η)Π (2.38)

εΦ|η=y = −1

2
V (1, φ) εΠ|η=y = −1

2
V (1, φ) (2.39)

εΦ|η=0 = 0 εΠ|η=0 = 0 (2.40)
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where

ε =
1

Re
(2.41)

φ(y) = 8πikxy(y − 1)− εα2 (2.42)

f(y, η) = 8πikx(2y − 1)− 32πi
kx

α
sinh

(
α(y − η)

)
−16πikx(2η − 1) cosh

(
α(y − η)

)
(2.43)

g(y) = −εα sinh(αy) (2.44)

qP (y) = −α2 cosh(αy) (2.45)

h(y, η) = 8πkzi(1− 2y) . (2.46)

The reference input is given by ur|y=1,W
r|y=1 and

V r|y=1 = e−
α2

Re
t
∫ t

0
e

α2

Re
τ

Y r
y |y=1

Re
− cosh(α)

Y r
y |y=0

Re

+4πikx
cosh(αy)

sinh(α)

∫ 1

0
V r(η, τ)U e

y (η) cosh
(
α(1− η)

)
dη

−α sinh(α)
∑
m

Cmeϕmτ

dτ + V (1, Y r|t=0) |y=1. (2.47)

We prove Theorem 2.1 by construction in Section 2.4.1 to help the reader gain

insight into the design aspects and the structure of the solution. The structure of

the problem is pictorially represented in Figure 2.2. We start with the linearized

Navier Stokes equations (2.16)–(2.20) and forcing trajectories (2.21)–(2.22) and per-

form several transformations, shown in Figure 2.3, to divide the problem into sev-

eral tractable problems. After solving these simpler motion planning problems, we

transform the solutions back to the velocity variables. The steps are summarized as

follows:

1) Solve for the pressure and find a (open loop) normal velocity controller to

reduce the open-loop problem from three velocity variables and one pressure

variable down to three velocity variables.

2) Employ a transformation that reduces the model with three velocity variables

to a model with only two variables in the normal direction – the normal vor-
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solve PDEs (Y, ω)
with disturbance

cancellation

solve ODE in t

U Y

V r|y=1

ur|y=1

W r|y=1

pr|y=0

ur
y|y=0

W r
y |y=0

{
Figure 2.2: The structure of the input-output relationship U 7→ Y and a description
of the types of problems that are solved in constructing the input U for a given
reference output Y .
Finding V r|y=1 is “easy” — it involves only a solution to an ODE in the time
variable, given the pressure reference pr|y=0. Finding ur|y=1 and W r|y=1 is more
complicated as it involves solving the Cauchy-Kowalevski problem for two coupled
PDEs with a given output reference ur

y|y=0,W
r
y |y=0, combined with solving an ex-

act disturbance cancellation problem, where the pressure reference pr|y=0 acts as a
known disturbance.

ticity ωr and the derivative of the normal velocity in the normal direction

Y r = V r
y .

3) Use the PDE backstepping transformation (employing Volterra integral oper-

ators and kernels K,Π,Γ) to transform the more complex model (Y r, ωr) to

simple heat equations for (Ψr,Ωr) and (F,G).

4) Solve the heat equations which define Ψr,Ωr. These are forced at the boundary

by ur
y|y=0,W

r
y |y=0.

5) Solve the heat equations which define F,G. These are forced internally by

pr|y=0.

6) Use the inverse transformation (also employing Volterra integral operators and

kernels L,Φ,Θ) to transform back from Ψr,Ωr and F,G to Y r, ωr.

7) A linear combination of Y r and ωr gives us ur,W r, V r.
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{
u,W, V, p

}
�

{
Y, ω

} L,Φ,Θ
←−−→
K,Π,Γ

{
Ψ− F,Ω−G

}

Figure 2.3: The string of (invertible) transformations involved in solving the full-
state motion planning problem.

2.4.1 Proof of Theorem 2.1 and Construction of Open Loop

Control

Solve for the full pressure reference trajectory. Rather than working with four

different variables (three velocity variables and one pressure variable — which is

further complicated by a nondynamic constraint), we instead use only two variables

in the normal direction. Before stating the system equations for these two variables,

we identify the input velocity trajectory in the normal direction V r|y=1 that ensures

that the output pressure trajectory pr|y=0 is satisfied (exactly, i.e., for all time). The

explicit solution to the elliptic PDE for p,

4kp = −4πikxU
e
yV

py|y=0 = −2πi
kxuy|y=0 + kzWy|y=0

Re

py|y=1 =
−2πi (kxuy|y=1 + kzWy|y=1)− α2V |y=1

Re
− Vt|y=1

is

p =
1

α

− 4πikxV
(
U e

y (η) sinh
(
α(y − η)

)
, V
)

+4πikx
cosh(αy)

sinh(α)

∫ 1

0
V (η, t)U e

y (η) cosh
(
α(1− η)

)
dη

−
cosh

(
α(1− y)

)
sinh(α)

(−2πi)(kxuy|y=0 + kzWy|y=0)

Re

+
cosh(αy)

sinh(α)

(
(−2πi)(kxuy|y=1 + kzWy|y=1)− α2V |y=1

Re
− Vt|y=1

).(2.48)

By choosing the open-loop control V r|y=1 = N , where N verifies

Nt = − α
2

Re
N +

(−2πi)(kxuy|y=1 + kzWy|y=1)

Re
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− cosh(α)
(−2πi)(kxuy|y=0 + kzWy|y=0)

Re

+4πikx
cosh(αy)

sinh(α)

∫ 1

0
V r(η, t)U e

y (η) cosh
(
α(1− η)

)
dη

−α sinh(α)
∑
m

Cmeϕmt , (2.49)

i.e., when V r|y=1 is defined as (2.47), we arrive at the motion planning solution for

pr:

pr =
1

α

− 4πikxV
(
U e

y (η) sinh
(
α(y − η)

)
, V r

)

+ sinh(αy)
(−2πi)(kxuy|y=0 + kzWy|y=0)

Re
+ α cosh(αy)

∑
m

Cmeϕmt

, (2.50)

where pr|y=0 is exactly (2.22). The control (2.49) conveniently absorbs the nonstrict

feedback (spatially non-causal) term – the integral from zero to one – into the normal

velocity reference input, allowing for the rest of the motion planning problem (for

ur and W r) to be approached using the backstepping method.

Reduce system to two variables in the normal direction. As is standard, we make

use of the continuity equation and work with a variant of the normal velocity and

the normal vorticity:

Y r = V r
y = −2πi(kxu

r + kzW
r) (2.51)

ωr = −2πi(kzu
r − kxW

r) . (2.52)

We see from a first glance at the evolution equations

Y r
t =

1

Re
4kY

r − 2πikxU
eY r + 2πikxU

e
y V (1, Y r)− α2pr (2.53)

ωr
t =

1

Re
4kω

r − 2πikxU
eωr + 2πikzU

e
y V (1, Y r) (2.54)

(where we have used the fact that V has a homogeneous Dirichlet boundary con-

dition at y = 0 to inversely relate V to Y )that we must solve for pr if we wish to

retain two second order subsystems instead of the fourth order and second order

subsystem seen in the Orr-Sommerfeld equations.

At this point we know pr and V r|y=1 and may now take these into account to

construct the rest of the motion planning solution. Substituting (2.50) into (2.53)
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the full “cascade” system for the two variables Y r, ωr is:

Y r
t = εY r

yy + φ(y)Y r + g(y)Y r
y |y=0 + V (f, Y r) + qP (y)

∑
m

Cmeϕmt (2.55)

ωr
t = εωr

yy + φ(y)ωr + V (h, Y r) (2.56)

Y r|y=0 = 0 Y r
y |y=0 = −2πi

∑
m

(kxAm + kzBm)eϕmt (2.57)

ωr|y=0 = 0 ωr
y|y=0 = −2πi

∑
m

(kzAm − kxBm)eϕmt (2.58)

where we use the homogeneous Neumann boundary condition for V in the boundary

conditions for Y . By “cascade” we mean that Y r feeds into the wr equation but not

the other way around, which will be exploited in our design. Note also that the Y r

equation is forced by the pressure output trajectory.

Construct the forward PDE backstepping transformation. This step employs the

PDE backstepping method. This method for finding stabilizing boundary controllers

for parabolic PDE systems is introduced and explained in [72]. In this chapter,

though we do use the method to find stabilizing controllers, its main use is in breaking

up the entire motion planning problem into solvable steps and finding the full spatio-

temporal reference trajectory. It is important to note that this solution is method

independent — we simply take advantage of backstepping to find it constructively.

The backstepping method exploits the invertibility of transformations that em-

ploy a shift by a Volterra operator, which has a triangular structure. We start with

the block-triangular transformation (Y r, ωr) 7→ (Ψr − F,Ωr −G) given by

Ψr − F = Y r + V (K,Y r) (2.59)

Ωr −G = ωr + V (Γ, Y r) + V (Π, ωr) (2.60)

where Ψr,Ωr and F,G are defined next. The forcing term qP (y)
∑

mCmeϕmt in (2.55),

which comes from the pressure reference, complicates the motion planning problem

for the streamwise and spanwise wall shear stress output trajectories, ur
y|y=0,W

r
y |y=0.

This pressure term acts as a known disturbance that needs to be cancelled by the

controls ur|y=1,W
r|y=1, which have a simultaneous task of also generating the output

trajectory ur
y|y=0,W

r
y |y=0. The (main) motion planning part of the state trajectory

is (Ψr,Ω
r), whereas the disturbance cancellation part is (F,G). We first decide how
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we want Ψr and Ωr to behave and from there we then define the gain kernels K,Π,Γ

and find the equations that govern F,G. We set the boundary conditions of Ψr,Ωr

to match the boundary conditions of Y r, ωr and set the boundary conditions of F,G

to zero. We also want the simplest parabolic PDE the method will allow to govern

the behavior of Ψr and Ωr – arriving at uncoupled forced heat equations:

Ψr
t = εΨr

yy Ωr
t = εΩr

yy (2.61)

Ψr|y=0 = 0 Ωr|y=0 = 0 (2.62)

Ψr
y|y=0 = −2πi

∑
m

(kxAm + kzBm)eϕmt Ωr
y|y=0 = −2πi

∑
m

(kzAm − kxBm)eϕmt .

(2.63)

The gain kernels K,Π,Γ which allow the transformation (2.59)–(2.60) to decouple

the cascade system (2.55)–(2.58) and transform it to the uncoupled system (2.61)–

(2.63) are defined by the hyperbolic PDEs (2.32)–(2.40). These PDEs can be solved

numerically or symbolically using an equivalent integral equation formualtion that

can be solved via a successive approximation series [72]. The procedure to find the

PDEs which govern the gain kernels can be found in [44]. This procedure extends

easily allowing us to find the governing equations for F and G:

Ft = εFyy +
(
V (K, qP )− qP (y)

)∑
m

Cmeϕmt (2.64)

Gt = εGyy + V (Γ, qP )
∑
m

Cmeϕmt (2.65)

Fy(0) = 0, Gy(0) = 0

F (0) = 0, G(0) = 0 .
(2.66)

Solve for Ψr,Ωr. The motion planning problem for Ψr,Ωr defined by (2.61)–

(2.63) can be solved by representing Ψr or Ωr as a power series expansion in y –

i.e. Ψr =
∑∞

l al(t)
yl

l!
. After solving for al(t), the resulting series can be explicitly

summed as the sinh function seen in the solution (2.28)–(2.29).

Solve for F,G. The equations governing F,G can be solved by taking the Laplace

transform in y and then solving the resulting first order ordinary differential equation

in t. The inverse Laplace transform results in the solution (2.30)–(2.31).

Find the inverse of the PDE backstepping transformation. After breaking the full

problem down to simpler motion planning problems and a number of PDE equations
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governing gain kernels, we must inversely relate Ψr,Ωr and F,G to Y r, ωr. This

inverse relationship (2.26)–(2.27) also uses Volterra integrals, this time with gain

kernels L,Θ,Φ. The gain kernels are defined by (2.32)–(2.40) and can be related to

the forward transform gain kernels through the following integral equations

L = K + W y
η (K,L)

Φ = Π + W y
η (Π,Φ)

Θ = Γ + W y
η (Γ, L) + W y

η (Π,Θ) .

Retrieve ur,W r, V r. The two velocity variables ur,W r are recovered through the

linear combinations of the two variables Y r, ωr (2.23)–(2.24), while V r is recovered

as the integral of Y r, (2.25).

2.4.2 Simulation Results on Motion Planning

We illustrate the motion planning solution that results when choosing a specific

spatio-temporal waveform for the skin friction and pressure at the far wall (a ref-

erence output trajectory) and applying the techniques presented in this chapter to

obtain the exact initial conditions plus the exact input velocity (reference input) tra-

jectories at the near wall. The figures show motion planning results for the following

spatio-temporal output reference trajectory

ur
y|y=0 =

 e
− 16π2

25

(
k2
x

100
+

k2
z
9

)
sin

(
(4πkx + 1/2)t

)
, kz ≥ 0

0, kz < 0

(2.67)

W r
y |y=0 =

 e
− 32π2

25

(
k2
x

100
+

k2
z
9

)
i sin

(
(4πkx + 1/2)t

)
, kz ≥ 0

0, kz < 0

(2.68)

pr|y=0 =


4π
(
ikx

10
+ kz

3

)
e
− 32π2

25

(
k2
x

100
+

k2
z
9

)
sin

(
(4πkx + 1/2)t

)
, kz ≥ 0

0, kz < 0

(2.69)

written in wavespace. We emphasize that the figures show the exact solution and

include no feedback component — in other words, we did not simulate the linearized

Navier Stokes equations, instead we computed the solution (2.23)–(2.25).
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To show the general applicability of the method toward possibly complex prob-

lems, the output reference trajectory (2.67)–(2.69) is chosen as more complex than

any particular physical application that we can think of would call for.

Figures 2.4 and 2.5 showsnap shots in time of the spatio-temporal profile (2.67)–

(2.69) in physical space. The arrows in Figure 2.4 indicate the direction and mag-

nitude of the output skin friction at the far wall y = 0. The colors in Figure 2.5

indicate the output pressure at y = 0 with blue being low pressure and red being

high pressure. Time proceeds left to right and top to bottom in all figures.

Figures 2.6 and 2.7 result from applying the solution at Re = 20 to the above

profile. The figures show snapshots in time of the exact input velocities that must

be actuated at the near wall y = 1 to obtain the trajectories seen in Figures 2.4 and

2.5. The arrows in Figure 2.6 indicate the direction and magnitude of the (ur,W r)

reference input velocity vector. The colors in Figure 2.7 represent the value of

the normal velocity reference input with blue denoting negative velocities and red

denoting positive velocities.

2.5 Stabilization

As one cannot choose the initial conditions of the flow, we must look to the

addition of a feedback component to the reference input. Toward this end, we

present a feedback law that accomplishes the stabilization of the linearized Navier

Stokes system about the trajectory (2.23)–(2.25). Similarly to the motion planning

solution, the feedback law is derived using the PDE backstepping method. However,

unlike the motion planning solution which is unique, the choice of a stabilizing

feedback is not. While previous optimal control designs required actuation of only

the normal or only the tangential component of velocity, but at both walls, our

approach employs actuation of all three velocity components but only at the far

wall, y = 1. One of the advantages of the backstepping approach over optimal

control approaches, when applied to the channel flow, is that it is not necessary to

solve high-dimensional Riccati equations, and the backstepping gains (the kernels)

are explicit (symbolically computable) functions of the Reynolds number and the
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Figure 2.4: Snapshots of the desired skin friction spatio-temporal profile (reference
output trajectory). Time proceeds left to right and top to bottom. Arrows indicate
direction and magnitude.
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Figure 2.4. Snapshots of the desired skin friction spatio-temporal profile (reference
output trajectory). Time proceeds left to right and top to bottom. Arrows indicate
direction and magnitude.
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Figure 2.5: Snapshots of the desired pressure spatio-temporal profile (reference out-
put trajectory). Time proceeds left to right and top to bottom. Blue indicates low
pressure while red indicates high pressure.
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Figure 2.5. Snapshots of the desired pressure spatio-temporal profile (reference
output trajectory). Time proceeds left to right and top to bottom. Blue indicates
low pressure while red indicates high pressure.
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Figure 2.6: Snapshots in time of the input reference trajectory for stream- and
span-wise velocity. Time proceeds left to right and top to bottom. Arrows indicate
direction and magnitude.
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Figure 2.6. Snapshots in time of the input reference trajectory for stream- and
span-wise velocity. Time proceeds left to right and top to bottom. Arrows indicate
direction and magnitude.
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Figure 2.7: Snapshots in time of the input reference trajectory for normal velocity.
Time proceeds left to right and top to bottom. Blue indicates negative velocity
while red indicates positive velocity.
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Figure 2.7. Snapshots in time of the input reference trajectory for normal velocity.
Time proceeds left to right and top to bottom. Blue indicates negative velocity
while red indicates positive velocity.
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wavenumbers. Though the feedback law that we present here employs full state

feedback, an observer developed in [82] allows us to implement the controller by

measuring only the pressure and the skin friction at the same wall as the output

reference, y = 0.

Theorem 2.2 The feedback boundary controller, actuating the three velocities at

the near wall y = 1,

u|y=1 =
∑
m

Ameϕmt

√
ε

ϕm

sinh
(√

ϕm

ε

)
+ V

(
k2

xK + k2
zΠ + kzkxΓ

k2
x + k2

z

, u

) ∣∣∣∣
y=1

+V
(
kxkzK − kzkxΠ + k2

zΓ

k2
x + k2

z

,W

) ∣∣∣∣
y=1
− 1

2πi

kxF |y=1 + kzG|y=1

k2
x + k2

z

(2.70)

W |y=1 =
∑
m

Bmeϕmt

√
ε

ϕm

sinh
(√

ϕm

ε

)
+ V

(
kzkxK − kxkzΠ− k2

xΓ

k2
x + k2

z

, u

) ∣∣∣∣
y=1

+V
(
k2

zK + k2
xΠ− kxkzΓ

k2
x + k2

z

,W

) ∣∣∣∣
y=1
− 1

2πi

kzF |y=1 − kxG|y=1

k2
x + k2

z

(2.71)

V (t, 1)t = e−
α2

Re
t
∫ t

0
e

α2

Re
τ

2πi

Re

(
cosh(α)

(
kxuy|y=0 + kzWy|y=0

)
−
(
kxuy|y=1 + kzWy|y=1

))
+4πikx

cosh(αy)

sinh(α)

∫ 1

0
V (η, τ)U e

y (η) cosh
(
α(1− η)

)
dη

−α sinh(α)
∑
m

Cmeϕmτ

dτ (2.72)

exponentially stabilizes the system (2.16)–(2.20) about the solution (2.23)–(2.25) in

the L2 sense:∫ 1

0

(
|u− ur|2 + |W −W r|2 + |V − V r|2

)
dy

≤ Ce−εt
∫ 1

0

(∣∣∣∣u|t=0 − ur|t=0

∣∣∣∣2 +
∣∣∣∣W |t=0 −W r|t=0

∣∣∣∣2 +
∣∣∣∣V |t=0 − V r|t=0

∣∣∣∣2)dy
(2.73)

where ε = 1/Re and

C = (1 + α2)(1 + ||L||∞)2(1 + ||K||∞)2

×
(
(1 + ||Φ||∞)2 + ||Θ||∞ (1 + ||Φ||∞ + ||Θ||∞)

)



31

×
(
(1 + ||Π||∞)2 + ||Γ||∞ (1 + ||Π||∞ + ||Γ||∞)

)
(2.74)

|| · ||∞ = sup
0≤η≤y≤1

{·} . (2.75)

Proof: To prove stability about the solution (2.23)–(2.25), we first note that

the pressure is still defined by (2.48) and becomes (2.50) when the normal velocity

component of the feedback is defined as in (2.72). We then write the system in terms

of Y and ω. The error system (Ỹ = Y − Y r, ω̃ = ω − ωr) then has the following

dynamics

Ỹt = εỸyy + φ(y)Ỹ + g(y)Ỹy(0) + V
(
f, Ỹ

)
(2.76)

ω̃t = εω̃yy + φ(y)ω̃ + V
(
h, Ỹ

)
(2.77)

Ỹ |y=1 = V
(
K, Ỹ

)
|y=1 (2.78)

ω̃|y=1 = V (Π, ω̃) |y=1 + V
(
Γ, Ỹ

)
|y=1 (2.79)

Ỹ |y=0 = 0 ω̃|y=0 = 0 (2.80)

where we made use of (2.59), (2.60) to determine the value of the Y r|y=1, ω
r|y=1.

Using the standard backstepping transformation

Ψ̃ = Ỹ −V
(
K, Ỹ

)
(2.81)

Ω̃ = ω̃ −V (Π, ω̃)−V
(
Γ, Ỹ

)
(2.82)

where K(y, η), Π(y, η), Γ(y, η) are still defined by (2.32)–(2.40), we arrive at the

dynamics for the backstepping error variables

Ψ̃t = εΨ̃yy Ω̃t = εΩ̃yy

Ψ̃|y=0 = 0 Ω̃|y=0 = 0

Ψ̃|y=1 = 0 Ω̃|y=1 = 0

(2.83)

which are uncoupled heat equations. The use of the backstepping transforma-

tion (2.81),(2.82) shifts the coupling effects of the cascade system (2.76)–(2.80)

to the boundary. These coupling effects (related to the nonnormality of the Orr

-Sommerfeld/Squire operator) cause small time algebraic growth in the Squire equa-

tion. To deal with this the boundary control law cancels them. The variables Ψ̃ and
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Ω̃ can be bounded as follows∫ 1

0
|Ψ̃|2dy ≤ e−εt

∫ 1

0

∣∣∣∣Ψ̃|t=0

∣∣∣∣2dy (2.84)∫ 1

0
|Ω̃|2dy ≤ e−εt

∫ 1

0

∣∣∣∣Ω̃|t=0

∣∣∣∣2dy . (2.85)

Thus we can bound the L2 norm of the error system as in (2.73) by using the forward

and inverse transformations (2.26)–(2.27) and (2.59)–(2.60).

Note that this controller and stability theorem are defined for any wavenumber

though the control is not actually meant to be applied for high wavenumbers as

the inverse Fourier Transform would not converge in that case. When using this

control law to stabilize the reference solution, the functions Am(kx, kz), Bm(kx, kz),

Cm(kx, kz) should have compact (though arbitrarily large) support set S in (kx, kz),

whereas the control law (2.70)–(2.72) should be applied for a sufficiently large disk D
(around the origin) in wavenumber space (kx, kz), where S ⊂ D. The uncontrolled

wavenumber set <2\D takes advantage of the stability of these wavenumber pairs

around a zero velocity profile. Details about this can be found in [44].

2.6 Closed-Form Solutions to the Kernel PDEs

The kernel PDEs (2.32)–(2.40) can be solved numerically, by using a modified

Ablowitz-Kruskal-Ladik scheme [3], or symbolically, by using the method of succes-

sive approximations [72]. In certain cases we can find the solutions in closed form.

Setting the streamwise wavenumber kx to zero is one such case. In terms of control

of channel flow turbulence, this is an important scenario as it is the case where the

transient growth is the largest [69, 8, 15, 35], thus it is of interest that we can find

closed form solutions for this case.

Theorem 2.3 The PDE systems

εLyy = εLηη + εκ2L εKyy = εKηη − εκ2K (2.86)

εL|η=0 = −g(y) εK|η=0 = V (K, g)− g(y) (2.87)
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εL|η=y = ε
κ2y

2
εK|η=y = ε

κ2y

2
(2.88)

εΘyy = εΘηη + εκ2Θ− h εΓyy = εΓηη − εκ2Γ− h

−W y
η (h, L) + W y

η (Π, h) (2.89)

εΘ|η=0 = 0 εΓ|η=0 = V (Γ, g) (2.90)

εΘ|η=y = 0 εΓ|η=y = 0 (2.91)

εΦyy = εΦηη + εκ2Φ εΠyy = εΠηη − εκ2Π (2.92)

εΦ|η=0 = 0 εΠ|η=0 = 0 (2.93)

εΦ|η=y = ε
κ2y

2
εΠ|η=y = ε

κ2y

2
(2.94)

are satisfied by the functions

L = κ sinh(κ(y − η)) + Φ + W y
η (κ sinh(κ(y − η)),Φ) (2.95)

Θ = Θ1 + W y
η (Θ1,Φ) (2.96)

Φ = κ2η
I1(
√
κ2(y2 − η2))√
κ2(y2 − η2)

(2.97)

Θ1 =
2i

εκ
η

(
κ(2y − η − 1) sinh(κ(y − η))− cosh(κ(y − η)) + 1

)
(2.98)

K = κ2(y − η) + Π−W y
η

(
Π, κ2(y − η)

)
(2.99)

Γ = Γ1 −W y
η (Π,Γ1) (2.100)

Π = κ2η
J1(
√
κ2(y2 − η2))√
κ2(y2 − η2)

(2.101)

Γ1 =
κi

ε
η(y − η)(3y − η − 2)

− 2i

3εκ2

(
6κ+ 12κ(y − η) + 3κ3(y − η)2 − 2κ3(y − η)3

−6κ cosh(κ(y − η))− 24 sinh(κ(y − η))

+12κ(y − η) cosh(κ(y − η))
)

(2.102)

where κ = 2πkz, I1 is a modified Bessel function of the first kind and J1 is a Bessel

function of the first kind.

Proof: The solutions (and their derivations) to (2.92)–(2.94) can be found

in [72]. Once Φ is found, Π is simply −Φ with κ2 replaced with −κ2. Also using
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methods from [72] we write L, K, Θ, Γ as

L = L1 + Φ + W y
η (L1,Φ) (2.103)

K = K1 + Π−W y
η (Π, K1) (2.104)

Θ = Θ1 + W y
η (Θ1,Φ) (2.105)

Γ = Γ1 −W y
η (Π,Γ1) (2.106)

where L1, K1, Θ1, Γ1 are defined by

εL1yy = εL1ηη εK1yy = εK1ηη (2.107)

εL1|η=0 = −g(y) εK1|η=0 = V (K1, g)− g(y) (2.108)

εL1|η=y = −g(0) εK1|η=y = 0 (2.109)

εΘ1yy = εΘ1ηη − h−W y
η (h, L1) εΓ1yy = εΓ1ηη − h (2.110)

εΘ1|η=0 = 0 εΓ1|η=0 = V (Γ1, g) (2.111)

εΘ1|η=y = 0 εΓ1|η=y = 0 (2.112)

By inspection we find L1 = −g(y−η)
ε

. By using the transformation K1(y, η) =

FK(y − η) we change the K1 system to an integral system in FK : εFK(y) =∫ y
0 FK(η)g(y − η)dη − g(y). Then, by noting that g(y)′′ = k2g(y), we can rear-

range the FK system into a solvable second order ordinary differential equation:

F ′′
K = 0, FK(0) = 0, F ′

K(0) = κ2 and find K1 = κ2(y − η). To find Θ1, use

the change of variables
(
ξ = y + η, ζ = y − η, T (ξ, ζ) = Θ1(y, η)

)
to obtain a

PDE in T : Tξζ = − 1
4ε
h( ξ+ζ

2
) cosh(κζ), T (ξ, ξ) = 0, T (ξ, 0) = 0. T is then found

by integrating the forcing function first with respect to ζ from zero to ζ and

then with respect to ξ from ζ to ξ. Similarly, to find Γ1, again use the change

of variables
(
ξ = y + η, ζ = y − η,Σ(ξ, ζ) = Γ1(y, η)

)
to obtain a PDE in Σ:

Σξζ = − 1
4ε
h( ξ+ζ

2
),Σ(ξ, 0) = 0, εΣ(ξ, ξ) =

∫ ξ
0 Σ(ξ + τ, ξ − τ)g(τ)dτ. Again, integrate

Σξζ first with respect to ζ from zero to ζ and then with respect to ξ from ζ to ξ to

obtain a forced integral equation for Σ. As the forcing is a function of both ξ and

ζ whereas the integral part of solely a function of ζ, designate the integral part as

∆(ζ) and find the integral equation for ∆ that is only in ζ. This integral equation

can then be turned into a solvable second order ordinary differential equation by

again noting that g(y)′′ = κ2g(y).



35

0 5 10 15 20100

102

104

106

108

1010

kz

Growth in kz

m
ax

 u
(t,

1)

 

 

kx=0,Re=0.1
kx=2
kx=4
kx=0,Re=1.0
kx=2
kx=4

0 5 10 15 20100

105

1010

1015

1020

kx

Growth in kx

m
ax

 u
(t,

1)

 

 

kz=0,Re=0.1
kz=2
kz=4
kz=0,Re=1.0
kz=2
kz=4

Figure 2.8: maxt

{∣∣∣∣ur|y=1

∣∣∣∣} growing in kz and kx forced by ur
y|y=0 = sin(t).

2.7 Inherent Difficulty Increases with Reynolds

and Wave Numbers

One natural question to ask of the reference solution (2.23)–(2.25), is how it grows

or decays as either the wavenumbers grow or as the Reynolds number grows. We

consider both cases in this section. The growth that is demonstrated in this section

is inherent to the problem as the solution itself is unique and method independent.

Thus large controls are primarily the result of an overly ambitious choice of reference

trajectory.

The following figures examine the portion of the motion planning solution due

solely to a streamwise output friction trajectory of ur
y|y=0 = sin(t). They show

the maximum absolute value of the input reference trajectory, maxt

{∣∣∣∣ur|y=1

∣∣∣∣},

maxt

{∣∣∣∣W r|y=1

∣∣∣∣}, given different system parameters when the output trajectory is

as stated
(
ur

y|y=0 = sin(t),W r
y |y=0 = 0, pr|y=0 = 0

)
. Figures 2.8 and 2.9 show the

growth of the input reference as the wavenumbers grow, while figure 2.10 demon-

strates the growth as the Reynolds number grows.

The exponential growth of the motion planning solution in both wavenumber

and Reynolds number is also seen when the solution is forced by only the spanwise

friction output trajectory W r
y |y=0 = sin(t) or by the output pressure trajectory
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Figure 2.9: maxt

{∣∣∣∣W r|y=1

∣∣∣∣} growing in kz and kx forced by ur
y|y=0 = sin(t).
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Figure 2.10: (a) maxt

{∣∣∣∣ur|y=1

∣∣∣∣} and (b) maxt

{∣∣∣∣W r|y=1

∣∣∣∣} growing in Re forced by

ur
y|y=0 = sin(t).



37

0 5 10 15 20100

105

1010

1015

kz

Growth in kz

m
ax

 u
(t,

1)

 

 

kx=0,Re=0.1
kx=2
kx=4
kx=0,Re=1.0
kx=2
kx=4

0 5 10 15 20100

105

1010

1015

1020

kx

Growth in kx

m
ax

 u
(t,

1)

 

 

kz=0,Re=0.1
kz=2
kz=4
kz=0,Re=1.0
kz=2
kz=4

Figure 2.11: maxt

{∣∣∣∣ur|y=1

∣∣∣∣} growing in kz and kx forced by pr|y=0 = sin(t).
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Figure 2.12: maxt

{∣∣∣∣W r|y=1

∣∣∣∣} growing in kz and kx forced by pr|y=0 = sin(t).
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Figure 2.13: (a) maxt

{∣∣∣∣ur|y=1

∣∣∣∣} and (b) maxt

{∣∣∣∣W r|y=1

∣∣∣∣} growing in Re forced by

pr|y=0 = sin(t).

pr|y=0 = sin(t) as shown in Figures 2.11 and 2.12, while Figure 2.13 demonstrates

the growth as the Reynolds number grows.

These figures show the need to carefully chose the amplitudes (and frequencies

which affect the growth similarly to the Reynolds number) of the output trajectories

so that the use of the inverse Fourier transform to transform the system back to

physical space converges. It is important when choosing the amplitude functions to

take advantage of their dependence on wavenumber as opposed to blindly choosing

a constant value for all wavenumber pairs. Examples include choosing only a finite

number of frequencies and choosing Gaussian functions in kx and kz as the amplitude

functions.

It makes sense that more energy is required to generate high frequencies than low

frequencies. To counter the growth due to high wavenumbers, one must decrease the

amplitude at high wavenumbers. Figures 2.14 and 2.15 show how the growth changes

once the amplitude of the output reference trajectory depends on wavenumber –

they show the growth of the input reference due to an output reference of pr|y=0 =

F{e−π4x2−π4z2} sin(t) = 1
π3 e

− k2
x

π2−
k2
z

π2 sin(t). The dependence seen in these figures is

much more acceptable.
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∣∣∣∣} growing in kz and kx forced by pr|y=0 =

1
π3 e

− k2
x

π2−
k2
z

π2 sin(t).

0 5 10 15 20
10!15

10!10

10!5

100

105

1010

kz

m
ax

 w
(t,

1)

 

 

kx=0,Re=0.1
kx=2
kx=4
kx=0,Re=1.0
kx=2
kx=4

0 5 10 15 20
10!15

10!10

10!5

100

105

1010

kx

m
ax

 w
(t,

1)

 

 

kz=0,Re=0.1
kz=2
kz=4
kz=0,Re=1.0
kz=2
kz=4

(a) (b)

Figure 2.15: maxt

{∣∣∣∣W r|y=1

∣∣∣∣} growing in kz and kx forced by pr|y=0 =

1
π3 e

− k2
x

π2−
k2
z

π2 sin(t).
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2.8 Conclusion

The PDE backstepping theory enables the synthesis of the exact solution to the

motion planning problem for skin friction and pressure for the 3D linearized Navier

Stokes equations modeling channel flow. This is the first such result in the field of

flow control. The PDE backstepping theory also allows us to stabilize the system

about the reference solution, and thus achieve trajectory tracking for skin friction

and pressure outputs. We hope to expand this study to state prediction and aircraft

maneuverability with fluidic actuators.

The growth of the solution due to the Reynolds number serves to actually en-

courage us to turn to the fully nonlinear Navier Stokes equations for motion planning

purposes. As the only way to move energy in the linearized equations is through

the diffusive properties tied to the Reynolds number, as the Reynolds number goes

up, the energy needed to affect the far wall increases - as seen in the figures in the

chapter. However, the convective terms in the nonlinear equations could be useful

for motion planning.

Motion planning for boundary layer flows is of great physical relevance. However,

due to the collocated input-output structure, this system is not differentially flat

and is likely to have unstable inverse dynamics at high Reynolds numbers. Future

research should focus on identifying collocated flow problems that allow motion

planning.

2.9 Further Remarks On The Stabilizing Controller

The feedback part of the controller (2.70)–(2.72) can be used alone to stabilize

the system to a zero profile. This stabilizing controller,

u|y=1 = V
(
k2

xK + k2
zΠ + kzkxΓ

k2
x + k2

z

, u

) ∣∣∣∣
y=1

+ V
(
kxkzK − kzkxΠ + k2

zΓ

k2
x + k2

z

,W

) ∣∣∣∣
y=1

(2.113)

W |y=1 = V
(
kzkxK − kxkzΠ− k2

xΓ

k2
x + k2

z

, u

) ∣∣∣∣
y=1

+ V
(
k2

zK + k2
xΠ− kxkzΓ

k2
x + k2

z

,W

) ∣∣∣∣
y=1

(2.114)
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V (t, 1)t = e−
α2

Re
t
∫ t

0
e

α2

Re
τ

2πi

Re

(
cosh(α)

(
kxuy|y=0 + kzWy|y=0

)
−
(
kxuy|y=1 + kzWy|y=1

))

+ 4πikx
cosh(αy)

sinh(α)

∫ 1

0
V (η, τ)U e

y (η) cosh
(
α(1− η)

)
dη

dτ (2.115)

found by setting Am = Bm = Cm = 0 (i.e. U r = W r = V r = 0), is, in theory, an

elegant solution to the stabilization problem. However, it is not very practical and

other stabilization methods perform better. When using this controller at reasonable

Reynolds numbers the magnitudes of the velocity inputs are huge — many times that

of the flow itself. This occurs because the controller takes advantage of the diffusive

property of the flow. When the Reynolds number increases, though, diffusion is

negligible and thus the controller must work extremely hard. In fact, the magnitude

of the velocity input grows exponentially with Reynolds number. We attempted

to simulate the stabilization of the channel flow with this stabilizing controller.

We could only do so with extremely small Reynolds numbers Re < 20 before the

computer could not handle the large numbers.
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Nonholonomic Source Seeking

With Tuning of Angular Velocity

3.1 Abstract

We consider the problem of seeking the source of a scalar signal using an au-

tonomous vehicle modeled as the nonholonomic unicycle. The vehicle does not have

the capability of sensing its position or the position of the source but is capable of

sensing the scalar signal originating from the source. The signal field is assumed

to decay away from the position of the source but the vehicle does not have the

knowledge of the functional form of the field. We employ extremum seeking to steer

the vehicle to the source. Our control strategy keeps the forward velocity constant

and tunes the angular velocity, a setting suitable for most autonomous vehicles,

including aerial ones. Because of the constant forward velocity constraint, after it

has converged near the source, the vehicle exhibits extremely interesting and com-

plex motions. Using averaging theory, we prove local exponential convergence to

an “orbit-like” attractor around the source. We also present a thorough analysis of

non-local behaviors and attractors that the vehicle can exhibit near the source. The

richness and complexity of behaviors makes only some of them amenable to analysis,

whereas others are illustrated through a carefully laid out simulation study.

42
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3.2 Introduction

In the literature on coordinated motion control and autonomous agents, depriva-

tion of position information is an area of rapidly growing interest. The applications

where this might occur are many, and include vehicles operating under water, under

ice, in caves or in urban environments where GPS is unavailable, and applications

where INS systems are too costly.

In [86] we considered the problem of seeking the source of a scalar signal using

a nonholonomic vehicle with no position information. Specifically, we considered

a unicycle with a constant angular velocity and a controlled forward velocity and

showed local convergence to the source of a signal. For some vehicles, including

fixed-wing aircraft, the approach in [86], which requires motion both forward and in

reverse, cannot realistically be applied. In this chapter we consider the complemen-

tary case of a unicycle with a constant forward velocity and tuned angular velocity.

The approach in this chapter is applicable to a broader class of vehicles, including

aircraft, and also produces a more efficient method of locomotion than in [86]—the

vehicle heads directly toward the source instead of doing so in the form of drifting

triangles, rhombi, or stars [86].

In the scenario we consider, the vehicle, modeled as a nonholonomic unicycle,

senses some scalar signal which emanates from the source it seeks. This signal

could be the concentration of a chemical or biological agent, or it could also be

an electromagnetic, acoustic, thermal or radar signal. The strength of the signal is

assumed to decay away from the source through diffusion or other physical processes.

Other information about the spatial distribution of the signal is not available to the

vehicle. Throughout the scenario, the seeking vehicle senses only the strength of

the signal at the location of its sensor. To find the source, we employ the extremum

seeking method, [5], which uses non-model based gradient estimation. The controller

jointly estimates the gradient (using the motion of the vehicle’s sensor in space) and

drives the vehicle toward the source. We present a stability proof for the scheme

with a static source, further analysis of non-local aspects of the closed-loop dynamics,

and simulation results for both static and moving sources. The simulations show

that tuning the angular velocity produces much more realistic vehicle trajectories
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compared to tuning the forward velocity [86].

While other groups have considered source seeking problems, [62] and [58], this

work is different in that the vehicle has no knowledge of its position or the posi-

tion of the source, there is no communication between it and other entities, and it

has nonholonomic dynamics. Many groups have also employed unicycle models in

their work, including [36], [43], and [51], while others have also used the extremum

seeking method in their work outside of the field of autonomous vehicles, including

[61], [60], [17], [73], [41], [14], [74], [28], [48] and [88]. The main novelty of this re-

sult is in simultaneously solving a nonholonomic steering problem and an adaptive

optimization problem.

Unlike the design in [86], the present design is for a system that is not small-

time locally controllable. Furthermore, while the objectives of converging rapidly

and directly towards the source (on average) and entering a quasi-steady motion

near the source are not contradictory with the actuation configuration in [86], with

the actuation configuration in the present chapter they are in fact hard to achieve

simultaneously. We reconcile the seeming contradiction between convergence to and

settling around the source by proposing a modification to the basic extremum seek-

ing algorithm, which employs a quadratic feedback of the output of the washout

filter (to be referred to as the d term). This term, in a rather non-obvious way,

stabilizes an otherwise marginally stable non-periodic solution around the source

(without actually altering this solution). As a consequence, a much more delicate

stability analysis emerges in this chapter. Averaging is still the main tool. However,

while the system’s right-hand side is periodic, the system’s attractor is in fact not

periodic; It involves the frequencies of both extremum seeking and of the revolution

around the source. These frequencies cannot be guaranteed to be commensurate

because the latter depends on the parameter of the unknown signal field. We as-

certain the existence and exponential stability of this attractor (characterizing it

explicitly to an arbitrary level of accuracy in terms of the control parameters). This

is clearly of practical significance as it ensures that the vehicle will not only con-

verge towards the source but also establish a sustainable motion near the source. A

further degree of difficulty in this problem over [86] is that with vehicles controlled
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through the heading rate a topological obstacle exists that creates a set of unstable

trajectories. These trajectories correspond to converging perfectly to the source and

not being able to decide whether to turn the vehicle back in the clockwise or the

counter-clockwise direction. We characterize these trajectories. We also study two

fundamentally different implementations, one with a sensor that is non-collocated

with the center of the vehicle and another that is collocated. The latter situation

requires parameter choices that induce three time scales, such that the analysis

employs both averaging and singular perturbation methods.

We start the chapter in Section 3.3 with a description of the vehicle model and

extremum seeking scheme. We prove local exponential convergence to an “orbit-like”

attractor around the source for both noncollocated and collocated vehicle center and

sensor in Section 3.4. We also characterize non-local behaviors and attractors that

the vehicle can exhibit near the source as a result of the forward velocity constraint,

including a zero-measure set of unstable trajectories. This analysis of the complex

motions displayed by the vehicle continues in Section 3.5 where we fully examine

the effect of a specific controller parameter. We present a carefully constructed

simulation study in Section 3.6 which highlights the variety and complexity of the

vehicle behaviors that are not amenable to analysis. We discuss our parallel research

efforts in Section 3.7.

3.3 Vehicle Model and Extremum Seeking

Controller

We consider a mobile agent modeled as a unicycle with a sensor mounted at a

distance R away from the center. The diagram in Figure 3.1 depicts the position,

heading, angular and forward velocities for the center and sensor. The equations of

motion for the vehicle center are

ṙc = vejθ (3.1)

θ̇ = Ω (3.2)
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Figure 3.1: The notation used in the model of vehicle sensor and center dynamics.

where rc is the center of the vehicle, θ is the orientation and v,Ω are the forward

and angular velocity inputs. The sensor is located at rs = rc +Rejθ .

The task of the vehicle is to seek a source that emits a signal which decays as a

function of distance away from the source. We assume this signal field is distributed

according to an unknown nonlinear map J = f
(
r(x, y)

)
which has an isolated local

maximum f ∗ = f(r∗) where r∗ is the location of the local maximum. We design a

controller that achieves local convergence to r∗ without knowledge of the shape of

f , using only the measurement of J at the vehicle sensor.

If both the shape of f and the position, rc, of the vehicle were known, and if the

vehicle were fully actuated in both x and y directions, then we could design a control

law to force the vehicle’s trajectory to evolve according to the gradient dynamical

system ṙc = −∇f . In that case the trajectory of rc would asymptotically converge

to the set of stationary points of f where ∇f(r∗) = 0. However, in the absence of

this knowledge, we employ techniques of non-model-based optimization. This task

becomes even more complex as we consider a kinematically constrained vehicle.

To accomplish the task, we employ extremum seeking to tune the angular velocity

(Ω) while keeping the forward velocity, v, constant. This scheme is depicted by the

block diagram in Figure 3.2. The forward velocity, v, of the unicycle is set to the
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Figure 3.2: Block diagram of source seeking via tuning of angular velocity, θ̇, of the
vehicle. The sensor at the position rs is at a distance R from the vehicle center at
rc.

constant, Vc, while θ̇ is tuned by the extremum seeking control law

θ̇ = aω cos(ωt) + cξ sin(ωt)− dξ2 sin(ωt) (3.3)

where ξ is the output of the washout filter. The performance can be influenced

by the parameters a, c, d, R, Vc, h and ω. The last term, −dξ2 sin(ωt), which we

shall refer to as the d term, is not part of the basic extremum seeking tuning law.

We added this term in order to achieve exponential convergence to an ”orbit-like”

solution that exists around the source but happens to be only marginally stable

(for d = 0). The practical problem that the d term addresses is that the vehicle,

having a constant forward velocity, cannot stop once it has reached the source. It

must overshoot it and turn around. To counter this, the d term partly sacrifices

the gradient extraction and actually pushes the vehicle a bit off the trajectory that

would take it directly toward the source. However, in doing so the d term allows the

vehicle to settle into a motion close to the target after it has reached the target.

This scheme was designed with both static and moving sources in mind. Figure

3.3 shows a source moving in a figure-eight that is first found, “caught up to” and

then followed by the vehicle. While the simulation shows that the scheme works well
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Figure 3.3: Vehicle following a moving source whose map has elliptical level sets.
The simulation parameters are Vc = 0.1, c = 100, d = 10, a = 0.5, ω = 40, R =
0.1, h = 1, f∗ = 0, qr = 1.5, qp = 0.25. The source moves according to xsrc(t) =
0.5 sin(0.13t), ysrc(t) = 0.5 sin(0.26t).

with a moving source, in the next section we present a stability result that focuses

on static sources.

3.4 Closed Loop Stability

In this section we present and prove a local stability theorem for the vehicle and

control scheme presented in Section 3.3.

The dynamics of the closed loop system are very intricate, despite the fact that

the system has only four states (three states of the vehicle and one filter state).

The complexity comes from the nonlinearities (trigonometric nonlinearities in the

vehicle model and the polynomial nonlinearity in the signal map) and also from the

time-varying forcing applied by extremum seeking.

We first prove the stability result for a vehicle with a noncollocated center and

sensor, followed by a discussion of a similar result for a collocated center and sensor.

As we use the averaging method to prove stability of an error system, we also

discuss the properties of the averaged error system. In particular, we explain the

relation between the equilibrium of the averaged error system and the corresponding
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solutions in physical space, the unstable solutions of the averaged error system, and

the effect of the control parameter d.

3.4.1 Stability Theorem

We assume that the nonlinear map defining the distribution of the signal field is

quadratic and takes the form J = f(rs) = f ∗− qr|rs− r∗|2 where r∗ is the unknown

maximizer, f ∗ = f(r∗) is the unknown maximum and qr is an unknown positive

constant. We define an output error variable

e =
h

s+ h
[J ]− f ∗ (3.4)

which allows us to express ξ, the signal after the washout filter, as ξ = s
s+h

[J ] =

J − h
s+h

[J ] = J − f ∗ − e, noting also that ė = hξ.

Theorem 3.1 Consider the following system

ṙc = Vce
jθ (3.5)

θ̇ = aω cos(ωt) + cξ sin(ωt)− dξ2 sin(ωt) (3.6)

ė = hξ (3.7)

ξ = −(qr|rs − r∗|2 + e) (3.8)

rs = rc +Rejθ (3.9)

where c, d, h, R, Vc, qr > 0, the parameter a is chosen such that J1(a), J0(a), J1(2a) >

0, the parameter h is chosen such that 2VcJ0(a) > hR(2J0(a) − J1(2a)/J1(a) and

where J0(a) and J1(a) are Bessel functions of the first kind. For sufficiently large

ω, if the initial conditions rc(0), θ(0), e(0) are such that the following quantities are

sufficiently small,

||rc(0)− r∗| − ρ| ,
∣∣∣e(0) + qrR

2 + VcJ0(a)
2cRJ1(a)

∣∣∣ , (3.10)

either
∣∣∣θ(0)− arg(rc(0)− r∗) + π

2

∣∣∣ or
∣∣∣θ(0)− arg(rc(0)− r∗)− π

2

∣∣∣ (3.11)

where

ρ =

√√√√ VcJ0(a)

2cqrRJ1(a)
, (3.12)
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then the trajectory of the vehicle center, rc(t), locally exponentially converges to, and

remains in, the annulus

ρ−O (1/ω) ≤ |rc − r∗| ≤ ρ+O (1/ω) (3.13)

and the sensor reading J(t) converges exponentially to a periodic function within

O(1/ω) of

f ∗ − qrR2 − VcJ0(a)

2cRJ1(a)
. (3.14)

For the ease of interpreting the results, the reader is reminded that J1(a)/J0(a) =

a/2 +O(a3).

Furthermore, the vehicle center locally exponentially converges to a solution of

either the form

xattr1
c (t) = x∗ −

(
ρ+ r̃eq1

µ + r̃
2π
ω

eq1

c0 (t)
)

× cos
(
Vc

ρ
(1 + αeq1

µ )t+
Vc

ρ
β

2π
ω

eq1

0 (t) + γeq1

)
(3.15)

yattr1
c (t) = y∗ +

(
ρ+ r̃eq1

µ + r̃
2π
ω

eq1

c0 (t)
)

× sin
(
Vc

ρ
(1 + αeq1

µ )t+
Vc

ρ
β

2π
ω

eq1

0 (t) + γeq1

)
(3.16)

or the form

xattr2
c (t) = x∗ −

(
ρ+ r̃eq2

µ + r̃
2π
ω

eq2

c0 (t)
)

× cos
(
Vc

ρ
(1 + αeq2

µ )t+
Vc

ρ
β

2π
ω

eq2

0 (t) + γeq2

)
(3.17)

yattr2
c (t) = y∗ −

(
ρ+ r̃eq2

µ + r̃
2π
ω

eq2

c0 (t)
)

× sin
(
Vc

ρ
(1 + αeq2

µ )t+
Vc

ρ
β

2π
ω

eq2

0 (t) + γeq2

)
(3.18)

where r̃eqi
µ is O(1/ω), r̃

2π
ω

eqi

c0 (t) is periodic with frequency ω, is zero mean and is

O(1/ω), αeqi
µ is O(a2)+O(1/ω), β

2π
ω

eqi

0 (t) is periodic with frequency ω, is zero mean

and is O(a2) +O(1/ω), and γeqi is a constant.
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Proof: We start the proof by defining the shifted variables

r̂c = rc − r∗ (3.19)

θ̂ = θ − a sin(ωt) (3.20)

τ = ωt , (3.21)

and a map between r̂c and a new quantity θ∗ given by

−r̂c = |r̂c|ejθ∗ (3.22)

θ∗ = −j
2

ln

(
− r̂c

¯̂rc

)
= arg(r∗ − rc) , (3.23)

where θ∗ represents the heading angle towards the source located at r∗ when the

vehicle is at rc. Using these definitions, the expression for ξ is

ξ = −
(
qr|rc +Rejθ − r∗|2 + e

)
= −

(
qr|Rejθ + r̂c|2 + e

)
= −

(
qr
(
R2 + |r̂c|2 − 2R|r̂c| cos(θ̂ − θ∗ + a sin(τ))

)
+ e

)
. (3.24)

The dynamics of the shifted system are

dr̂c

dτ
=

1

ω

{
Vce

j(θ̂+a sin(τ)
}

(3.25)

dθ̂

dτ
=

1

ω
(c− dξ)ξ sin(τ) (3.26)

de

dτ
=

1

ω
hξ . (3.27)

We next define error variables r̃c and θ̃ which represent the distance to the source,

and the difference between the vehicle’s heading and the optimal heading, respec-

tively,

r̃c = |r̂c| (3.28)

θ̃ = θ̂ − θ∗ . (3.29)
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The resulting dynamics for the error variables are

dr̃c

dτ
=

d|r̂c|
dτ

=
d
√
r̂c

¯̂rc

dτ
=

1

2|r̂c|

(
dr̂c

dτ
¯̂rc + r̂c

d¯̂rc

dτ

)

= −Vc

ω
cos(θ̃ + a sin(τ)) (3.30)

dθ̃

dτ
=

dθ̂

dτ
− dθ∗

dτ
=

dθ̂

dτ
+
j

2

1

|r̂c|2

(
dr̂c

dτ
¯̂rc − r̂c

d¯̂rc

dτ

)

=
1

ω
(c− dξ)ξ sin(τ) +

Vc

ω

sin(θ̃ + a sin(τ))

r̃c

(3.31)

de

dτ
=

1

ω
hξ (3.32)

ξ = −
(
qr
(
R2 + r̃2

c − 2Rr̃c cos(θ̃ + a sin(τ))
)

+ e
)
. (3.33)

Note that going from the previous shifted system (3.25)–(3.27) to the error system

(3.30)–(3.32) involves moving from a four state system to a three state system by

replacing the complex valued r̂c by its real valued modulus r̃c and combining the

heading of the vehicle θ and the optimal heading of the vehicle θ∗ into their difference

θ̃.

As the system equations are periodic in 2π, the average error system1 is

dr̃ave
c

dτ
= −VcJ0(a)

ω
cos(θ̃ave) (3.34)

dθ̃ave

dτ
=

1

ω
sin(θ̃ave)

{
VcJ0(a)

r̃ave
c

− 2qrRJ1(a)r̃
ave
c

(
c+ 2d

(
qr(R

2 + r̃ave2

c ) + eave
))}

+
1

ω
2dq2

rR
2r̃ave2

c J1(2a) sin(2θ̃ave) (3.35)

deave

dτ
=

h

ω

(
2qrRr̃

ave
c J0(a) cos(θ̃ave)− qrR2 − qrr̃ave2

c − eave
)
. (3.36)

The average error system (3.34)–(3.36) has two equilibria defined by

[
r̃aveeq1

c , θ̃aveeq1 , eave
eq1
]

=
[
ρ,+

π

2
,−qr(R2 + ρ2)

]
(3.37)[

r̃aveeq2

c , θ̃aveeq2 , eave
eq2
]

=
[
ρ,−π

2
,−qr(R2 + ρ2)

]
. (3.38)

1During the calculations for the average system we use Bessel integral equalities
1
2π

∫ 2π

0
eja sin(t)dt = J0(a) and 1

2π

∫ 2π

0
eja sin(t) sin(t)dt = J1(a) which can be derived from Tay-

lor series approximations and are also found in [4].
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The two equilibria (3.37) and (3.38) have the corresponding Jacobians

Aeq1 = − 1

ω


0 −VcJ0(a) 0

4γJ1(a)(c+ 2dqrρ
2) 4dγ2J1(2a)ρ

2 4dγJ1(a)ρ
2

2hqrρ 2hγJ0(a)ρ h

 (3.39)

and

Aeq2 =
1

ω


0 −VcJ0(a) 0

4γJ1(a)(c+ 2dqrρ
2) −4dγ2J1(2a)ρ

2 4dγJ1(a)ρ
2

−2hqrρ 2hγJ0(a)ρ −h

 (3.40)

where γ = qrR. The characteristic polynomial for both Jacobians is

0 = (ωs)3 + h(ωs)2 +
2V 2

c J0(a)
2

ρ2
ωs+ h

2V 2
c J0(a)

2

ρ2

+4dρ2q2
rR

RJ1(2a)(ωs)
2 +

(
2VcJ0(a)J1(a)

+hR
(
J1(2a)− 2J0(a)J1(a)

))(
ωs
). (3.41)

According to the Routh-Hurwitz criterion, to guarantee that the roots of the poly-

nomial have negative real parts, each coefficient must be greater than zero and the

product of the s2 and s1 coefficients must be greater than the s0 coefficient. The first

criterion is satisfied by the assumptions in Theorem 3.1. In addition, given these

assumptions, the product of the s2 and s1 coefficients minus the s0 coefficient is(
d4ρ2q2

rR
2J1(2a)

)(
2V 2

c J0(a)2

ω3ρ2

)
plus a nonnegative term. As this difference is always

positive, the second criterion is also satisfied. Therefore the Jacobians (3.39) and

(3.40) are Hurwitz given the assumptions in Theorem 3.1. As such, both equilibria

(3.37) and (3.38) are exponentially stable. By applying Theorem 10.4 from [40] to

this result, we conclude that the error system (3.30)–(3.32) has two distinct, expo-

nentially stable periodic solutions within O(1/ω) of the equilibria (3.37) and (3.38)

defined by

r̃attri
c (τ) = ρ+ r̃2πeqi

c (τ) (3.42)

θ̃attri(τ) = (−1)(i−1)π

2
+ θ̃2πeqi (τ) (3.43)

eattri(τ) = −qr(R2 + ρ2) + e2πeqi (τ) (3.44)
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for i ∈ {1, 2} where r̃2πeqi

c (τ), θ̃2πeqi (τ), e2πeqi (τ) are periodic with period 2π and

are O(1/ω). This indicates that the distance between the vehicle center rc and the

source r∗ converges to within O(1/ω) of the value ρ =
√

VcJ0(a)
2cqrRJ1(a)

, defining the

annulus in Theorem 3.1. As the attractive solution of e is a periodic function within

O(1/ω) of −qrR2− VcJ0(a)
2cRJ1(a)

, the sensor reading J(t) converges to a periodic function

within O(1/ω) of f ∗ − qrR2 − VcJ0(a)
2cRJ1(a)

. To prove the last part of the theorem, we

first note that, while the error system (3.30)–(3.30) has three states, the (shifted)

physical system from which the error system was derived has four, the complex

valued r̂ and the real valued θ̂ and e. To study the attractive solutions of r̂c, and

thus xc and yc, we recall r̂c = −r̃cexpjθ∗ and thus we start by determining first the

θ∗ part of the attractor solution from

dθ∗

dτ
= −Vc

ω

sin(θ̃ + a sin(τ))

r̃c

. (3.45)

We substitute the attractor solution (3.42)–(3.44) of the error system2 and find

dθ∗
attr1

dτ
= −Vc

ω

sin(π
2

+ θ̃2πeq1 (τ) + a sin(τ))

ρ+ r̃2πeq1
c (τ)

(3.46)

= − 1

ω

Vc

ρ

(
1 +

(
cos

(
θ̃2πeq1 (τ) + a sin(τ)

)
− 1

))(
1− r̃2πeq1

c

ρ+ r̃2πeq1
c

)
(3.47)

= − 1

ω

Vc

ρ

1 +
(

cos
(
θ̃2πeq1 (τ) + a sin(τ)

)
− 1

)
− r̃2πeq1

c

ρ+ r̃2πeq1
c

− r̃2πeq1

c

ρ+ r̃2πeq1
c

(
cos

(
θ̃2πeq1 (τ) + a sin(τ)

)
− 1

) (3.48)

= − 1

ω

Vc

ρ

1 + α2πeq1 (τ)

 (3.49)

where

α2πeq1 (τ) = −2 sin2

(
θ̃2πeq1 (τ) + a sin(τ)

2

)

− r̃2πeq1

c

ρ+ r̃2πeq1
c

cos
(
θ̃2πeq1 (τ) + a sin(τ)

)
(3.50)

2We substitute only the solution around the first equilibrium (3.37) as the derivation with the
use of the other solution is nearly identical.
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is a periodic function with period 2π and is O
((
O(1/ω)+a

)2
)

+O(1/ω) = O(a2)+

O(1/ω). Therefore

θ∗
attr1 (t) = −

∫ t

0

Vc

ρ
dt̂− Vc

ρ

∫ t

0
α

2π
ω

eq1

(t̂)dt̂− γeq1 (3.51)

= −Vc

ρ
t− Vc

ρ

∫ t

0
α

2π
ω

eq1

(t̂)dt̂− γeq1 (3.52)

= −Vc

ρ
t− Vc

ρ

∫ t

0

(
αeq1

µ + α
2π
ω

eq1

0 (t̂)
)
dt̂− γeq1 (3.53)

= −Vc

ρ
(1 + αeq1

µ )t− Vc

ρ
β

2π
ω

eq1

0 (t)− γeq1 (3.54)

where γeq1 is a constant, αeq1
µ = 1

2π

∫ 2π
0 α2πeq1 (τ)dτ is the mean of α

2π
ω

eq1
(t) and is

O(a2) +O(1/ω), α
2π
ω

eq1

0 (t) = α
2π
ω

eq1
(t)− αeq1

µ is the zero-mean part of α
2π
ω

eq1
(t), and

β
2π
ω

eq1

0 (t) is the integral of α
2π
ω

eq1

0 (t), is periodic with frequency ω and is zero mean.

Both α
2π
ω

eq1

0 (t) and β
2π
ω

eq1

0 (t) are O(a2)+O(1/ω). The corresponding solution to the

movement of the vehicle center r̂c(t) is

r̂attr1
c (t) = −(ρ+ req1

µ + r̃
2π
ω

eq1

c0 (t))exp
j

(
−Vc

ρ
(1+α

eq1
µ )t−Vc

ρ
β

2π
ω

eq1

0 (t)−γeq1

)
(3.55)

where rµ = 1
2π

∫ 2π
0 r̃2πeq1 (τ)dτ is the mean of r̃

2π
ω

eq1

c (t) and is O(1/ω), r̃
2π
ω

eq1

c0 (t) =

r̃
2π
ω

eq1

c − req1
µ is zero mean and O(1/ω). As xc + jyc = r∗ + r̂c the attractive solutions

noted in (3.42)–(3.44) are derived from (3.55).

Simulations: Figure 3.4 depicts four trajectories of the center of a vehicle starting

from two different initial positions. The source produces a map with circular level

sets. In all cases the vehicle converges to an annulus that encircles the source.

The difference in the convergence of the trajectories to the annulus is due to the

value of the d parameter. The radius of the convergent annulus is about 0.14 which

corresponds to estimated ρ value of 0.1392. Even though our main theorem is for

maps with circular level sets, the same source seeking scheme works well also for

maps with elliptical level sets, as shown in Figure 3.5. As in the case of circular

level sets, the d value affects the solution to which the vehicle will be attracted. In

the case of circular level sets, the value of d affects whether the vehicle ultimatly

goes clockwise or counter clockwise around the source. However, unlike the case of

the circular level sets, the d value affects both the shape and number of attractors.

More details can be found in Section 3.6.
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Figure 3.4: Source emits a signal with circular level sets.

(a) Four trajectories of the vehicle center are shown starting from two different initial
conditions. All trajectories converge to the annulus shown in (b). The sinusoidal
path that the vehicle center follows is clearly seen in the close up (c). For all
simulations Vc = 0.1, c = 100, a = 0.5, ω = 40, R = 0.1, h = 1, f∗ = 0, qr = 1.
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Figure 3.5: Source with elliptical level sets.

(a) Four trajectories of the vehicle center are shown starting from different initial
conditions. The trajectories converge to either of the two attractors shown in (b)
(The other two attractors of the system are the mirror images of the two shown).
The sinusoidal path of the vehicle center is seen in the zoomed in (c). Increases in
the value of d cause the change in the shape of the attractor from twisted figure
eight to rotated ellipse. For all simulations Vc = 0.1, c = 100, a = 0.5, ω = 40,
R = 0.1, h = 1, f ∗ = 0, qr = 1.5, qp = 0.25.
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Figure 3.6: Effect of the parameter a on the motion of the vehicle center.
The vehicle center makes sharper and more pronounced turns when it moves along
the attractor as the parameter a is increased. The radius of the attractor ρ also
decreases slightly. The other simulation parameters are Vc = −.1, c = 100, d =
600, ω = 40, R = 0.1, h = 1.f ∗ = 0, qr = 1.

The a parameter, which governs the amplitude of the probing signal, has a subtle

effect on the motion of the center. While increasing a makes the sensor swing wider,

it does not have such a dramatic effect on the center movement. A higher a results

in a slightly smaller attractor radius ρ and causes the vehicle center to make sharper

and more pronounced turns instead of gently swaying while moving forward as seen

in Figure 3.6.

Remark 3.1: Figure 3.4 clearly displays two distinct behaviors of the source seek-

ing scheme. For large d the vehicle undergoes a “roundabout” transient but settles

quickly into the residual annulus. For smaller values of d the vehicle goes straight

to the source but overshoots it many times before settling into the residual annulus.

The overshoot is the result of being “too good” at turning the vehicle towards the

source and of being constrained to maintain a positive velocity Vc (as in aircraft).

The trade-off between the two types of behavior indicate that the user can employ

the scheme in two ways: with low d for “chase/pursuit” tasks and with d large for
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“hovering/coverage/surveillance” tasks.

Remark 3.2: Based on the last statement of Theorem 3.1, the attractive solutions

to the physical system, derived from the stable solutions of the error system, have

two competing frequencies. The first frequency, (in the t time variable), is ω and

comes from the averaging analysis of the error system and perturbs both the ampli-

tude and phase of r̂c. The second frequency comes from the dominant term in the

time-varying part of the exponent of r̂c(t),
Vc

ρ
(1+αeqi

µ ) and drives the vehicle around

the attractive annulus. As ρ =
√

VcJ0(a)
2cqrRJ1(a)

consists of the square root of the product

of Bessel functions and other gains, including qr which the designer has no control

over, it is highly likely that ρ is irrational. Thus it is also highly likely that ω,

which the designer does have control over, and Vc

ρ
(1+αeqi

µ ) are incommensurate and

therefore the attractive solution of the physical system, though it remains within a

bounded annulus centered around the source, is not a periodic orbit.3

3.4.2 Collocated Sensor

One of the assumptions of Theorem 3.1 requires R to be strictly positive. This

rules out the possibility of a sensor collocated with the vehicle center. However,

when the washout filter’s time constant is sufficiently small, as in Figure 3.7, namely

when the washout filter acts approximately as a differentiator, the scheme retains

the same stability properties of the previous scenario with a non-collocated sensor.

As we shall see in simulations, the price to be paid for collocating the vehicle’s sensor

and center is that the vehicle needs to be capable of making much sharper turns.

Theorem 3.2 Consider the following system

ṙc = Vce
jθ (3.56)

θ̇ = aω cos(ωt) + cξ sin(ωt)− dξ2 sin(ωt) (3.57)

εξ̇ = −ξ − qrVc

(
(r̄c − r̄∗)expjθ + (rc − r∗)exp−jθ

)
(3.58)

J = f ∗ − qr|rc − r∗|2 (3.59)

3We use the term highly likely as the set of rational numbers is countable rendering it a null
set in the sense of Lebesgue measure in R.
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Figure 3.7: Block diagram of source seeking via tuning of angular velocity when the
sensor is collocated with the vehicle center.

where c, d, Vc, qr > 0 and the parameter a is chosen such that J1(a), J0(a), J1(2a) > 0.

For sufficiently large ω and sufficiently small ε� 1/ω, if the initial conditions rc(0),

θ(0), ξ are such that the following quantities are sufficiently small

||rc(0)− r∗| − ρJ | , |ξ(0)|

either
∣∣∣θ(0)− arg(rc(0)− r∗) + π

2

∣∣∣ or
∣∣∣θ(0)− arg(rc(0)− r∗)− π

2

∣∣∣
where

ρJ =

√√√√ J0(a)

2J1(a)cqr
,

then the trajectory of the vehicle center rc(t) locally exponentially converges to, and

remains in, the annulus

ρJ −O (1/ω)−O (ε) ≤ |rc − r∗| ≤ ρJ +O (1/ω) +O (ε) .

and the sensor reading J(t) locally exponentially converges to a periodic function

within O(1/ω) +O(ε) of

f ∗ − J0(a)

2cJ1(a)
.
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Proof: We proceed as in 3.4.1 by shifting the variables as in (3.19)–(3.21) and

employing the error variables (3.28), (3.29). The equations of motion for the error

system are

dr̃c

dτ
= −Vc

ω
cos(θ̃ + a sin(τ)) (3.60)

dθ̃

dτ
= cξ sin(τ)− dξ2 sin(τ) +

Vc

ω

sin(θ̃ + a sin(τ))

r̃c

(3.61)

ε
dξ

dτ
= −ξ +

2Vcqr
ω

r̃c cos(θ̃ + a sin(τ)) . (3.62)

When ε is sufficiently small we can apply the singular perturbation method. We

define the quasi-steady state

ξqs =
2Vcqr
ω

r̃c cos(θ̃ + a sin(τ)) , (3.63)

the reduced model

dr̃red
c

dτ
= −Vc

ω
cos(θ̃red + a sin(τ)) (3.64)

dθ̃red

dτ
=

2Vccqr
ω

r̃red
c cos(θ̃red + a sin(τ)) sin(τ)

−4V 2
c dq

2
r

ω
r̃red2

c cos2(θ̃red + a sin(τ)) sin(τ) +
Vc

ω

sin(θ̃red + a sin(τ))

r̃red
c

,(3.65)

and the boundary layer model

dξbl

dτ̃
= −ξbl . (3.66)

We see that the origin is an exponentially stable equilibrium of the boundary layer.

The use of averaging shows that the reduced model has an exponentially stable

periodic solution. The averaged reduced model of the error system is

dr̃red−ave
c

dτ
= −VcJ0(a)

ω
cos(θ̃red−ave) (3.67)

dθ̃red−ave

dτ
=

Vc

ω
sin(θ̃red−ave)

(
J0(a)

r̃red−ave
c

− 2J1(a)cqrr̃
red−ave
c

)

+
2V 2

c J1(2a)dq
2
r

ω
r̃red−ave2

c sin(2θ̃red−ave) . (3.68)
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The equilibria of (3.67), (3.68), similarly to the equilibria, (3.37), (3.38) of the

system (3.34)–(3.36) are

[
r̃red−aveeq1

c , θ̃red−aveeq1
]

=


√√√√ J0(a)

2J1(a)cqr
,
π

2

 (3.69)

[
r̃red−aveeq2

c , θ̃red−aveeq2
]

=


√√√√ J0(a)

2J1(a)cqr
,−π

2

 . (3.70)

The Jacobians which correspond to (3.69), (3.70) are

Aeq1 =
Vc

ω

 0 J0(a)

−4J1(a)cqr −VcJ1(2a)J0(a)dqr

J1(a)c

 (3.71)

Aeq2 =
Vc

ω

 0 −J0(a)

4J1(a)cqr −VcJ1(2a)J0(a)dqr

J1(a)c

 . (3.72)

Also similarly to the noncollocated case, the characteristic polynomial is the same

for both Jacobians

s2 +
Vc

ω

VcJ1(2a)J0(a)dqr
J1(a)c

s+
(
Vc

ω

)2

4J0(a)J1(a)cqr . (3.73)

This polynomial produces stable eigenvalues as the coefficients are both positive ac-

cording to the assumptions. As both Jacobians are Hurwitz, both equilibria (3.69)

and (3.70) are exponentially stable. Using the same reasoning as in 3.4.1, we con-

clude that, for sufficiently large ω, the reduced model of the error system (3.60)–

(3.62) has two distinct, exponentially stable periodic solutions within O(1/ω) of the

equilibria (3.69) and (3.70). By using the same method in the nonlinear system

section of [5] to shift the system about these solutions and noting that the bound-

ary layer is also exponentially stable we conclude that, for sufficiently small ε, the

full error system has two distinct, exponentially stable periodic solutions within

O(1/ω) + O(ε) of the equilibria (3.69) and (3.70). This indicates that the distance

between the vehicle center rc and the source r∗ converges to within O(1/ω) + O(ε)

of the value ρJ =
√

J0(a)
2J1(a)cqr

, defining the annulus in Theorem 3.2.

Remark 3.3: Note that the convergence rate of the system depends on the roots

of the characteristic polynomial of the Jacobian of the average system. The best

time response of the system is achieved when the system is critically damped, i.e.
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when d = 4
VcJ1(2a)

√
J3
1 (a)c3

J0(a)qr
and both roots are s1,2 = −2Vc

ω

√
J0(a)J1(a)cqr. This gives

a convergence rate of e−2Vc

√
J0(a)J1(a)cqr t.4 This “best decay rate” can be understood

as a performance limit. However, as this rate and the corresponding value of d both

depend on qr, (which is unknown), one cannot provide an exact recipe for the best

parameter choices. Even so, based on the above discussion, we can say that sharp

signal fields (high qr) improve the convergence rate, as well as high forward veloc-

ity Vc, high gain c, and to some extent a unity probing amplitude a. The optimal

damping gain d grows with c but decays with Vc and qr.

Simulations: Figure 3.8 shows the trajectory of a vehicle with a sensor collocated

on the vehicle center. The washout filter approximates J̇ . As in the case of a non-

collocated sensor, the vehicle converges to an annulus around the source. However,

the motion of the vehicle center differs. With a collocated center and sensor, the

entire vehicle needs to be employed in the probing of the field instead of the tip of

the vehicle alone. This leads to the“lawn mowing” pattern seen in the figure. Lower

values of the parameter c can certainly lessen this pattern, however it will always

be evident to some extent given the necessity of some sort of probing.

3.4.3 Unstable Solutions

Having discussed the (locally) attractive solutions of the closed-loop system,

we now discuss its unstable solutions. The existence of unstable solutions is seen

in Figure 3.9. It shows trajectories stemming from a very small initial orientation

interval. While moving through this interval, the trajectories switch from turning to

the right to turning to the left. This indicates that there is some theoretical initial

orientation (though not possible in a digital computer) that result in the vehicle

never turning around. It is also indicated in the fact that the (r̃c, θ̃, e) average error

system has two distinct equilibria, both of which are exponentially stable. The

regions of attraction of these equilibria are separated by two separatrices, θ̃ave = 0

and θ̃ave = π, which define the following (unstable) solutions of the averaged error

4Note that we went from the τ time scale back to the t = τ/ω timescale.
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Figure 3.8: A simulation with a collocated sensor (R = 0) and ε = .001.

(a) The trajectory of the vehicle center converges to an annulus around the source
(at the origin). (b) A zoomed in section of the vehicle trajetory, displaying the
vehicle motion more clearly. The other simulation parameters are Vc = 0.1, c =
105, d = 10, a = 0.5, ω = 40, f∗ = 0, qr = 1.

system (3.34)–(3.36):

θ̃ave(τ) = 0 (3.74)

r̃ave
c (τ) = r̃ave

c (0)− VcJ0(a)

ω
τ (3.75)

eave(τ) = 2qr

(
r̃ave
c (0)RJ0(a)−

R2 + r̃ave2

c

2
− VcJ0(a)

h

(
r̃ave
c (0)−RJ0(a)

)
−V

2
c J

2
0 (a)

h2

)(
1− e−

h
ω

τ
)

+
2qrVcJ0(a)

ω

(
r̃ave
c (0)−RJ0(a)+

VcJ0(a)

h

)
τ − qrV

2
c J

2
0 (a)

ω2
τ 2

+eave(0)e−
h
ω

τ (3.76)

and

θ̃ave(τ) = π (3.77)

r̃ave
c (τ) = r̃ave

c (0) +
VcJ0(a)

ω
τ (3.78)
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Figure 3.9: An unstable solution.
Five trajectories are shown starting from the same initial position but each with
a slightly different initial orientation ranging from θ(0)4 = .9335 to θ(0)5 = .9436.
They each turn around at some time t. In simulations, numerical error always
induces a turn. However, in theory, there does exist a solution which goes to infinity.
The simulation parameters are Vc = 0.1, c = 100, d = 0, a = 0.5, ω = 40, R =
0.1, h = 1, f∗ = 0, qr = 1.

eave(τ) = 2qr

(
r̃ave
c (0)RJ0(a) +

R2 + r̃ave2

c

2
− VcJ0(a)

h

(
r̃ave
c (0) +RJ0(a)

)
+
V 2

c J
2
0 (a)

h2

)(
e−

h
ω

τ − 1
)

−2qrVcJ0(a)

ω

(
r̃ave
c (0) +RJ0(a)−

VcJ0(a)

h

)
τ − qrV

2
c J

2
0 (a)

ω2
τ 2

+eave(0)e−
h
ω

τ . (3.79)

These separatrices θ̃ave = 0 and θ̃ave = π partition the phase space R+× [−π, π]×R
of the system and separate the equilibria of the averaged error system, (3.37), (3.38).

The behavior of the first separatrix is characterized by r̃ave
c decreasing along θ̃ave = 0,

while the behavior of the second separatrix is characterized by r̃ave
c increasing along

θ̃ave = π. Note the discontinuity in dθ̃ave

dτ
when r̃ave

c = 0 and that the equilibria are

away from this discontinuity. The effect of the discontinuity is a jump from the first

solution to the second at τ = ω
VcJ0(a)

r̃ave
c (0). While the separatices define lines in

the two-dimensional (r̃ave
c , θ̃ave) subspace, Figure 3.10 shows the manifold (surface)
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Figure 3.10: Set of unstable solutions.
Blue: The part of “head-on” trajectory pointing towards the source. Red: The part
of the “head-on” trajectory pointing away from the source.

those lines create in (r̂ave
c , θ̂ave) space. Recall r̂ave

c is the vehicle position with respect

to the source and θ̂ave is the vehicle heading. When θ̃ave = 0 the vehicle is heading

directly toward the source, while when θ̃ave = π the vehicle is heading directly away

from the source. Along these paths, the vehicle effectively cannot decide which way

to turn, and thus remains pointing in the same direction for all time, as indicated

by the solutions (3.74)–(3.79). The discontinuity at (x̃ave
c = 0, ỹave

c = 0) = r̃ave
c = 0

can clearly be seen in the figure, as can the jump from the θ̃ave = 0 separatrix to the

θ̃ave = π separatrix. The jump in θ̃, as a result of passing over the origin, is caused

by a reversal of the argument of the vector r̂ave
c and not a jump in actual vehicle

behavior. It is important to realize that, while initial conditions which correspond

to the unstable solutions (3.74)–(3.79) exist, the set of these initial conditions is

measure zero.

3.4.4 Effect of the d Parameter

We now discuss the last term, −dξ2 sin(ωt) of the control law (3.3) for θ̇. The

standard extremum seeking scheme does not contain this term [86]. Its incorporation
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into the scheme was motivated by the need to enable stable hovering around the

source, in addition to convergence towards the source. The effect of this term is

seen in the transient behavior of the vehicle. Without the d term, the vehicle moves

directly toward the source and, having a constant forward velocity, overshoots the

source and turns around. The vehicle continues this behavior and the amount of

overshoot never decreases. Adding the d term perturbs the vehicle off this path.

When d is small the vehicle simply decreases the amount of overshoot each time

it turns around until it settles into the system attractor. As d is increased the

overshooting decreases more rapidly and the vehicle settles into the system attractor

much faster. Examining the averaged error system (3.34)–(3.36) and its equilibria

(3.37), (3.38), we see that the location of the equilibria are independent of d.

dr̃ave
c

dτ
= −VcJ0(a)

ω
cos(θ̃ave) (3.80)

dθ̃ave

dτ
=

1

ω
sin(θ̃ave)

{
VcJ0(a)

r̃ave
− 2cqrRJ1(a)r̃

ave
c

}
(3.81)

deave

dτ
=

h

ω

(
2qrRr̃

aveJ0(a) cos(θ̃ave)− qrR2 − qrr̃ave2 − eave
)

(3.82)

However, upon inspection of the characteristic polynomial (3.41) it is clear that the

eigenvalues depend on d, specifically, when d = 0, the characteristic polynomial

becomes

0 = (ωs)3 + h(ωs)2 +
2V 2

c J0(a)
2

ρ2
ωs+ h

2V 2
c J0(a)

2

ρ2

= (ωs+ h)

(
(ωs)2 +

2V 2
c J0(a)

2

ρ2

)
, (3.83)

thus the system has one stable eigenvalue and two purely imaginary eigenvalues,

rendering it neutrally stable instead of exponentially stable. Thus the exponential

convergence results for the system (3.5)–(3.9) derived in Section 3.4 do not hold

when d = 0. We added the term −dξ2 sin(ωt) to the standard extremum seeking

control law in order to achieve exponential stability of the averaged system, without

changing its equilibria, and from that exponential convergence of the original system.

The effect of the gain d is readily analyzed by the root locus method. The

characteristic equation derived from the characteristic polynomial (3.41) in root
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Figure 3.11: Root locus of parameter d when (a) Vc

R
> h and (b) Vc

R
< h.

locus form is

0 = 1 + d4ρ2q2
rR(a+O(a3))

R(ωs)2 + Vcωs

(ωs+ h)
(
(ωs)2 + 2V 2

c (1+O(a2))
ρ2

)
≈ 1 + d4ρ2q2

rRa
R(ωs)2 + Vcωs

(ωs+ h)
(
(ωs)2 + 2V 2

c

ρ2

) . (3.84)

Figure 3.11 shows the root locus for the cases Vc

R
> h and Vc

R
< h. In both cases

the equilibria change from centers into stable foci and later into stable nodes as d

increases. The phase portrait shown in Figure 3.12 contains stable foci, indicated

by the spirals converging on the equilibria. The phase portrait shown in Figure

3.13 also depicts exponentially stable equilibria. In this case d has been increased

to the point that the eigenvalues are all on the real axis and the equilibria become

stable nodes.

Figure 3.14 shows the effect d has on vehicle behavior. As d is increased the

vehicle behavior changes from being characterized by moving almost directly toward

the source, overshooting and then turning around to being characterized by moving

in circles with decreasing radius around the source. In the first case the distance

between the vehicle and the source oscillates, as expected by the focus equilibrium

in the averaged system. In the second case the distance between the vehicle and the
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Figure 3.13: Phase portrait of averaged system with d large
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Figure 3.14: Both (a) and (b) show the trajectory of a vehicle with the same initial
conditions and same parameters.
The only difference between the two simulations is the value of d. In (a) the value
of d is low, while in (b) the value of d has been increased. The other simulation
parameters are Vc = 0.1, c = 100, d = 100, a = 0.5, ω = 40, R = 0.1, h = 1, qr = 1.

source mainly decreases as would be expected by the stable node equilibrium of the

averaged system.

3.5 System Properties With d = 0

While setting d to zero indicates the system, driven by a map with circular

level sets, is not exponentially convergent, interesting behavior still emerges. In this

section we discuss first the behavior of the vehicle seen when setting d to zero in

the presence of a map with circular level sets. We then consider the behavior of the

vehicle in the presence of maps with elliptical level sets. 5

5Unlike the previous two sections, the behavior discussed in this section has no direct corollary
to the case with a collocated sensor and a washout filter with a small time constant.
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Figure 3.15: Phase portrait of averaged system with d = 0

3.5.1 Circular Level Sets

As stated in Section 3.4.4, the averaged error system with d set to zero, (3.80)–

(3.82), is only marginally stable about the equilibria (3.37), (3.38). Figure 3.15

shows the phase portrait of (r̃ave
c , θ̃ave) when d = 0. The two equilibria are centers

in this case and the orbits surrounding these centers are separated by the separatrices

(3.74)–(3.79) discussed above. The orbits are defined by the relationship W (t) ≡
W (0),∀t ≥ 0, where W is a Lyapunov function

W =
r̃ave2

2ρ2
− ln(r̃ave| sin(θ̃ave)|) . (3.85)

This function is found as an invariant of the system by solving the differential

equation

dθ̃ave

drave
= tan(θ̃ave)

{
r̃ave

ρ2
− 1

r̃ave

}
(3.86)

derived from the quotient of (3.80) and (3.81). The initial conditions of the system

determine which orbit W = const the vehicle travels along. Though the averaging

theory does not allow us to say anything about the original system as the averaged

system (3.80)–(3.82) is not exponentially stable (only neutrally stable), periodic

orbits around the source and the dependence on the initial conditions are both still
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seen in simulations of the original system. Figure 3.16 depicts the trajectory of

the vehicle for d = 0 according to both the averaged system equations and the

original system equations when starting from different initial conditions. As seen,

the original system closely follows the averaged system, but the trajectories are

initial condition dependent.

3.5.2 Elliptical Level Sets

While, in the case of a map with circular level sets the absence of the d term in the

control law eliminates convergence to an annulus about the source and generates

a different “attractor” for each initial condition, the same is not seen when the

map has elliptical level sets. In this case, simulations show convergence to specific

attractors, which are seen in both averaged simulations and full system simulations.

When the map has elliptical level sets instead of circular ones, the definition of

J must be augmented,

J = f ∗ − qr|rs|2 − qp(r2
s + r̄2

s) = f ∗ − (qr + 2qp)x
2
s − (qr − 2qp)y

2
s (3.87)

= f ∗ − qr|rc +Rejθ|2 − qp
((
rc +Rejθ

)2
+
(
r̄c +Re−jθ

)2
)
, (3.88)

where qr > 0, qr ± 2qp > 0. This leads to a modification of ξ, which expressed using

r̃c, θ
∗, θ̂, and e defined by (3.28), (3.23), (3.20) and (3.4) is,

ξ = J − f ∗ − e (3.89)

= −R2
(
qr + 2qp cos

(
2(θ̂ + a sin(ωt)

))
− r̃2

c

(
qr + 2qp cos (2θ∗)

)
+2Rr̃c

(
qr cos

(
θ̂ − θ∗ + a sin(ωt)

)
+ 2qp cos

(
θ̂ + θ∗ + a sin(ωt)

))
− e(3.90)

The shifted error system, now still in four states as the variables θ∗ and θ̂ cannot

be combined, is

dr̃c

dτ
= −Vc

ω
cos(θ̂ − θ∗ + a sin(τ)) (3.91)

dθ∗

dτ
= −Vc

ω

sin(θ̂ − θ∗ + a sin(τ))

r̃c

(3.92)

dθ̂

dτ
=

1

ω
cξ sin(τ) (3.93)

de

dτ
=

1

ω
hξ . (3.94)
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Figure 3.16: Trajectory of the averaged system and the original system with d = 0.
Image (a) depicts two trajectories of the vehicle center according to the original
system equations (one with ω = 20 and the other with ω = 40 and the trajectory of
the vehicle center according to the averaged system equations, all in physical space.
Image (b) depicts the same thing, but with a different initial orientation, and thus
the different resulting “flower pattern”. Image (c) depicts all trajectories in error
coordinates. The other system parameters are Vc = 0.1, c = 50, d = 0, a = 0.5, R =
0.1, h = 1, f∗ = 0, qr = 1.
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The averaged error system is

dr̃ave
c

dτ
= −VcJ0(a)

ω
cos(θ̂ave − θ∗ave) (3.95)

dθ∗
ave

dτ
= −VcJ0(a)

ω

sin(θ̂ave − θ∗ave)
r̃ave
c

(3.96)

dθ̂ave

dτ
= − 1

ω
c

2RJ1(a)r̃
ave
c

(
qr sin(θ̂ave − θ∗ave) + 2qp sin(θ̂ave + θ∗

ave

)

)

−2R2J1(2a)qp sin(2θ̂ave)

 (3.97)

deave

dτ
=

1

ω
h

−R2(qr + 2J0(a)qp cos(2θ̂ave))− r̃2
c

(
qr + 2qp cos

(
2θ∗

ave
))

+2RJ0(a)r̃
ave
c

(
qr cos(θ̂ave − θ∗ave) + 2qp cos(θ̂ave + θ∗

ave

)

)
− eave

 .(3.98)

This averaged system cannot be simplified to three states as in the case of circular

level sets, nor does it have an equilibrium to analyze (in the present coordinates),

though it does have unstable solutions characterized by

θ̂ave = n
π

2
(3.99)

θ∗
ave

= θ̂ave +mπ (3.100)

where n and m are integers. However, the evolution of the original system closely

matches the evolution of the averaged system in simulations. Figure 3.17 shows the

initital positions of the vehicle and the attractor to which the trajectories converge

for simulations of both the original system (for ω = 20 and ω = 40) and the averaged

system. Each initial condition settles to one of two symmetric attractors. The shape

of the attractor is the same in all three situations, which indicates the averaged

system closely approximates the actual system. However, the initial conditions alone

do not determine into which of the two attractors the system settles. By changing

the value of ω, the system sometimes settles to the other attractor. This behavior

of settling to one of two distinct attractors is seen again and again in simulations

of the system indicating that when d = 0 and the system map has elliptical level

sets, there exist convergent attractors of the system, though this is not seen when

the system map has circular level sets.
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Figure 3.17: Initial conditions and attractors.

Simulations for d = 0 and a range of initial positions are shown. Image (a) depicts
the attractor “pair” to which the trajectory of the vehicle center converges. The
simulations evolve according to the original system equations with ω = 20 and
ω = 40 and according to the averaged system equations. Image (b) depicts a zoomed
in version of image (a). The source is located at the origin. The other system
parameters are Vc = 0.1, c = 100, a = 0.5, R = 0.1, h = 1, f∗ = 0, qr = 1.6, qp = 0.3.

3.6 System Properties with Elliptical Level Sets

and d > 0

As mentioned in Section 3.4.1, the value of d affects the general shape, size and

number of the system attractors when the system map has elliptical level sets and

does not affect the shape, size or number when the system map has circular level

sets. In the case of circular level sets, the two system attractors are clockwise and

counter clockwise perturbed circular orbits. Figure 3.18 shows the progression of

system attractors in the case of elliptical level sets as d increases in value. The

attractor progression starts with d = 0 and increases to very large d values. While

d is small to medium, its increase causes the attractor to move away from the origin

and shrink in vertical size - the perturbed figure-eight is being pulled and squashed.

When d is large enough, we start seeing attractors that look like elliptical orbits. As

d continues to increase, these orbits rotate toward the orientation of the map level

sets while decreasing in size. Once these orbits reach that orientation, they continue
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to rotate, but now start increasing in size. Figure 3.19 shows another progression of

attractors. When d is small the system only exhibits two attractors which resemble

perturbed figure-eights. When d is medium valued, we see four different attractors,

two perturbed figure eights (smaller than the two seen for small d) and two rotated

elliptical orbits. When d is large, we once again find only two attractors, this time

two elliptical orbits which are smaller and at a different orientation than the two

seen for medium d.

We already know that the Vc parameter affects the size, but not the shape of the

attractors in the case of circular level sets. Figure 3.20 shows that, in the case of

elliptical level sets, not only does Vc affect the size of the system attractors, it also

affects the shape. As Vc increases the vertical size of the attractor first increases, then

decreases and finally increases again. The shape of the attractor is first stretched,

then squashed and pulled, then stretched again.

3.7 Conclusion

We have shown the results of applying extremum seeking to source seeking with

nonholonomic autonomous agents which are denied postion information. We have

proved local convergence to an “orbit-like” attractor around the source when the

signal map is quadratic with circular level sets and characterized non-local behaviors,

including a zero-measure set of unstable trajectories. Simulations show convergent

vehicle behavior for elliptical level sets as well.

Future companion publications will present applications to other scenarios, in-

cluding tracking diffusive sources, extensions to 3-D [24, 21], extensions to fish-like

locomotion models, and experimental results with prototype mobile robots and un-

derwater vehicles which move according to the developed control law and track light

or sound sources.
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Figure 3.18: System attractors as d progresses.

Simulations for various d and a source located at the origin. (a) As d increases,
the attractor crossing in x, y space moves further from the origin while the attractor
shape decreases in vertical size. (b) As d continues to increase, the attractors change
from morphed figure-eights to rounded orbits. These orbits rotate toward the system
map level set orientation and decrease in size as d continues to increase. (c) For large
enough d, while the attractor orbits continue to rotate as d increases, the size stops
decreasing and starts increasing. The other system parameters are Vc = 0.1, c =
100, a = 0.5, ω = 40, R = 0.1, h = 1, f∗ = 0, qr = 1.5, qp = 0.25.
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Figure 3.19: Initial conditions and attractors.
Simulations for d = 100, 1000, 5000 a range of initial vehicle positions and a source
located at the origin are shown. (a) The two attractors which exist when d is small.
(b) The four attractors that are seen when d is medium. (c) The two attractors
which exist when d is large. The other system parameters are Vc = 0.1, c = 100, a =
0.5, ω = 40, R = 0.1, h = 1, f∗ = 0, qr = 1.5, qp = 0.25.
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Figure 3.20: System attractors as Vc progresses.

Simulations for various Vc and a source located at the origin. (a) As Vc increases
in the range 0.003 ≤ Vc ≤ 0.01 the attractor increases in size but does not change
the general shape. As Vc increases in the range 0.01 ≤ Vc ≤ 0.1 the attractor
changes shape and increases in horizontal size. (b) As Vc increases in the range
0.06 ≤ Vc ≤ 0.1 the attractor decreases in vertical size and increases in horizontal
size. As Vc increases in the range 0.1 < Vc the attractor does not change the general
shape, but increases in size. The other system parameters are c = 100, d = 10, a =
0.5, ω = 40, R = 0.1, h = 1, f∗ = 0, qr = 1.5, qp = 0.25.
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Applications of Nonholonomic

Source Seeking With Tuning of

Angular Velocity

4.1 Abstract

We present results for autonomous vehicles operating in GPS-denied environ-

ments while performing several different tasks. These vehicles employ extensions of

extremum seeking to accomplish their goals. Previously, extremum seeking has suc-

cessfully been applied to vehicles seeking the source of some signal, while operating

in such environments. This chapter considers the objectives of tracking a diffusive

signal, tracing a level set of a signal field, and modification of the algorithm for use

on a vehicle with limited movement capabilities. We present each scenario, detail

each control scheme and, in addition, present simulation results.

4.2 Introduction

Research directed at the many applications that make use of autonomous ve-

hicles is wide, varied and constantly growing. In particular, the field of research

dealing with vehicles deprived of position information is rapidly gaining interest.

81
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These vehicles must navigate and perform a desired task without the use of GPS

or inertial navigation. The lack of available positioning information can be due to

the costs of implementation and computation, or due to the operating environment

where such information is unavailable, such as urban, underground and underwater

environments. While many groups have used the extremum seeking method outside

the field of autonomous vehicles, including [61], [60], [17], [73], [14], [74], [28], [48]

and [88], the method has also successfully been applied to autonomous vehicles op-

erating in such environments when the objective is to locate a target which emits

some signal [86, 20]. Chapter 3 presents theoretical results for the basic scheme,

while this chapter extends those results by presenting the application of extremum

seeking to vehicles with different objectives and different configurations from those

which the theory covers. The objectives we consider here are tracking a diffusive

signal, tracing a level set of a signal field, and modification of the algorithm for use

on a vehicle with limited movement capabilities.

Past work with source seeking has focused on signal fields which are static with

respect to the target emitting them. The signal field does not change its shape in

time, and it moves in unison with the target. While this is a valid representation

of certain types of signals (light sources, magnetic fields), there are other types of

signals which do change in time. The type of signal we focus on in this chapter is a

diffusive signal. In this scenario, the target emits a chemical or biological agent into

its surrounding medium as it moves around. This agent, governed by a diffusion

equation, disperses throughout the medium. A source modeled in such a way allows

for the possibility of local extrema within the signal field. When the target lingers

in one location, the local concentration increases and becomes a local maximum

when the target leaves. In addition, at different locations around the signal field,

the concentration can either be decreasing or increasing in time. The concentration

along the target trajectory increases as the target passes over, and then decreases

as the signal diffuses away. The concentration in areas adjacent to the trajectory

increases as the signal diffuses toward the area and then starts to decrease after

enough time has passed. The ability to track this type of process is important for

plume tracking applications and has been explored in [62, 58, 32]. That work makes
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use of multiple sensors on a single agent or multiple agents communicating between

each other. Extremum seeking allows a single autonomous vehicle with only one

sensor to track the target, even though the signal field is so complex. In addition to

considering diffusive sources, we also consider diffusive anti-sources which motivate

our results for “cleaning-up” after the target as the vehicle follows it. In this setup,

the vehicle can release a cleaning agent which counters the signal that the target

releases, thus cleaning while still continuing to track the target.

While oftentimes the objective is to locate the source of a signal, the objective

can also be to provide more information about a signal field. One way of doing

this is to trace out level sets of the field. There are many ways of performing this

task, as seen in [37]. However, these methods often rely on position information,

complex communication or multiple coordinating agents. Extremum seeking pro-

vides a simple yet effective solution that has no need for GPS information or outside

communication, and can be performed by a single autonomous agent. It is also de-

sirable over other methods because it can both find the level set and track it. Other

methods must start relatively close to the level set in order to track properly.

Extremum seeking employs a periodic probing motion of the vehicle to search the

signal space, which then provides the necessary information to orient the vehicle in

the correct direction. There exist applications for which this probing motion is unde-

sirable, in which case extremum seeking can still be applied via a slight modification.

This modified method separates the desired tuning of the vehicle orientation from

the undesirable periodic probing. The concept behind decoupled extremum seeking

is that the sensor can move along the vehicle body, providing the necessary probing

motion, while the vehicle itself moves in a smooth fashion. Implementing decoupled

extremum seeking does not hinder the vehicle’s capability to perform any of the

aforementioned tasks, including source seeking, tracking diffusive signals, and level

set tracing.

Section 4.3 provides an overview of the basic extremum seeking (source seeking)

algorithm. Sections 4.4, 4.5 and 4.6 present results for tracking diffusive sources,

tracing level sets, and implementing decoupled extremum seeking respectively. We

conclude in section 4.7 with our future intentions.
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4.3 Overview of Extremum Seeking for

Autonomous Vehicles

The extremum seeking method employs periodic probing to perform non-model

based gradient estimation [5]. The vehicles to which we consider applying extremum

seeking are kinematically constrained, must navigate to perform a desired task, and

have no available position information. Considering these constraints, one of the

advantages of the method is being able to simultaneously solve a non-holonomic

steering problem while also solving an adaptive optimization problem.

The extremum seeking method applied to source seeking works under the as-

sumptions that a target creates some signal field and that the vehicle can sense that

field. The shape of the signal field is unknown, though the strength of the signal is

assumed to be a maximum at the target location and to decay with distance away

from the target. This signal field could be electromagnetic, acoustic, chemical, bio-

logical or any other signal that displays the assumed properties. A vehicle employing

extremum seeking uses only the scalar measure of the signal field at the position of

its sensor (at the tip of the vehicle) as the input to the control loop. The vehicle

uses a periodic probing motion to search the space and a bias term to turn in the

correct direction. This combination allows it to perform on-line gradient estimation

to converge to the vicinity of the target. As previously mentioned, all of this is

achieved without the use of positioning information such as GPS or inertial navi-

gation, and without the use of communication with other entities. Therefore this

method is extremely useful in environments, such as urban, underground and under-

water environments, where GPS is unavailable, and in applications where inertial

navigation is too expensive to implement.

Figure 4.1 shows a general nonholonomic vehicle configuration, also known as

the unicycle model. The vehicle moves with forward velocity v, heading angle θ,

and angular velocity Ω. The vehicle center and sensor are located at rc and rs

respectively. The sensor must be a nonzero distance R, away from the center.

Throughout this chapter, the vehicles considered are governed by the unicycle
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Figure 4.1: Basic vehicle configuration.
The measure R is the distance between the vehicle center located at rc and the
sensor located at rs. The vehicle moves in the direction θ, with velocity v and
angular velocity Ω.

model with a constant forward velocity, Vc.

ṙc = Vce
jθ (4.1)

This unicycle model with a constant forward velocity is applicable to many agents,

including aircraft. We use extremum seeking to tune the vehicles’ angular velocity

with the basic control law

θ̇ = aω cos(ωt) + c
s

s+ h
[J ] sin(ωt) , (4.2)

where J is the sensor reading, s
s+h

[J ] is a washout filter, and the parameters a, c,

w, h and R are chosen to give desired performance properties. The term aω cos(ωt)

provides the periodic probing to the vehicle, which allows it to continuously search

the signal field and enables the algorithm to determine which way to turn. The

turning is accomplished by the second term, c s
s+h

[J ] sin(ωt), obtained by passing

the sensor signal J through a high-pass filter s
s+h

, then demodulating the filtered

signal by sin(ωt) and multiplying the demodulated signal by the gain c. The sensor

reading, J , is a function of the sensor position rs. In this configuration, the sensor

position, as a function of the vehicle center rc and heading θ, is

rs = rc +Rejθ . (4.3)



86

The first extension we examine, tracking diffusive signals, applies this scheme to

targets which emit a signal which dynamically changes in time and space. The

second extension we examine, tracing level sets, modifies the input to the control

law, while the last extension we present, decoupled sensor architecture, modifies the

control input θ̇.

4.4 Diffusive Source

The previous focus on source seeking has been on targets with signal fields that

remain unchanged in time and space, with respect to the target. However, some

targets emit signals which create more dynamic signal fields. A primary example

of this is a contaminant which diffuses through a medium, be it air or water. This

diffusive field differs from previously studied fields, referred to as static fields, in two

ways. The first way has already been mentioned, a static field remains unchanged

with respect to the source, while the diffusive field changes depending on where the

target has traversed. The next difference is where the signal can be sensed. In a

static field there is a fully connected area surrounding the source where a sensor can

detect the signal. There are no gaps and the shape of this area never changes. This

area is defined solely by the position of the source. However, for a diffusive source,

this area is determined by both the path that the source follows and the time at

which the source passed over a location.

The source will leave a “scent” whereever it goes, which will diffuse into the

surrounding areas. After enough time, the signal will diffuse to a low enough con-

centration that a sensor will not be able to detect it. However, before this low level

is reached, a sensor can still detect the signal after the source has moved away. The

extremum seeking method allows a vehicle to follow this trail to locate and track the

target. Figure 4.2 shows a source moving in two dimensions while leaving behind a

contaminant trail. The concentration is indicated by the shading of the footprint,

where darker shading indicates a higher concentration. The contaminant diffuses

after it has been released, causing its footprint to both widen in space and lighten
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in color. The dynamics of the contaminant are governed by a diffusion equation

∂c

∂t
=

∂2c

∂x2
+
∂2c

∂y2
+ Fδ (x− xtg(t), y − ytg(t)) (4.4)

where c = c(t, x, y) is the concentration of the contaminant at time t and point (x, y),

(xtg(t), ytg(t)), is the position of the target/source at time t, and F , a constant scalar,

is the strength of the point source defined by δ (x− xtg(t), y − ytg(t)). The vehicle,

represented by the arrow, starts out pointing toward the trail. The solid line behind

the arrow shows the path that the vehicle takes as it completes its task. The snake-

like curves in the trail are a product of the sinusoidal perturbation applied directly

to the vehicle, which is required to make the sensor search the space in which it

operates and for extremum seeking to tune the angular velocity. Once the vehicle

finds the trail it continues to turn, “sniff”, while finding the edge of the trail, and

then heads in the correct direction. The top row of Figure 4.3 shows the source,

contaminant, vehicle and vehicle path at a later time in the simulation. The vehicle

continues to use the contaminant trail to follow the source, while being able to follow

turns which the source made. The turns are significant, as the target spends more

time in that area, building up a high concentration, and creating a local maximum

that the vehicle must overcome while tracking. The vehicle correctly continues to

move along the path of the target, and tracking is successful.

A useful extension to contaminant source tracking is contaminant cleaning. A

vehicle that uses the extremum seeking method to follow a source could feasibly clean

as it moves along. The top row of Figure 4.3 depicts a source releasing a diffusive

contaminant as it moves. The bottom row shows the field after the tracking vehicle,

as it moves along, leaves a cleaning agent which counters the contaminant. As

seen, the concentration of the contaminant is reduced while the vehicle continues to

successfully track the target.

4.5 Level Sets

An alternative goal to tracking is to learn more about the signal field in which

the vehicle is operating. One way to accomplish this is to trace out the curves
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Figure 4.2: Sequence of images from a vehicle employing extremum seeking to track-
ing a diffusive signal.
The target moves along creating the footprint defined by the shading. The vehicle
is represented by the arrow.
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which define a specific value of the signal. This curve is referred to as an isoline or

level set. Following one constitutes level set tracing. A simple modification to the

extremum seeking algorithm produces a simple solution for the implementation of

an autonomous vehicles to perform level set tracing. The basic algorithm uses the

sensor reading as the input to the control law (4.2), and as the vehicle moves around

according to this law it maximizes the sensor signal. The control law, modified for

level set tracing, is

θ̇ = aω cos(ωt) + c
s

s+ h
[− |J − Jd|] sin(ωt) . (4.5)

The modified control law uses the absolute value of the difference of the sensor

reading J and the desired level set value Jd. The absolute value is multiplied by a

negative gain (usually unity) before being used in the control loop. As the vehicle

moves, it maximizes −|J − Jd|, which is equivalent to the minimization of the error

between J and Jd, and in turn implies tracking of the desired level set. Figure 4.4 (a)

shows a vehicle tracking a simple elliptical level set. Figure 4.4 (b) shows the signal

value at the vehicle center, indicating the vehicle is closely tracking the correct level

set.

Extremum seeking also allows vehicles to track more complicated signal fields, as

seen in Figure 4.5. This field was constructed with the union of several sources which

emit fields with elliptic level sets. The last two sets of images show what happens

where there are local maxima in the signal field, causing two distinct curves defined

by the same value. Depending of the initial position and orientation of the vehicle,

it will converge one of these two curves defined by Jd.

4.6 Actuated Sensor

The basic vehicle configuration used for extremum seeking assumes the vehicle

itself can readily perform the movement caused by the periodic perturbation used

to search the space, and that this period probing motion can be tolerated in the ap-

plication. In cases where this type of vehicle movement is not desirable, an actuated

sensor can be implemented to decouple the sensor movement from the vehicle center
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movement. Figure 4.6 depicts the sensor moving side to side along the vehicle body

so that the sensor position as a function of heading θ and the angle θs (the angle

between the sensor and the centerline of the vehicle) is,

rs = rc +Rej(θ+θs) . (4.6)

The sensor is actuated according to

θs = a sin(ωt) (4.7)

or

θ̇s = aω cos(ωt) , (4.8)

and the heading control reduces to

θ̇ = c
s

s+ h
[J ] sin(ωt) . (4.9)

The decoupled control law clearly shows that the perturbation aω cos(ωt) no longer

enters directly into the vehicle dynamics, providing for smooth (rather than snaking)

trajectories.

Figures 4.7 and 4.8 show the difference in vehicle trajectories between an actuated

sensor (decoupled sensor) and one that is fixed to the vehicle. Each simulation was

run with exactly the same parameters, the only difference being the actuation of the

sensor. In the basic configuration, Figure 4.7, the center is coupled to the sensor

and the control law follows (4.2). In the modified configuration, Figure 4.8, the

center is decoupled from the sensor motion and the control law follows (4.8) and

(4.9). Figure 4.9 shows the distance from the vehicle center to the target as time

progresses. The difference in slope, and therefore average speed, is a result of the

decoupling of sensor dynamics. With a coupled sensor and center, the vehicle must

itself move side to side which reduces its average forward velocity. This does not

happen when the sensor is actuated, though this extra speed is of course paid for

with the actuation of the sensor.
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4.7 Conclusions and Future Work

Extremum seeking applied to autonomous vehicles allows for the completion of a

variety of tasks, such as source seeking, level set tracing and modification of vehicle

capabilities. Results for basic source seeking are presented in other papers. The

results for some of the remaining applications were presented here with simulations

to illustrate the capabilities of the method. In the future, we plan to highlight the

applications of extremum seeking to collision avoidance, navigating around obstacles

and multiple vehicle and multiple target scenarios. We also plan to present stability

analysis for some of the aforementioned applications and experimental results with

prototype mobile robots and underwater vehicles.

This chapter is in full a reprint of the material as it appears in: J. Cochran,

A. Siranosian, N. Ghods, and M. Krstic, “Source Seeking with a Nonholonomic

Unicycle without Position Measurements and with Tuning of Angular Velocity —

Part II: Applications,” Proceedings of IEEE Conference on Decision and Control,

2007.

The dissertation author was the primary investigator and author of this paper.
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Figure 4.3: Sequence of images from a vehicle tracking a diffusive signal.
The top row shows the target has created a curving footprint which the vehicle
(arrow) follows successfully. The middle row of images picture a source by itself
without a following vehicle moving along and releasing a diffusive contaminant. The
bottom row of images show the reduced footprint resulting from a vehicle tracking
the source and cleaning as it moves along.
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Figure 4.4: (a) Trajectory of a vehicle employing extremum seeking to trace an
elliptical level set. (b) Evolution of the map value at the vehicle center.
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Figure 4.5: Trajectories of vehicles tracing level sets and the evolution of map values
at the vehicle center.
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Figure 4.6: Vehicle configuration for decoupled sensor and center. θs is the angle
between the sensor and the vehicle centerline.
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GPS Denied Source Seeking For

Underactuated Autonomous

Vehicles in 3D

5.1 Abstract

The previous chapters introduced source seeking methods for GPS-denied au-

tonomous vehicles using only local signal measurement and operating in two di-

mensions. In this chapter we extend these results to three dimensions. The 3D

extensions introduce many interesting challenges, including the choice of vehicle

models in 3D, sensor placement to allow probing-based gradient estimation of an

unknown signal field in 3D, the question of what type of gait can be produced in

an underactuated 3D vehicle to allow tuning by single-loop or multi-loop extremum

seeking, and the shape of attractors, which become very complex in 3D. We present

two control schemes which address these questions. The first scheme focuses on

vehicles with a constant forward velocity and the ability to actuate pitch and yaw

velocities. The second scheme employs vehicles with constant forward and pitch ve-

locities and actuate only the roll velocity. Our results include convergence analysis

and simulation results.
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5.2 Introduction

Motivation. The field of study for autonomous vehicles operating without GPS

or inertial navigation is an area of rapidly growing interest. In environments where

GPS is unavailable and inertial navigation is too costly, such as urban, underground

and underwater environments, other methods must be employed to navigate vehicles.

Extremum seeking applied to source seeking has been presented as a method for

autonomous vehicles to locate a target which emits some sort of measurable signal

[22, 86, 20]. This signal could be electromagnetic, acoustic or the concentration

of a chemical or biological agent. The extremum seeking method uses only the

measurement of the signal from the vehicle’s sensor and then employs a periodic

probing movement for the vehicle to navigate the field and locate the target. Results

of applying this method to vehicles operating in two dimensions show its great

potential for use in many applications [23].

Contribution. In this chapter we explore the use of extremum seeking for the

navigation of vehicles operating in three dimensions and present the first solution

to the problem of localization and pursuit of signal sources using only local signal

measurement and without position measurement in three dimensions. The extension

of source seeking from two dimensions to three is interesting for several reasons,

including the choice of vehicle models in 3D, sensor placement to allow probing-

based gradient estimation of an unknown signal field in 3D, the question of what

type of gait can be produced in an underactuated 3D vehicle to allow tuning by

single-loop or multi-loop extremum seeking, and the shape of attractors that are

challenging to characterize in 3D. We choose a model which is easy to relate to

several different types of vehicles, and we explore different types of actuation for

these vehicles.

Literature. Other researchers have considered source seeking problems: [62]

looked at using vehicles modeled as point sources to track vapor emitting sources,

[67] explored pursuit and evasion trajectories, and [58] and [42] looked at coordi-

nation of multiple vehicles for gradient climbing and target tracking respectively.

This work is different in that the vehicle has no knowledge of its position or the

position of the source, there is no communication between it and other entities, and
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it has nonholonomic dynamics. While we apply the extremum seeking methods to

autonomous vehicles, many groups have used the extremum seeking method in their

work outside of this field, including [61] in the soft landing of valve actuators, [60]

and [17] in plasma current profiles for fusion reactors, [73] in non-local stability prop-

erties, [41] in adaptive flow control, [14] in separation control, [74] in active braking

systems, [48] in thermoacoustic coolers, and [88] in human exercise machines.

Models and Control Schemes Designed. We present two control schemes

for actuating an autonomous vehicle operating in three dimensions whose task is to

locate a target which emits a signal that the vehicle can sense. The first scheme

addresses vehicles which have a constant forward velocity and can actuate both yaw

and pitch velocities. We refer to this vehicle as the VYPa (Vehicle Yaw and Pitch

actuated). The second scheme addresses vehicles which also have a constant forward

velocity, as well as a constant pitch velocity, but can only actuate the roll velocity.

We refer to this vehicle as the VeRa (Vehicle Roll actuated).

Organization of the Chapter. We start in Section 5.3 with an overview of

the extremum seeking method applied to source seeking and then continue with

Section 5.4, in which the vehicle model is discussed. Sections 5.5 and 5.8 detail

the VYPa and VeRa control schemes respectively. Sections 5.7 and 5.8 present

simulation results for each scheme. The nonlinearities in these systems give rise to

interesting and complex behaviors. To analytically quantify some of these, Section

5.6 includes a local stability result and Section 5.8 includes further analysis of the

final trajectories seen in simulations of the VeRa scheme. We continue with Section

5.9 where we present the application of the method to level set tracing, a problem

studied in [12]. Section 5.10 concludes the chapter with our intentions for future

work.

5.3 Overview of Source Seeking in 2D

Extremum seeking employs periodic forcing of a plant to perform non-model

based gradient estimation [5]. In its application to autonomous vehicles [22], the

vehicles considered are kinematically constrained and have no position information
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available. It is assumed that a target creates some spatially distributed signal field

whose shape is unknown, though its strength is known to be maximal at the tar-

get and to be decreasing away from it. Extremum seeking employs only a scalar

measurement of the signal at the tip of the vehicle, periodic probing to search the

vehicle’s surroundings, and a demodulating signal that produces a bias input to

turn the vehicle in the correct net direction. This combination has a built-in gradi-

ent estimation capability. One of the method’s successes is simultaneously solving

nonholonomic steering and adaptive optimization problems.

Our previous work was for vehicles in 2D, modeled as the nonholonomic unicycle,

ṙc = vejθ, θ̇ = Ω, where rc is the vector position of the vehicle center, θ is the vehicle

orientation and v and Ω are the forward and angular velocity inputs [20, 23]. These

vehicles are given a constant forward velocity, v = Vc, while the angular velocity

is tuned by extremum seeking, Ω(t) = aω cos(ωt) + c sin(ωt) s
s+h

[J(t)], where a, c, h

and ω are parameters of the control law and J(t) is the signal reading from the

vehicle sensor located at rs = rc + Rejθ. The first term a cos(ωt) is a continuous

periodic excitation of the angular velocity which allows the vehicle to probe the area

and record differences in signal readings. The second term is a bias which turns the

vehicle in the correct net direction and it is in fact an estimate of ∂J(rc, θ)/∂θ.

The gain c is adjusted to make the vehicle’s reaction to the signal field more or

less aggressive. The result of applying this control law to the unicycle model is the

exponential convergence of the vehicle to the vicinity of the signal source [22].

5.4 Vehicle Model

When extending the vehicle model from two dimensions to three, we must con-

sider how to accurately represent a kinematically constrained vehicle which could

support different vehicle configurations. We chose a kinematic model, depicted in

Fig. 5.1(a). This figure shows a vehicle whose actuators, shown as cylinders with

half arrows, can be used to impart surge, yaw, pitch and roll velocities. The center

of the vehicle is labeled rc, the front of the vehicle is labeled rf . The sensor, shown

as a small sphere, is located above rf at rs. Figure 5.1(b) contains a geometric inter-
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Figure 5.1: (a) Pictorial drawing of the 3D vehicle. (b) Graphical interpretation of
vehicle in 3D.

pretation of the drawing in Fig. 5.1(a). In the coordinate system shown, R1 is the

distance between the center rc and the front rf , while R2 is the distance between the

front rf and the sensor rs. The vector between rf and rs is always perpendicular to

the vector between rc and rf . The pitch of the vehicle is defined by α, the azimuthal

angle. The yaw of the vehicle is defined by θ, the polar angle. The third possible

vehicle rotation, roll, is defined by φ, and is measured in the plane containing rfQP

relative to the plane containing rcAB. The surge velocity, Vc, acts in the direction of

rcrf while the pitch velocity V2 acts in the direction of rfrs. The azimuthal velocity

α̇ and polar velocity θ̇, or roll velocity φ̇ are available as control inputs.

The differential equation governing the center of the vehicle model depicted in

Fig. 5.1 is

ṙc = Vc


cos(α) cos(θ)

cos(α) sin(θ)

sin(α)

 (5.1)
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where rc = (xc, yc, zc). The sensor position is

rs = rc +R1


cosα cos θ

cosα sin θ

sinα



+R2


− cosφ sinα cos θ + sinφ sin θ

− cosφ sinα sin θ − sinφ cos θ

cosφ cosα

, (5.2)

where rs = (xs, ys, zs).

This model is used for both control schemes presented. The similarities and

differences will be summarized here and expanded in the next sections. In both

schemes, the surge velocity, Vc, is set to a positive constant. In the first scheme,

applied to the VYPa, the sensor is placed at the tip of the vehicle, i.e., R2 = 0,

so the roll velocity and angle play no role. Extremum seeking is used to tune the

two control inputs, the pitch and yaw velocities. In the second scheme, applied to

the VeRA, the pitch velocity, V2, is also set to a non-zero constant and extremum

seeking only tunes the roll velocity for control. The distance R2 between the rf tip

of the vehicle and rs the sensor, must be nonzero in this case.

5.5 VYPa Vehicles

The first scheme we address is for the Vehicle Yaw and Pitch actuated – VYPa.

This vehicle has a constant forward velocity, Vc, a constant roll angle of zero, and,

as the name indicates, is equipped for actuation of its pitch and yaw velocities. The

sensor is located at the tip of the vehicle, which equates to setting R2 = 0 and

results in rf = rs. Its position with respect to the vehicle center reduces to

rs = rc +R1


cosα cos θ

cosα sin θ

sinα

 . (5.3)

As the surge velocity is constrained to one axis in the body frame and the angular

velocity is always around an axis orthogonal to that of the surge velocity, this is the

3D analog of the unicycle.
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Nonlinear Map
f(xs,ys,zs)

uα

uθ

aαωαcos ωαt

×+
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+
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+
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Figure 5.2: Block diagram of ES control applied to the pitch and yaw velocities of
the VYPa.

Figure 5.2 shows a block diagram of the control applied to the VYPa, with ex-

tremum seeking used to tune the pitch and yaw velocities. When the roll angle is

not actuated, tuning the pitch velocity is equivalent to tuning α̇, and tuning the

yaw velocity is equivalent to tuning θ̇. The designer is free to choose the perturba-

tion amplitudes aα, aθ, the perturbation frequencies ωα, ωθ, the extremum seeking

gains cα, cθ, dα, dθ, and the break frequency h of the filter. It should be noted that,

by construction, ωθ can be the same as ωα. The perturbation amplitude a can be

increased to achieve better performance with flat gradients. The higher the per-

turbation frequencies the more accurate the gradient estimation becomes, however,

with a slower convergence rate. The VYPa model equations remain (5.1), while the

control inputs, following from Figure 5.2, are

α̇ = aαωα cos (ωαt) + sin (ωαt) (cαξ + dαξ
2) (5.4)

θ̇ = −aθωθ sin (ωθt) + cos (ωθt) (cθξ − dθξ
2) (5.5)

φ̇ = 0 (5.6)

where s
s+h

[J ] is a washout filter applied to the sensor reading J .

As usual, the extremum seeking tuning consists of both 1) periodic perturbations,

aαωα cos (ωαt) and −aθωθ sin (ωθt), which continuously probe the signal field, and
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2) bias terms, sin (ωαt) (cαξ + dξ2) and cos (ωθt) (cθξ − dξ2), which turn the vehicle

in the correct direction. The bias terms are composed of the sensor measurement

which has been high-pass filtered, demodulated, and multiplied by the appropriate

gains.

5.6 Convergence of VYPa Vehicle

The dynamics of the closed loop are intricate. The complexity comes from the

trigonometric nonlinearities in the vehicle model, the polynomial nonlinearity in the

signal map, and from the time varying forcing applied by extremum seeking. The

complexity of the system increases compared to the two dimensional case as two

extra states must be added to account for the dynamics in the extra dimension.

We assume the nonlinear map defining the distribution of the signal field is

quadratic and takes the form J = f(rs) = f ∗− qr|rs− r∗|2 where r∗ is the unknown

maximizer, f ∗ = f(r∗) is the unknown maximum and qr is an unknown positive

constant. We define an output error variable e = h
s+h

[J ] − f ∗ where h
s+h

[J ] is a

high-pass filter applied to the sensor reading J , which allows us to express ξ, the

signal from the washout filter, as ξ = s
s+h

[J ] = J − h
s+h

[J ] = J − f ∗ − e. As a

consequence ξ and ė take the following form

ξ = −
(
qr|rs − r∗|2 + e

)
(5.7)

ė = hξ . (5.8)

Before stating our main result, we introduce the set Tδ defined by

Tδ =
{
ρ− δ ≤

√
(xc − x∗)2 + (yc − y∗)2 ≤ ρ+ δ

}
×
{
|zc − z∗| ≤ δ

}
(5.9)

where

ρ =

√√√√ VcJ0(
√

2a)√
2cθqrR1J1(

√
2a)

, (5.10)

and point out that all of the parameters cθ, cα, dθ, dα, h, R1, Vc, qr are positive, the

parameters ωα, ωθ are chosen such that ωα = ωθ = ω and J0(a) and J1(a) are Bessel

functions of the first kind.
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Theorem 5.1 Consider the system defined by (5.1), (5.3)–(5.5) and (5.7), (5.8)

where the parameter a is chosen such that

4Vc J0(
√

2a) >

hR1

4J0(
√

2a)−

(√
2J1(2a) + J1(2

√
2a)

)
J1(
√

2a)

 . (5.11)

For sufficiently large ω, if (xc(0), yc(0), zc(0)) ∈ Tδ for sufficiently small δ > 0, and

if the quantities |α(0)|,
∣∣∣e(0) + qrR

2
1 + VcJ0(

√
2a)√

2cθR1J1(
√

2a)

∣∣∣, and either∣∣∣θ(0)− arctan yc−y∗

xc−x∗
+ π

2

∣∣∣ or ∣∣∣θ(0)− arctan yc−y∗

xc−x∗
− π

2

∣∣∣, are all sufficiently small, then

the trajectory of the vehicle center, rc(t), exponentially converges to, and remains

in the set TO(1/ω), and the sensor reading J(t) converges exponentially to a periodic

function of period 2π/ω within O(1/ω) of

f ∗ − qrR2
1 −

VcJ0(
√

2a)√
2cθR1J1(

√
2a)

. (5.12)

Furthermore, the vehicle center locally exponentially converges to a solution of the

form

xattri
c (t) =x∗+ r̃attri

c (t)cos(θ∗attri(t))cos(α∗attri(t)) (5.13)

yattri
c (t) = y∗+ r̃attri

c (t)sin(θ∗attri(t))cos(α∗attri(t)) (5.14)

zattri
c (t) = z∗+ r̃attri

c (t)sin(α∗attri(t)) (5.15)

where i ∈ {0, 1} and

r̃attri
c (t) =

(
ρ+ r̃eqi

µ + r̃
2π
ω

eqi

c0 (t)
)

(5.16)

θ∗attri(t) = (−1)i

(
Vc

ρ

(
1 + λeqi

µ

)
t

+
Vc

ρ
β

2π
ω

eqi

0 (t) + γeqi

)
(5.17)

α∗attri(t) =
(
α∗eqi

µ + α
∗ 2π

ω

eqi

0 (t)
)

(5.18)

(5.19)

and where r̃eqi
µ , α∗eqi

µ are O(1/ω), r̃
2π
ω

eqi

c0 (t), α
∗ 2π

ω

eqi

0 (t) are periodic with frequency ω,

zero mean and O(1/ω), λeqi
µ is O(a2) +O(1/ω), β

2π
ω

eqi

0 (t) is periodic with frequency

ω, zero mean and O(a2) +O(1/ω) and γeqi is a constant.
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Proof: We start the proof by defining the shifted variables

r̂c = rc − r∗ (5.20)

α̂ = α− a sin(ωt) (5.21)

θ̂ = θ − a cos(ωt) (5.22)

τ = ωt (5.23)

and noting their dynamics

dr̂c

dτ
=
Vc

ω


cos(α̂+ a sin(τ)) cos(θ̂ + a cos(τ))

cos(α̂+ a sin(τ)) sin(θ̂ + a cos(τ))

sin(α̂+ a sin(τ))

 (5.24)

dα̂

dτ
=

1

ω

(
cαξ sin(τ) + dαξ

2 sin(τ)
)

(5.25)

dθ̂

dτ
=

1

ω

(
cθξ cos(τ)− dθξ

2 cos(τ)
)
. (5.26)

We now redefine rc by its polar coordinates

r̃c = |r̂c| =
√
x̂2

c + ŷ2
c + ẑ2

c (5.27)

r̂c = r̃c


cos(α∗) cos(θ∗)

cos(α∗) sin(θ∗)

sin(α∗)

 (5.28)

tan(θ∗) =
ŷc

x̂c

(5.29)

tan(α∗) =
ẑc√

ŷ2
c + x̂2

c

. (5.30)

Using these new definitions, the expression for ξ is

ξ=−qr(r̃2
c +R2

1 + 2r̃cR1ξc)− e (5.31)

ξc = cos(α̂+ a sin(τ)) cos(α∗)cos(θ̂ − θ∗+a cos(τ))

+ sin(α̂+ a sin(τ)) sin(α∗) (5.32)
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and the resulting dynamics are

dr̃c

dτ
=

dx̂c

dτ
x̂c + dŷc

dτ
ŷc + dẑc

dτ
ẑc

r̃c

(5.33)

=
Vc

ω
ξc (5.34)

dα∗

dτ
=

dẑc

dτ

√
ŷ2

c + x̂2
c − ẑc

d
√

ŷ2
c+x̂2

c

dτ

r̃2
c

(5.35)

=
Vc

ω

sin(α̂+ a sin(τ)) cos(α∗)

r̃c

−cos(α̂+ a sin(τ)) sin(α∗)

r̃c

× cos(θ̂ − θ∗ + a cos(τ))

 (5.36)

dθ∗

dτ
=

dŷc

dτ
x̂c − ŷc

dx̂c

dτ

ŷ2
c + x̂2

c

(5.37)

=
Vc

ω

cos(α̂+ a sin(τ))

r̃c cos(α∗)

× sin(θ̂ − θ∗ + a cos(τ)) . (5.38)

The system order can be reduced from six to five by combining θ̂ and θ∗ into the

error variable

θ̃ = θ̂ − θ∗ (5.39)

resulting in

ξc = cos(α̂+ a sin(τ)) cos(α∗) cos(θ̃+ a cos(τ))

+ sin(α̂+ a sin(τ)) sin(α∗) (5.40)

and the error system

dr̃c

dτ
=
Vc

ω
ξc (5.41)

dα∗

dτ
=
Vc

ω

sin(α̂+ a sin(τ)) cos(α∗)

r̃c

−cos(α̂+ a sin(τ)) sin(α∗)

r̃c


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× cos(θ̃ + a cos(τ)) (5.42)
dα̂

dτ
=

1

ω

(
cαξ sin(τ) + dαξ

2 sin(τ)
)

(5.43)

dθ̃

dτ
=

1

ω

(
cθξ cos(τ)− dθξ

2 cos(τ)
)

−Vc

ω

cos(α̂+ a sin(τ)) sin(θ̃ + a cos(τ))

r̃c cos(α∗)
(5.44)

de

dτ
=
h

ω
ξ . (5.45)

(5.46)

As the system equations are periodic in 2π, the average error system is

dr̃ave
c

dτ
=
Vc

ω
ξave
c (5.47)

dα∗ave

dτ
=
Vc

ω

J0(a) sin(α̂ave) cos(α∗ave)

r̃ave
c

−J0(
√

2a) cos(α̂ave) sin(α∗ave) cos(θ̃ave)

r̃ave
c


(5.48)

dα̂ave

dτ
= −2qrR1r̃

ave
c ξ

sin
ave
c

ω

(
cα

−2dα(qr(r̃
ave2

c +R2
1) + eave)

)

+
4dαq

2
rR

2
1r̃

ave2

c ξ2
sin
ave

c

ω
(5.49)

dθ̃ave

dτ
= −2qrR1r̃

ave
c ξ

cos
ave
c

ω

(
cθ

+2dθ(qr(r̃
ave2

c +R2
1) + eave)

)

−4dθq
2
rR

2
1r̃

ave2

c ξ2
cos
ave

c

ω

−J0(
√

2a)
Vc

ω

cos(α̂ave) sin(θ̃ave)

r̃ave
c cos(α∗ave)

(5.50)

deave

dτ
= −h

ω

((
qr(r̃

ave2

c +R2
1) + e

)
+2qrR1r̃

ave
c ξave

c

)
(5.51)
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where1

ξave
c = J0(

√
2a) cos(α∗

ave

) cos(α̂ave) cos(θ̃ave)

+J0(a) sin(α∗
ave

) sin(α̂ave) (5.52)

ξ
sin
ave
c = −J1(

√
2a)√
2

cos(α∗
ave

) sin(α̂ave) cos(θ̃ave)

+J1(a) sin(α∗
ave

) cos(α̂ave) (5.53)

ξ
cos
ave
c = −J1(

√
2a)√
2

cos(α∗
ave

) cos(α̂ave) sin(θ̃ave) (5.54)

ξ2
sin
ave

c = −cos2(α∗
ave

)

4

(
J1(2a) sin(2α̂ave)

+
J1(2
√

2a)√
2

sin(2α̂ave) cos(2θ̃ave)
)

+J1(2a)
sin2(α∗

ave
)

2
sin(2α̂ave)

+2
J1(
√

5a)√
5

sin(2α∗
ave

)

2
cos(2α̂ave) cos(θ̃ave)

(5.55)

ξ2
cos
ave

c = −cos2(α∗
ave

)

4

(
J1(2a) sin(2θ̃ave)

+
J1(2
√

2a)√
2

cos(2α̂ave) sin(2θ̃ave)
)

−J1(
√

5a)√
5

sin(2α∗
ave

)

2
sin(2α̂ave) sin(θ̃ave).

(5.56)

The average system (5.47)–(5.51) has equilibria defined by

[
r̃aveeqi

c , α∗
aveeqi

, α̂aveeqi , θ̃aveeqi , eave
eqi
]

=

ρ, 0, 0, (−1)iπ

2
,−qr

(
ρ2 +R2

1

)  (5.57)

for i ∈ {0, 1}. The equilibria have the corresponding Jacobians

Aeqi =

1Note that
∫ 2π

0
eaj sin(t)dt = 2πJ0(a) and

∫ 2π

0
eaj sin(t)−jtdt = 2πJ1(a).
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1

ω



0 0 0 (−1)i+1m14 0

0 −m22−m23 0 0

0 m32 0 0 0

(−1)im41 0 0 −m44 (−1)im45

−m51 0 0 (−1)im54 −h


(5.58)

where

m14 = Vc J0(
√

2a) (5.59)

m22 =
dα qr R1Vc J0(

√
2a)

cθ J1(
√

2a)

×
(√

2J1(2a)− J1(2
√

2a)
)

(5.60)

m23 = 2cα qr R1ρJ1(a) (5.61)

m32 = Vc J0(a)

√√
2

ρ
(5.62)

m41 = m41a +m41b (5.63)

m41a = 4 cθ qr R1
J1(
√

2a)√
2

(5.64)

m41b = 4
dθ qr Vc J0(

√
2a)

cθ
(5.65)

m44 =
dθ qr R1Vc J0(

√
2a)

cθ J1(
√

2a)

×
(√

2J1(2a) + J1(2
√

2a)
)

(5.66)

m45 = 4 dθ qr R1ρ
J1(
√

2a)√
2

(5.67)

m51 = 2hqr ρ (5.68)

m54 = 2hqr R1ρJ0(
√

2a) (5.69)

The characteristic polynomial for these equilibria is

0 =
(
(ωs)2 +m22ωs+m32m23

)(
(ωs)3 +

(
h+m44

)
(ωs)2

+
(
hm44 +m41m14 −m54m45

)
ωs+ hm14m41a

)
.

The second order polynomial has roots with negative real parts as both m22 and

m32m23 are positive. The third order polynomial has roots with negative real parts
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as, according to the assumptions in Theorem 5.1, all the coefficients are positive

and the product of the s2 and s1 coefficients is greater than the s0 coefficient.

Therefore, the Jacobians (5.58) are Hurwitz given the assumptions in Theorem 5.1.

As such, the equilibria (5.57) are exponentially stable. By applying Theorem 10.4

from [40] to this result, we conclude that the error system (5.47)–(5.51) has distinct,

exponentially stable periodic solutions within O(1/ω) of the equilibria (5.57) defined

by

r̃attri
c (τ) = ρ+ r̃2πeqi

c (τ) (5.70)

α∗attri(τ) = α∗2πeqi (τ) (5.71)

α̂attri(τ) = α̂2πeqi (τ) (5.72)

θ̃attri(τ) = (−1)iπ

2
+ θ̃2πeqi (τ) (5.73)

eattri(τ) = −qr
(
ρ2 +R2

1

)
+ e2πeqi (τ) (5.74)

where r̃2πeqi

c (τ), α∗2πeqi (τ), α̂2πeqi (τ), θ̃2πeqi (τ), e2πeqi (τ) are periodic with period 2π

and are O(1/ω). This indicates the angle α∗ remains within O(1/ω) of mπ and the

distance between the vehicle center rc and the source r∗ converges to within O(1/ω)

of the value ρ =

√
VcJ0(

√
2a)√

2cθqrR1J1(
√

2a)
. The set TO(1/ω) defined in Theorem 5.1 can be

derived from this set. As the attractive solution of e is a periodic function within

O(1/ω) of −qrR2
1 −

VcJ0(
√

2a)√
2cθR1J1(

√
2a)

, the sensor reading J(t) converges to a periodic

function within O(1/ω) of f ∗ − qrR2
1 −

VcJ0(
√

2a)√
2cθR1J1(

√
2a)

. To prove the last part of the

theorem, we first note that, while the error system (5.47)–(5.51) has five states, the

(shifted) physical system from which the error system was derived has six, the three

state vector r̂c, the two angles α̂, θ̂ and e. To study the attractive solutions of r̂c and

thus xc, yc, zc, we start by determining first the θ∗ part of the attractor solution from

dθ∗

dτ
= Vc

ω
cos(α̂+a sin(τ)) sin(θ̃+a cos(τ))

r̃c cos(α∗)
.We substitute the attractor solution (5.70)–(5.74)

of the error solution and find

θ∗attri(t) = (−1)i

(
Vc

ρ

(
1 +λeqi

µ

)
t+

Vc

ρ
β

2π
ω

eqi

0 (t) + γeqi

)
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where γeqi is a constant, λeqi
µ = 1

2π

∫ 2π
0 λ2πeqi (τ)dτ is the mean of2

λ2πeqi (τ) =

−2 sin2
(
θ̃2πeqi (τ) + a cos(τ)

2

)
−2 sin2

(
α̂2πeqi (τ) + a sin(τ)

2

)
× cos

(
θ̃2πeqi (τ) + a cos(τ)

)

+
cos

(
α̂2πeqi (τ) + a sin(τ)

)
1− 2 sin2

(
α∗2πeqi (τ)/2

)
× cos

(
θ̃2πeqi (τ) + a cos(τ)

)
×
(

2 sin2
(
α∗2πeqi (τ)/2

)
− r̃2πeqi

c (τ)

ρ+ r̃2πeqi
c (τ)

)

and it is O(a2) +O(1/ω). The quantity λ
2π
ω

eqi

0 (t) = λ
2π
ω

eqi
(t)− λeqi

µ is the zero-mean

part of λ
2π
ω

eqi
(t), and β

2π
ω

eqi

0 (t) is the integral of λ
2π
ω

eqi

0 (t), is periodic with frequency

ω and is zero mean. Both λ
2π
ω

eqi

0 (t) and β
2π
ω

eqi

0 (t) are O(a2) + O(1/ω). By split-

ting r̃
2π
ω

eqi

c (τ) and α∗
2π
ω

eqi
(τ) into r̃eqi

µ + r̃
2π
ω

eqi

c0 (t) and α∗eqi
µ + α

∗ 2π
ω

eqi

0 (t) where r̃eqi
µ =

1
2π

∫ 2π
0 r̃2πeqi

c (τ)dτ is O(1/ω) and the mean of r̃
2π
ω

eqi

c (t), α∗eqi
µ = 1

2π

∫ 2π
0 α∗2πeqi (τ)dτ

is O(1/ω) and the mean of α∗
2π
ω

eqi
(t) and both r̃

2π
ω

eqi

c0 (t) = r̃
2π
ω

eqi

c (t) − r̃eqi
µ and

α
∗ 2π

ω

eqi

0 (t) = α∗
2π
ω

eqi
(t) − α∗eqi

µ are periodic, zero-mean and O(1/ω), we find (5.13)–

(5.15).

Remark 5.1: The attractor seen in this 3D scenario is similar to the attractor seen

in the 2D unicycle with a constant forward velocity and tuned angular velocity. In

the 2D case the vehicle moves within an annulus, whereas in the 3D case it moves

within the set TO(1/ω), which is inside a horizontal torus of minor radius O(1/ω)

with major radius ρ.

2To avoid confusion between functions with period 2π, f2π(τ), and functions with period 2π/ω,
f

2π
ω (t), recall the transformation τ = ωt.
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5.7 Illustration of VYPa Vehicle Behavior

The behavior exhibited by the vehicle is very interesting in terms of how it

changes with the chosen parameters. We start this section by illustrating the be-

havior predicted by Theorem 5.1. We then examine scenarios which have parameter

combinations that the theory does not address.

The following figures illustrate the behavior predicted in Theorem 5.1. Fig.

5.3 shows the vehicle converging to a “pseudo-orbit” around a static source which

produces a signal field with spherical level sets. Fig. 5.4 illustrates the different

attractors seen when the parameter c is varied within the assumptions of Theorem

5.1. The radii of the attractors decrease as c increases, as predicted by the inverse

dependence of ρ on c. Fig. 5.4 also shows the local residual behavior of the vehicle

center that is averaged out in the proof. Fig. 5.5 shows the vehicle converging to an

attractor around a static source which produces a signal field with ellipsoidal level

sets. Though the theory presented here does not include ellipsoidal level sets, the

convergence to an attractor in these cases is similar to the convergence seen in the

2D cases where the target signal field is made up of elliptical level set [22]. The

control law (5.4)–(5.5) also allows the vehicle to seek a moving source as seen in

Fig. 5.6 where the source follows a saddle pattern and produces spherical level sets

which move with the source.

The proof of Theorem 5.1 relies on both dα and dθ being positive, however, con-

vergent behavior is still seen when both are negative and when dα is made negative.

The fourth combination, when dθ is negative and dα is positive results in unstable

behavior. Fig. 5.7 illustrates the convergent behavior when both dα and dθ are

negative. In this case the attractor seen when both parameters are positive rotates

and is twisted slightly. The attractor in this case is still similar to an “orbit”. This

differs from the third case, illustrated in Fig. 5.8, where the attractor is no longer

of an “orbit” type. In this case the vehicle moves around the surface of a sphere,

staying within an O(1/ω) distance from the sphere.



114

0
0.5

1

!0.2

0

0.2

!0.1

0

0.1

0.2

0.3

0.4

 

XY
 

Z

source pos
initial vehicle pos
vehicle traj
2D projections

Figure 5.3: Vehicle locating a static source which creates a signal field with spherical
level sets.
Vc = 0.1, cθ = cα = 100, dθ = dα = 300, a = 0.5, ω = 40, R1 = 0.1, f ∗ = 1, qr = 1,
h = 1.
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Figure 5.4: Attractors resulting from different parameter configurations.
The inset reveals the close-up behavior of the vehicle center. Vc = 0.1, a = 0.5, ω =
40, R1 = 0.1, f ∗ = 1, qr = 1, h = 1. outer attractor: cθ = cα = 100, dθ = dα = 300.
middle attractor: cθ = 200, cα = 100, dθ = 600, dα = 300. inner attractor: cθ = 300,
cα = 100, dθ = 600, dα = 300.
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Figure 5.5: Vehicle locating a target from a signal field with ellipsoidal level sets.
The attractor seen has elements similar to the attractors seen in the 2D case. Vc =
0.1, cθ = cα = 100, dθ = 300, dα = 200, a = 0.5, ω = 40, R1 = 0.1, f ∗ = 1, qx = 3,
qy = 2, qz = 1, h = 1.
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Figure 5.6: The vehicle follows the moving source which creates a signal field with
spherical level sets which move with the target.

The target moves according to (xt(t), yt(t), zt(t)) =
(

cos(0.05t), sin(0.05t),

0.5 sin(0.1t)
)
. Vc = 0.07, cθ = cα = 100, dθ = dα = 300, a = 0.5, ω = 10,

R1 = 0.1, f ∗ = 1, qr = 1, h = 1.
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Figure 5.7: Vehicle locates a source.
Signal field has spherical level sets. The final attractor is rotated compared to other
cases, but is still of an “orbit-like” form. Vc = 0.1, cθ = cα = 100, dθ = 300,= dα =
−300, a = 0.5, ω = 40, R1 = 0.1, f∗ = 1, qr = 1, h = 1.
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Figure 5.8: Vehicle locates a source.

Signal field has spherical level sets. The attractor is O(1/ω) within the surface of a
sphere instead of an “orbit” type. Vc = 0.2, cθ = cα = 100, dθ = 300, dα = −300,
a = 0.5, R1 = 0.1, ω = 40, f∗ = 1, qr = 1, h = 1.
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Figure 5.9: Vehicle does not locate the source – parameters produce an unstable
result.
Signal field has spherical level sets. Vc = .1, R1 = .1, a = .5, ω = 40, cθ = cα = 100,
dθ = −300, dα = 300.

5.8 VeRa Vehicles

The second scheme presented is for the Vehicle Roll actuated –VeRa. We consider

this vehicle configuration to show both the broad applicability of extremum seeking

and its use for extremely underactuated vehicles. This vehicle has both a constant

forward velocity Vc and a constant pitch velocity V2. The only tunable input, as

the name indicates, is the roll velocity. In this case the sensor must be mounted

off of the tip of the vehicle, which indicates R2 6= 0. When the pitch velocity V2 is

constant, the azimuthal and polar velocities become

α̇ =
V2

R1

cosφ (5.75)

θ̇ = − V2

R1

sinφ

cosα
. (5.76)

The VeRa model dynamics remain (5.1) with (5.75) and (5.76) governing the angles

α and θ and where uφ is tuned by extremum seeking. The sensor coordinates also

remain (5.2).

Figure 5.10 shows a block diagram of the control applied to the VeRa, with
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Vehicle 
Kinematics

c

aωcos ωt

×+

sin ωt

s
s + h

J
φ̇

α̇

θ̇

Nonlinear Map
f(xs,ys,zs)

V2

R1
cos(φ)

− V2

R1

sin(φ)
cos(α)

Figure 5.10: Block diagram of ES control applied to the roll velocity of the VeRa.

extremum seeking used to tune the roll velocity according to the following algorithm:

φ̇ = aω cos(ωt) + c sin(ωt)
s

s+ h
[J ] . (5.77)

For a fuller understanding of the behavior displayed while employing the scheme

(5.77), we look to averaging theory again.

Proposition 5.1 Over a finite time interval [0, O(ω)], the solutions of the system

(5.1), (5.75)–(5.77) remain within O(1/ω) of the solutions of the following system

dr̃ave
c

dτ
=

Vc

ω

(
cos(αave) cos(α∗ave) cos(θ̃ave)

+ sin(αave) sin(α∗ave)
)

(5.78)

dα∗ave

dτ
=

Vc

ω

1

r̃ave
c

(
sin(αave) cos(α∗ave)

− cos(αave) sin(α∗ave) cos(θ̃ave)
)

(5.79)

dθ̃ave

dτ
=
−1

ω

V2J0(a)

R1

sin(φ̂ave)

cos(αave)

+
Vc

r̃ave
c

cos(αave)

cos(α∗ave)
sin(θ̃ave)

 (5.80)

dαave

dτ
=

1

ω

V2J0(a)

R1

cos(φ̂ave) (5.81)
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dφ̂ave

dτ
= −2cqrR2J1(a)r̃

ave
c

ω

×

 cos(α∗ave) cos(φ̂ave) sin(θ̃ave)

− sin(φ̂ave)
(

sin(α∗ave) cos(αave)

− cos(α∗ave) sin(αave) cos(θ̃ave)
) (5.82)

deave

dτ
= −hqr

ω

r̃ave2

c +R2
1 +R2

2

+2R1r̃
ave
c

(
cos(α∗ave) cos(αave) cos(θ̃ave)

+ sin(α∗ave) sin(αave)
)

+2R2J0(a)r̃
ave
c(

cos(φ̂ave)
(

sin(α∗ave) cos(αave)

− cos(α∗ave) sin(αave) cos(θ̃ave)
)

+ cos(α∗ave) sin(φ̂ave) sin(θ̃ave)
)

−h
ω
eave . (5.83)

where r̃c =
√

(xc − x∗)2 + (yc − y∗)2 + (zc − z∗)2, α∗ = arctan
(

zc−z∗√
(xc−x∗)2+(yc−y∗)2

)
,

θ∗ = arctan
(

yc−y∗

xc−x∗

)
, θ̃ = θ − θ∗, τ = ωt, φ̂ = φ− a sin(ωt).

Proof: To prove this proposition, we start from the original error system,

˙̃rc = Vc

(
cos(α) cos(α∗) cos(θ̃) + sin(α) sin(α∗)

)
α̇∗ =

Vc

r̃c

(
sin(α) cos(α∗)− cos(α) sin(α∗) cos(θ̃)

)
˙̃θ = −

 V2

R1

sin(φ)

cos(α)
+
Vc

r̃c

cos(α)

cos(α∗)
sin(θ̃)


α̇ =

V2

R1

cos(φ)

φ̇ = aω cos(ωt) + c sin(ωt)ξ

ė = hξ
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ξ = −qr

r̃2
c +R2

1 +R2
2

+2R1r̃c

(
cos(α∗) cos(α) cos(θ̃)+sin(α∗) sin(α)

)
+2R2r̃c

(
cos(α∗) sin(φ) sin(θ̃)

+cos(φ)
(
sin(α∗)cos(α)−cos(α∗)sin(α)cos(θ̃)

))
−e

and after shifting the variables by τ = ωt, φ̂ = φ − a sin(ωt) and noting that the

system equations are periodic in 2π, we find the average system (5.78)–(5.83).

We now use Proposition 5.1 to study approximate, finite-time behavior of the

system. The equilibria,[
raveeqi

c , α∗ave
eqi , θ̃aveeqi , αaveeqi , φ̂aveeqi , eave

eqi

]

=

 VcR1

V2J0(a)
, 0, (−1)iπ

2
, 0, (−1)(i+1)π

2
,

−qr
(

V 2
c R

2
1

V 2
2 J0(a)2

+R2
1 +R2

2 − 2R2
VcR1

V2J0(a)

), (5.84)

where i ∈ {0, 1}, have a characteristic polynomial given by(ωs)2 +
V 2

2 J0(a)
2

R2
1

ωs+ h


×

(ωs)3 +
cVcR1

V2J0(a)
(ωs)2 + c

VcV2J0(a)

R1

 = 0 . (5.85)

As these equilibria are unstable, averaging theory does not yield a full characteri-

zation of the system attractors. However, this does not necessarily rule out a more

complex attractor. We note that the following form of exact solutions to the average

system (5.78)–(5.83),

θ̃ave(t) = mπ (5.86)

φ̂ave(t) = nπ (5.87)

αave(t) = (−1)nV2J0(a)

R1

t+ c1 (5.88)
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r̃ave
c (t) =

√√√√√√√
(
(−1)n+1 VcR1

V2J0(a)
cos(αave(t))+c2

)
2

+
(
(−1)n+m VcR1

V2J0(a)
sin(αave(t))+c3

)
2

(5.89)

α∗ave(t) = arctan

(−1)n+1 VcR1

V2J0(a)
cos(αave(t)) + c2

(−1)n+m VcR1

V2J0(a)
sin(αave(t)) + c3


(5.90)

eave(t) = e−ht

∫ t

0
f(t̂)eht̂dt̂+ c4

 (5.91)

f(t̂) = −hqr

r̃ave
c (t̂)2 +R2

1 +R2
2

+2R1

(
(−1)mc3 cos(αave(t̂))

+c2 sin(αave(t̂))
)

+2R2J0(a)(−1)n
(
c2 cos(αave(t̂))

+(−1)m+1c3 sin(αave(t̂))− VcR1

V2J0(a)

)
(5.92)

where n,m are integers and c1, c2, c3, c4 are constants, are very close to solutions ob-

served by simulation of the full system. Fig. 5.11 shows the trajectory of the vehicle

according to the full system equations as well as the trajectory of r̃c according to

both the full system and average system equations. The solution (5.86)–(5.92) de-

fines a single repeating “loop” with radius VcR1

V2J0(a)
and unknown center. The drifting

of these loops that is seen in the full simulation is presumably due to the system dy-

namics that are averaged out, similar to the drifting in the VYPa and 2D solutions

which lead to the attractors not being periodic. The frequency of r2
c is predicted

by the known parameters V2J0(a)
R1

, while the point that the solution for r̃2
c oscillates

about,
(

VcR1

V2J0(a)

)2

+ c22 + c23, and the amplitude of those oscillations, 2 VcR1

V2J0(a)

√
c22 + c23,

depend on unknown constants c2, c3. This leads to the question, is a bound on

c2, c3, and thus the trajectories, seen in simulations? Figure 5.12 shows the path

r̃c takes given different initial conditions. Each trajectory appears to be bounded



122

0
1

2
3

0

1

2

!2

!1

0

1

2

 

XY
 

Z

Vehicle init. pos.
Vehicle trajectory
Source pos.
2D projections

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t

r c

 

 

Full Sys
Average Sys

(a) (b)

Figure 5.11: VeRa locates a static source.

(a) The vehicle trajectory according to the full system equations is shown in a 3D
space, with 2D projections shown on the grid walls. (b) The distance from the
vehicle to the source is shown according to both the full system equations and the
average system equations. Vc = 0.04, V2 = 0.02, c = 800, a = 1, ω = 40, R1 =
0.1, R2 = 0.05, f∗ = 1, qr = 1, h = 1.

by 2 VcR1

V2J0(a)
. This explanation is enforced by the observation that when Vc < V2 the

vehicle trajectory is tight and curly, whereas when Vc > V2 the trajectory consists

of wide turns as seen in Figs. 5.13 and 5.14.

Though in the case of a VYPa vehicle, the addition of a d term to the control

law changes the qualitative behavior of the system (from having marginally stable

attractor to having an exponentially stable attractor), the addition of a d term to

the VeRa vehicle control law

φ̇ = aω cos(ωt) + sin(ωt)(cξ − dξ2)

ξ =
s

s+ h
[J ]

does not have the same effect. The effect of this additional term is seen only in the

transient and is readily seen when Vc � V2. Figure 5.15 highlights the difference.

Without a d term, the point in the middle of the vehicle, rf , makes an unusual

but consistent quadruple figure eight pattern while the vehicle is on its way to

the source. With the d term, the pattern shrinks to a single figure eight pattern.
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Figure 5.12: VeRa distance to source.

Both (a) and (b) show the vehicle locating a static source. The different lines indi-
cated different initial conditions. The runs appear to be bounded by the quantity:
2 V1R1

V2J0(a)
, which is shown as the black line above the distance oscillations, enforc-

ing the observation that the ratio of Vc : V2 determines tight or wide turns. For
all runs c = 800, a = 1, ω = 40, R1 = 0.1, R2 = 0.05, f∗ = 1, qr = 1, h = 1. (a)
Vc = 0.01, V2 = 0.02. (b) Vc = 0.04, V2 = 0.02.

Vc<V2 Vc>V2

(a) (b)

Figure 5.13: VeRa tracking a static source.
For both runs c = 400, a = 1, ω = 30, R1 = 0.1, R2 = 0.05, f∗ = 1, qx = 1, qy =
0.5, qz = 0.75, h = 1. (a) The tight curly trajectory of the vehicle center are a
result of Vc < V2. Vc = 0.028, V2 = 0.055. (b) The wide turns of the vehicle center
trajectory are a result of Vc > V2. Vc = 0.04, V2 = 0.02.
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Vc<V2
Vc>V2

(a) (b)

Figure 5.14: Trajectory of the center of a VeRa vehicle tracking a moving source.

The source moves according to (xt(t), yt(t), zt(t)) =
(
at cos(ωtt), at sin(ωtt),

atz sin(ωtzt)
)
. For both runs c = 400, a = 1, ω = 30, R1 = 0.1, R2 = 0.05, f∗ =

1, qx = 1, qy = 0.5, qz = 0.75, h = 1. (a) Vc = 0.028, V2 = 0.055, at = 0.7, atz =
0.6, ωt = 0.035, ωtz = 0.035. (b) Vc = 0.04, V2 = 0.02, at = 0.75, atz = 1, ωt =
0.0385, ωtz = 0.0385.
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Figure 5.15: Motion of vehicle front, rf , during transitive journey toward the source.
The addition of the d term to the control law changes the pattern rf makes as it
moves. (a) d=0 (b) d=1200 The other system parameters are Vc = 0.002, V2 =
0.02, c = 400, a = 1, ω = 30, R1 = 0.1, R2 = 0.05, f∗ = 1, qx = 1, qy = 0.5, qz =
0.75, h = 1.

However, once the vehicle finds the source and starts moving around it the vehicle

enters a fundamentally different motion and the d term has no useful effect.

5.9 Other Applications

The use of extremum seeking for navigation of vehicles in three dimension extends

beyond source seeking. This method can also be used to explore the domain of the

signal field. Other groups have looked at isoline/boundary/level set tracing [37].

However these methods require either multiple agents which must communicate, or

require multiple sensors on a single agent. A PD control strategy for level set tracing

without position measurement in 2D was analyzed in [12].

By employing a simple modification to the extremum seeking tuning, both the

VYPa and VeRa can find and trace three dimensional level sets with only one

sensor and without communication with other entities. This modification changes

the input to the control laws from the sensor reading, J , to the quantity −|J − Jd|,
where Jd is the desired level set value. The absolute value operator is used to retain
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Figure 5.16: Trajectories of the center of vehicles tracing level sets are shown.

For both runs f ∗ = 1, qx = 1, qy = 1, qz = 0.5, Jd = 0.8. (a) VYPa tracing a levelset.
V1 = 0.11, c = 50, a = 0.5, ω = 10, R1 = 0.1, h = 1. (b) VeRa tracing a levelset.
Vc = 0.07, V2 = 0.02, c = 500, a = 0.75, ω = 10, R1 = 0.1, R2 = 0.05, h = 1.

the shape of the original signal field, as opposed to another operator, such as a

the square of the difference. The control law in each case then becomes uk(t) =

akωk cos(ωkt) + ck sin(ωkt)
s

s+h
[−|J(t)− Jd|] for k ∈ {θ, α, φ}. Figs. 5.16(a,b) show

the differences in how the VYPa and VeRa trace out the same level set on the

same signal field. Notice that the vehicles naturally move around the entire three

dimensional space instead of repeatedly tracing out the same curve within the level

set.

5.10 Conclusions

We have shown how the extremum seeking method can be extended to vehicles

with various actuating capabilities operating in three dimensions for carrying out

tasks such as source seeking and level set tracing. The stability results presented

extend the two dimensional work done previously and highlight the areas in which

the three dimensional schemes are more complex and introduce new challenges in

analysis.
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In case of the VeRa design, it seems very hard to prove stability of an attractor

for the motion of the vehicle near the source, though the simulation evidence is

overwhelming regarding the existence of such an attractor, which is very complex,

as the vehicle performs “loop” motions near the source with varying azimuthal and

polar orientations and varying positions of the center of the loop relative to the

position of the source. The reason for this complexity, compared to the VYPa

system, is that only a single input (roll rate) is used to pursue source seeking with

the 6-state kinematic VeRA system. While the value of the averaging method is

in simultaneously determining the existence of a periodic solution for a (part of, or

an entire) system, for the VeRa system it seems that the existence of an attractor

would require one to find an analytical periodic solution of the entire nonlinear

time-varying system (5.1), (5.2), (5.75)–(5.77) before applying averaging.

In the future we plan to explore 3D boundary/levelset tracing for processes

governed by diffusion and/or convection.

This chapter is in full a reprint of the material as it has been submitted to:

J. Cochran, A. Siranosian, N. Ghods, and M. Krstic, “GPS Denied Source Seeking

For Underactuated Autonomous Vehicles in 3D,” IEEE Transactions on Robotics,

to appear.

The dissertation author was the primary investigator and author of this paper.
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Fish Locomotion

6.1 Abstract

We present a method of locomotion control for underwater vehicles which are

propelled by a periodic deformation of the vehicle body, similar to the way a fish

moves. The control law employs extremum seeking, which is a non-model based

method that has been used recently in “source seeking” control for nonholonomic

mobile robots. We develop control laws for two different “fish” models which are

distinguished by their respective underlying methods of propulsion. The first fish

model consists of three rigid body links and relies on a two degree of freedom, non-

reciprocal, movement which propels the fish through a perfect fluid without the use

of a Kutta condition to shed vortices. The second fish model is for a fish modeled

by a Joukowski airfoil which has only one degree of freedom in its movement, and

thus relies on vortex shedding to move through a perfect fluid. With the use of

extremum seeking, we achieve the same results in each case: The fish is capable of

performing ‘source seeking’ in GPS-denied underwater environments, and, if position

measurement is available, it is capable of navigating from point A to point B, as

well as along a predetermined path.
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6.2 Introduction

The literature on underwater vehicles has started to address vehicles which are

propelled forward not by a traditional motor, but rather by other means - such as

mimicking the movement of fish and other aquatic creatures. This chapter addresses

locomotion control for underwater vehicles which employ a periodic deformation of

the vehicle body, similar to the way a fish moves, to move forward. The motivation

for this work comes from our previous work on source seeking for the nonholonomic

unicycle with constant forward velocity [18]. In that work we use the extremum

seeking method to design a control law which drives the vehicle to the vicinity of a

source. We have shown that the scheme is locally exponentially convergent both in

two dimensions and in three [18, 19].

Over the course of studying this control law, which employs periodic forcing,

we began looking for the most suitable application, which we found in underwater

vehicles which employ periodic movement for locomotion. The advantage of using

extremum seeking over other control methods is that extremum seeking is a non-

model based method — and thus much simpler to employ for systems, such as

underwater vehicles and fish models, which do not have simple models.

In this chapter apply the same extremum seeking method to two different “fish”

models and achieve the same results in each case: The fish is capable of performing

‘source seeking’ in GPS-denied underwater environments, and, if position measure-

ment is available, it is capable of navigating from point A to point B, as well as

along a predetermined path, depending on the designer’s choice.

The fish models are distinguished by their respective underlying methods of

propulsion. The first fish model, developed by [38], relies on a two degree of freedom,

non-reciprocal, movement which propels the fish through a perfect fluid without the

use of a Kutta condition to shed vortices. The second fish model, developed by [84]

(and studied by [52]), has only one degree of freedom in its movement, and thus relies

on vortex shedding to move through a perfect fluid. In both cases a specific periodic

movement of the fish body will propel the fish forward. A slight modification to this

movement, and the fish will turn. We study how to use a combination of these two

“gaits” to enable the fish to move from an originating point to a desired destination
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point or along a prespecified path.

Much work has been done in the area of modelling fish movement - both for

the understanding of fluid dynamics and for the purpose of building more efficient

vehicles that operate underwater. [27, 49, 77, 13, 50, 75, 78] have all examined

locomotion by swimming and the role of vortices. References [38, 84, 52, 25] have

taken the lessons learned from this previous work and extended it to the development

of computational fish models in fluid systems. Unlike earlier methods, [38] uses

conservation of circulation and ideas from reduction theory to build a model for a

rigid body three link fish without the explicit use the fluid variables. This enables

[38] to explicitly derive the equations of motion for the fish model and to study the

locomotion due solely from body shape changes and not from vorticity. The model

developed in [84], [52] spans the gap between studies which look at deformable bodies

moving through a fluid without the use of vortex shedding and studies examining

systems with rigid bodies and vortices. The Joukowski airfoil fish model relies on

only one input and exploits the presence of vortices for both propulsion and steering.

Both models were developed with the underlying motivation to build a platform to

develop motion-planning algorithms for underwater vehicles. [76, 53, 52, 56, 39] and

other research groups have developed underwater vehicles modelled after biological

entities which use sinusoid-dominated movements to propel the vehicle forward. In

related work, [63] and references therein have studied stabilization of vortex shedding

– an area which can also lead to useful ideas for vehicle control.

A common theme in all this work is the periodic movement of the body. Any

control scheme applied to these types of models/vehicles must take this periodic

movement into account in order to be efficient. This immediately brings the ex-

tremum seeking method to mind as it takes advantage of periodic signals to probe a

signal field. Thus we take lessons learned from previous work to combine the natural

gait of the fish model with the extremum seeking method to control where the fish

moves.

The chapter is structured as follows: We review our work on source seeking with

the nonholonomic unicycle in Section 6.3. Section 6.4 discusses the motion of the

fish and fluid systems. Section 6.5 specifically discusses a three link body moving in
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a fluid, while Section 6.6 is concerned with a deformable Joukowski foil moving in a

fluid with discrete vortex shedding. In each of these two sections we introduce the

extremum seeking control law and discuss the results of applying the control law to

the fish models. We conclude in Section 6.7.

We give a preview of our results here to help motivate the reader, as the model

and control developments are lengthy and difficult to appreciate outside of the con-

text of the problem that is eventually solved. Figures 6.1(a) and 6.1(b) display the

two fish models we are considering, shown within their velocity field environments.

Figure 6.2 shows a typical source seeking transient that our control algorithms in

Sections 6.5 and 6.6 achieve.

A note is in order on the two models that we consider in this paper and on

the notation we employ. These models are quite non-standard as control theoretic

models as they consist of ODEs (the fish subsystem, with forces acting on it included,

plus vortex locations and strengths in the case of Joukowski foil fish) and of an

infinite-dimensional output map (the fluid potential field). The three-link fish has

five states and two inputs, whereas the Joukowski foil fish has a large number of

states (growing to infinity in a ‘countable’ manner as time goes to infinity) and one

input. We develop our notation in the paper so that the two models, which are

given in the spirit of geometric mechanics in the original literature [38, 52, 84], are

presented here as control-oriented (input-state-output) models.

6.3 Review of Source Seeking with a Nonholo-

nomic Unicycle

In [18] we focus on the problem of seeking the source of a scalar signal using a

nonholonomic unicycle with constant forward velocity and no position information.

The vehicle relies on locally sensing a scalar signal which emanates from the source

it seeks. The strength of the signal is assumed to decay with distance away from the

source, though other information about the signal’s spatial distribution is unknown.

The control law, designed using extremum seeking, jointly estimates the gradient of

the signal field and drives the vehicle toward the source.
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(a) (b)

Figure 6.1: A snapshow in time showing (a) the three link fish moving in a potential
flow and (b) a Joukowski foil fish moving in a potential flow with point vortices.
The arrows represent the velocity vectors of the fluid. The ‘x’s are point vortices
which rotate counter clockwise, while the ‘o’s are point vortices which rotate clock-
wise.
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Figure 6.2: A typical trajectory of a fish-like vehicle seeking the source of some
signal and being driven by our extremum seeking based control law.
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While other groups have considered source seeking problems, [62] and [58], this

work was different in that the vehicle has no knowledge of its position or the position

of the source, there is no communication between it and other entities, and it has

nonholonomic dynamics. Many groups have also employed unicycle models in their

work, including [36] and [43], while others have also used the extremum seeking

method in their work outside of the field of autonomous vehicles, including [61],

[60], [17], [73], [41], [14], [74], [48] and [88].

The center rc of the unicycle is governed by ṙc = Vce
iθ where θ is its orientation

and Vc is its constant forward velocity. The sensor position is rs = rc + Reiθ. The

control is applied through angular velocity forcing θ̇ = u, and the control law is

given by

θ̇ = u = aω cos(ωt) + cξ sin(ωt) (6.1)

ξ =
s

s+ h
J(rs) , (6.2)

where ξ is a washout filter applied to the signal J sensed at the vehicle sensor rs,

located at a distance R away from the center and a, ω, c, h are parameters which

effect performance. The control law is made of two terms which serve two different

functions. The first term aω cos(ωt) is a persistent excitation which allows the

vehicle to probe the signal space. The second term cξ sin(ωt) is a bias term which

jointly estimates the gradient and drives the vehicle to turn up the gradient — in

essence maximizing the signal on average.

In [18] we consider a measured signal with an (unknown) spatial distribution

J = −qr|r∗ − rs|2 , (6.3)

where r∗ is the location of the signal source, and prove convergence to a small set near

the source using averaging. A detailed simulation study indicates that the controller

is also stabilizing for non-circular level sets and sources which move around.

6.4 Equations of Motion in a Perfect Fluid

Though they go about it in different ways, both [84] and [38] use the same general

ideas to derive the equations of motion for the fish/fluid system. In the end, they
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use variations of Kirchhoffs equations for the motion of a rigid body in an ideal fluid

dL

dt
+ Ωk× L = 0 (6.4)

dA

dt
+ k · ([U V ]T × L) = 0 (6.5)

where L and A are the linear and angular momentum of the fluid/body system and

U , V , and Ω are the translational and rotational velocities of the body [55]. The

theme of these derivations is conservation of momentum and starting the system

from rest, which in turn implies L = 0 and A = 0 for all time. This allows one to

solve for U , V , and Ω at each time step and then integrate to derive the locomotion

of the fish.

To find L and A, both [84] and [38] first find the kinetic energy of the system

which they then differentiate to find the momentum L =
[

∂T
∂U

∂T
∂V

]T
, A = ∂T

∂Ω
where T

is the kinetic energy of the system. To find T , each group sums the kinetic energy

of the fluid, Tf , plus the kinetic energy of the fish model, Tb. In the case of the

Joukowski foil fish, [84], the momentum from the vortices is also taken into account.

In both cases the fluid is modeled by potential flow. The flow is assumed to be

incompressible, inviscid, irrotational and at rest at infinity. In this case the velocity

field u can be expressed in term of a potential function φ:

∇2φ = 0 (6.6)

u = ∇φ . (6.7)

The boundary conditions result from two assumptions:

1) The ambient flow (flow not resulting from the fish movement) is quiescent,

and thus the velocity goes to zero at ∞.

2) The fluid velocity normal to the body surface must match the velocity of the

body surface in the normal direction.

These conditions are expressed as

∇u|∞ = 0 (6.8)

u · n = Ḃ|S · n (6.9)
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where B is the fish body and S is the surface of the body (touching the fluid). In

the three link case [38], each link is modeled as a rigid body and the velocity of the

body at its surface is straightforward to find. The potential itself is found through

a boundary element method [71] as a function of the configuration of the body and

its velocities. In the case of the Joukowski airfoil [84, 52], the fish is modeled as a

deformable body - yet at each timestep its shape and thus the velocity of the body

at its surface can be found analytically. Using complex analysis, the full velocity

potential is found in closed form, also as a function of the configuration of the body

and its velocities.

Using Green’s theorem, the quantity

Tf =
1

2

∫
D

u2dv , (6.10)

where D is the domain and dv is the standard volume element, can be changed to

Tf = −1

2

∫
∂S
φ∇φ · nds (6.11)

where ∂S is the surface of the fish body. In this way, as φ is expressed in terms

of the body configuration and related velocities, and the integral is over the body

surface, we have two useful occurrences: Tf is also expressed in terms of the body

variables and φ only needs to be calculated along the surface of the body and not

everywhere in the domain.

As [38] and [84] use different fish models, the kinetic energy of the fish body is

found and expressed in different ways. However, in both cases the kinetic energy

can be expressed solely in terms of the body configuration and velocities.

6.5 Locomotion and Source Seeking for a Three

Link Fish

The scallop theorem discussed by [65], states that reciprocal motion in a Stokes

flow does not allow for forward movement. The reasoning for this can also be applied

to potential flow, thus we must take this result into account when considering fish

models. Entities with one degree of freedom can only produce reciprocal motion. To
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Figure 6.3: Configuration of the three link fish model.

move they must achieve separation (not possible in Stokes or potential flow) — for

instance, scallop opens slowly and closes very fast to move itself forward. The three

link fish developed in [38], which is mentioned in [65] and is considered here, has

two degrees of freedom and can produce non-reciprocal motion. It moves forward

without the use of separation (or vorticity). Depicted in Figure 6.3, each link Bi of

the fish is an ellipse with major semi-axis of length δ and minor semi-axis of length

µ. The joints which connect the links are located at a distance σ away from the tips

of the ellipses and their angles are defined as θα, α = 1, 2. The two inputs to the

system are the angular velocities of the two joints θ̇1, θ̇2. Certain combinations of

these inputs allow the fish to move forward, while others allow the fish to turn.

To build the model without the explicit use of the fluid variables, [38] In ad-

dition to exploiting the fluid system symmetry through reduction theory, [38] also

formulates the problem in such as way that the net motion of the fish is equivalent

to a sum of geometric and dynamic phases over closed curves in phase space. Thus,

without the explicit use of the fluid variables, [38] derives the equations of motion

for the fish model. This further allows [38] to show that net locomotion can result

from body shape changes and not solely from vorticity. More importantly, the model

is formulated in a way that allows one to apply control theory methods for motion

planning and control.

We will first summarize the equations of motion for this three-link fish. This

allows us to concretely discuss and depict through figures the basic gaits to move

forward and to turn. We then present our control law which allows the fish to move
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from an initial location to a desired one and to move along a predetermined path.

6.5.1 ODE Model with an Infinite Dimensional Output Map

for a Three Link Fish in a Potential Flow

The five state variables which we use to describe the three link system are

Ξ = [θ1 θ2 g
T
3 ]T (6.12)

g3 = [θf fx fy]
T (6.13)

where θ1 and θ2 are the angles between the links and (fx, fy) and θf are, respectively,

the location of the center of the middle ellipse and the orientation of the middle

ellipse with respect to the fixed inertial frame. The inputs to the system are the

angular velocities of the joints,

Ψ = [Ψ1 Ψ2]
T , (6.14)

i.e., θ̇1 = Ψ1, θ̇2 = Ψ2, while the infinite dimensional output map is the potential

field

φ(x, y) = η[Ξ,Ψ](x, y) , (6.15)

which is goverened by the Laplace equation (6.6) with boundary conditions (6.8)

and (6.9), and where the solution operator η[Ξ,Ψ] is defined below. To complete

this description we explain the governing ODE for ġ3. Reference [38] develops the

motion of the three link fish using geometric phases, holonomy, and symmetry. Here

we present only a summary into the equations which drive the fish, and do not redo

the derivations in [38].

Each link Bi is defined by an orientation and position gi = [θBi
Bix Biy]

T with

respect to a fixed inertial frame. The angular and translational velocities are ex-

pressed with respect to the fixed inertial frame as ġi or with respect to their own

body frame as ξi =

 Ωi

Ui

Vi

, i = 1, 2, 3. As the derivation of ġ3 is made simpler when

considering the movement with respect to the B3 fixed frame, instead of the inertial
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frame, we make use of ξ1 and ξ2, not g1 and g2. The relationship between ġ3 and ξ3

is defined by

ġ3 =


1 0 0

0 cos(θf ) − sin(θf )

0 sin(θf ) cos(θf )

 ξ3 , (6.16)

where we still must explain the relationship between ξ3 and (Ξ,Ψ). [38] shows

that the entire configuration can be defined through the movement of one link (the

middle link B3 is the link of choice) plus the movement of the joints, i.e. the entire

system can be defined by the state variables Ξ. With this in mind, the velocities

of the other two links relative to the third link, but expressed with respect to their

respective fixed frames, are

ζ1 = ξ1 − Adx−1
1
ξ3 (6.17)

ζ2 = ξ2 − Adx−1
2
ξ3 , (6.18)

where

Adx−1
1

(θ1) =


1 0 0

(δ + σ) sin(θ1) cos(θ1) sin(θ1)

(δ + σ)(1 + cos(θ1)) − sin(θ1) cos(θ1)

 (6.19)

Adx−1
2

(θ2) =


1 0 0

−(δ + σ) sin(θ2) cos(θ2) sin(θ2)

−(δ + σ)(1 + cos(θ2)) − sin(θ2) cos(θ2)

 (6.20)

denote the matrices that transform ξ3 from the B3-fixed frame to the respective

B1-fixed and B1-fixed frames. The variables ζ1, ζ2 are given by

ζ1 = Π1θ̇1 = Π1Ψ1 (6.21)

ζ2 = Π2θ̇2 = Π2Ψ2 (6.22)

Π1 =
[
1 0 + (δ + σ)

]T
(6.23)

Π2 =
[
1 0 − (δ + σ)

]T
. (6.24)
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To continue, we examine the kinetic energy of the fluid

Tf = −1

2

∫
∂S
φ∇φ · nds (6.25)

where ∂S =
∑3

1 ∂Bi is the boundary over all three bodies, which can be expressed

in terms of “added inertias” Mf
ij and ξi as

Tf =
1

2

3∑
i=1

3∑
j=1

ξT
i Mf

ij(Ξ)ξj. (6.26)

The “added inerties” Mf
ij depend on the configuration of the three link body Ξ and

are derived in [38]. This is a consequence of being able to express φ solely in terms

of the body configuration and velocities:

φ =
3∑

i=1

ΩiXi +

 Ui

Vi

 · ϕi

 =
3∑

i=1

[Xi ϕ
T
i ]ξi (6.27)

where Xi(x, y,Ξ) and ϕi(x, y,Ξ) define potential functions which depend only on θ1,

θ2 and g3 and the spatial coordinates (x, y). The quantities Xi and ϕi depend on

coefficients which are found using a boundary element method [71] and depend only

on Ξ, and do not depend on the spatial coordinates. These coefficients are used to

find Mf
ij(Ξ). The kinetic energy of the bodies TBi

= 1
2

(
IΩ2

i + m
(
U2

i + V 2
i

))
can

also be expressed in terms of ξi

TBi
=

1

2
ξT
i Mb

iξi (6.28)

Mb
i =


I 0 0

0 m 0

0 0 m

 (6.29)

where m is the mass of the ellipse and I = m(a2 + b2)/4 is the body moment of

inertia. The total kinetic energy of the system is then expressed as

T =
1

2

3∑
i=1

3∑
j=1

ξT
i Iijξj (6.30)

Iij = Mf
ij(Ξ) for i 6= j (6.31)

Iii = Mf
ii(Ξ) + Mb

i . (6.32)
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The total effective momentum, expressed with respect to the B3 fixed frame is

hs =
3∑

i=1

3∑
j=1

AdT
x−1

i
Iijξj (6.33)

where AdT
x−1

i
(θi) transforms from the Bi-fixed frame to the B3-fixed frame. (Note

that AdT
x−1
3

is the identity operator.) Equation (6.33) can now be rewritten as

hs =
3∑

i=1

AdT
x−1

i
Ii3ξ3 +

3∑
i=1

2∑
α=1

AdT
x−1

i
Iiα

(
ζα + Adx−1

α
ξ3
)

(6.34)

The quantity hs is governed by Kirchhoff-like equations and as we assume that the

system starts from rest, hs remains zero for all time. This leads to an equation for

ξ3

ξ3(Ξ,Ψ) = −
( 3∑

i=1

AdT
x−1

i
Ii3 +

3∑
i=1

2∑
α=1

AdT
x−1

i
IiαAdx−1

α

)−1 3∑
i=1

2∑
α=1

AdT
x−1

i
Iiαζα

= −
( 3∑

i=1

AdT
x−1

i
Ii3 +

3∑
i=1

2∑
α=1

AdT
x−1

i
IiαAdx−1

α

)−1 3∑
i=1

2∑
α=1

AdT
x−1

i
IiαΠαΨα .(6.35)

Thus evolution equation governing the system is

Ξ̇ =


Ψ1

Ψ2

l
(
Ξ,Ψ

)
 (6.36)

where the vector field l =
[
l1 l2 l3

]T
is defined by the right hand side of (6.16). The

infinite dimensional output map η[Ξ,Ψ](x, y) defined in (6.27), which describes the

fluid field throughout the domain is given in a more detailed form as

η[Ξ,Ψ](x, y) = τ1(Ξ,Ψ)T Π1Ψ1 + τ2(Ξ,Ψ)T Π2Ψ2 +
3∑

i=1

τi(Ξ,Ψ)T Γi(Ξ)ξ3(Ξ,Ψ)(6.37)

where τi(Ξ,Ψ) = [Xi(x, y,Ξ) ϕT
i (x, y,Ξ)]T and Γ1 = Adx−1

1
(θ1), Γ2 = Adx−1

2
(θ2) and

Γ3 = I. Thus the complete dynamic system is given by the five-dimensional state

equation (6.36) and the infinite-dimensional output map (6.37).
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Figure 6.4: Reciprocal motion of the three link fish: β0 = 1, θ1|t=0 = 0, θ2|t=0 = 0.

6.5.2 Reciprocal Motion

Though the three link fish can produce non-reciprocal motion as shown by [38],

all allowable motions of the fish do not necessarily have that property — a fact

which we highlight here. The movement of the three link fish is determined by the

two inputs which are the angular velocities of the two joints. Examples of inputs

which produce reciprocal motion are

θ̇1 = cos(t) (6.38)

θ̇2 = β0 cos(t) (6.39)

for β0 ∈ <. Figures 6.4, 6.5 and 6.6 show the motion of the center and far edges of

the fish when executing this kind of motion. In the first case the center link simply

rotates about its center while in the second case the center fish link moves up and

down. Figure 6.7 depicts a sequence of snap shots in time of reciprocal fish motion

when β0 = 1, θ1|t=0 = −1, θ2|t=0 = 0. The arrows indicating the fluid motion

highlight the symmetry of the motion and thus the fluid field causing the fish to

make no net forward locomotion.
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Figure 6.5: Reciprocal motion of the three link fish: β0 = −1, θ1|t=0 = 0, θ2|t=0 = 0.
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Figure 6.6: Reciprocal motion of the three link fish: β0 = 1/2, θ1|t=0 = 0, θ2|t=0 = 0.
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Figure 6.7: Snapshots in time of reciprocal motion.
The background color field represents the potential field φ with red representing
positive values and blue representing negative values. β0 = 1, θ1|t=0 = −1, θ2|t=0 = 0
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6.5.3 Basic Gaits for Three Link Fish

We consider two basic gaits: moving forward and turning, which were first stud-

ied by [38]. The angular velocities for both gaits are the same

θ̇1 = aω sin(ωt) (6.40)

θ̇2 = aω cos(ωt) (6.41)

but the initial condition differs; The initial conditions for moving forward are

θ1|t=0 = −a (6.42)

θ2|t=0 = 0 (6.43)

leading to

θ1 = −a cos(ωt) (6.44)

θ2 = sin(ωt) . (6.45)

However, the initial conditions for turning are

θ1|t=0 = β − a (6.46)

θ2|t=0 = −β (6.47)

leading to

θ1 = −a cos(ωt) + β (6.48)

θ2 = a sin(ωt)− β . (6.49)

Note that β = a = ω = 1 in [38]. Figure 6.8 shows the fish moving forward for

different parameter combinations, while Figure 6.9 shows the fish turning in circles

for different parameter combinations. Figure 6.10 shows snapshots in time of the

fish moving forward. The subtle difference in the fluid field that results from this

movement verses the fluid field that results from the reciprocal motion in Figure 6.7

highlights how the fish moves itself forward.
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Figure 6.8: Forward gaits of a three link fish. β = 0.
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Figure 6.9: Turning gaits of a three link fish. a = 1, ω = 10.
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Figure 6.10: Snapshots in time of the fish moving forward.
The background color field represents the potential field φ with red representing
positive values and blue representing negative values. The subtle difference in the
fluid field that results from this movement versus the fluid field that results from the
reciprocal motion in Figure 6.7 highlights how the fish moves itself forward. a = 1,
θ1|t=0 = −1, θ2|t=0 = 0
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6.5.4 Source Seeking With a Three Link Fish

We take the basic gaits of the three link fish and modify them to enable the

fish to move both from an initial location to a desired location in space and along

a predetermined path. There are two parts to our control law: 1) how to apply

extremum seeking to the gaits and 2) what function to optimize with extremum

seeking.

As explained in Section 6.3, the control law for the nonholonomic unicycle (6.1)

is made up of two parts: a persistent excitation aω cos(ωt) which allows the entity

to probe the space and a feedback term cξ sin(ωt) which allows the entity to turn

and move up the gradient. The persistent excitation aω cos(ωt) is exactly what we

see in (6.40), modulo a phase shift. If we assume β depends on time instead of being

constant, then, following (6.48)–(6.49) we find

θ̇1 = aω sin(ωt) + β̇ (6.50)

θ̇2 = aω cos(ωt)− β̇ . (6.51)

By equating β̇ = −cξ cos(ωt) we arrive at our control law

θ̇1 = aω sin(ωt)− cξ cos(ωt) (6.52)

θ̇2 = aω cos(ωt) + cξ cos(ωt) . (6.53)

ξ =
s

s+ h
[J ] (6.54)

Thus the turing parameter β depends on the function J we wish to optimize and

the fish moves in such a way to maximize the value output value of J .

The question now becomes, what exactly is J? The ultimate goal is to move the

fish either from an initial location in space to desired one (x∗, y∗) in space or along

a path P ∗. In the first case, if we assume the fish can somehow sense the distance

between itself and the goal location (x∗, y∗), then we wish to minimize that distance

and, similar to (6.3), we can define J as the function

J = −qr
((
fsx − x∗

)2
+
(
fsy − y∗

)2
)

(6.55)

fs =

 fx + cos(θf )(δ + σ) + cos(θ1 + θf )(2δ + σ)

fy + sin(θf )(δ + σ) + sin(θ1 + θf )(2δ + σ)

 (6.56)
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Figure 6.11: Source seeking for a three link fish.
The background color field represents the “concentration” of the signal field J with
yellow representing higher values than green. a = 1, c = 2, ω = 10, h = 10,
qr = 1/100, δ = 5/6, σ = 1/6.

where fs = (fsx, fsy) is the location of the sensor which we assume to be at the

tip of the forward ellipse, i.e. the fish nose. Figure 6.11 shows a typical simulation

of the fish moving to a desired location under the algorithm (6.52)–(6.54). This

simulation was made while enforcing the constraint that the tuning variable β does

not exceed a certain value — the amplitude of the probing signal a. This ensures

the links do not cross themselves as the fish moves.

From (6.55), (6.56) it may appear that the fish needs the information about the

target’s position and about its own position. This is not always the case. With

measurement of J(t) alone, the fish can be guided by the algorithm (6.52)–(6.54) to

reach a local maximum J∗ on physical space, as in [18, 19].

6.5.5 Path Following for a Three Link Fish

The function J , optimized by extremum seeking, can be modified so that the

fish can not only move from to a desired location, but also so that the fish can

follow a predefined path. There are a myriad of ways to construct J for this pur-

pose, however, the one we choose to use here is fairly simple. We define a path
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Figure 6.12: Three link fish following a predetermined path.
The background color field represents the “concentration” of the signal field J with
yellow representing higher values than green. a = 1, c = 2, ω = 10, h = 10, δ = 5/6,
σ = 1/6.

parametrically and use the error to define J . For instance, we define the target path

x = a1y
3 + a2y

2 + a3y + a4 and define J as a function of the error between fsx and

a1f
3
sy + a2f

2
sy + a3fsy + a4. The error can be multiplied by a gain and can be raised

to a power to obtain different gradient fields. Figure 6.12 shows the fish following

the path defined by x = 2/300y3 − 2/5y2 + 16/3y + 1. The fish optimizes

J = −5
√
|fsx − 2/300f 3

sy − 2/5f 2
sy + 16/3fsy + 1| (6.57)

to follow this path.

6.6 Locomotion and Source Seeking for a Joukowski

Foil Fish

We now move to the discussion of locomotion for a deformable Joukowski foil.

[84, 52] have used the Joukowski transformation, a class of conformal maps, to study

a fish modelled as an airfoil. The transformation

z = F (ζ) = ζ + ζc +
α

ζ + ζc
(6.58)
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allows the parameterization of a circle ζ = rce
iθ in the ζ-plane to describe an airfoil

in the z = x+ iy plane. The parameters ζc = ζx + iζy ∈ C and α ∈ R determine the

foil shape. Varying the imaginary part ={ζc} = ζy while enforcing the constraint

rc = |ζc − α| with rc constant, as is done in [84, 52] and in this work, causes the

camber of the foil to vary as well. This variation allows for one degree of freedom,

which, by itself, will not allow the fish to make forward progress in a potential flow.

To counter this, [84, 52] add discrete point vortices to the system, modelled after

vortex shedding by actual fish. (The potential function in this case encompasses

the domain of the fluid minus small circles at the locations of the vortices.) The

vortices are shed at discrete time instants from the trailing edge of the fish. When

this happens, an exchange of momentum ensues and the fish is capable of moving

forward. By periodically varying ζ̇y — the single input to the system — in a certain

way, the fish will move forward or turn.

The model presented in [84, 52] spans the gap between studies which look at

deformable bodies moving through a fluid without the use of vortex shedding and

studies examining systems with rigid bodies and vortices. Through the model in [84,

52], the authors successfully address motion planning problems for fish locomotion,

using only one input and exploiting the presence of vortices for both propulsion and

steering.

Similarly to the three link fish, we will first summarize the equations of motion

for the fish foil, though we do not rederive these equations. After discussing the

basic gaits to move forward and to turn, we then present our control law which

allows the fish to move both to a desired location and along a specific path.

6.6.1 ODE Model With an Infinite Dimensional Output Map

for a Joukowski foil fish in a Potential Flow with Point

Vortices

The continually growing number of state variables of this system are

Ξ =
[
ζy g ΛT ΓT

]T
(6.59)
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where g = [θf fx fy]
T , Λ = [ζ1 ζ2 ...]

T , with ζk ∈ CN , is a vector of the location of

each point vortex and Γ = [γ1 γ2 ...]
T , with γk ∈ R, is a vector of the strength of each

point vortex. The variables θf and (fx, fy) are the orientation and location of the foil

fish with respect to the spatially fixed frame. The number of vortices N continues

to grow as time goes on; at periodic discrete points in time another vortex is added.

The system has one input, ζ̇y = Ψ while the output map defines the potential field

and is given in the infinite dimensional form φ(x, y) = η[Ξ,Ψ](x, y), which should

not be confused with (6.15) as Ξ defined in (6.12) and (6.59) are different and the

inputs Ψ in the two problems are also different. To complete the model description

we must develop expressions for the evolution of all the state variables and define

the output operate η.

Both [84] and [52] develop the equations of motion for a Joukowski foil in a

perfect fluid with point vortices. [52] develops the expression for the potential

function which [84] uses (and therefore we use as well). However, [52] uses Newton’s

second law to derive the motion of the body, while [84] applies conservation laws.

We use the motion derived by [84].

The complex potential W (z) = φ(z) + iψ(z) is an analytic function where φ is

the potential function and ψ is the stream function. Similarly to the three link fish

case, we use a frame of reference attached to the foil and we express W (z) in terms

of the body configuration and velocities as

w(ζ) = W (z) = Uw1(ζ) + V w2(ζ) + Ωw3(ζ)

+ζ̇xws1(ζ) + ζ̇yws2(ζ) + α̇ws3(ζ)

+
N∑

k=1

wk
pv(ζ) (6.60)

where U, V are the translational velocities of the foil, Ω is the rotational velocity,

N is the number of vortices in the flow and wk
pv(ζ) represents the contribution to

the potential from the k-th vortex. As noted in [84], the “subscript ‘s’ appears in

conjunction with variables describing the shape of the foil.” Finding the functions wi

and wsi corresponds to satisfying the boundary condition that the normal component

of the fluid velocity must match the normal component of the velocity of the foil at

its surface. The velocity of the foil at its surface is a combination of the translational
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and rotational velocities of the foil plus the velocities associated with the change in

shape ζ̇x, ζ̇y, α̇, which depends on the input Ψ = ζ̇y. The full expressions for these

functions are listed in Appendix A. The functions wk
pv are found using the Milne-

Thomson circle theorem [55]

wk
pv = iγk

 log(ζ − ζk)− log

(
ζ − r2

c

ζk

) (6.61)

where ζk is the location of the k-th point vortex, and γk is its strength.

Using the complex potential W (z), the kinetic energy of the fluid can be deter-

mined from the same integral used in Section 6.5.1

Tf = −1

2

∫
∂S
φ(∇φ · n)ds (6.62)

where ∂S is the surface of the foil. Given that φ is a function of the body configu-

ration, the body velocities and the point vortices, Tf can be expressed as

Tf =
1

2
[UT ṡT ΓT ]

 MTf


 U

ṡ
Γ

 (6.63)

U = [Ω U V ]T (6.64)

s = [ζx ζy α]T (6.65)

Γ = [γ1 ... γN ]T (6.66)

where the body shape s(ζy) can be determined from ζy alone, the matrix MTf (s,Λ)

depends only on the foil shape s(ζy) and the location of the vortices and the change in

body shape ṡ(s,Ψ) depends only the shape s(ζy) and the input Ψ. The relationship

between ζy and ζx, a is defined as

ζx =
(1− µ)

(1 + µ)

√
r2
c − ζ2

y (6.67)

α = ζx −
√
r2
c − ζ2

y

= − 2µ

(1 + µ)

√
r2
c − ζ2

y (6.68)

where µ ∈ (0, 1) is a constant. The kinetic energy of the foil can also be expressed

in term of the body configuration and velocities

TB =
1

2
[UT ṡT ]

 MTB

 U
ṡ

 (6.69)
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where the matrix MTB(s) depends on only the shape s of the foil. The total effective

momentum of the system is

A =
∂(TB + Tf )

∂Ω
− 1

2

N∑
k=1

(−2πγk)(|zk|2 − |z0|2) (6.70)

L =

 ∂(TB+Tf )

∂U
∂(TB+Tf )

∂V

+
N∑

k=1

(−2πγk)(zk + z0)× k (6.71)

where the terms due to the vortices are developed in [70], zk = [<{zk} ={zk}]T is

the vector location of the k-th vortex in the foil-fixed frame, and z0 is the location

of the origin of the foil-fixed frame with respect to the spatially-fixed frame. The

momentum is governed by (6.4)–(6.5) and the system starts from rest; therefore

L = [Lx Ly]
T = 0 and A = 0 for all time. Thus we have a system of equations

A

Lx

Ly

 = I


Ω

U

V

+B


ζ̇x

ζ̇y

α̇

+ P


γ1

...

γN

 (6.72)

with a solution

U(Ξ,Ψ) = −I−1 (Bṡ + PΓ) (6.73)

where the matrices I(s) and B(s) depend only on the foil shape s and the matrix

P (s,Λ) depends on the shape plus the locations of the vortices.

The remaining two items to summarize are 1) the motion of the point vortices

and 2) how to add vortices. The motion of the vortices

ζ̇k = pk(Ξ,Ψ) =
(
dWk

dz
− (U + iV + iΩzk)−

∂F

∂ζc
ζ̇c −

∂F

∂α
α̇
)

1

F ′(ζk)
(6.74)

Wk(z) = W (z)− iγk log(z − zk) (6.75)

is stated in [84] and is found using Routh’s rule [57]. The point vortices are added

to the system one by one at discrete points in time. [84] chooses the trailing edge

of the foil as (α − ζc) while choosing the stagnation point (the location of the new

point vortex) as ζn = 1.5(α− ζc). Thus the condition

dw

dζ

∣∣∣∣
ζ=ζn

= 0 (6.76)
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must be satisfied to guarantee the stagnation point. The addition of the new vortex

causes the effective fluid momenta to change, and thus the body momentum must

change as well. The discrete change in U, denoted as ∆U, plus the strength of the

new vortex γn must satisfy

I∆U + Pγn = 0 (6.77)

to ensure the conservation of momentum.

The calculation of U is split into 1) intervals of time where (6.72) is used to

find the body’s translational and rotational velocities due to the body configuration

and its shape velocities and 2) points in time where (6.76) and (6.77) are used to

calculate the discrete change in the body velocities.

Thus, the complete dynamic system is given by the evolution equation

Ξ̇ =



ζ̇y

ġ

Λ̇

Γ̇

 =



Ψ

l(Ξ,Ψ)

Π(Ξ,Ψ)

0

 (6.78)

and by the infinite dimensional output map

φ(x, y) = η[Ξ,Ψ](x, y) = <
{
W (z)

}
, (6.79)

where

Π(Ξ,Ψ) = [p1(Ξ,Ψ) p2(Ξ,Ψ) ...]T (6.80)

l(Ξ,Ψ) =


1 0 0

0 cos(θf ) − sin(θf )

0 sin(θf ) cos(θf )

U(Ξ,Ψ) , (6.81)

and where U(Ξ,Ψ) is defined in (6.73), pk(Ξ,Ψ) is defined in (6.74), and W (z) is

defined in (6.60). The initial condition for Λ is arbitrary, while the initial condition

for Γ is zero. In this way, until a vortex is initialized, it has no effect on the system.

To initialize, each ζk in Λ and γk in Γ are reset at time k∆t where ∆t is the time

between each shed vortex. Thus the reset is defined as

ζk(k∆t) = 1.5
(
α(k∆t)− ζc(k∆t)

)
(6.82)

γk(k∆t) = νk (6.83)



155

where νk is the γn part of the solution to (6.76), (6.77) at time k∆t where ζn = ζk

and ∆U is added to (6.73) for use in (6.81).

6.6.2 Basic Gaits of the Joukowski Foil Fish

As shown in [84], the Joukowski foil fish, with the help of the shed vortices, will

move forward and turn with the same input

ζ̇y = aω cos(ωt) , (6.84)

where the other shape parameters follow from the choice of ζy as seen in (6.67),

(6.68). The difference between the two gaits lies in the initial condition of ζy; The

fish will move straight forward with the initial condition ζy|t=0 = 0 while the fish

will move around circles with the initial condition ζy|t=0 = β with β 6= 0 leading to

ζy(t) = a sin(ωt) + β . (6.85)

Figures 6.14 and 6.13 show the fish moving forward and in a circle for various choices

of parameters. Figure 6.14 clearly shows the effect of the non-decaying vortices —

the fish tail still moves with the same frequency, yet the period of resulting fish

locomotion increases. Figure 6.15 shows snapshots in time of the fish moving forward

and the vortices that form.

6.6.3 Source Seeking for a Joukowski Foil Fish

The derivation of the control law for the foil fish is very similar to the derivation

found in Section 6.5.4. We notice that the forward gait and turning gait both have

a sinusoidal term - similar to the persistent excitation term in the unicycle control

law (6.1). We make β from (6.85) time dependent and arrive at

ζ̇y = aω cos(ωt) + cξ sin(ωt) (6.86)

ξ = H(s)[J ] (6.87)

H(s) =
(

s

s+ h

)2

(6.88)
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Figure 6.13: Forward gait for Joukowski foil fish. β = 0.
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Figure 6.14: Turning gait for Joukowski foil fish. a = .1, ω = 15.
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Figure 6.15: Snapshots in time of a Joukowski foil fish moving forward.
The background color field represents the stream function ψ with red representing
positive values and blue negative. Vortices are also shown as xs moving counter
clockwise and os clockwise. a = .1, β = 0.

where our compensator H(s) is a double washout filter. The function J we wish to

maximize is

J = −qr
((
x∗ − fsx

)2
+
(
y∗ − fsy

)2
)

(6.89)

fs =

µ+
a2

µ

ejθf + fx + ify (6.90)

where fs = (fsx, fsy) is the location of the fish sensor, a forward point of the fish

— its “nose”. As before (x∗, y∗) is the goal location. Figures 6.16 and 6.17 depict

the fish going toward a target under the influence of (6.86) and different parameter

choices.

While we constrain only the value of β in the control law for the three link fish,

we constrain both the value of β and its time derivative β̇ in the control law of

the Joukowski foil fish. We do this both for physical realism and for computational

convergence.
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Figure 6.16: Source seeking for a Joukowski foil fish.

(a) The background color field represents the stream function ψ with red represent-
ing positive values and blue negative. (b) The background color field represents
the “concentration” of the signal field J with the darker shade representing higher
values than the lighter shade. a = 0.3, c = 0.3, ω = 20, h = 10, qr = 10.2, rc = 1,
µ = 0.74.

6.6.4 Path Following for a Joukowski foil fish.

We modify the function J in the same way we did in Section 6.5.5 so that the

Joukowski foil fish follows a predetermined path. Figure 6.18 shows the path the

fish takes when following the path defined by

J = 300/

√
1 +

∣∣∣∣fx − (3/1000f 3
y − 4/15f 2

y + 16/3fy + 1)
∣∣∣∣ (6.91)

6.7 Conclusions

We have shown that the extremum seeking method, which performs real-time

optimization using periodic perturbations, can perform navigation of underwater

vehicles which move through sinusoid-dominated body movement instead of through

the use of traditional motors. The control law was demonstrated on two different
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Figure 6.17: Source seeking for a Joukowski foil fish.

(a) The background color field represents the stream function ψ with red represent-
ing positive values and blue negative. (b) The background color field represents
the “concentration” of the signal field J with the darker shade representing higher
values than the lighter shade. a = 0.3, c = 0.3, ω = 10, h = 10, qr = 10.2, rc = 1,
µ = 0.74.
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Figure 6.18: Joukowski foil fish following a predetermined path.

(a) The background color field represents the stream function ψ with red represent-
ing positive values and blue negative. (b) The background color field represents
the “concentration” of the signal field J with the darker shade representing higher
values than the lighter shade. a = 0.3, c = 10, ω = 20, h = 20, rc = 1, µ = 0.74.
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computational fish models, a three link model developed by [38] and a fish modeled

as an airfoil developed by [84]. The algorithm allows the fish to find the source of

a signal, move to a target waypoint and follow a prespecified path. These tools can

also be used to guide the vehicle through an obstacle field. This work also serves as

validation that methods from control theory can be applied to the models developed

in [38] and [84] for navigation control for underwater vehicles.

A reader might like to see a detailed theoretical analysis such as those that we

have completed source seeking with nonholonomic vehicles in two dimensions [18]

and three dimensions [19]. Such detailed results are beyond reach for the highly

complex (and high dimensional) models in this chapter, however, the theoretical

intuition from [18, 19] has guided the choices of the control laws (6.52)–(6.54) and

(6.86)–(6.88).

In so much as the two models considered are realistic models of body-fluid inter-

action taking place in locomotion of actual fish, the simple control laws (6.52)–(6.54)

and (6.86)–(6.88) seem as plausible feedback strategies that actual fish may be using

to navigate gradient fields.
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Appendix A

Full Expressions for wi and wsi.

w1(ζ) = −r
2
c

ζ
+ ζc +

α2

(ζ + ζc)
(A.1)

w2(ζ) = −i
[
r2
c

ζ
+ ζc +

α2

(ζ + ζc)

]
(A.2)

w3(ζ) =
−i
2

[
r2
c + 2

ζcr
2
c

ζ
+ δ2 + 2α2 r

2
c/ζ + ζc
(ζ + ζc)

+
α4(ζ − ζc)

(ζ + ζc)(r2
c − δ2)

]
(A.3)

ws1(ζ) =

− r2
c

ζ
+
α2r2

c

ζζ2
c

+
α2

(ζ + ζc)
− α4ζ2

c

(ζ + ζc)(r2
c − δ2)2

− 2α4r2
cζc

(r2
c − δ2)3

log

ζ + ζc
rc

−
α2r2

c

ζ3
c

− α2r2
c

ζc(r2
c − δ2)2

 ζ

(ζ + ζc)

−2α2r2
c

 1

ζ3
c

+
ζcα

2

(r2
c − δ2)3

 log

ζ + ζc
ζ

+
2α4r2

c (iζy)

(r2
c − δ2)3

log

 ζ

rc

 (A.4)

ws2(ζ) = (−i)

r2
c

ζ
− α2r2

c

ζζ2
c

+
α2

(ζ + ζc)
− α4ζ2

c

(ζ + ζc)(r2
c − δ2)2

− 2α4r2
cζc

(r2
c − δ2)3

log

ζ + ζc
rc

+

α2r2
c

ζ3
c

− α2r2
c

ζc(r2
c − δ2)2

 ζ

(ζ + ζc)

+2α2r2
c

 1

ζ3
c

+
ζcα

2

(r2
c − δ2)3

 log

ζ + ζc
ζ

+
2α4r2

cζx
(r2

c − δ2)3
log

 ζ

rc

 (A.5)

ws3(ζ) = 2α

− r2
c

ζζc
− α2ζc

(ζ + ζc)(r2
c − δ2)

− α2r2
c

(r2
c − δ2)2

log

ζ + ζc
rc


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+
r2
c

(
(r2

c − δ2)2 − α2ζ2
c

)
ζ2
c (r2

c − δ2)2
log

ζ + ζc
ζ

 (A.6)

where δ = |ζc|.
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