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ABSTRACT OF THE THESIS

A Guide for Understanding and Implementing Optimal Control for Autonomous Vehicles

by

Dominic James Nightingale

Master of Science in Mechanical and Aerospace Engineering
University of California San Diego, 2023

Professor Mauricio de Oliveira, Chair
Professor Robert Bitmead, Co-Chair
Professor Thomas Bewley

There is a notable gap in existing autonomous vehicle control literature that provides
comprehensive guides bridging control design theory to its real-world implementation. The
primary objective of this thesis is to address this gap by facilitating a clear understanding of the
control design process, allowing readers to seamlessly transition from theory to application in

implementing controllers for autonomous vehicles. This thesis is designed to operate as a user’s

Xii



manual, divided into two parts, providing a guide for the understanding of the theoretical
background of autonomous vehicles, discussed in Chapter 1, followed by a detailed guide on the
procedures for implementing control theory on physical autonomous vehicles, discussed in
Chapter 2. Topics such as vehicle modeling, state estimation, system identification, and control
are covered in Chapter 1, while Chapter 2 guides the reader through the core algorithms used, the
utilization of the autonomous vehicle framework and detailed experimental procedures for data
collection and controller testing, both in simulation and on the physical vehicle. Tailored for a
broad educational audience, this thesis assumes only a foundational knowledge of Linux

systems, linear algebra, differential equations, and basic physics related to moving objects.
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Chapter 1 Theory

1.1 Introduction

For implementing control, knowing how to characterize the system is a very important
step. This characterization can be a single or set of equations that explain the dynamics of the
system in terms of state variables which allow the use of many linear and optimal control
theories to be implemented. This thesis employs several variations of the kinematic and dynamic
bicycle car models for their simplicity and robustness across various vehicle platforms. It also
discusses the differences between the linear and non-linear models and when to use them.
Understanding the dynamics however is not enough because in most scenarios the model
contains unknown parameters that must be determined experimentally. This is explored using
standard system identification techniques which are under the assumption that the data collected
during the experiments are noise free, meaning that the data needs to be filtered, which brings up
the idea of Kalman filtering. Several types of Kalman filters are used for the filtering process
which is done online for state measurements and offline for parameter estimations. Once the
system parameters are known and the sensor data is filtered, optimal control techniques from
solving the dynamic programming equation to Schur factorizations are used to get the vehicle
following a reference trajectory. Everything is derived from the most fundamental levels except
for general mathematical identities and mathematical abstractions which are given in the
appendix. It is to be assumed that the background knowledge of the reader should be that of
differential equations, linear algebra, and basic physics of moving objects. It is assumed that the

reader has little to no understanding of vehicle modeling and explains in detail how the different



models are derived. A high-level preview of what is to be accomplished can be illustrated in the
classic block diagram shown in Figure 1. The following chapters are broken down by

understanding each of these blocks and signals.

VU

Tk

Figure 1: Block Diagram of Linear Quadratic Gaussian Control

With the following:
e Blocks
* Plant : System dynamics (system identification techniques)
» Estimator : Optimal state of the system (Kalman filter techniques)
» Controller : Optimal control to apply to plant (Riccati-based techniques)
e Signals
* u : Controller input
« w : disturbance noise
« v : Plant output
* v :measurement noise

* y,: Measured plant output



» r:reference signal
* X :optimal state estimate
To understand the plant block, the dynamics and system identification techniques will

have to be to be studied to determine certain parameters that are particular to the dynamics of the
system. Then for the estimator block, various forms of the Kalman filter are studied and use
cases will vary depending on online or offline estimation. Finally for the controller block,
Riccati-based feedback control is used to determine the optimal control to apply to the system
given some reference to track. The idea of duality between the estimator and controller blocks is
also discussed to further show the simplicity and convenience of the Linear Quadratic Gaussian

(LQG) controller.



1.2 Vehicle Modeling

1.2.1 Introduction

The plant block is the first study of interest. The plant block represents the real system.
The goal is to come up with a mathematical model that describes the plant block to be used in the
estimator and control blocks. Other than disturbances and errors from discretization, this can be
one of the predominant sources of error between what was measured from the real plant and
what was predicted by the model. This brings up the notion of design trade-offs. One example
would be using a simple or complex motion model to describe the system. Perhaps the simple
model is easy to design with but is not as accurate or not robust enough for all types of
environments or scenarios. Contrastly for the complex model, it could be difficult to design with
but is robust enough for many environments or scenarios. It is important to think about these
trade-offs when designing and to fully understand the limitations of the controller to confidently
define a safe space for the system to operate in. Figure 2 highlights the state and output equations
that attempt to define the real system. The goal is to come up with a mathematical model that
describes the plant block to be used in the estimator and control blocks and identify model

limitations.

Uy u(t) y Yie




Figure 2: Defining plant block with input and output relationships

1.2.2 Kinematic Models

Kinematic models are typically the easiest type of models to work with as they neglect
the forces acting on a system and only attempt to describe the motion itself [1]. These models
can be very useful when perhaps there are unknown properties of the system that are correlated

with the forces acting on it.

1.2.2.1 Bicycle Car Model

To first understand the motion prescribed by an Ackermann steering system vehicle, the
geometric description of the motion is considered which neglects the forces involved that dictate
the motion but are discussed later. Figure 3 depicts this geometric representation of the four-
wheel system. The motion is also assumed to be planar which ignores any motion with respect to

pitch and roll and only considers yaw.

Ly

Figure 3: Geometric representation of an Ackermann steering system vehicle



Let:
e L, be the wheelbase length
e L. be the track width
e §; and 6, be the front left and right wheel angles respectively
e R be the radius of the arc trajectory traveled around Point O to the Center of Gravity

(CG) of the vehicle in a steady state turning condition

The front wheels each travel at different radii when turning along some arbitrary path.
Since each wheel travels a different radius, this means that each of the front wheel angles §; and
6, are different but do not usually vary greatly. Now consider the bicycle model representation

of the same system shown in Figure 4.
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Figure 4: Kinematic Bicycle car model

Let:

e L, be the length from the real wheel (Point B) to the CG (Point C)

e L be the length from the front wheel (Point 4) to the CG (Point C)

e & be the angle of the front wheel (Point A)

e 1 be the heading angle from the global X axis to the longitudinal/local x axis of the
vehicle

e V be the vehicle velocity vector at the CG (Point C)

e [3 be the side slip angle from the longitudinal axis of the vehicle to the CG velocity vector
7
This model combines the left and right wheels in the front and the rear of the car to be

represented as a single wheel in the front and rear and introduces the possibility of the CG not



being directly in the center. Using this geometric model, the equations of motion are governed

below.

Linear and angular velocities

X = Veos( + B) (1.1)
Y = Vsin(y + B) (1.2)
p =T tandy (1.3)
Where the side-slip angle is
_ _q [ Lrtandy + Lytandy
B = tan ( LAl )

Assuming rear wheel in a fixed straight position then yields

f = tan™! (M> (1.4)

Noticing the distinction between the upper and lowercase letters for coordinate frames.
Uppercase letters represent state variables with respect to the global coordinate system and lower

case with respect to the body frame of the vehicle.

The radius of curvature is calculated as follows:

J— L’r
~ sin(B)

Now inserting 2.4

Now in vector form



cos( + B)

X
v|=[sin@ + Ay (1.5)
ll.} cos(f)

Lf+LT

tan6f

1.2.3 Dynamic Models

The kinematic model is only valid at low slip angles and when the forces acting on the
tires are minimal [1] and [3]. The dynamic model is introduced to account for the higher speed
spectrum. To do this, the lateral forces on the front and rear tires are considered by applying
Newton's law along the body frame y-axis of the vehicle and a moment balance about the z-axis
as seen in Figure 5.

Yy

Y

Figure 5: Dynamic Bicycle car model

Letting

Ve = Vcos(B)



V, = Vsin(p)
Then taking the force balance
Y E, = m(V, + yYV,) = F,rcos(8) — E,,sin(8) + F,
Assuming constant longitudinal velocity (Fyx = 0) yields
YFE, = m(V, +yV,) = F,rcos(8) + F, (1.6)
Now applying the sum of moments about the CG z-axis
XM, = Ly = LyFypcos(8) = Ly (Eyy — Fysin(6))
Again, assuming constant longitudinal velocity (Fyx = 0) yields
Y M, =1, =LsFyrcos(8) — L.F,, 1.7
Now using a linear model of the lateral tire forces F,,,. and F,,
Fyr = Cr(8-ay) (1.8)
Fyr = G (=ay) (1.9)
Where Cr and C,. are termed as the tire cornering stiffness coefficients and a,and a,. are the slip

angles of the front and rear tires respectively that are defined as follows

ar = tan™! (Vy;ﬂ) (1.10)
a, = tan™! (Vy;ﬂ) (1.11)

10



1.2.3.1 Non-linear Bicycle Car Model

The non-linear model is found by inserting 1.8-1.11 into equations 1.6-1.7 then solving
for the lateral and angular accelerations. Starting first with the lateral dynamics yields the

following
Y E, = m(V, + yV,) = F,rcos(8) + E,,

Y E, = m(V, + V) = C;(6 — ap)cos(8) + C,(—a,)
YE = m(Vy+ %) = G (5 —tan™* (—Vy ;Lﬂ]’)> cos(8) + Cy (—tan—1 (—Vy‘Lr"’) )

Vx

_(Vy+ L A (Vy—=Lyp .
Cr <5—tan 1(%))005(6)—@(&111 1(%) )—mII)Vx

%= m (1.12)
Now for the angular dynamics
LiFyrcos(8) — L F,, = 1)
Lfo((S - af)cos(6) — LTCr(_ar) = Izw
-1 Vy+Lf‘(zJ 1 Vy—er; _ )
LsCs| 6 — tan — cos(8) — L,.C, | —tan (V—x) = L
. LgCy (8—tan—1<w>>cos(5)+ chr(tan_l(W) )
V= (1.13)

I

Now putting 1.12 and 1.13 In vector form

_ Ve e Lo o E
o (6—tan‘1<%xf¢>>cos(5) - C&tan‘%%) )—mex

Vy+L¢y Ly
L¢Cr <S—tan‘1<%xf¢>>605(5) + LrCr(tan_l(VyV—Lrw) )

X

Iz
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Next thing to consider is the linearization of this model so that conventional linear control
techniques and tools may be applied but this non-linear model will be revisited again in the

optimal state estimation section for non-linear systems.

1.2.3.2 Linearized Bicycle Car Model

Now the design trade-off comes in with the desire to work with a simpler model at the
sacrifice controller robustness for large slip angles (>15 degrees). In normal driving and racing
conditions, the slip angle is usually below this threshold. It is when the vehicle starts drifting that
the assumption breaks down and is no longer valid. The control design for the rest of this work
will consider normal driving and racing conditions and not extreme conditions such as drifting.
The linearization procedure for both the lateral and angular dynamics are achieved by using the
small angle approximation for the steering angle & and both tire slip angles a; and a,

cos(6) = 1 and tan(a;) = «a;

Using these approximations in eq.1.12 yields

Vy+Le Vy — Ly :
Cf<6— Vs >—CT< vy )—mwvx

y m
Then collecting terms

o _ =(cr+er)vy +(chf—cTLT—mV,?)1]; LG

h=—L —rs - (1.15)
Now the same for eq. 1.13 yields
Lfcf(S— Yy ;foIb> +Ly CT(W)
= -
Then collecting terms
b = (- LeCr+ LrCVy (L}Cf+ L%Cr)ll) LeCyb (1.16)

17Vx IzVx Iz
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Now in state space representation

[EEN
o

0

v, 0 , y 0
. 0 -(cr+cr) 0 —mVy?— (Lf Cf — LyCy) Cr
VS, _ mVy mVy V;] +1 ™IS (1 17)
ML 0 0 1 Y 0 '
il [0 = Urer=nC) o zlferite) ||yl |2
I;Vy 17V Iz

With the following states

e y: Lateral position w.r.t center of rotation of body frame

e y: Lateral velocity (¥,) w.r.t center of rotation of body frame

e 1) : Yaw angle w.r.t world frame

e 1) : Angular velocity w.r.t world frame

This linear model is the classically known planar bicycle car model used very widely in

academia and industry [1]-[7]. This model is used for making predictions on vehicle behavior but
is still missing tracking capabilities in terms of path following. This feature is what is sought out

next.

1.2.3.2.1 With Respect to Side-Slip Angle

This model is useful for verifying parameter estimation which is discussed in more detail

in the system identification section.

_ -(cr+cy) —mVy?— (L Cf — LrCy) Cr
L/, B (Y ) - (Lg%cr + Ly2cy) L[)] + Ly Cr 0 (1.18)
I, 1,V I,

1.2.3.2.2 Path Consideration

For path tracking purposes, eq.1.17 can be transformed such that the state variables are in

terms of position and orientation error of the desired path to be followed [1],[3],[5] as shown in

13



Figure 6. The states will be given the following new nomenclature for clarity between the two

models.

Tangent to
closest point

Vehicle position
(cxrcv)
Desired Trajectory (P)
Closest point (px, py)
X

Figure 6: Dynamic model with respect to desired trajectory

With the following states
e ¢, Lateral position error (cross track error) of body frame CG with the desired position in
the world frame
e ¢, Lateral velocity error of body frame CG with the desired velocity in the world frame
e ¢, Yaw angle error of body frame x-axis with the desired path angle in the world frame

e ¢, Yaw rate error of body frame x-axis with the desired path yaw rate in the world frame

14



The desired lateral position is user defined but measuring it is discussed in the following
section. The desired yaw rate is defined by the speed of the car and the radius R (or curvature k)

of the trajectory to track as shown
. Vy
Yaes = R Vik (1.19)
The desired acceleration is formulated as the normal acceleration component

Vaes = 2 = Vithes (1.20)
Now since the desired acceleration and yaw rate have been defined, they must be
correlated with the vehicles current states to obtain their error forms. To do this, relative
dynamics of a translating and rotating body must be used because the vehicle has been defined in
its own reference body frame and the desired trajectory to follow is in the global coordinate
frame. This will breakdown the state vectors into their normal and tangential components. The

velocity and acceleration of the vehicle with respect to the global coordinate frame is then

Ww=y+ Wk

ay=j}+Vxlp

Now obtaining the new error state equations

ey = Y — Yges (1.21)
ép = P — Pges (1.22)
ey =y + Veey (1.23)
&y = J + Viéy (1.24)
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Eliminating ¥, and y» from the original state equations by plugging in 1.21-1.24 into 1.15 and

1.16 yields the following

. Cr+Cr\ . LeCr — Ly Cr\ . LeCr — Ly Cp\ ;
mé, = — ( f‘;; )ey + (Cf + Cr)ew —(—f fo )e¢+ Cr6 —(—f foL )l/)des
Léy = = (L) ey + (LG - L G)ey — (—LfZCfV:LTZC’> éy + LiCrd

LCr + L,” : .
f ~f
_< V. : r>l/)des_ Izl/}des
X

Assuming constant speed along the body x-axis (djdes = 0), then the new state space equations

become
0 1 0 0 1 -
[e'y] 0 - (¢ + ¢,) (¢ + C) —(Ls ¢ — L,C) |rey Cr
eyl mVy m mVy ey m 5
|é¢|_ 0 0 0 1 ep| T| 0
N 0 (Le ¢ — L,C) (LG — LC) — (LG + L2G)|leyl | br&
- 1,Vy I, I,Vy - I
0
— (Lf C§ — LyCr +mVZ)
+ m(;/x l/.Jdes (1-25)
- (Lg%Cr + Ly2Cy)
1,Vy

X = Ax + Bs6 + By¥aes
Notice that the model has V, within the A and B matrices, this means that if the speed of
the car is to change, the model needs to be updated which implies that this dynamic model is

parameter-varying. Such a form is known as a Linear-Parameter-Varying (LPV) form.

16



1.2.3.2.3 Road Grade Consideration

If on a non-flat track, the force of gravity now effects 1.15 and can be adjusted by the

new form

+ &0 + mgsin(¢) (1.26)

mvy mvy my,

Vo= - (cr+cr)yy +(Cfo—CrLr—mVx2)ll)
=

Where g is the acceleration from gravity and ¢ is the road bank angle as shown in Figure 7. The

yaw dynamics of the vehicle are not affected by road bank angle and remain the same.

Figure 7: Road grade consideration

17



1.2.3.3 Methods for Measuring Cross Track Error

There are several different methods for calculating the cross-track error (CTE) [2]. A

function-based approach Linear Function Interpolation (LFI) (see Error! Reference source not f

ound.) and a vector-based approach Linear Path Interpolation (LPI) are described below but was

found that the LPI was more stable due to possible infinite or zero slopes that could arise in the

LFI method.

The magnitude of the CTE was calculated using linear functions and its sign was

determined by the sign of the function’s derivative. The high-level procedure called Linear

Function Interpolation (LFI) is first defined followed by a formal derivation.

LFI Procedure:

1.

Calculate the slope and y-intercepts from the nearest points (p, and p,) on the desired
trajectory where p; is the closest point and p, is the next point that respects the
orientation of the path

Yp2 — Yp1

mp = ——and bp = Y, — X, ;m
P Xp2 — Xp1 P pl pl'iip

Create a linear function (P) using results from step 1
P = me + bp
Create another linear function (Q) this is perpendicular to P and intersects the CG of the

vehicle (p¢g)
-— = mQ = __1 and bQ = YCG - XCGmQ

dx mp

18



4. Determine the intersection point (p.rg) of the P and Q functions
P =20Q
mPXCTE + bp ES mQXCTE + bQ

bp — by

XCTE -

mg —mp
Yere = moXere + bg

5. Calculate the magnitude of the CTE from the absolute distance from p¢; t0 pere

ICTE|| = VXere — Xca)? + (Yers — Yee)?
6. Calculate the sign of the CTE by evaluating the sign the derivative of Q

sign(CTE) = sign (Z—i)
7. The CTE is then calculated as the product of steps 5 and 6

CTE = sign(CTE)||CTE]||
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\
\
/ \
\ Vehicleposition (peg)

P=m,+b, \ Xce, Yeo)

Next Closest point (p,)
(XPZ’ YPZ)

CTE point ( pcrg)
(Xpere, Yoere)

Closest point (p;) \
(Xplt Ypl)

Figure 8: LFI method for calculating cross track error
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LPI Procedure:

-
=

1. Create a unit vector (Pplpz) from the two nearest points (p, and p,) on the desired

trajectory where p, is the closest point and p, is the next point in the path that respects the
orientation of the path

ﬁ Ly = (Xp2 = Xp1,Yp2 = Yp1)
pip [IPs2]l

2. Create a normalized orthogonal vector (ﬁpllpz) from P,;,, (apply rotation with 6 = m/2)

El _ [cosH —sinf] 3
pip2 sin@ cos@ 1 P2

3. Create a vector (V1) from peg to py

chpl = (XCG - Xp1'YCG - Ypl)
4. The ||CTE|| and its sign (path being to the left or right of vehicle) is the result of the

following dot product
”m:” = ’Pﬁl_lpz 'T/)cgpl

5. The coordinate of the cross-track error point (p.rg) is the result of scaling ﬁplpz by the

following dot product
Pere = XeresYere) = ’Pplpz (pplpz ) chpl)
6. The CTE'is then calculated as the difference between p ... and p ...

CTE = (pcre — Pee) = Xere — Xee Yere — Yee)
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Vehicle position (pcg)
(Xce Yee)

Next Closest point (p,)
(Xp2, ¥p2)

CTE point ( pcrg)
(XpCTEr YpCTE)

Closest point (py)
(Xp1, Y1)

A J

Figure 9: LPI method for calculating cross track error
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1.3 System lIdentification

1.3.1 Introduction

The focus of this section is on the plant block and its dynamics, owing to the presence of
certain unknown parameters that need to be defined. Upon determining these parameters, a
complete understanding of the plant block and the models employed to describe it can be
attained, paving the way for the consideration of state estimation and control. The only goal in
this section is to establish values for the tire stiffness coefficients through system identification.
Most of the parameters can be closely approximated by measuring the vehicle's mass.
Depending on the scales available, the total mass can be determined by weighing the front and
rear axles or each tire individually, then summing them.
my = Mg + My
my = My + My
m = ms + m, (1.27)
The distances from the CG are estimated by the weight distribution and the actual length of the

vehicle which was measured simply with a measuring tape

L =L(1-2) (1.28)
L, = L(1 - %) (1.29)

The moment of Inertia is estimated by lumping the mass on the front and rear axles as individual
particles that are connected by a massless rod which is calculated as shown below

I, = meL; + m,L% (1.30)
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1.3.2 Least Squares

Now the only unknown parameters in the dynamic model given in 1.2.3.2 (shown below
for convenience) are the tire stiffness coefficients. This model is special as it can be reformed in
terms of the unknown parameters which leads to the idea of performing linear regression or
“least squares” to fit a line through the collected data (experiment setup and results are shown in
2.4.2.1) with the tire stiffness coefficients being the parameters to adjust the shape of this fit [5]-

[7], [11].

. -(cr+cy) —mVy?— (Lg Cf — LrCy) cs
Vy mvy mvy y m
o 2 2 e
Y —(LgCs - LyCr) - (Lfo + LrCr) P ol il
I2Vy Ve lz
. —(crtcvy,  (-mP-(Lrcr-Crl)) s
Wy = + +
mVy mVy m
b= (Lrcs - Lrc)v,  (L3Cr +13C ) Ll
B IVx IVx Iy
s Vy Lfp Ly ; 5
Vy - mV, Cf mVy Cr mVy Cf T mVy Cr Vxl/) + m Cf
. LfV, L.V, L5 129 LS
W= —L2c 4 22, - L2, e 4 Mo,
I,Vy IVy IVy I,V I,

Combining coefficients

. 8Vy —Vy — Lg Ly =V, ;
= () 4 () —

mV,

.. Lf 8V — LgVy — L%d;) LyVy — 133
_ 6 + (M)
v ( 1Vs f 1,Vs r

Vectorizing




Now discretizing using Euler

dx
dt

dx Ax

G(x) =

~
~

= G(x)

x(t + At) — x(t)

dt ~ At

x(t + At) — x(t) =

Then

V,(k +1) - (k) +

|

(5(k)vx(k) - Vy(k) - szb(k)) A
t
mVy (k)
L8(K)Vy(k) = LfVy (k) — L?ﬂ]}(k)) At
I,Vx (k)

(

Where £ is a single sample data point. Now for an entire s

experiment, let

Pk + 1) - Pk)

At

G(x)At

Ve (k)p (k) At

|

Lep (k) = vyac)

(e Ve At[
(Lrvy(k) L3 (k)
1, Vy (k)

equence of N data points from an

vy (k + 1) = (k) + Ve ()P (k)AL ]
Yl +1) — (k)
Y = ;
V,(N) = (N = 1) + V(NP (M)At
YN +1) —p(N)
and
8(k) — Vy (k) — L (k) Lyp(k) — Vy, (k)
( mVy (k) )At ( mVy (k) )At
5(k) - - 1% — 12y
(Lf (k) = LyVy (k) wa<k>) At (LTV(k)y Lrw(k)) AL
1;Vy (k) 1Vx (k)
® = : '
§(N) = Vy(N) = Lgp(N) Lyp(N) ~ Vy(N)
( mV,(N) )At ( mV,(N) ) At
(Lfa(N) - LgVy(N) - qu])(N)) At (LTV(k)y - Lw(zv)) At
| 1,V (N) 1V (N) i
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Or in compact form
y' (k)

y"(N)

<p(k)

and @ = :
o(N)

Y =

Where,

y'(k) = [k + 1) — G, (k) + V,(DYU)At Pk + 1) — (k)]

§(k) — Vi (k) — L (k) Lp(k) — V, (k)
( mv (k) )At ( mv (k) )At ]

(k) = l(LfS(k) — LV, (k) — L}z/)(k))A <LTV(k)y - L%zp(k)) At}
IV, (k) I,V (k)
Note: @ isa 2Nx2 and Y is a 2Nx1
Then 6
Y = o6

0 = (TP) 1@TY
¢@)T¢¢)>1

o] Lo

JOINFAG

: (1.31)
o(N)

g

This is the least-squares solution where:

yT(N)
e @ is the regressor matrix

e Y isthe output matrix

e @ is the parameter vector
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1.4 Optimal State Estimation

1.4.1 Introduction

The next focus of study is the estimator block, which aims to minimize the error between
the plant block (real system) and its models. The approach is to use the model to make
predictions, compare them with sensor measurements, and then multiply the difference by a gain
that minimizes the prediction and measurement. Calculation of the gain is based on sensor and
model noise, which results from assumptions made in the model. The first goal to achieve is to
be able to understand how the Kalman filter can fuse various sensor measurements together with
a vehicle model to provide a more accurate awareness of the vehicle’s orientation and location
with respect to some reference trajectory and the next goal is to understand the procedure for
using the Kalman filter in its various forms.

For effective vehicle control, many system properties that vary with time and speed must
be known but can be challenging to measure or calibrate. Kalman filters provide optimal
estimates of the vehicle's properties and states. The estimator block is depicted in Figure 10. The
Kalman filter is not derived here but can be solved through duality theory [9] which is described
later in 1.5 This insight facilitates the understanding of both control and estimation concepts,
indicating that the two processes are the inverses of one another. Tuning the estimator will be

discussed in the final section and the concept of observability is explored first.
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Figure 10: Estimator block detailed view

1.4.2 Observability

Observability is a property of a system that can determine the initial state from future
inputs and outputs. This means that if some of the state variables in the system cannot be
measured directly with available sensors, but the system is observable, then it is possible to
estimate what the unmeasurable states would be provided the available input and output data of
the system. The observability matrix and Gramian are tools for determining if a system is
observable and evaluating the cost for estimating the states of the system [13]-[14]. Next is
defining the observability Gramian, which will be used in the filtering process discussed in the
next section.

For Continuous-Time System
w = [[(o(t,0)7CTCP(t,1))dr (1.32)

Discrete-Time System

=t
w =Z ®(t, )T CTCD(L, 7)
7=0
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Observability criteria can be evaluated with either the observability matrix (0 (4, C)) or
the PBH (Popov—Belevitch—Hautus) rank tests and is handled the same for continuous and

discrete time systems.

C
CA
0(4,B) =| CA? | = [¢T ATcT AT?cT ... g™ 'cr]”

.
rank[0(4,C)] = rank [A Z,M] =[A-2DT CcT]" =n

With the following definitions

e A isthe state matrix of the system

e ( is the output matrix of the system

e Aare the eigen values of A

e n is the size of the square matrix (number of rows=numbers of columns) A
The matrix C classifies which of the states x that can be measured. This can vary depending on
what sensors are available. For example, if only e,, can be measured, then € would have the
following form

C,=[1 0 0 0]

Another example is if both e, and e,, can be measured, then C would have the following form

If the rank of O(A4,C) = n then the system is said to be observable. Using eq.(1.17) for A
(giving n=4) and C, from the example above, along with eq.(1.27)-(1.30) and the following
values for the remaining analysis in this thesis

my = 320kg and m, = 380kg
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L =29718m

N
V., =[1:100] —
N N
Cr = 59800 —and C, = 63200 —
rad rad
Yielded a rank 4 system which is equal to n for the entire range of /., meaning that the system is
observable. This means that even using C, as the measurement matrix, the entire state vector can

be reconstructed, providing estimates for the entire state vector x. This now introduces where the

Kalman filter comes in to calculate the optimal state estimate.

1.4.3 State Estimators

The Kalman filter is a mathematical tool used to estimate the state of a system based on
noisy observations. It is designed to work with linear systems that have Gaussian noise, and it
provides the optimal estimate of the system state under these assumptions. The linearized
Kalman filter is an extension of the Kalman filter that can be used for nonlinear systems by
linearizing the system around the current state estimate. The Extended Kalman filter is a further
extension that can be used for nonlinear systems by using the systems non-linear models during
the update processes. These filters are widely used in engineering and science for a variety of
applications, such as control and navigation. The proceeding sections highlight how these filters

are defined mathematically and how they differ from one another.
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1.4.3.1 Kalman Filter

This is a linear time varying filter designed for linear systems. The procedure for the
Kalman filter is sequenced by a measurement update from available sensors and then a time
update to the model of the system [9-12]. The subscripts k represent the quantity for the
discretized system at that sample time. The procedure is shown below.

Signal Model
Xp+1 = Apxr + Bru, + wy
Ve = Cexp + vy
Time Update
Re+1k = AxXipe + Brug
Pesie = ArPrpAk + Qp
Measurement Update
Ky = Pk|k—1CIZ(CkPk|k—lclz + Rk)_l
Repe = Rrp—r + Kl — CeRpe-1)
Pk|k = Pk|k—1 _Pk|k—1CI’€(CkPk|k—chZ + Rk)_l Ckpk|k—1
Or in a more compact form
Ky = Pk|k—1CIZ(CkPk|k—lclz + Rk)_l

Rije = (n — K C) (A1 8k —1jie-1 + Br—1Up—1) + K Vi

Pex = (I — KiCy)Pyp—1
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With the following definitions

k is the step index

A, system dynamics matrix

By, input matrix

C, observation matrix of which states are actively being measured
uy is the input (ie. o;)

vt is the unfiltered measurement

Xy i filtered state estimate

Xie+1)k Predicted state estimate

W), process noise

V), measurement noise

Q) process noise covariance matrix

R;, measurement noise covariance matrix
Py filtered covariance matrix

Py.4+1)x predicted covariance matrix

K, Kalman gain
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An example iteration is shown below starting with the initial guess/measurement
Xoj-1 = A-qX_qj-1 + B_ju_4
atstepk =0
Ky = Po|—1CoT(COP0|—1CoT + Ro)_1
9?0|0 = 550|—1 + Ko()’o - C05C\0|—1)
Po|0 = - KOCO)PO|—1
atstepk =1
K, = P1|oC1T(C1P1|OC1T + R1)_1
X = (I — K1C1)(A09?0|0 + Bouo) + Kiy1
P1|1 = U - K1C1)P1|o
atstep k = 2
Ky = Py C (CoPy1 € + Rz)_1
Xop2 = (I — KZCZ)(A17?1|1 + Blul) + Ky,
P2|2 = - chz)qu
atstep k =3
K3 = P35 (C3P32C5 + Rs)_l
X313 = AxXy2 + Bouy + K ()’3 — (; (A29?2|2 + Bzuz))

P3|3 = - K3C3)P3|2

The Kalman filter is a recursion, meaning that the state estimate and covariance at step k need to

be stored and used on step k + 1 to properly converge to the optimal solution.
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1.4.3.2 Linearized Kalman Filter

This is a linearly time varying filter designed for nonlinear systems. The procedure for
the Linearized Kalman Filter (LKF) is very similar to the standard Kalman filter but allows for
state estimation of nonlinear system dynamics and measurements which requires some additional
care in the setup procedure. The difference is replacing the nonlinear equations simply with their
linearization around a nominal point but is solved identically to the linear Kalman filter. The
procedure is shown below.

Signal Model
X1 = Sl U, wi)

Vi = hp(xg, vi)

Linearization

F = %l _ = ml _ = %l _

k ax 1X=% k u lu=u k ow \w=w
Ohy dhy

H, = §|x=x M, = Elv:f;

Time Update
vk = Fele — %) + Ge(uy — )
— T T
Prie = FiPrpcFe + LiQpLy
Measurement Update

-1
Ky = Pk|k—1H1Z(HkPk|k—1HIZ + MkRlez)

Xk = Xppe-1 + Kx (ylrcn — he(Repe—1, v = 0))
Pk = (I — KyiHy)Pyi—1
With the following new definitions

e [ is the linearization of f;, with respect to x;,
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Gy is the linearization of f;, with respect to u;,

Ly, is the linearization of f; with respect to wy,

H, is the linearization of h;, with respect to x;,

M, is the linearization of h; with respect to vy,

1.4.3.3 Extended Kalman Filter

The procedure for the Extended Kalman Filter (EKF) is very similar to the KF but differs
by using the nonlinear system dynamics and measurements in both time and measurement
updates for the state calculation and the calculations for the Kalman gain and covariance matrix
use the Jacobian of the non-linear state and output equations. The procedure is shown below

Signal Model

Xp+1 = fr(Xpo U, Wi)
Vi = hi(xg, vi)

Jacobian of dynamics, measurement, and noise models

_ Ofk _ 9fk
Fk - Elx:fuk Lk - w |x =/5Ck|k
__ Ohg __ Ohg
Hk - Elx:fk“(_l Mk - a_le =/5Ck|k—1

Time Update
Rierae = fie G w, wie = 0)
Pesie = FiPepcFi + LiQilLi
Measurement Update

-1
Ky = Pklk—lHlf(HkPk|k—1HI€ + MR MY)

ke = Xipe-1 + K (J’lin - hk(fkuc—p Vg = 0))
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Pe = (I — KiHi)Pyjie—1
With the following new definitions
e F, isthe Jacobian of f; with respect to x;,
e [, isthe Jacobian of f;, with respect to wy
e H, is the Jacobian of h; with respect to x;,

e M, is the Jacobian of h; with respect to v,

1.4.4 Tuning The Estimator

Tuning a Kalman filter involves adjusting the values of the parameters in the filter to
achieve the desired performance in estimating the system states. The two main parameters that
need to be tuned are the process noise Q, and measurement noise R, covariance matrices. The
process noise covariance represents the level of uncertainty in the dynamic model of the system,
while the measurement noise covariance represents the level of uncertainty in the measurements
obtained from the sensors. One common approach to tuning the Kalman filter is to use trial and
error. This involves running simulations of the system with different values of the noise
covariances and observing the resulting estimation performance. The noise covariances can be
adjusted until the desired level of estimation accuracy is achieved.

It is important to note that tuning a Kalman filter is not usually a one-time task, as the
optimal noise covariances may change as the system operates in different conditions. Therefore,
periodic re-tuning of the Kalman filter may be necessary to maintain optimal estimation

performance.
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Figure 11: Trial 1 of tuning
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Figure 13: Trial 3 of tuning

1.5 Optimal Control

1.5.1 Introduction

The final element of the block diagram is the control block seen in Figure 14, which aims
to apply an optimal input that minimizes the cost function, comprising of state performance and
control effort criteria. The concept is to use the optimal state estimate that is being calculated
from the estimator block as the feedback component and then include the important feed-forward

term that depends on a reference signal (r;) to reduce the steady-state errors when executing a

turn at a specific reference curvature [1].
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The first goal to achieve is to be able to follow a straight path as close as possible, which
will be resolved by understanding the feedback component of the control design (how to
calculate the gain matrix K). The final goal is to be able to follow arbitrary paths that contain
curvature (with the assumption that the reference path has considered the vehicles dynamics
during its construction i.e. the vehicles minimum turning radius at various speeds) by adding

additional compensation with feed-forward (how to calculate the added steering term &5¢).

The final goal is to be able to follow arbitrary paths that contain curvature (with the
assumption that the reference path has considered the vehicles dynamics during its construction
i.e. the vehicles minimum turning radius at various speeds.

As mentioned in the optimal estimation section, duality theory is used for deriving the
optimal feedback controller and is solved identically as in the estimation problem but in its
control form. Tuning the controller will be discussed in the final section and the concept of

controllability is explored first as it begins the process of achieving straight path tracking.

Figure 14: Control block detailed view
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1.5.2 Controllability

Controllability is a property of a system that can start at any initial state and be able to
return to the origin in a finite number of steps. If the states of the system are in terms of the error
dynamics from some specified reference, this means that given some initial error condition on
the system, it can drive the states back to zero error. The controllability matrix and Gramian are
tools for determining if a system is controllable and evaluating the cost of the state performance
of the system [13]-[14]. Now defining the controllability Gramian, which will be used in the
control process discussed in the next section.

Continuous-Time System

X = [[(®(t,))BBT®(t,0)")dr (1.33)
Discrete-Time System

X =YY= o(t,T)BBTo(t, T)T

Controllability criteria can be evaluated with either the controllability matrix (C(4, B))
or the PBH (Popov—Belevitch—Hautus) rank tests and is handled the same for continuous and
discrete time systems.

C(4,B) = [BAB A%B - A" 1B]
rank[C(A,B)] = rank[A — Al B] = n
With the following definitions
e A isthe state matrix of the system
e B isthe input matrix of the system
e A are the eigen values of A

e n is the size of the square matrix (number of rows=numbers of columns) A
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If the rank of C(4,B) = n then the system is said to be controllable. Using eq.(1.17) for A (giving
n=4) and B, along with eq.(1.27)-(1.30) and the following values

my = 320kg m, = 380kg L = 2.9718m V, = [1:100]m/s
Yielded a rank 4 system which is equal to n for the entire range of /., meaning that the system is
controllable. This means given the proper input to the system, the state will converge to the

origin. This now introduces the next discussion on how to calculate the optimal input.

1.5.3 Controllers

In control theory, there are several types of controllers used for controlling a system. The
Linear Quadratic Regulator (LQR) controller is a type of optimal controller used for controlling
linear systems. The Linear Quadratic Gaussian (LQG) controller is an optimal controller that
considers measurement noise and is used for controlling systems with noisy sensors. Both
controllers are derived in the following sections with the intent of to achieve the first goal. The
system in 1.2.3.2.2 has 2 poles sitting on the edge of the unit disk on the Z-plane (discrete time)
or 2 poles sitting at the origin of the S-plane (continuous time) which implies the system is
unstable and will be addressed using the controllers in the following sections to push the poles

inwards to the origin on the Z-plane or further into the left hand plane in the S-plane.

1.5.3.1 Linear Quadratic Regulator (Full State Feedback)

This type of controller would only be implemented if the consideration of both the sensor
noise and the errors in the model used to define the plant was negligible or in a noise-free
simulation. If either of these components are not negligible then the LQG controller discussed in
0 should be implemented. The infinite-horizon, continuous-time, LQR variant is derived below.

The state feedback controller u
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u(t) = Kx(t)
Which minimizes the cost function J
J = J, (x(®TQx(®) + w(®)TRu(t))dt
With the following definitions

e ( is the semi-definite (Q > 0) state performance weight matrix

R is the positive-definite (R > 0) control effort weight matrix

K is the optimal feedback gain matrix

x(t) is the state of the system at time ¢t

u(t) is the input for the system at time t (ie. 1) (t))

The closed loop system and solution

x(t) = (A + BK)x(t),x(0) = x,
x(t) = O(t,T)x, = e+ By,

The closed loop cost is then

] = I (x@Tex(® + (Kx(®) R(Kx(®))) dt

] = j oo(x(t)T(Q + KTRK)x(t))
0

J = xl (f (e(A+BK)Tt(Q + KTRK)e(A+BK)t)>xO
0

Now that the cost function is in terms of the controllability Gramian eg. (1.33), J can then be
computed as

] = x5X xg
Where X is the solution to the Lyapunov equation

(A + BK)TX + X(A + BK) + Q + KTRK = 0
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The goal now is evaluating the state feedback gain matrix K which is found by completing the
squares
ATX + XA—XBR™BTX + Q + XBR™ 1+ KR(R™IBTX + K) = 0
Which identifies the solution for K
(XBR™' + KDR(R™'BTX + K) = 0

K = —R™1BTX (1.34)

With this solution for K, it changes the Lyapunov equation to the Algebraic Riccati Equation
(ARE) in X
ATX + XA — XBR™'B™X + Q = 0 (1.35)
To proceed, X can be solved via the Hamiltonian matrix (H) which requires an Eigen or
Schur decomposition. An Eigen decomposition is not always possible and is generally not used
in practice while the Schur decomposition is guaranteed to always exist [13] and is the method

explained below.

Making a substitution Z = BR™BT in eq.(1.35) and then factoring into the following form
ATX + XA — XZX +Q =0
XA+ 0Q —XZX +A4TX = 0

(XA — Q=D + (=XZ — AN)(-X) =0

[(—XA — Q) (=XZ — AD)] l;] =0

[[—X 1 [_AQ] [-x 1] [_—AZT” L—(Ilzo

o aff 2]
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then identifying

n=% o

now factoring H into the Schur decomposition form
H = UTUT
where U is given by

.

U2 Up,
With the following definitions
e U :Isa full unitary matrix of Schur vectors
e U;; corresponds to the stable left-hand plane (LHP) eigenvalues in T
e Uj; corresponds to the unstable right-hand plane (RHP) eigenvalues in T
e T :lIsan upper triangular matrix with the Eigenvalues of H along the main diagonal
e H :Is Hamiltonian which abides the symmetric root property (every pole in the LHP has

a corresponding pole in the RHP)

This decomposition must be done carefully such that 7'is ordered from (left-most) LHP
Eigenvalues to (right-most) RHP Eigenvalues. This identifies the stable solutions that span the
first n columns of U, which U is related to the solution of eq.(1.35) by

X =Uy, U7t (1.36)
Where the matrix block indices are given by
U1 =Upnin

Uz1 = Un+1:2n1m
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1.5.3.2 Linear Quadratic Gaussian Control (Optimal State Estimate

Feedback)

The linear quadratic gaussian (LQG) controller at its core is simply the LQR controller
using the Kalman filtered state estimate for the state feedback controller. Through the dynamic
programming principle, the state covariance matrix can be numerically calculated through an
iterative process. This is because the value function is a contraction which implies that the
solution will converge to a steady state value in a finite number of steps for the finite horizon
problem. It is to be noted that the solution is not guaranteed to converge in the infinite horizon
problem unless a discounted cost is implemented. This section shows the principle of dynamic
programming and the dynamic programming equation [13], [15]. This method results in the
same solution for the covariance. The finite-horizon, discrete-time, LQG is used as the
stabilizing feedback controller and is defined as follows.

Consider the system of the form
fx,u,w) = Xppq = AX, + Bup + wy
With the assumption E[w,] = 0 and E[wlw,] = W
The state feedback controller

ur = KX, Which minimizes the cost function
] = %E{Zi;é (xfQx; + ulRuy) + xFFxr}
With the following definitions
e (@ > Ois the state performance weight matrix
e F > 0is the terminal cost weight matrix

e R > 0is the control effort weight matrix
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e wy is the mean noise at step k
e [EJ[-]is the expectation operator
e X, is the optimal state estimate at step k from the Kalman filter
e 1w, is the input for the system at step k (ie. ;)
Then defining the value function to be
V(ik,x) = muin](k, X, U)
V(k,x) = muin{l(x, w)+E[V(k+1,f(x,uw)]}
Where the running cost is now defined as
I(x,u) = %(x,fok + ulRuy,)
Now guessing a solution for the value function to be of the form
V(k,x,) = %ngkxk + Yk
V(k +1,x341) = %x£+1xk+1xk+1 + Vit
Vik+1,x41) = %(Axk + Buy + i) X1 (Axye + Buyg + W) + Viers
Then

V(k,x;) = min {% (xFQx + utRw) + E E (Axy + Buy + wi) " X1 (Axy + Buy, + wy) +
u

Vi

%x,ka X + Vx = min {% (xFQx; + utRw) + E E (xF AT + ul BT + wh) X1 (Axy + Buy, +
u

wy) + Vk+1]}

Knowing that E[w;] = 0
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%x,ka Xx + Yk = min {% (xFQxy + uLRuy) + % (xFAT + ulBT) Xy 11 (Axy, + Buy) +
u

1
E [EWIZXkHWk + )’k+1]}
Which then first identifies y,
1
Y =E [5W£Xk+1Wk + Vk+1]

1 (1 1

EX’D(" X + ¥ie = min {5 (xf Qxy + ufRwy) + 5 (xF AT X1 Axy + xE AT X1 Buy, +
U BT Xp 1A% + uf BT Xpey 1 Buy) + Vk}

1 1 (1 1
XX e = 5 Ok (Q + AT X1 Ay) + min {; (uk (R + B X1 BYwi) + 5 (AT Xjers Buy +

UEBTXkHAxk)}
%xlz;Xk X = %(xg(Q + A" X 11 4) %)) + min {% (ug (R + BT Xjp1 Bluy) + uizBTXkﬂAxk}
u

Then letting

R=R+B"X..B
1 Tp TnRT
G = E(ukRuk) + ul BT Xy 11 Ax,

Seeking the minimum wu,, so

%5- 0= aa—u(% (uf Ruy) + u%BTXk+1Axk)

—=
Using vector derivative identities

9 yT — 9 (T _
% (y"My) = 2My and % (y"Mx) = Mx

then

a_G = O = Ruk + BTXk_,_lek
ou
Gives optimal control and gain

ﬁk = —R_lBTXk+1Axk
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K=-R'B"X, ., Aand KT = —ATX,.,BR™! (1.37)
2, = Kx, (1.38)
Inserting i,
XXy e =5 (6 (Q + ATXpu 1 )xi) + 5 (EKTRK ) + XEKT BT X y1 A
~xE Xy 2 = 5 (eF (Q + ATXiy1 A + KT(R + BT X1 B)K + 2KT BT X1 A)xi)
Then Identifies the state covariance
Xe =0+ ATX3 1A+ KT (R+ BTX;;1B)K + 2K"BT X, .1 A
Now plugging in (1.37) results in the Riccati Difference Equation (RDE)
Xe =Q+ ATX} 1A+ ATX, . 1BR™'RR™IBT X}, 1A — 2AT X, ,1BR™'BT X} 11 A
Upon further simplification leads to
Xe=Q+ATXp 1 A— ATX, . 1BR™IBTX, 1A
Xk =Q+ ATXyy1(1 — BRT'BTX;1)A
Xie=Q +A"X11(I = B(R + B"X.11B) ' BT Xj41)A (1.39)
It should be noted that as k — oo eq.(1.39) will approach a steady state and result in the
Discrete Algebraic Riccati Equation (DARE). To proceed, X} can be solved via the value
iteration method. The iteration begins by initializing eq.(1.39) with the Final cost F and then
iteratively solves the RDE backwards in time to the current sample time k. Depending on the
system, this method can converge very quickly, and its implementation is very straightforward
which is given in an algorithm found in 2.2.5. Below is an example of the value iteration method.
X;=F
Xp.;=0+4"F (1-BK'B"F) 4

Xr—2=Q+ATXr_1(I - BR™'BTX;_,)A
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Xir1 = Q + A Xpro (I = BRT'BXy42)A
X =Q+ATXy1(I — BRT1BTX)41)A
Lastly, it should be noted the similarities in the expressions for the gain K and covariance

X derived in this section with their counterparts shown in 1.4.3.

1.5.4 Tuning The Controller

Tuning a controller for a parameter and time varying dynamic system is not an easy feat
but can be done with the help of a simulation of the system which can look at the system’s zero-
state response, impulse response, and reference tracking performance. With LQG, the controller
is tuned by modifying the Q and R matrices. The Q matrix is tuned for the output state
performance (i.e. driving the errors to zero) and the R matrix is for modifying the input control
effort (i.e. amount of effort applied to steering angle). The following sections show the
differences between using a constant Q¢ and its speed varying form Q¢(V,.). The track used for

the following analysis can be seen in Appendix A in Figure 50.

1.5.4.1 Constant Weights

In Error! Reference source not found., Error! Reference source not found., Error!
Reference source not found. the measured, filtered and steering inputs can be seen at speed
ranging from 10-80m/s with the following configuration of Q¢ and R€

0.025 0 0 0
0 0.001 O 0
0

0 0 0 0.001



States for the Indy Vehicle at Various Speeds with @ constant and excluding d;p
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Figure 15: Trial 1 results of vehicle states for Q¢~constant
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Filtered Error States for the Indy Vehicle at Various Speeds with Q@ constant and excluding 5y
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Figure 16: Trial 1 results of vehicle error states for Q€~constant
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Steering Input for the Indy Vehicle at Various Speeds with @ constant and excluding 4y
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Figure 17: Trial 1 results of the optimal steering inputs for Q¢~constant

It is seen that the vehicle at speeds greater than 50m/s has significant oscillations,
unacceptable cross track error and is coincidently asymptotically stable due to the steering
constraints preventing higher magnitude steering values to be applied to the vehicle.

The gains from trial 1 were too strong at higher speeds so the values in Q€ are reduced
further in trial 2 and again in Error! Reference source not found., Error! Reference source
not found., Error! Reference source not found. the measured, filtered and steering inputs can

be seen at speed ranging from 10-80m/s with the following configuration of Q¢ and R¢

0.0175 0 0 0
0° = 0 0.0007 0 0
0 0 0.007 0
0 0 0 0.0007
R¢ =[0.1]



States for the Indy Vehicle at Various Speeds with ° constant and exeluding &7y
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Figure 18: Trial 2 results of vehicle states for Q°~constant
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Filtered Error States for the Indy Vehicle at Various Speeds with Q° constant and excluding
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Figure 19: Trial 2 results of vehicle error states for Q€~constant
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Steering Input for the Indy Vehicle at Various Speeds with @ constant and excluding dy
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Figure 20: Trial 2 results of the optimal steering inputs for Q“~constant

It is seen that the same issue persists in trial 2 without having much effect on the response
of the vehicle’s stability and path tracking capabilities.

The values in Q¢ are reduced even further in trial 3 to attempt to reduce oscillations in the
system. Again in Error! Reference source not found., Error! Reference source not found.,
Error! Reference source not found. show the measured, filtered and steering inputs can be seen

at speed ranging from 10-80m/s with the following configuration of Q¢ and R¢

0.0025 0 0 0
oc=| 0 00001 0 0
0 0 0001 0
0 0 0  0.0001
R¢ =[0.1]
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States for the Indy Vehicle at Various Speeds with @ constant and excluding dyy
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Figure 21: Trial 3 results of vehicle states for Q¢~constant
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Figure 22: Trial 3 results of vehicle error states for Q€~constant

58



Steering Input for the Indy Vehicle at Various Speeds with ¢ constant and excluding dy
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Figure 23: Trial 3 results of the optimal steering inputs for Q¢~constant

It’s now observed that the system has reached a much more stable point by reducing the

oscillations but at the cost of having a higher cross track error than in the previous trial. The

following section seeks to reduce the errors for a range of speeds by allowing Q¢ to varying with

1.5.4.2 Parameter Varying Weights

Since the model given in eq.(1.25) is LPV, the weights that go into the cost function

were explored further by letting them vary with velocity as the system did. It was seen that as the

velocity increased, the Q matrix performed better when its components progressively got smaller

while the R matrix remained constant. Linear and non-linear trends were studied and found that
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the non-linear fits performed the best in terms of consistent vehicle behavior at a range of speeds.
This study could be explored further to determine even better performance.
Defining that each state performance weighting function abide by the power law which

can be seen in Figure 24 and Figure 25.

(V) = a Vil (1.40)

Parameter Varying Weights for Q°(V.)
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Figure 24: Choice of weights for each state
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Fit for Parameter Varying Weights for Q°(V,)
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Figure 25: Parameter varying Q¢ (V,) using power law fit

Now the state performance weight matrix will be updated as the longitudinal velocity of
the vehicle changes providing a more robust solution at wide range of speeds which can be seen

in more detail in Figure 26, Figure 27, and Figure 28.
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Figure 26: Results of vehicle states for Q¢ (V)

Filtered Error States for the Indy Vehicle at Various Speeds with @°(Vx) and excluding §5¢
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Figure 27: Results of vehicle error states for Q¢(V,.)

6

2



Steering Input for the Indy Vehicle at Various Speeds with @Q°(Vx) and excluding dy
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Figure 28: Results of the optimal steering inputs for Q¢ (V)

Now having a more robust controller at a range of operating speeds, the final step in
tuning the controller is reducing the steady state errors which is discussed in the next section.

It’s worth noting that for some circumstances it may be better to calculate the optimal
feedback gain “offline” and use the “gain scheduling” approach for handling a wide range of
operating speeds. These gains can be loaded as a lookup table or even create some fitted curves
to them to be used online to potentially increase runtime performance of the controller. An
example can be seen in Figure 29. The downside is that now the control is limited to a certain
state of the system which is technically changing over time and could be accounted for during

online calculation of the control gain.
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Figure 29: Optimal feedback gains for Q¢ (V)

1.5.5 Resolving Steady State Error

Continuing with state space model from eq.(1.25) in its compact form

X = Ax + Bs8 + Byiges

Due to the presence of Bd,t/)des, the errors of the system will not all converge to zero

when traveling along some path that has a non-zero curvature. The path reference signal into the

control block that was previewed earlier in Figure 14 will now be considered to attempt to

decrease the tracking errors further by compensating the controller in eq.(1.38) with the feed-



forward term 6. The Laplace transform and the final value theorem are used to analyze the
steady state of the new proposed closed loop system to reveal the value of ;¢
Letting
§=Kx+ 6 (1.40)
Then the new closed loop system
x = Ax + Bs(Kx + 6¢) + By aes
x = (A+ BsK)x + BsS¢f + Bges
Now taking the Laplace transform
L{x = (A+ BsK)x + Bs6¢f + By aes)
sX(s) = (A+ BsK)X(s) + BsL{6¢f} + By L{aes)
sX(s) = (A + BsK)X(s) = BsL{87} + By L{Yaes}
(sl — (A + BsK))X(s) = BsL{8¢r} + By L{1ges)
X(s) = (s — (A+ BsK)) ™ (BsL{8;7} + By L{thaes))
Now evaluating L{l/)des} with the steady state assumption that the vehicle travels with a constant

speed V, along a constant path curvature k then

L{lj’des} =

KVy
S
And asserting that the sought out & is also constant then
)
ff
L{See} = =
_ o KV,
SX(S) = (S[ - (A + Bé‘K))_l(Bé*Sff + BwKVx)
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Now applying the final value theorem which states

lim x(t) = lim sX(s)

t—oo s—-0
Then the steady state x is

. o o _ -1 ‘
xgs = lim x(t) = lim sX(s) = lim ((SI (A+ BsK)) (Bs8rs + BII)KVX)>
-1
Xss = (—(A+ BsK)) ~(BsSz + ByklVy)
With
K =[ke, ke, ke, ke

Which can be solved symbolically in Matlab to produce

Srr __L mv¢ (L _Lr (4 _ _ |
E key <(Lf+LT) <Cf Cr (1 kew) (Lf + LT erew)

y

Xss=| 0 [+ 0 (1.41)
0 _® (_ L2 ,
l 0 J Cr(Lp+Ly) ( CrLeLy—C Ly " + LymVy )
0

Then

_ msz LT‘ Lf
5ff =K m(c—f—c—r(l—kew)>+ (Lf +Lr _erelll)

Under further inspection

m(L, L mV2L
Sp=r(V2|—(=-L L L ke, + L
rf K( x (L <Cf ¢.) )P\, T )R T

Identifying that
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Is known as the understeer gradient, then

mszLf
LC,

SffzichZK,,+K< —Lr>ke¢+KL

Now that 5 has been found, it can be seen in eq.(1.41) it’s not possible for e, to reach
zero steady state error but the controller is able to achieve a zero steady state error for e,,. Results
for including &5 with the same Q¢(V4) are shown in Figure 30, Figure 31, and Figure 32, which
dramatically improve path tracking performance even at the higher speeds. With this new
capability, future work could include improving the design of the weight functions in the state
performance matrix Q€(V,.) given by eq.(1.40) to further reduce the lateral errors. It can be seen
in Figure 61 that the current form of the controller completely breaks down at 100m/s without
the aid of & but in Figure 66 shows how it brings the system back to being stable but still has
an unacceptable lateral error. Plots of the various paths used for testing can be seen in Appendix

A and detailed runs at all the various speeds can also be seen in Appendix B.
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States for the Indy Vehicle at Various Speeds with “(Vx) and including 4y
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Figure 30: Vehicle states with Q(Vx) and feed-forward
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Filtered Error States for the Indy Vehicle at Various Speeds with ¢ (Vx) and including ¢
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Figure 31: Vehicle error states with Q(\Vx) and feed-forward
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Steering Input for the Indy Vehicle at Various Speeds with Q°(Vx) and including 4
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Figure 32: Calculated steering values with Q(Vx) and feed forward
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Chapter 2 Implementation

2.1 Introduction

For implementing everything in chapter 1, the following sections include the (pseudo)
code for the algorithms used provide a general understanding of how one would go about coding
them in various languages that they feel comfortable using. The source code on GitLab is all in
python3 and Matlab. Once these algorithms are understood comes to how use them which is
shown in the autonomous vehicle framework that was created for this thesis using a popular
robotics software called ROS2. General knowledge of what ROS2 is and how to use it within the
framework is also provided so that the reader may dive into the world of ROS and to show how
powerful this software is for robotic applications when it comes to industry ready products or
experimenting new ideas. ROS2 was used to implement all the experimental procedures for
collecting data and testing the controller in both the simulator and on the physical car. Lastly, the
results of the various topics discussed throughout this thesis are presented for validation. It is
suggested that the reader has basic Linux skills which will complement all the setup procedures
and use developer tools such as GitLab and Docker. Brief introductions to both GitLab and
docker are given which as well provide the crucial components of collaboration, version control,
and product distribution for the autonomous framework (UCSD Robocar) that was created. It is
to be noted that the concepts and ideas discussed here can be applied to many other types of
frameworks or projects because of the generality that was maintained throughout the

construction of UCSD Robocar.
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2.2 Core Algorithms

The following sections provide the code for the main algorithms used for path tracking.
These algorithms are written in stand-alone format for robust reusability. It is better practice to
have code written in object-oriented-programming (OOP) format because it makes functions and
variables more accessible throughout the rest of the framework and makes updating current or
implementing new algorithms a much smoother process. The following section breaks down the
step-by-step process of the core control algorithms that are used in the autonomous vehicle

control package software.

2.2.1 Discrete Parameter-Varying Dynamic Car Model

This program allows for updating the bicycle car model and then discretized as it is a
parameter-varying system. It will need to be updated at every time step at runtime to allow for

varying velocity operation.

ALGORITHM 1: DISCRETIZING AND UPDATING DYNAMIC MODEL
INPUT:  Longitudinal velocity (V)
OUTPUT:  Discrete state space matrices (A4, Bg)
1 if Vy < Vagin
Ve=Vinin

3 A, B « update continuous-time dynamics as function of V,

Ay, By < zeros(size(A, B)) initialize each discrete matrix to be same size as continuous

5 i
matrix

6 for k = 0:max_iteration
(ATy)"

7 Ad = Ad + kT
AkT k+1

8 B;=B;+———B

a =5t G
9 end
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2.2.2 Parameter-Varying Weight Functions

This algorithm is for updating the state performance weight matrix that will vary with V,
which allows for achieving design specifications at all possible V the vehicle could be at. The
control effort weight matrix was set to a constant and read from a configuration file. The
coefficients a;, b; for each state can be computed offline or a single time upon initialization of the

controller.

ALGORITHM 6: CALCULATE WEIGHTS

INPUT:  Longitudinal velocity and the size of A (V, size(A))
OUTPUT: State performance and control effort weights at time sample k (Qi, Ry)
Q = zeros(size(A))initialize matrix of zeros with same size as A

1 fori=0:length(Qy) run loop for each state

2 a;, b; <« read from configuration file for state i
3 Q(i,i) = al-bei assign state i performance in its diagonal position
4 end

5 Ry <« read from configuration file (does not vary with longitudinal velocity)

6 Qr <—Q

2.2.3 Cross-Track Error

This algorithm will calculate the current cross-track error with respect to the center of
gravity of the vehicle. It expects that the two closest points in the path to the vehicle are provided
but can be easily found by finding the index of the minimum Euclidean distance between the

vehicle and the path and then taking the next index in the array as the second closest point. This
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assumes that the path provided is orientated such that each successive point is the next point for

the vehicle to move towards. It will need to be updated at every time step at run time.

ALGORITHM 7: CALCULATE CTE

Closest two points in desired path and vehicle position with respect to its
center of gravity ((Xpl, Y1), (Xp2: Yp2), (Xeg, ch))
ouTPUT: Lateral error to desired path (CTE)

INPUT:

Pi, = (Xp2 — Xp1, Y,z — Yp1) Vector connecting 2 closest points of path to follow
(sz_ypl"(XPZ‘Xpl))
[1Pr]l

Veor = (Xcg — Xp1, Yeg — Yp1) Vector from point 1 to the vehicle position

P = Unit vector perpendicular to path
CTE = (Xc6 — Xp12, Yee — Yp12) Cross-track error vector

CTE = ch - P1, cross-track error (sign of this product will dictate to left or right
of path)

2.2.4 Covariance Matrix

This algorithm solves the RDE/DARE depending on the max iteration specified. If set to

1, the calculation should only be performed once and will be the solution to the RDE. If solved

recursively until the previous covariance is equal to the current covariance, then it has solved the

DARE.

ALGORITHM 2: SOLVE RDE/DARE

discrete system dynamics and weights at sample k
(A, By, Qx, Ry, optional : X,_;)

OuTpPUT: current and predicted state covariance matrix (X, Xi4+1)

INPUT:

if optional is not none

’ X «initialize as X _;
else

’ X < initialize as Qy,

for i = 0:max_iteration
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7 X = (U — B(BIXB, + R)™'BNX
8 end

9 X, =X

10 Xpy1 = ARXiAg + Qp

2.2.5 Gain

This algorithm calculates both Kalman and feedback gains that coincide with the solution
to the RDE. This algorithm will need to be called at every time step at run time when updating

the gains with respect to the state equation matrices.

ALGORITHM 3: CALCULATE GAIN MATRIX

discrete system dynamics and weights at sample k
(Ay, By, Qi, Ry, optional : X,)

INPUT:
OuTPUT: gain and variance matrices (L, K, X)
if optional is not none
X X
else
Xi, Xpy1 < call algorithm 2 (Ay, By, Qk, Ri)

X (_Xk

-1 . . . .
L = (ByXBy + R;) B}X known as the “innovation gain” or “Kalman gain”

~N oo o B~ W N e

K = LA, known as the “Feedback gain”

2.2.6 Linear Kalman Filter

This algorithm calculates the current filtered state-estimate of the vehicle and the states
covariance matrix for a single time step and will need to be called at every time step at run time

to keep updating the estimates based on current measurement data.
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ALGORITHM 4: CALCULATE OPTIMAL STATE-ESTIMATE FROM LINEAR SYSTEM

Current and previous discrete system dynamics, weights, previous state
INPUT:  Covariance state estimate and input, and current measurement

(Syskrsysk—lfQk:Rk»Xk|k—1»xk—1|k—1fuk—1f J’k)

OuTPUT: optimal state-estimate and variance (%, X)

Ly, K, < call algorithm 5 to get gains (A}, C7, Qx, Rio Xijie-1)

L, K < L%, KT by duality, take transpose to get estimation and innovation gains
X, Xks1 < call algorithm 4 to get filtered covariances (A%, CI, Qx, Ry, Xk—1)
X« Rpe = Uy — LiCi) (Ak-1Zp—1jk—1 + Bro1i—1) + Ly

X & Xps1

g b~ W N -

2.2.7 Extended Kalman Filter

This algorithm behaves the same as the linear Kalman filter but uses the non-linear

systems state and output equations when performing updates.

ALGORITHM 5: CALCULATE OPTIMAL STATE-ESTIMATE FROM NON-LINEAR SYSTEM

discrete system dynamics, previous state covariance, sensor weights
(Ak, B, Ciey Dy Xie—1, Qs Ries fie (i, i), e (i), vie)
OUTPUT: optimal state-estimate (X, X)

INPUT!

1 L,K <« callalgorithm 5 to get gains (A%, CI, Qk, Ry, Xi—-1)

2 LK « LT, KT by duality, take transpose to get estimation and innovation gains

3 X, X « call algorithm 4 to get filtered covariances
lo2kt1 (AL, €k, (FrQiFY), (GkRiGY), Xi-1)

4 Rk = fre1(Re-1pp-1 U—1) + Lk — ifr-1(Ri—1ji-1, Uk-1) )

X <X

(6}
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2.2.8 LOG

This algorithm combines all the algorithms mentioned previously which will perform a

single LQG calculation and will need to be called at every time step at run time.

ALGORITHM 8: CALCULATE OPTIMAL STATE-ESTIMATE FEEDBACK CONTROLLER

oSS o1 B~ W

continuous system dynamics, previous discrete system dynamics, weights,
INPUT:  previous state covariance state estimate and input, and current measurement

(A, B,C,D, SYSk-1 er QI?,» RI?,' Xlg|k—1r fk—1|k—1' ak—l' yk)

optimal state-estimate feedback control, state, and variance

OUTPUT: [~ A o
(uk:uk—l:xk—1|k—1'XI(<)|k—1)
« call algorithm 1 (4, B, C, D, V,) update CT model speed & convert to
A B Co D o7
0%, RE « call algorithm 2 (V,.) these are the state performance weights for minimizing
k'K

control cost
Ky <« call algorithm 5 (A, By, Qr, Rp) this is the feedback control gain

Rreiior Xiqes «— call algorithm 6 (sysk, sysi—1, Xgw-1, QR RR» Re—1je—1, D=1, Vi)
i, = —Kj Xy, feedback controller to apply to plant

Uy_1, Xg—1)k-1, Xk < update values for next time step (T, Xk Xﬁﬂlk)

2.3 Human-Machine-Interface

2.3.1 Introduction

An autonomous vehicle framework (UCSD Robocar) was created in support of this

thesis. UCSD Robocar is built on top of a popular software used for robotic applications called

Robot Operating System (ROS and ROS2) was used for controlling the various scaled robot cars.

The framework provides flexibility from implementing traditional programming or machine

learning techniques to achieve an objective. The framework works with a vast selection of

popularly used sensors, controllers and actuators making it a robust framework to use across

various platforms. The framework has been tested in ROS simulators as well as on 1/16, 1/10,
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1/5 scaled robot cars. For the Go-Kart and Indy vehicles, an industry provided framework was

used.

2.3.2 Development Platforms

There are 3 main embedded computers that were used to deploy the UCSD Robocar
framework on the physical robots and each of them are ARM based computer architectures and
belong to the NVIDIA Jetson family. Jetson Nano Jetson Xavier NX, and the Jetson AGX
Xavier.

Other computer architectures like X86 from intel and M1 from apple were also
compatible and were the main computers used when running simulations of robot behavior under
different conditions and controller performance criteria. The host OS on all the Jetson computers
use Ubuntul8 which is flashed through NVIDIA's Jetpack image. However, the docker image
uses Ubuntu20 which is an OS recommendation (essentially a requirement for not having to deal
with package installation issues) for using ROS2 and is discussed in more detail below.

Ubuntu in general is a great OS for robotic applications due to the large robotics community that
has used it to develop and share their works.

To be able to use different types of computer architectures and ensuring repeatability, a
docker image was created that runs Ubuntu20.04 and contains the UCSD Robocar framework
and all its software related dependencies which was extremely convenient and efficient when
making the transition from the simulator to the actual robot. To get the docker image working,
pull the UCSD Robocar docker image from docker hub onto the development computer. This

allows for plug-n-play capabilities if all the sensors and hardware are connected to the computer

properly.
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2.3.3 ROS Introduction

ROS is used in this autonomous vehicle application for its built-in ecosystem for
receiving and sending sensor and control messages across many different programs in the
framework. The framework allows for both ROS-Noetic and ROS2-Foxy to work together
through another software tool called ROS bridge or can be used independently per requirement
of the application. ROS also has a large community of roboticists who share various packages
such as SLAM, sensor drivers, obstacle avoidance etc. that are all open sourced to make use,
understanding, and modifying them all in the hands of the developer.

ROS has a unique architecture which consists of various tools and communication
methods between numerous programs. In this introduction, only the concepts of nodes, topics,
launch files and parameters will be discussed. However, there are other core concepts such as
actions and services that can provide more robust functionality of what a robot/system is capable
of. This is meant to be a brief introduction as to what ROS is and to demystify its usage by

exposing the main ideas behind it.

2.3.3.1 Nodes

Nodes can be the source code or be the place where source code is imported to be used.
Nodes initiate the potential communication between various other nodes that might be running in
parallel. For any program that needs information or data from another program, a node must be
initialized! Without the creation of the node, the communication is severed from the rest of the
programs. Nodes can communicate (send data) with each other over a shared topic. If this topic

is not set up properly, there will not be any communication between the nodes.
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2.3.3.2 Topics

Topics provide the means for 2 or more nodes to share data with one another. For at least
2 nodes to start talking to one another, at least one topic must be made, one node must publish to
a topic to send data, and another node must subscribe to that same topic to receive that data. A
simple example is shown in Figure 33. These topics can pass various types of data structures
from simple integers to custom defined data types which is very convenient and powerful when

attempting to create a framework of code to properly share data within itself.

Node 2
Publisher Subscriber

Node 1 Node 2
Publisher Subscriber

Figure 33: ROS Topics with Nodes

2.3.3.3 Launch Files

These are one-stop-shop programs that can run numerous nodes simultaneously which
can be very powerful and convenient. For example, some robotic systems could have many
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different nodes for various scenarios or environments that the robot could be in. They can also
load parameters into nodes to make programs much more robust and minimize user error. With
ROS2, Logic can also be implemented in these files because they’re in python. An example is

shown in Figure 34.

Node 2
Subscriber

Node 1
Publisher

Launch File

Figure 34: ROS Launch files with nodes

2.3.3.4 Parameters

Parameters in ROS are incredibly useful even with simple robotic applications.
Parameters can define physical robot limitations, behavior, information about the environment
the robot is in, and so much more. Parameters can be set inside of nodes and is possible to update
at run time in the terminal! They can always be viewed via the terminal as well for verification.
A simple example of using parameters is given in Figure 35. This example shows using the same
node (source code) and only updating a set of user defined parameters to achieve different
behavior or updating system properties when in different environments. This was exhausted on
the 3 different platforms used for testing the LQG controller and when changing track

conditions.
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Figure 35: ROS Parameters in different environments

Environment 1

82



2.3.4 UCSD Robocar Framework Breakdown

Now having a basic understanding of ROS, The Autonomous framework that was created
for this thesis is broken down into the packages and nodes that must have been made to
implement all the theory from part 1. Figure 36 gives a high-level overview of how the
framework was structured. This piecewise structure allows for plug-in type capabilities which
makes it a robust solution for testing on different vehicle platforms, experimenting with new

controllers, or path planning techniques.

p

camera_node
lidar_node

gps_node

M waypoint_node lgg_node

wall_follow _node lgg_node all_components

actuater2, pkg path2! pkg control2. pkg nav2. pkg

imu_node

odom_node

sensor2. pkg

UCSD ROBOCAR HUB

Figure 36: UCSD Robocar framework scheme

The navigation package is essentially the node manager of the UCSD Robocar
framework because it keeps track of all the names and locations of any node/launch file from the
other packages used in the framework. This includes sensor and actuator drivers as well as
navigation and control algorithms. This makes using the framework even simpler by removing
the requirement of remembering all the different launch files and package names. This package
dynamically builds a user-defined launch file at run-time through 2 different config files, 1 for
hardware equipped to the robot and the other for the set of desired nodes to use for a given

scenario. Direct application of this is shown later in Error! Reference source not found..
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The sensor package contains all the required nodes/launch files needed to use the sensors
that are equipped to the car. The sensors include cameras, LIDAR, GPS, IMU, and wheel
encoders.

The actuator package contains all the required nodes/launch files needed to use the
actuators that are equipped to the car. The drivers include sensor-less brushed DC motors via
pulse-width-modulation (PWM), sensored brushless DC motor and servo motors via PWM.

The path package contains all the required nodes/launch files needed to create trajectories
for the car to follow in a pre-built map as well as in simulations. The path planners include
waypoint following via GPS, bug algorithms via LiDAR scans, lane guidance via camera, Hector
SLAM via LiDAR.

The control package contains all the required nodes/launch files needed to control the car

with various methods such as manual joystick, manual keyboard, PID, and LQG

2.3.4.1 Using the Framework

The first thing to do is update config files. The framework is setup such that most things a
user would need to change or modify can be done in a config file. If more intricate modifications
must be done, its recommended to use what currently works and create a new node to integrate
new behavior into the robot. This is explained more in Error! Reference source not found..
The following sections go over how to modify the config files to achieve a certain behavior such

us turning on sensors, manual control, lane guidance, etc.
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2.3.4.2 Updating Parameters

Hardware configuration is as simple as flipping a switch. Since the launch files in ROS2
are now in python, we can dynamically build launch files. Meaning there is no need to have
several different “car configurations” that may have different hardware on them and instead have
a single launch file that can launch any needed component by changing a single number (that
number is explained below). There is only one file to modify and all that needs to be changed is
either putting a “0” or a ““1” next to the list of hardware in the file. To select the hardware that the
robot has and that is required for the application, put a “1” next to it otherwise put a “0” which
means it will not activate.

Modify and save the car config with the sensors and actuators on the robot and then recompile.
From the terminal

source_ros2

gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/car_config.yaml

build_ros2

Very similar to hardware configuration, the nodes to use for a desired application is also
as simple as flipping a switch. There is only one file to modify and all that needs to be changed is
either putting a “0” or a ““1” next to the list of robot behaviors/features. To select the desired
behaviors/features that the robot is going to perform for the application, put a “1” next to it
otherwise put a “0” which means it will not activate.

Modify and save the node config and then recompile.
From the terminal
source_ros2

gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/node_config.yaml
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build_ros2
Vehicle parameters spanning from mass and length to sensor noise covariances, and
controller performance weights are all configurable outside of the source code. This means that
the user should never need to modify the source code to update any given parameter. Below are
the commands to update any parameter for the vehicle and controller performance.
From the terminal
source_ros2
gedit src/ucsd_robocar_hub2/ucsd_robocar_control2_pkg/config/car_config.yaml
build_ros2
Being able to manually control the vehicle is very useful and convenient when either
collecting data, troubleshooting hardware, or debugging. Below are the required commands to
get the car moving in manual mode.
Controls
e A “deadman” switch is enabled which means that button must be pressed and held (LB
on logitech) down in order for commands to be sent to the robot’s motors.
e The joysticks on the controller are what control the robot to move forwards/backwards
and turn.
From the terminal
source_ros2
Modify the hardware config file to turn on the vesc_with_odom
gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/car_config.yaml
Then modify the node config file to activate all_components and fltenth_vesc_joy launch

launch files
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gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/node_config.yaml
Then rebuild and launch
build_ros2

ros2 launch ucsd_robocar_nav2_pkg all_nodes.launch.py

2.3.4.3 Sensor Visualization

After selecting the hardware that's equipped on the robot, let's visually verify that the
sensors are working. The current config file that is launched will display laser scan and image

data. If the robot has more sensors to visualized, they can be added through RVIZ.

Modify the hardware config file to turn on the sensors plugged in and want to visualize.
gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/car_config.yaml
Then modify the node config file to activate all_components and sensor_visualization launch
files
gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/node_config.yaml
Then rebuild and launch
build_ros2

ros2 launch ucsd_robocar_nav2_pkg all_nodes.launch.py

2.3.4.4 Data Collection

To collect data being broadcasted over the topics that are actively being published, turn
on whichever nodes needed to publish that topic information but make sure that the
rosbag_launch option in the node_config is also turned on which is the switch for data

collection. This will record ALL topics to the “rosbag” which is a unique file type to ROS. Then
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a package called bagpy is used to convert the data into csv format which is useful for

viewing/analysis.

Modify the hardware config file to turn on any sensors equipped and needed for data collection

gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/car_config.yaml

Then modify the node config file to activate only all_components, rosbag_launch launch files
gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/node_config.yaml

Then rebuild and launch
build_ros2

ros2 launch ucsd_robocar_nav2_pkg all_nodes.launch.py

Figure 37 shows a diagram of all the nodes that need to be activated during the system

identification process which consists of all the sensors, actuators, and control methods.

control2_pkg actuator2_pkg
joystick_node vesc_node

gps_node

odom_node imu_node

sensor2_pkg

navZ_pkg

Figure 37: UCSD Robocar system ID node tree
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2.3.4.5 Running Simulator

A lightweight ROS2 simulator created by the F1 Tenth community using RVIZ was used
for various scenarios such as model validation, experiment repeatability and general
experimentation. The simulator uses a 2D dynamic bicycle-car model to simulate how the car
would move in an environment. There are several default maps available in the simulator, but it
is also possible to load in custom maps that could have been generated via SLAM techniques or

by CAD drawings.

NOTE: For the example below, the joystick is used as the controller so the user will need a

controller plugged into their computer. For manual control, the path planner is not activated.

NOTE: Only use the simulator on the X86 docker image and not the Jetson.

Then modify the node config file to activate only the simulator and f1tenth_vesc_joy launch
launch files

gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/node_config.yaml

Modify the f1 tenth simulator config file to update the map (if needed)

gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/fl_tenth_sim.yaml
Then rebuild and launch

build_ros2

ros2 launch ucsd_robocar_nav2_pkg all_nodes.launch.py
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2.3.4.6 Autonomous Mode with LQG

After verifying that all the sensors/hardware are working properly, system ID has been
completed, and weighting matrices have been resolved, tested controller in the simulator, it is

now time to test out the LQG controller on the physical robot.

From the terminal (if haven’t done already)
source_ros2
Modify the hardware config file to turn on the vesc_with_odom
gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/car_config.yaml
Then modify the node config file to activate all_components and fltenth_vesc_joy launch
launch files

gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/node_config.yaml

Then rebuild and launch

build_ros2

ros2 launch ucsd_robocar_nav2_pkg all_nodes.launch.py
Figure 38 shows a diagram of all the nodes that need to be activated during the autonomous
operation which consists of everything from the system identification process as well as the path

planner.
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Figure 38: UCSD Robocar Autonomous node tree
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2.4 Experimental Procedures

2.4.1 Sensor Calibration

2.4.1.1 PWM to Steering Wheel Angle

This experiment was to convert the pulse-width-modulation (PWM) signal data (input
data type to steering column motor on the car) to road wheel angle. The experiment flow goes as
follows at zero speed:

* From center position to max left/right limits of steering, record PWM values and measure
wheel angle deflection from the vehicle’s longitudinal axis directly (using geometry)
* Repeat a minimum of 3 trials
Now at low speed in manual mode:
» Find bias by finding the PWM value that puts the wheel angles in the straight position
and that the path taken by the robot follows a straight line for at least 3m
An example of finding the bias can be seen in Figure 39. Then Least squares can be performed to
determine the gain (slope) and offset/bias (y-intercept) of the linear relationship.
6 = Kpwm + bias

Now the vehicle can be controlled with wheel angles vs PWM.
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Figure 39: PWM to Steering Wheel Angle

2.4.1.2 Steering Wheel Angle to Road Wheel Angle

This experiment was to convert the normalized input servo motor angle to the road wheel

angle of the car. The experiment flow goes as follows for a constant speed

» Lock servo angle at some angle (6;)

» Measure the wheel angle (5;)

* Repeat a minimum of 3 trials
This was done for several discrete positions of the vehicles steering range
Then Least squares can be performed to determine the gain (slope) and offset/bias (y-intercept)
of the linear relationship.

6 = KO + bias

Now the vehicle can be controlled with wheel angles vs servo motor position.
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2.4.1.3 RPM to Vehicle Speed

This experiment was to convert the input motor RPM (revolutions per minute) to the
longitudinal velocity of the car. The experiment flow goes as follows for a particular input motor
RPM value:

» Lock steering angle in straight position

* Have a “buffer” zone set to not measure transient

» Measure At over the pre-defined distance of travel

* Repeat a minimum of 3 trials
This was done for several discrete rpm values of the DC motor to characterize the full
relationship. An example of the setup can be seen in Figure 40. Then Least squares can be
performed to determine the gain (slope) and offset/bias (y-intercept) of the linear relationship.

V, = Kw + bias

Now the vehicle can be controlled with vehicle speeds vs motor RPM.
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Figure 40: RPM to longitudinal velocity
The gain in this experiment relates to the effective gear ratio which is solved analytically as

follows

wmotoerotor = wclutcthlutch

Nmotor

Welutch = Wmotor N
clutch

Viwheet = WciutchRwheet

— Nmotor
theel - (wmotor N Rwheel
clutch

Nmotor

Viwheet = wmotor( wheel) = wmotorGReffective

Nciutch
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Figure 41: Speed to throttle correlation data
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Figure 42: Measured speed over time
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Figure 43: Correlation from RPM to longitudinal velocity

2.4.2 Parameter Measurements

Most parameters can be estimated well by measuring the mass of the vehicle. Depending
on what kind of scales are available, the front and rear axles can be weighted or each individual
tire and then summing them to get the total mass. Once the mass distribution is known, the
distances from the CG are estimated by the weight distribution and the actual length of the
vehicle which was measured simply with a measuring tape. Then the moment of inertia is

calculated using the mass distribution and rotation axis distances.
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2.4.2.1 Tire Stiffness Coefficients

This experiment was done by collecting data from a specified steering angle reference
and constant speed. The reference signals were sinusoidal and varied in amplitude and frequency
to make sure that the system was continuously excited which is a requirement for system ID and
to have several independent data sets that can then be combined to get a more robust
approximation for various lateral tire forces acting on the vehicle. The experiment flow goes as
follows:

+ Set constant vehicle speed, amplitude, and frequency of steering angle (max steering
angle, rotation speed)
+ Collect, steering, GPS, and IMU data for length of experiment
* Repeat a minimum of 3 trials
Then with this data, least squares using eq.(1.31) can be performed to approximate these
parameters. The steering input and sensor measurements can be seen in Figure 45, Figure 46, and
Figure 47. The models given by eq.(1.17) and eq.(1.18) can then be used for validation which the

results can be seen in Figure 48 and Figure 49 respectively.
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Figure 45: Steering and slip angle measurements
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Figure 46: IMU measurements
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Unfiltered GPS Position and Speed Data
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Figure 47: GPS measurements
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Slip Model Simulation Results for the gokart Vehicle with e, p=34249 and e, =45111
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Figure 49: Lateral model simulation with
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Appendix A Path Catalog
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Figure 50: Las Vegas Motor Speedway (LVMS) track
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Figure 51: LVMS track characteristics
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Figure 53: TMS track characteristics
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Appendix B Controller Performance

B.1 Without feedforward
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Figure 57: LVMS without 8¢ and V,=10m/s
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States for the Indy Vehicle at V=20m/s
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B.2 With feedforward
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Figure 62: LVMS with &, and V,=10m/s
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States for the Tndy Vehicle at V=20m/s
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Tndy Vehicle at V=80m/s
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Figure 65: LVMS with ;¢ and V,=80m/s
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States fur the Tndy Velicle at V=100m/s
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Figure 66: LVMS with &¢ and V,=100m/s
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States for the Indy Vehicle at Various Speeds with “(Vx) and including 4y
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Figure 67: TMS Indy vehicle states with 8¢ and V.= [10:80]m/s
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Filtered Error States for the Indy Vehicle at Varions Speeds with @“(Vx) and including ;¢
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Figure 68: TMS Indy vehicle error states with &5 and V,= [10:80]m/s
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Steering Input for the Indy Vehicle at Varions Speeds with Q"(Vx) and including 4
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Figure 69: TMS Indy vehicle optimal steering inputs with &¢ and V,= [10:80]m/s
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Figure 70: TMS Indy vehicle trajectory at V.= 80m/s
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States for the Indy Vehicle at Various Speeds with Q*(Vx) and including d;;
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Figure 71: Purdue Indy vehicle states with &, and V.= [10:20]m/s
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Figure 72: Purdue Indy vehicle error states with &7 and V.= [10:20]m/s
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. Varions Speeds with Q"(Vx) and including 4y
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Figure 73: Indy vehicle optimal steering inputs with &, and V,,= [10:20]m/s
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Figure 74: Purdue Indy vehicle trajectory at V.= 20m/s
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