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Abstract— In physical rehabilitation, exoskeleton assistive
devices aim to restore lost motor functions of a patient suffering
from neuromuscular or musculoskeletal disorders. These assis-
tive devices are classified as operating in one of two modes:
(1) passive mode, in which the exoskeleton passively moves
its joints through the full range (or a subset) of the patient’s
motion during engagement, or (2) assist-as-needed (AAN) mode,
in which the exoskeleton provides assistance to the joints of
the patient, either by initiating the movements or assisting the
patient’s movements to complete the task at hand. Achieving
high physical human-robot interaction (pHRI) transparency
is an open problem for multiple degrees-of-freedom (DOFs)
redundant exoskeletons. Using the EXO-UL8 exoskeleton, this
study compares two multi-joint admittance control schemes (hy-
per parameter- based, and Kalman Filter-based) with comfort
optimization to improve human-exoskeleton transparency. The
control schemes were tested by three healthy subjects who
completed reaching tasks while assisted by the exoskeleton.
Kinematic information in both joint and task space, as well as
force- and torque-based power exchange between the human
arm and exoskeleton, are collected and analyzed. The results
show that the preliminary Kalman Filter-based control scheme
matches the performance of the existing hyper parameter-based
scheme, highlighting the potential of the Kalman Filter-based
approach for additional performance.

Index Terms— Rehabilitation robotics, upper-limb exoskele-
ton, admittance control, Kalman Filter, physical human-robot
interaction (pHRI), wearable robot.

I. INTRODUCTION

A. Background and Motivation

Every year there are approximately 800,000 new stroke
patients in the US with many of them suffering from various
disabilities [1]. As a result of brain lesions, stroke victims
often lose part of upper-limb motor capabilities, such as
the ability to lift their arms up [2]. For decades, engineers
and physical therapists have been developing robots to au-
tomate the post-stroke training process, resulting in a shift
in research trend from low-dimensional, end-effector style “
manipulanda” to high-dimensional, fully-covered “exoskele-
tons”, which can simultaneously manipulate the multiple
degrees-of-freedom (DOFs) of the human arm as well as
provide additional features, such as tunnel-like force fields
and gravity compensation [3]. However, as the upper limb
multi-joint coordination strategies and response mechanism
to external resistance are not well understood, designing
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jiansun@ethz.ch

Fig. 1. The EXO-UL exoskeleton series: (a) 1-DOF EXO-UL1; (b) 3-DOF
EXO-UL3; (c) 7-DOF dual-arm EXO-UL7; (d) 8-DOF dual-arm EXO-UL8;
(e) CAD rendering of the EXO-UL8 [11]

an intelligent exoskeleton controller is not easy [4]. On
the other hand, the role of exoskeletons is evolving from
“purely assistive” to “training”, since providing excessive
assistance to patients during rehabilitation limits the training
effectiveness [5]. To increase patients’ engagement, better
assist-as-needed (AAN) algorithms are needed [6]. However,
to achieve good performance for AAN algorithms, one first
needs to ensure a high human-exoskeleton transparency, i.e.,
when a patient no longer needs assistance, the exoskeleton
should perfectly detect the patient’s intention and follow
the movement, rather than apply unwanted resistance, which
may alter the natural moving patterns. Previous work in
intention detection [7], multi-joint coordination [8], adaptive
systems and human adaptation [9] has aimed to improve
human-exoskeleton transparency. Exoskeleton modeling and
simulation have also improved (e.g., MuJoCo [10]), but
benefits are more prominent in lower limb applications due
to the cyclic movement patterns of walking and constraints
imposed by the ground.

B. Objective and Contribution

The exoskeleton system developed at the Bionics lab (Fig.
1) has evolved from 1-DOF, 3-DOF, 7-DOF EXO-UL7 (aka
CADEN-7, cable-driven and backdrivable), to the current
8-DOF EXO-UL8 (motor-gear, nonbackdrivable). The pur-
pose of this pilot study is to further improve the human-
exoskeleton transparency based on our existing admittance
controller.

In the process of improving compliance while main-
taining system stability, there are nonlinearities, unpre-
dicted variations, and uncertainties, which are difficult to
model/estimate:
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Fig. 2. Effort needed to actuate an exoskeleton is different among subjects,
as well as moving directions (e.g., elbow flexion and extension). Data is
from two healthy subjects.

• The physical human-robot interaction interface (soft
hand-cuffs attached to force/torque sensors) brings users
“wearable” comfort but introduces nonlinearities

• Tissues (i.e., skin and muscles) surrounding the bones,
deform when a human moves his/her arm, and add
uncertainties to the interface attached to the arm [12]

• Human motion pattern varies from subject to subject,
even from direction to direction (Fig. 2)

Kalman Filter-related techniques were previous used to
utilize sEMG or EEG signals as the primary command
signals with lower limb or low-DOF non-redundant upper
limb exoskeletons [13]–[15]. The utilization of Kalman Filter
techniques in the context of high-DOF, redundant, upper limb
exoskeleton control, with force/torque as the only sensor
input is a unique effort and one of the contributions of this
research effort. The Kalman Filter-based admittance control
scheme is also compared with the existing hyper parameter-
based scheme to assess the exoskeleton’s performance.

II. SYSTEM ARCHITECTURE OF THE EXO-UL8
A. Mechanical Design

The mechanical design of EXO-UL8’s right side is de-
picted in Fig. 1(e) [11]. Similar to its predecessor, the EXO-
UL8 covers all seven (7) main DOFs of a human’s upper limb
with each of its two arms, as well as provide an additional
hand gripper DOF at the distal end of each arm. Since the
opening and closing of the hand has little effect on the arm
configuration compared to the other DOFs, this paper focuses
on the admittance control of only the first seven DOFs. The
design of the EXO-UL8 shifted from a cable-driven actuation
mechanism that was implemented in the EXO-UL7 to elec-
tric drives for several reasons: a) increased torque outputs
enable abnormal movement correction as well as gravity
compensation; b) more accurate low-level control can be
achieved without unwanted compliance/delay; c) acceptable
torque/volume ratio. For each arm, two (2) harmonic drive
(Harmonic Drive Systems Inc., Japan) servo systems and
one (1) DC motor (Maxon Motor, Swiss) are equipped with
encoders and brakes to facilitate movement for the first three
DOFs at the shoulder joint (joint 1: abduction/adduction,
joint 2: flexion/extension, joint 3: internal/external rotation)
and to enable freezing functionality at emergency configu-
rations. One (1) harmonic drive servo system and four (4)
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Fig. 3. Comparison of admittance control schemes. Scheme A combines
the contributions of the force sensors using a weighted sum (hyper gains),
while Scheme B estimates the human-applied joint torques with a Kalman
Filter.

Maxon DC motors are used to realize the five remaining
DOFs (joint 4: elbow flexion/extension, joint 5: forearm
pronation/supination, joint 6: wrist extension/flexion, joint 7:
wrist radial/ulnar deviation, joint 8: hand opening/closing).
Three (3) multi-axis F/T sensors (ATI mini 40) are positioned
between the human arm and exoskeleton at the handle,
forearm and upper arm. One (1) single-axis force sensor
is incorporated into the gripper. Details of controller are
discussed in Part III.

B. Training Modes

Before the dual-arm system, training modes were limited
to pre-defined trajectories or pure-following. Although many
studies addressed the assist-as-needed modes for years, gen-
eralized findings that can be reused with different systems
are limited.

The development of the dual-arm system enabled symmet-
ric mirror image movement training based on between-arm
teleoperation. In addition, asymmetric bilateral training using
an interactive virtual reality environment was also developed
[16]. In either of the training modes and regardless of the
motor control functionality level of the human operator, the
exoskeleton arm needs to have high “transparency”, which
means that it is sensitive enough, in a heuristic way, to not
exert unwanted resistance on the human arm (otherwise the
human’s movement, e.g., redundancy resolution, would be
affected [17]), as well as be robust enough to prevent instabil-
ity in all configurations. A trade-off between sensitivity and
stability exists, and thus a dynamic equilibrium is needed.

III. ADMITTANCE CONTROL SCHEMES

An admittance controller allows a system to have an
arbitrary apparent mechanical admittance by regulating the
system’s output to a reference trajectory that a virtual system
with the desired mechanical admittance would take [18].
The result is that to a human, the system behaves with the
desired apparent admittance. In the case of the EXO-UL8
exoskeleton, admittance control allows the exoskeleton’s
arms to appear much lighter so that the user can easily move
them around.

The admittance control scheme implemented consists of
two aspects: estimating the torques applied by the human to
the exoskeleton’s joints, and generating reference trajectories
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Fig. 4. The exoskeleton controller implements a cascaded control strategy in which low-level motor controllers track references generated by the admittance
control scheme. In this comparison study, the green box implements either Scheme A or Scheme B, as discussed in Section III.

for the exoskeleton’s joints in response to the human-applied
forces. In this study, two admittance control schemes, as
shown in Fig. 3, are compared. In Scheme A (the existing
control scheme [16]), the human-applied joint torques are
calculated from a weighted combination of each sensor’s
contribution, while in Scheme B, a Kalman Filter is used.
In both schemes, the estimated torques are then used to
generate an appropriate reference trajectory in joint space so
that the exoskeleton appears to have the desired mechanical
admittance.

A. Calculating Human-Applied Torques from Sensor Data

Human-applied forces are measured by the force sensors
located in the upper arm, lower arm, and wrist handle of the
exoskeleton, and are used to calculate the resulting human-
applied torques on each of the seven joints. Determining
the particular hyper gains for the sensor contributions is a
difficult iterative process, which motivated the Kalman Filter
as an alternative approach. In either approach, let Γ ∈ R7

be the actual joint torques resulting from human-applied
forces, and Γ̂ ∈ R7 be the estimated joint torques using data
from the sensors. Each of the six degrees-of-freedom (DOF)
force sensors provides force and torque measurements in the
three axes of the sensor’s reference frame: F̂ ∈ R6, F̂ :=
col(f̂x, f̂y, f̂z, τ̂x, τ̂y, τ̂z). The actual force and torque at each
sensor’s location, F ∈ R6, F := col(fx, fy, fz, τx, τy, τz),
relate to the joint torques through the appropriate Jacobian
matrix: Ju ∈ R6×7 for the upper arm sensor, Jf ∈ R6×7

for the forearm sensor, and Jw ∈ R6×7 for the wrist sensor.
The generalized force at each sensor is unaffected by joint
torques corresponding to joints located past the sensor’s
position along the exoskeleton arm. As a result, the Jacobians
corresponding to the upper and forearm sensors have certain
columns that only contain zeros: (Ju)∗,4:7 = 06×4 and
(Jf )∗,6:7 = 06×2. These Jacobian matrices result in the
following relationship between the joint torques and actual
generalized forces at each sensor location:

Γ1:3 = (J>u Fu)1:3, (1)

Γ1:5 = (J>f Ff )1:5, (2)

Γ1:7 = (J>wFw)1:7. (3)

1) Scheme A: Hyper Gains: To address the uncertainties
and nonlinearities in multi-joint coordination, hyper gains
αj,s, j ∈ {1, . . . , 7}, s ∈ {u, f, w} are introduced:

Γ̂j = αj,uΓ̂j,u + αj,f Γ̂j,f + αj,wΓ̂j,w, (4)

where Γ̂j,s = (J>s F̂s)j . In a complete form, equation (4)
(with the gripper DOF considered separately) is:
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. (5)

Contributions to specific joints could be compromised due to
uncertain nonlinearities, which may lead to the coactivation
of other exoskeleton DOFs (unwanted movements) during
movement. To overcome this unindended effect, the user may
be forced to exert additional effort in order to achieve the
desired motion.

TABLE I
DIFFERENT JOINT TORQUE LIMITS

Body Part Max Strength (N-m) Max Strength (N-m)
Flexion: 13.13 Extension: 8.90

Shoulder Adduction: 14.49 Abduction: 15.62
Internal Rotation: 11.59 External Rotation: 11.63

Elbow Flexion: 10.75 Extension: 8.76
Pronation: 3.39 Supination: 1.42

Wrist Extension: 2.11 Flexion: 1.55
Radial Deviation: 2.67 Ulnar Deviation: 1.98

To quantify the comfort level (denoted as cl), we normalize
the effort at each joint based on [19]:

clj = 1− τj/τj,max, j ∈ {1, . . . , 7}. (6)

Note that clj is direction-dependent due to the difference
in concentric and eccentric contractions. As shown in Table
I, the second and third columns list positive and negative



rotations on exoskeleton, respectively. The hyper gains are
manually tuned so that the comfort level is approximately
optimized. The exoskeleton’s gravity and friction are sepa-
rately compensated.

2) Scheme B: Kalman Filtering: The Kalman Filter ap-
proach is based off the work of [18], in which the joint
torques to estimate are modeled as entirely driven by Gaus-
sian noise:

Γ̇ = wΓ, (7)

where wΓ ∼ N (07×1, QΓ), with QΓ being a covariance
matrix. Tuning QΓ allows tuning how responsive a particular
joint is to the human-applied torques. For use in the Kalman
Filter, equation (7) is descretized to:

Γ[k + 1] = Γ[k] + (∆t)wΓ[k], (8)

where ∆t is the time-step.
Since Γ is the state that the Kalman Filter tries to estimate,

equations (1), (2), and (3) provide a measurement model for
Γ. At each sampling time-step k ∈ Z, assume the sensor’s
measurement data is corrupted with additive Gaussian noise,
and let

z̄[k] :=




(J>u F̂u)[k]

(J>f F̂f )[k]

(J>w F̂w)[k]


 . (9)

Then,
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:= H[k]Γ[k] + col(vu[k], vf [k], vw[k]), (11)

where vu[k] ∈ R3, vu[k] ∼ N (03×1, Ru); vf [k] ∈
R5, vf [k] ∼ N (05×1, Rf ); and vw[k] ∈ R7, vw[k] ∼
N (07×1, Rw).

Equations (8) and (10) are the Kalman Filter’s process
and measurement models, respectively. At each time-step,
the prior and a posteriori updates are performed to yield
Γ̂[k], which is the minimum mean square error (MMSE)
estimate of Γ[k]. Let Pp be the prior’s variance, Pm be the
a posteriori’s variance, and R := diag(Ru, Rf , Rw). Then,
the update equations of the Kalman Filter for this system in
particular are as follows.

Initialization:

Γ̂[0] = 07×1, (12)

Pm[0] = (∆t)2QΓ. (13)

Prior Update:

Pp[k] = Pm[k − 1] + (∆t)2QΓ. (14)

A Posteriori Update:

K[k] = Pp[k]H>[k](H[k]Pp[k]H>[k] +R)−1, (15)

Γ̂[k] = (I−K[k]H[k])Γ̂[k − 1] +K[k]z̄[k], (16)

Pm[k] = (I−K[k]H[k])Pp[k](I−K[k]H[k])> (17)

+K[k]RK>[k].

The process and measurement noise covariance matrices are
manually tuned in an iterative approach until the exoskele-
ton’s movements are heuristically determined to be smooth,
yet responsive. Smaller process noise covariance results
in smoother estimated torques, while smaller measurement
noise covariance terms for a particular sensor measurement
increases its contribution to the estimated torque. Note that
the Joseph form is used for the covariance’s a posteriori
update in equation (17) for numerical stability.

The estimated Γ̂[k] is subsequently used to generate the
appropriate reference signal in joint space.

B. Joint Space Reference Generation

While second-order models have been used in other stud-
ies [18, Eq. 3] [20, Eq. 4], a first-order model was chosen
over a second-order model to allow the exoskeleton to be
perceived as more responsive to the user.

1) Scheme A: The calculated torque signals are filtered
and input into a PD admittance controller:

θ̇ref
j = kj,pΓ̂j + kj,d

˙̂
Γj , j ∈ {1, . . . , 7}, (18)

where kj,p and kj,d are manually tuned gains, and each θref
j

is tracked by the corresponding low-level motor controller.
2) Scheme B: The estimated human-applied joint torques

Γ̂ are used to each drive a first-order reference generation
model for the corresponding joint:

τj θ̇
ref
j + θref

j = AjΓ̂j , j ∈ {1, . . . , 7}, (19)

where τj and Aj are the desired time constant and DC gain
for the joint, respectively. These parameters are manually
tuned to achieve the desired responsiveness of the particular
joint. For implementation, equation (19) is discretized using
exact discretization to yield:

θref
j [k + 1] = e

−∆t
τj θref

j [k] +Aj(1− e
−∆t
τj )Γ̂j [k], (20)

for j ∈ {1, . . . , 7}. The generated reference signal, θref , is
then tracked by the individual motor controllers, as shown
in Fig. 4.

IV. EXPERIMENT

This experiment explored the performance of each con-
trol scheme through interaction with three healthy subjects,
recruited according to an approved IRB protocol (IRB #17-
001646). Only the right arm of the exoskeleton was utilized
(all subjects are right-handed).

A. Setup

Assistance was provided to help subjects into the ex-
oskeleton and attach the cuffs. Subjects were instructed to
wear short-sleeve t-shirts to reduce any nonlinearity effects
resulting from deformation of clothing. To eliminate possible
perceptual interference imposed by a virtual reality environ-
ment feature of the exoskeleton system, the experiment was
limited to interaction with real objects only, as shown in Fig.
5(a).



B. Tasks

The subjects wore the exoskeleton and were asked to
perform reaching tasks with their right (dominant) arm using
a sequence of targets as shown in Fig. 5(b). The #0 target is
located at the center of a 3× 3 target matrix. The complete
experiment task description is illustrated in Algorithm 1.

Algorithm 1: Experiment Protocol on Each Subject
Subject wear the exoskeleton on the dominant arm
begin

for Scheme = A,B do
Become familiar with the system for 5min, and

rest for 1min
for i = 1, 2, ..., 8 do

Move the tip from Target #0 to Target #i (in
3sec, as instructed by a metronome)

if not touched then
Keep moving

else
Move the tip back to Target #0 (in 3sec,

instructed by a metronome)

Take off the exoskeleton, and rest for 5min

C. Data Collection

Both kinematic and force data were collected: joint po-
sition was recorded from the optical encoders at the seven
motors on the exoskeleton arm at 100Hz; force/torque in-
formation, F̂ , was measured by the three sensors on the
exoskeleton arm at 100Hz as well.

V. RESULTS

Several aspects of the subjects physical interaction with
EXO-UL8 are quantitatively analyzed and discussed below
to compare the controllers’ performance.

Fig. 5. Experiment setup: (a) A subject is wearing the exoskeleton to
accomplish trajectory tracking tasks; (b) Planned trajectory (detailed in
Algorithm 1); (c) Top view of the experiment setup.

Fig. 6. Joint space position trajectory of Subject 1 under Schemes A and B.
Although completion time and task space error (Table II) are comparable,
joint usage preference differs. Joints 3 and 5 are used less in Scheme A
than in Scheme B. The Kalman filter better estimates supination/pronation
(joint 5) and shoulder internal/external rotation (joint 3).

A. High-Level Trajectory Tracking - Joint Space

1) Joint space position trajectory: Joint space position
trajectories of all seven DOFs of Subject #1 are depicted in
Fig. 6. The summary of joint position distribution is shown in
Fig. 7(a). Comparison of the joint space trajectories indicates
the differences between the two control schemes in joint
usage preference.

2) Joint space jerkiness: As observed in the distribution
in Fig. 7(b), the joint space jerk (third-order time derivative
of joint position or first time derivative of the angular accel-
eration) in both Scheme A and Scheme B are comparable,
indicating similar performance between the control schemes
in terms of providing smooth trajectory tracking.

B. High-Level Trajectory Tracking - Task Space

1) Task space position trajectory: The position over time
of the end-effector in task space for both admittance control
schemes is shown in Fig. 8. By qualitative observation, both
admittance control schemes are adequate in responding to the
estimated human-applied torques by moving the exoskeleton
to the desired positions.



Fig. 7. Joint space position (a) and joint space jerkiness (b) distributions
of all subjects under Scheme A and Scheme B.

2) Task space error: The task space error for each subject
under each admittance control scheme is the total deviation
of the actual human controlled trajectory from the reference
trajectory of Fig. 5 (b). A sample plot of Subject 1’s trajec-
tory in the plane of the target matrix is shown in Fig. 9. To
quantify the error, let it be defined as the root-mean-square
(RMS) of the minimum distance of the actual trajectory to
the reference trajectory summed over all segments of the
reference trajectory, similar to the approach presented in
[17]:

∑
γ∈segments

√
(d2
γ,1 + · · ·+ d2

γ,n)/n, where dγ,i is the
minimum distance to segment γ of the reference trajectory.
The errors are tabulated in Table II. Both control schemes
exhibit similar performance in terms of error magnitude,
indicating that task space errors depend more on the operator
than the particular admittance control scheme used.

TABLE II
TASK SPACE ERRORS UNDER BOTH SCHEMES FOR EACH SUBJECT

Subject Scheme A (unit: m) Scheme B (unit: m)
1 0.0610 0.0634
2 0.0777 0.0778
3 0.1219 0.1091
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Fig. 8. Task Space Position Trajectory of Subject 1, under Scheme A and
B. Both control schemes show satisfactory functionality for the duration of
the test time. Similar observations were made for all three test subjects.
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Fig. 9. Task Space Reference Following of Subject 1, under Scheme A
and B. Both control schemes show similar magnitudes of error in guiding
the exoskeleton’s end-effector along the reference trajectories.

C. Power Exchange

The power exchange is the amount of mechanical power
the user inputs into the exoskeleton device through the
three sensors. Ideally, power exchange is minimal, which
is indicative of high human-exoskeleton transparency. The
mean power exchange of each test subject for each control
scheme is tabulated in Table III, which show a redistribution
of the power exchange for each sensor. Scheme B evens out
the contributions of the lower and handle sensors more than
scheme A, which may indicate more uniform transparency.

VI. CONCLUSIONS

This study compares two different admittance control
schemes (existing hyper parameter-based, and Kalman Filter-
based) on the EXO-UL8, a dual-arm, high-DOF redundant



TABLE III
MEAN POWER EXCHANGE UNDER BOTH SCHEMES FOR EACH SUBJECT

Scheme A (unit: mW) Scheme B (unit: mW)
Subject Upper Lower Handle Upper Lower Handle

1 89 176 345 155 544 507
2 74 185 248 89 208 200
3 123 210 91 69 203 182

exoskeleton system for upper-limb post-stroke rehabilitation.
The device’s functionality in facilitating single movements
based on three healthy subjects’ pHRI was experimentally
validated and quantitative data, such as joint space/task
space trajectories and human-exoskeleton power exchange,
was analyzed. Results show promising performance in terms
of functionality, human-exoskeleton transparency, reference-
following error, and mechanical power exchange. The pro-
posed control schemes will continue to be further investi-
gated and modified for additional features (e.g., a multi-
finger hand exoskeleton under development [21]).
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