
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title

A Guide for Understanding and Implementing Optimal Control for Autonomous Vehicles

Permalink

https://escholarship.org/uc/item/6tw3s1bt

Author

Nightingale, Dominic James

Publication Date

2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6tw3s1bt
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

A Guide for Understanding and Implementing Optimal Control for Autonomous Vehicles

A Thesis submitted in partial satisfaction of the requirements

for the degree Master of Science

in

Mechanical and Aerospace Engineering

by

Dominic James Nightingale

Committee in charge:

Professor Mauricio de Oliveira, Chair

Professor Robert Bitmead, Co-Chair

Professor Thomas Bewley

2023

Copyright

Dominic James Nightingale, 2023

All rights reserved.

iii

THESIS APPROVAL PAGE

The Thesis of Dominic James Nightingale is approved, and it is

acceptable in quality and form for publication on microfilm and

electronically.

University of California San Diego

2023

iv

DEDICATION

I would like to express my sincere gratitude to the individuals who have contributed to the successful completion of

my research and thesis. First and foremost, I would like to thank my advisor, Dr. Mauricio de Oliveira for his

unwavering support, guidance, and mentorship throughout my research journey. He taught me how to approach

challenging problems by segmenting the fundamental components and how to think more deeply about the theory and

application of my experiments. He pushed me to become a better engineer, provided me with the resources and

opportunities to develop my skills, and gave me the confidence to take risks and tackle difficult challenges. Dr.

Oliveira's ability to balance humor and hard work made the research process both productive and enjoyable. I am

deeply grateful for his mentorship and for the many laughs we shared along the way.

Dr. Jack Silberman introduced me to the world of robotics and what it means to be a hacker. His enthusiasm and

expertise in the field inspired me to pursue research in robotics, and he provided me with the foundational knowledge

and technical skills necessary to begin exploring this exciting field.

Dr. Robert Bitmead introduced me to the world of control and estimation theory and showed me how to turn any dull

moment into a joke. He made learning about these complex topics fun and accessible, and his humor and enthusiasm

kept me motivated and engaged throughout his courses.

Dr. Thomas Bewley introduced me to the world of numerical estimation and dynamic modeling and instilled in me

the importance of working efficiently. He taught me how to approach problems with a systematic, analytical mindset,

and how to use numerical methods to develop accurate models and simulations.

Dr. Sven Brueggemann, a fellow student, introduced me to the world of optimal control and vehicle modeling, and

taught me about the ideas of safe control methods. His insights and technical expertise were invaluable to my research,

and his friendship and encouragement helped to keep me motivated and engaged throughout the research process.

Siddharth Saha, another fellow student, is the best programmer I know, and he helped me interface with many

hardware components and provided support during many long nights of programming. His technical skills and

knowledge were instrumental to the success of my research, and his humor and camaraderie made even the most

challenging tasks feel more manageable.

Zhuolin Niu, another fellow student, helped me set up and perform many of the experiments that went into my thesis,

as well as testing the algorithms discussed in the thesis. Her technical expertise and attention to detail were essential

to the accuracy and reliability of my research.

Hoojon Shiin, another fellow student, helped me develop navigation algorithms that were lidar-based. His technical

knowledge and creativity helped to ensure that the algorithms were accurate, efficient, and effective.

I want to thank my closest friends, Sepher Bostan, Chris Light, Deena Jaber, Alexander Luke, Kevin Lam, and Karen

Hernandez, for their unwavering support and encouragement. They have been there for me at one point or another in

my life and have given me nothing but support, laughter, and offerings of true friendship. I will always be grateful for

having them in my life as their support has helped to sustain my sanity throughout my research journey and continue

to be important people in my life.

Last but not least, I want to thank my beloved mother, who has always been my source of strength and inspiration and

has supported me in every step of my life. Without her, I would not be where I am today. Thank you all for your

contributions, encouragement, and love.

v

TABLE OF CONTENTS

THESIS APPROVAL PAGE .. iii

DEDICATION ... iv

TABLE OF CONTENTS .. v

LIST OF FIGURES ... viii

ABSTRACT OF THE THESIS .. xii

Chapter 1 Theory .. 1

1.1 Introduction ... 1

1.2 Vehicle Modeling .. 4

1.2.1 Introduction .. 4

1.2.2 Kinematic Models... 5

1.2.2.1 Bicycle Car Model ... 5

1.2.3 Dynamic Models... 9

1.2.3.1 Non-linear Bicycle Car Model ... 11

1.2.3.2 Linearized Bicycle Car Model ... 12

1.2.3.2.1 With Respect to Side-Slip Angle .. 13

1.2.3.2.2 Path Consideration .. 13

1.2.3.2.3 Road Grade Consideration .. 17

1.2.3.3 Methods for Measuring Cross Track Error .. 18

1.3 System Identification... 23

1.3.1 Introduction .. 23

1.3.2 Least Squares .. 24

1.4 Optimal State Estimation .. 27

1.4.1 Introduction .. 27

1.4.2 Observability .. 28

1.4.3 State Estimators .. 30

1.4.3.1 Kalman Filter ... 31

1.4.3.2 Linearized Kalman Filter ... 34

1.4.3.3 Extended Kalman Filter ... 35

1.4.4 Tuning The Estimator ... 36

vi

1.5 Optimal Control... 39

1.5.1 Introduction .. 39

1.5.2 Controllability ... 41

1.5.3 Controllers .. 42

1.5.3.1 Linear Quadratic Regulator (Full State Feedback) .. 42

1.5.3.2 Linear Quadratic Gaussian Control (Optimal State Estimate Feedback) 46

1.5.4 Tuning The Controller .. 50

1.5.4.1 Constant Weights ... 50

1.5.4.2 Parameter Varying Weights ... 59

1.5.5 Resolving Steady State Error .. 64

Chapter 2 Implementation... 71

2.1 Introduction ... 71

2.2 Core Algorithms .. 72

2.2.1 Discrete Parameter-Varying Dynamic Car Model ... 72

2.2.2 Parameter-Varying Weight Functions .. 73

2.2.3 Cross-Track Error ... 73

2.2.4 Covariance Matrix .. 74

2.2.5 Gain .. 75

2.2.6 Linear Kalman Filter .. 75

2.2.7 Extended Kalman Filter .. 76

2.2.8 LQG .. 77

2.3 Human-Machine-Interface .. 77

2.3.1 Introduction .. 77

2.3.2 Development Platforms .. 78

2.3.3 ROS Introduction .. 79

2.3.3.1 Nodes ... 79

2.3.3.2 Topics ... 80

2.3.3.3 Launch Files ... 80

2.3.3.4 Parameters .. 81

2.3.4 UCSD Robocar Framework Breakdown .. 83

2.3.4.1 Using the Framework ... 84

vii

2.3.4.2 Updating Parameters .. 85

2.3.4.3 Sensor Visualization .. 87

2.3.4.4 Data Collection .. 87

2.3.4.5 Running Simulator ... 89

2.3.4.6 Autonomous Mode with LQG ... 90

2.4 Experimental Procedures... 92

2.4.1 Sensor Calibration .. 92

2.4.1.1 PWM to Steering Wheel Angle ... 92

2.4.1.2 Steering Wheel Angle to Road Wheel Angle .. 93

2.4.1.3 RPM to Vehicle Speed ... 94

2.4.2 Parameter Measurements .. 98

2.4.2.1 Tire Stiffness Coefficients ... 99

Appendix A Path Catalog... 106

Appendix B Controller Performance ... 113

B.1 Without feedforward .. 113

B.2 With feedforward ... 118

References ... 131

viii

LIST OF FIGURES

Figure 1: Block Diagram of Linear Quadratic Gaussian Control .. 2

Figure 2: Defining plant block with input and output relationships .. 5

Figure 3: Geometric representation of an Ackermann steering system vehicle 5

Figure 4: Kinematic Bicycle car model ... 7

Figure 5: Dynamic Bicycle car model ... 9

Figure 6: Dynamic model with respect to desired trajectory ... 14

Figure 7: Road grade consideration ... 17

Figure 8: LFI method for calculating cross track error .. 20

Figure 9: LPI method for calculating cross track error .. 22

Figure 10: Estimator block detailed view .. 28

Figure 11: Trial 1 of tuning .. 37

Figure 12: Trial 2 of tuning .. 38

Figure 13: Trial 3 of tuning .. 39

Figure 14: Control block detailed view.. 40

Figure 15: Trial 1 results of vehicle states for 𝑄𝑐~constant .. 51

Figure 16: Trial 1 results of vehicle error states for 𝑄𝑐~constant ... 52

Figure 17: Trial 1 results of the optimal steering inputs for 𝑄𝑐~constant 53

Figure 18: Trial 2 results of vehicle states for Qc~constant ... 54

Figure 19: Trial 2 results of vehicle error states for 𝑄𝑐~constant ... 55

Figure 20: Trial 2 results of the optimal steering inputs for 𝑄𝑐~constant 56

Figure 21: Trial 3 results of vehicle states for 𝑄𝑐~constant .. 57

Figure 22: Trial 3 results of vehicle error states for 𝑄𝑐~constant ... 58

ix

Figure 23: Trial 3 results of the optimal steering inputs for 𝑄𝑐~constant 59

Figure 24: Choice of weights for each state .. 60

Figure 25: Parameter varying 𝑄𝑐𝑉𝑥 using power law fit .. 61

Figure 26: Results of vehicle states for 𝑄𝑐𝑉𝑥 ... 62

Figure 27: Results of vehicle error states for 𝑄𝑐𝑉𝑥 ... 62

Figure 28: Results of the optimal steering inputs for 𝑄𝑐𝑉𝑥 .. 63

Figure 29: Optimal feedback gains for 𝑄𝑐𝑉𝑥 .. 64

Figure 30: Vehicle states with Q(Vx) and feed-forward ... 68

Figure 31: Vehicle error states with Q(Vx) and feed-forward ... 69

Figure 32: Calculated steering values with Q(Vx) and feed forward .. 70

Figure 33: ROS Topics with Nodes ... 80

Figure 34: ROS Launch files with nodes ... 81

Figure 35: ROS Parameters in different environments .. 82

Figure 36: UCSD Robocar framework scheme ... 83

Figure 37: UCSD Robocar system ID node tree .. 88

Figure 38: UCSD Robocar Autonomous node tree ... 91

Figure 39: PWM to Steering Wheel Angle .. 93

Figure 40: RPM to longitudinal velocity ... 95

Figure 41: Speed to throttle correlation data ... 96

Figure 42: Measured speed over time .. 97

Figure 43: Correlation from RPM to longitudinal velocity ... 98

Figure 44: Tire Stiffness Coefficients Experiment .. 100

Figure 45: Steering and slip angle measurements ... 101

x

Figure 46: IMU measurements .. 102

Figure 47: GPS measurements ... 103

Figure 48: Slip model simulation results from ls ... 104

Figure 49: Lateral model simulation with.. 105

Figure 50: Las Vegas Motor Speedway (LVMS) track ... 106

Figure 51: LVMS track characteristics .. 107

Figure 52: Texas Motor Speedway (TMS) track data ... 108

Figure 53: TMS track characteristics ... 109

Figure 54: Purdue track data .. 110

Figure 55: Purdue track characteristics .. 111

Figure 56: System ID path 1 .. 112

Figure 57: LVMS without 𝛿𝑓𝑓 and 𝑉𝑥=10m/s ... 113

Figure 58: LVMS without 𝛿𝑓𝑓 and 𝑉𝑥=20m/s ... 114

Figure 59: LVMS without 𝛿𝑓𝑓 and 𝑉𝑥=50m/s ... 115

Figure 60: LVMS without 𝛿𝑓𝑓 and 𝑉𝑥=80m/s ... 116

Figure 61: LVMS without δff and Vx=100m/s .. 117

Figure 62: LVMS with 𝛿𝑓𝑓 and 𝑉𝑥=10m/s .. 118

Figure 63: LVMS with 𝛿𝑓𝑓 and 𝑉𝑥=20m/s .. 119

Figure 64: LVMS with 𝛿𝑓𝑓 and 𝑉𝑥=50m/s .. 120

Figure 65: LVMS with 𝛿𝑓𝑓 and 𝑉𝑥=80m/s .. 121

Figure 66: LVMS with δff and Vx=100m/s ... 122

Figure 67: TMS Indy vehicle states with 𝛿𝑓𝑓 and 𝑉𝑥= [10:80]m/s .. 123

Figure 68: TMS Indy vehicle error states with 𝛿𝑓𝑓 and 𝑉𝑥= [10:80]m/s 124

xi

Figure 69: TMS Indy vehicle optimal steering inputs with 𝛿𝑓𝑓 and 𝑉𝑥= [10:80]m/s 125

Figure 70: TMS Indy vehicle trajectory at 𝑉𝑥= 80m/s .. 126

Figure 71: Purdue Indy vehicle states with 𝛿𝑓𝑓 and 𝑉𝑥= [10:20]m/s 127

Figure 72: Purdue Indy vehicle error states with 𝛿𝑓𝑓 and 𝑉𝑥= [10:20]m/s 128

Figure 73: Indy vehicle optimal steering inputs with 𝛿𝑓𝑓 and 𝑉𝑥= [10:20]m/s 129

Figure 74: Purdue Indy vehicle trajectory at 𝑉𝑥= 20m/s ... 130

xii

ABSTRACT OF THE THESIS

A Guide for Understanding and Implementing Optimal Control for Autonomous Vehicles

by

Dominic James Nightingale

Master of Science in Mechanical and Aerospace Engineering

University of California San Diego, 2023

Professor Mauricio de Oliveira, Chair

Professor Robert Bitmead, Co-Chair

Professor Thomas Bewley

There is a notable gap in existing autonomous vehicle control literature that provides

comprehensive guides bridging control design theory to its real-world implementation. The

primary objective of this thesis is to address this gap by facilitating a clear understanding of the

control design process, allowing readers to seamlessly transition from theory to application in

implementing controllers for autonomous vehicles. This thesis is designed to operate as a user’s

xiii

manual, divided into two parts, providing a guide for the understanding of the theoretical

background of autonomous vehicles, discussed in Chapter 1, followed by a detailed guide on the

procedures for implementing control theory on physical autonomous vehicles, discussed in

Chapter 2. Topics such as vehicle modeling, state estimation, system identification, and control

are covered in Chapter 1, while Chapter 2 guides the reader through the core algorithms used, the

utilization of the autonomous vehicle framework and detailed experimental procedures for data

collection and controller testing, both in simulation and on the physical vehicle. Tailored for a

broad educational audience, this thesis assumes only a foundational knowledge of Linux

systems, linear algebra, differential equations, and basic physics related to moving objects.

1

Chapter 1 Theory

1.1 Introduction

For implementing control, knowing how to characterize the system is a very important

step. This characterization can be a single or set of equations that explain the dynamics of the

system in terms of state variables which allow the use of many linear and optimal control

theories to be implemented. This thesis employs several variations of the kinematic and dynamic

bicycle car models for their simplicity and robustness across various vehicle platforms. It also

discusses the differences between the linear and non-linear models and when to use them.

Understanding the dynamics however is not enough because in most scenarios the model

contains unknown parameters that must be determined experimentally. This is explored using

standard system identification techniques which are under the assumption that the data collected

during the experiments are noise free, meaning that the data needs to be filtered, which brings up

the idea of Kalman filtering. Several types of Kalman filters are used for the filtering process

which is done online for state measurements and offline for parameter estimations. Once the

system parameters are known and the sensor data is filtered, optimal control techniques from

solving the dynamic programming equation to Schur factorizations are used to get the vehicle

following a reference trajectory. Everything is derived from the most fundamental levels except

for general mathematical identities and mathematical abstractions which are given in the

appendix. It is to be assumed that the background knowledge of the reader should be that of

differential equations, linear algebra, and basic physics of moving objects. It is assumed that the

reader has little to no understanding of vehicle modeling and explains in detail how the different

2

models are derived. A high-level preview of what is to be accomplished can be illustrated in the

classic block diagram shown in Figure 1. The following chapters are broken down by

understanding each of these blocks and signals.

Figure 1: Block Diagram of Linear Quadratic Gaussian Control

With the following:

● Blocks

• Plant : System dynamics (system identification techniques)

• Estimator : Optimal state of the system (Kalman filter techniques)

• Controller : Optimal control to apply to plant (Riccati-based techniques)

● Signals

• 𝑢 ∶ Controller input

• 𝑤 ∶ disturbance noise

• 𝑦 ∶ Plant output

• 𝑣 ∶ measurement noise

• 𝑦𝑣 : Measured plant output

3

• 𝑟 ∶ reference signal

• �̂� ∶ optimal state estimate

To understand the plant block, the dynamics and system identification techniques will

have to be to be studied to determine certain parameters that are particular to the dynamics of the

system. Then for the estimator block, various forms of the Kalman filter are studied and use

cases will vary depending on online or offline estimation. Finally for the controller block,

Riccati-based feedback control is used to determine the optimal control to apply to the system

given some reference to track. The idea of duality between the estimator and controller blocks is

also discussed to further show the simplicity and convenience of the Linear Quadratic Gaussian

(LQG) controller.

4

1.2 Vehicle Modeling

1.2.1 Introduction

The plant block is the first study of interest. The plant block represents the real system.

The goal is to come up with a mathematical model that describes the plant block to be used in the

estimator and control blocks. Other than disturbances and errors from discretization, this can be

one of the predominant sources of error between what was measured from the real plant and

what was predicted by the model. This brings up the notion of design trade-offs. One example

would be using a simple or complex motion model to describe the system. Perhaps the simple

model is easy to design with but is not as accurate or not robust enough for all types of

environments or scenarios. Contrastly for the complex model, it could be difficult to design with

but is robust enough for many environments or scenarios. It is important to think about these

trade-offs when designing and to fully understand the limitations of the controller to confidently

define a safe space for the system to operate in. Figure 2 highlights the state and output equations

that attempt to define the real system. The goal is to come up with a mathematical model that

describes the plant block to be used in the estimator and control blocks and identify model

limitations.

5

Figure 2: Defining plant block with input and output relationships

1.2.2 Kinematic Models

Kinematic models are typically the easiest type of models to work with as they neglect

the forces acting on a system and only attempt to describe the motion itself [1]. These models

can be very useful when perhaps there are unknown properties of the system that are correlated

with the forces acting on it.

1.2.2.1 Bicycle Car Model

To first understand the motion prescribed by an Ackermann steering system vehicle, the

geometric description of the motion is considered which neglects the forces involved that dictate

the motion but are discussed later. Figure 3 depicts this geometric representation of the four-

wheel system. The motion is also assumed to be planar which ignores any motion with respect to

pitch and roll and only considers yaw.

Figure 3: Geometric representation of an Ackermann steering system vehicle

6

Let:

● 𝐿𝑤 be the wheelbase length

● 𝐿𝑡 be the track width

● 𝛿𝑙 and 𝛿𝑟 be the front left and right wheel angles respectively

● 𝑅 be the radius of the arc trajectory traveled around Point O to the Center of Gravity

(CG) of the vehicle in a steady state turning condition

The front wheels each travel at different radii when turning along some arbitrary path.

Since each wheel travels a different radius, this means that each of the front wheel angles 𝛿𝑙 and

𝛿𝑟 are different but do not usually vary greatly. Now consider the bicycle model representation

of the same system shown in Figure 4.

7

Figure 4: Kinematic Bicycle car model

Let:

● 𝑳𝒓 be the length from the real wheel (Point B) to the CG (Point C)

● 𝑳𝒇 be the length from the front wheel (Point A) to the CG (Point C)

● 𝛿𝒇 be the angle of the front wheel (Point A)

● 𝜓 be the heading angle from the global 𝑋 axis to the longitudinal/local 𝑥 axis of the

vehicle

● �⃗⃗� be the vehicle velocity vector at the CG (Point C)

● 𝛽 be the side slip angle from the longitudinal axis of the vehicle to the CG velocity vector

�⃗⃗�

This model combines the left and right wheels in the front and the rear of the car to be

represented as a single wheel in the front and rear and introduces the possibility of the CG not

8

being directly in the center. Using this geometric model, the equations of motion are governed

below.

Linear and angular velocities

 Ẋ = 𝑉cos(𝜓 𝛽) (1.1)

 Ẏ = 𝑉sin(𝜓 𝛽) (1.2)

 𝜓 ̇ =
𝑉cos(𝛽)

𝐿𝑓 + 𝐿𝑟
 tan𝛿𝑓 (1.3)

Where the side-slip angle is

 𝛽 = tan−1 (
𝐿𝑓𝑡𝑎𝑛𝛿𝑟 + 𝐿𝑟𝑡𝑎𝑛𝛿𝑓

𝐿𝑓 + 𝐿𝑟
)

Assuming rear wheel in a fixed straight position then yields

 𝛽 = 𝑡𝑎𝑛−1 (
𝐿𝑟 𝑡𝑎𝑛𝛿𝑓

𝐿𝑓 + 𝐿𝑟
) (1.4)

Noticing the distinction between the upper and lowercase letters for coordinate frames.

Uppercase letters represent state variables with respect to the global coordinate system and lower

case with respect to the body frame of the vehicle.

The radius of curvature is calculated as follows:

𝑅 =
𝐿𝑟

𝑠𝑖𝑛(𝛽)

Now inserting 2.4

𝑅 =
𝐿𝑟

𝑠𝑖𝑛 (𝑡𝑎𝑛−1 (
 𝐿𝑟𝑡𝑎𝑛𝛿𝑓
𝐿𝑓 𝐿𝑟

))

Now in vector form

9

 [
Ẋ
Ẏ
�̇�
] = [

𝑐𝑜𝑠(𝜓 𝛽)

𝑠𝑖𝑛(𝜓 𝛽)
𝑐𝑜𝑠(𝛽)

𝐿𝑓 + 𝐿𝑟
𝑡𝑎𝑛𝛿𝑓

] 𝑉 (1.5)

1.2.3 Dynamic Models

The kinematic model is only valid at low slip angles and when the forces acting on the

tires are minimal [1] and [3]. The dynamic model is introduced to account for the higher speed

spectrum. To do this, the lateral forces on the front and rear tires are considered by applying

Newton's law along the body frame 𝑦-axis of the vehicle and a moment balance about the 𝑧-axis

as seen in Figure 5.

Figure 5: Dynamic Bicycle car model

Letting

 𝑉𝑥 = 𝑽 𝑐𝑜𝑠(𝛽)

10

 𝑉𝑦 = 𝑽 𝑠𝑖𝑛(𝛽)

Then taking the force balance

 ∑𝐹𝑦 = 𝑚(�̇�𝑦 �̇�𝑉𝑥) = 𝐹𝑦𝑓𝑐𝑜𝑠(𝛿) − 𝐹𝑦𝑥𝑠𝑖𝑛(𝛿) 𝐹𝑦𝑟

Assuming constant longitudinal velocity (𝐹𝑦𝑥 = 0) yields

 ∑𝐹𝑦 = 𝑚(�̇�𝑦 �̇�𝑉𝑥) = 𝐹𝑦𝑓𝑐𝑜𝑠(𝛿) 𝐹𝑦𝑟 (1.6)

Now applying the sum of moments about the CG 𝑧-axis

 ∑𝑀𝑧 = 𝐼𝑧�̈� = 𝐿𝑓𝐹𝑦𝑓𝑐𝑜𝑠(𝛿) − 𝐿𝑟 (𝐹𝑦𝑟 − 𝐹𝑥𝑟𝑠𝑖𝑛(𝛿))

Again, assuming constant longitudinal velocity (𝐹𝑦𝑥 = 0) yields

 ∑𝑀𝑧 = 𝐼𝑧�̈� = 𝐿𝑓𝐹𝑦𝑓𝑐𝑜𝑠(𝛿) − 𝐿𝑟𝐹𝑦𝑟 (1.7)

Now using a linear model of the lateral tire forces 𝐹𝑦𝑟 and 𝐹𝑦𝑓

 𝐹𝑦𝑓 = 𝐶𝑓(𝛿−𝛼𝑓) (1.8)

 𝐹𝑦𝑟 = 𝐶𝑟(−𝛼𝑟) (1.9)

Where 𝐶𝑓 and 𝐶𝑟 are termed as the tire cornering stiffness coefficients and αf and αr are the slip

angles of the front and rear tires respectively that are defined as follows

 𝛼𝑓 = 𝑡𝑎𝑛
−1 (

𝑉𝑦 + 𝐿𝑓 �̇�

𝑉𝑥
) (1.10)

 𝛼𝑟 = 𝑡𝑎𝑛
−1 (

𝑉𝑦−𝐿𝑟�̇�

𝑉𝑥
) (1.11)

11

1.2.3.1 Non-linear Bicycle Car Model

The non-linear model is found by inserting 1.8-1.11 into equations 1.6-1.7 then solving

for the lateral and angular accelerations. Starting first with the lateral dynamics yields the

following

 ∑𝐹𝑦 = 𝑚(�̇�𝑦 �̇�𝑉𝑥) = 𝐹𝑦𝑓𝑐𝑜𝑠(𝛿) 𝐹𝑦𝑟

 ∑𝐹𝑦 = 𝑚(�̇�𝑦 �̇�𝑉𝑥) = 𝐶𝑓(𝛿 − 𝛼𝑓)𝑐𝑜𝑠(𝛿) 𝐶𝑟(−𝛼𝑟)

 ∑𝐹𝑦 = 𝑚(�̇�𝑦 �̇�𝑉𝑥) = 𝐶𝑓 (𝛿 − 𝑡𝑎𝑛
−1 (

𝑉𝑦 + 𝐿𝑓�̇�

𝑉𝑥
)) 𝑐𝑜𝑠(𝛿) 𝐶𝑟 (−𝑡𝑎𝑛

−1 (
𝑉𝑦−𝐿𝑟�̇�

𝑉𝑥
))

 �̇�𝑦 =
𝐶𝑓 (𝛿−𝑡𝑎𝑛

−1(
𝑉𝑦 + 𝐿𝑓�̇�

𝑉𝑥
))𝑐𝑜𝑠(𝛿)−𝐶𝑟(𝑡𝑎𝑛

−1(
𝑉𝑦−𝐿𝑟�̇�

𝑉𝑥
))−𝑚�̇�𝑉𝑥

𝑚
 (1.12)

Now for the angular dynamics

𝐿𝑓𝐹𝑦𝑓𝑐𝑜𝑠(𝛿) − 𝐿𝑟𝐹𝑦𝑟 = 𝐼𝑧�̈�

 𝐿𝑓𝐶𝑓(𝛿 − 𝛼𝑓)𝑐𝑜𝑠(𝛿) − 𝐿𝑟𝐶𝑟(−𝛼𝑟) = 𝐼𝑧�̈�

 𝐿𝑓𝐶𝑓 (𝛿 − 𝑡𝑎𝑛
−1 (

𝑉𝑦 + 𝐿𝑓�̇�

𝑉𝑥
)) 𝑐𝑜𝑠(𝛿) − 𝐿𝑟𝐶𝑟 (−𝑡𝑎𝑛

−1 (
𝑉𝑦−𝐿𝑟�̇�

𝑉𝑥
)) = 𝐼𝑧�̈�

 �̈� =
𝐿𝑓𝐶𝑓 (𝛿−𝑡𝑎𝑛

−1(
𝑉𝑦 + 𝐿𝑓�̇�

𝑉𝑥
))𝑐𝑜𝑠(𝛿)+ 𝐿𝑟𝐶𝑟(𝑡𝑎𝑛

−1(
𝑉𝑦 − 𝐿𝑟�̇�

𝑉𝑥
))

𝐼𝑧
 (1.13)

Now putting 1.12 and 1.13 In vector form

 𝑓(𝑥, 𝑢) = [
�̇�𝑦

�̈�
] =

[

 𝐶𝑓 (𝛿−𝑡𝑎𝑛−1(

𝑉𝑦 + 𝐿𝑓 �̇�

𝑉𝑥
))𝑐𝑜𝑠(𝛿) − 𝐶𝑟(𝑡𝑎𝑛

−1(
𝑉𝑦−𝐿𝑟�̇�

𝑉𝑥
))−𝑚�̇�𝑉𝑥

𝑚

𝐿𝑓𝐶𝑓 (𝛿−𝑡𝑎𝑛
−1(

𝑉𝑦 + 𝐿𝑓 �̇�

𝑉𝑥
))𝑐𝑜𝑠(𝛿) + 𝐿𝑟𝐶𝑟(𝑡𝑎𝑛

−1(
𝑉𝑦−𝐿𝑟�̇�

𝑉𝑥
))

𝐼𝑧]

 (1.14)

12

Next thing to consider is the linearization of this model so that conventional linear control

techniques and tools may be applied but this non-linear model will be revisited again in the

optimal state estimation section for non-linear systems.

1.2.3.2 Linearized Bicycle Car Model

Now the design trade-off comes in with the desire to work with a simpler model at the

sacrifice controller robustness for large slip angles (>15 degrees). In normal driving and racing

conditions, the slip angle is usually below this threshold. It is when the vehicle starts drifting that

the assumption breaks down and is no longer valid. The control design for the rest of this work

will consider normal driving and racing conditions and not extreme conditions such as drifting.

The linearization procedure for both the lateral and angular dynamics are achieved by using the

small angle approximation for the steering angle 𝛿 and both tire slip angles 𝛼𝑓 and 𝛼𝑟

 𝑐𝑜𝑠(𝛿) ≈ 1 and 𝑡𝑎𝑛(𝛼𝑖) ≈ 𝛼𝑖

Using these approximations in eq.1.12 yields

 �̇�𝑦 =
𝐶𝑓 (𝛿−

𝑉𝑦 + 𝐿𝑓 �̇�

𝑉𝑥
)− 𝐶𝑟(

𝑉𝑦 − 𝐿𝑟�̇�

𝑉𝑥
)−𝑚�̇�𝑉𝑥

𝑚

Then collecting terms

 �̇�𝑦 =
−(𝐶𝑓 + 𝐶𝑟)𝑉𝑦

𝑚𝑉𝑥

(𝐶𝑓 𝐿𝑓−𝐶𝑟 𝐿𝑟−𝑚𝑉𝑥2)�̇�

𝑚𝑉𝑥

𝐶𝑓 𝛿

𝑚
 (1.15)

Now the same for eq. 1.13 yields

 �̈� =
𝐿𝑓𝐶𝑓(𝛿−

𝑉𝑦 + 𝐿𝑓�̇�

𝑉𝑥
) + 𝐿𝑟 𝐶𝑟(

𝑉𝑦 − 𝐿𝑟�̇�

𝑉𝑥
)

𝐼𝑧

Then collecting terms

 �̈� =
(− 𝐿𝑓𝐶𝑓 + 𝐿𝑟 𝐶𝑟)𝑉𝑦

𝐼𝑧𝑉𝑥
−
(𝐿𝑓
2𝐶𝑓+ 𝐿𝑟

2𝐶𝑟)�̇�

𝐼𝑧𝑉𝑥

𝐿𝑓𝐶𝑓𝛿

𝐼𝑧
 (1.16)

13

Now in state space representation

[

𝑉𝑦

�̇�𝑦

�̇�

�̈�]

=

[

0 1 0 0

0
− (𝐶𝑓 + 𝐶𝑟)

𝑚𝑉𝑥
0

−𝑚𝑉𝑥
2− (𝐿𝑓 𝐶𝑓 − 𝐿𝑟𝐶𝑟)

𝑚𝑉𝑥

0 0 0 1

0
− (𝐿𝑓 𝐶𝑓 − 𝐿𝑟𝐶𝑟)

𝐼𝑧𝑉𝑥
0

− (𝐿𝑓
2𝐶𝑓 + 𝐿𝑟

2𝐶𝑟)

𝐼𝑧𝑉𝑥]

[

𝑦
𝑉𝑦
𝜓

�̇�

]

[

0
𝐶𝑓

𝑚

0
𝐿𝑓 𝐶𝑓

𝐼𝑧]

𝛿 (1.17)

With the following states

● 𝑦 ∶ Lateral position w.r.t center of rotation of body frame

● 𝑦 ̇ : Lateral velocity (Vy) w.r.t center of rotation of body frame

● 𝜓 ∶ Yaw angle w.r.t world frame

● 𝜓 ∶̇ Angular velocity w.r.t world frame

This linear model is the classically known planar bicycle car model used very widely in

academia and industry [1]-[7]. This model is used for making predictions on vehicle behavior but

is still missing tracking capabilities in terms of path following. This feature is what is sought out

next.

1.2.3.2.1 With Respect to Side-Slip Angle

This model is useful for verifying parameter estimation which is discussed in more detail

in the system identification section.

 [
�̇�

�̈�
] = [

− (𝐶𝑓 + 𝐶𝑟)

𝑚𝑉𝑥

−𝑚𝑉𝑥
2− (𝐿𝑓 𝐶𝑓 − 𝐿𝑟𝐶𝑟)

𝑚𝑉𝑥
2

− (𝐿𝑓 𝐶𝑓 − 𝐿𝑟𝐶𝑟)

𝐼𝑧

− (𝐿𝑓
2𝐶𝑓 + 𝐿𝑟

2𝐶𝑟)

𝐼𝑧𝑉𝑥

] [
𝛽

�̇�
] [

𝐶𝑓

𝑚𝑉𝑥
𝐿𝑓 𝐶𝑓

𝐼𝑧

] 𝛿 (1.18)

1.2.3.2.2 Path Consideration

For path tracking purposes, eq.1.17 can be transformed such that the state variables are in

terms of position and orientation error of the desired path to be followed [1],[3],[5] as shown in

14

Figure 6. The states will be given the following new nomenclature for clarity between the two

models.

Figure 6: Dynamic model with respect to desired trajectory

With the following states

● 𝑒𝑦 Lateral position error (cross track error) of body frame CG with the desired position in

the world frame

● ė𝑦 Lateral velocity error of body frame CG with the desired velocity in the world frame

● 𝑒𝜓 Yaw angle error of body frame 𝑥-axis with the desired path angle in the world frame

● ė𝜓 Yaw rate error of body frame 𝑥-axis with the desired path yaw rate in the world frame

15

The desired lateral position is user defined but measuring it is discussed in the following

section. The desired yaw rate is defined by the speed of the car and the radius 𝑅 (or curvature 𝜅)

of the trajectory to track as shown

 �̇�𝑑𝑒𝑠 =
𝑉𝑥

𝑅
 = 𝑉𝑥𝜅 (1.19)

 The desired acceleration is formulated as the normal acceleration component

 �̈�𝑑𝑒𝑠 =
𝑉𝑥
2

𝑅
 = 𝑉𝑥�̇�𝑑𝑒𝑠 (1.20)

Now since the desired acceleration and yaw rate have been defined, they must be

correlated with the vehicles current states to obtain their error forms. To do this, relative

dynamics of a translating and rotating body must be used because the vehicle has been defined in

its own reference body frame and the desired trajectory to follow is in the global coordinate

frame. This will breakdown the state vectors into their normal and tangential components. The

velocity and acceleration of the vehicle with respect to the global coordinate frame is then

 𝑉𝑦 = �̇� 𝑉𝑥𝜓

 𝑎𝑦 = �̈� 𝑉𝑥�̇�

Now obtaining the new error state equations

 𝑒𝜓 = 𝜓 − 𝜓𝑑𝑒𝑠 (1.21)

 �̇�𝜓 = 𝜓 ̇ − �̇�𝑑𝑒𝑠 (1.22)

 �̇�𝑦 = �̇� 𝑉𝑥𝑒𝜓 (1.23)

 �̈�𝑦 = �̈� 𝑉𝑥�̇�𝜓 (1.24)

16

Eliminating Vy and ψ̇ from the original state equations by plugging in 1.21-1.24 into 1.15 and

1.16 yields the following

 𝑚�̈�𝑦 = − (
𝐶𝑓 + 𝐶𝑟

𝑉𝑥
) �̇�𝑦 (𝐶𝑓 𝐶𝑟)𝑒𝜓 − (

𝐿𝑓𝐶𝑓 − 𝐿𝑟 𝐶𝑟

𝑉𝑥
) �̇�𝜓 𝐶𝑓𝛿 − (

𝐿𝑓𝐶𝑓 − 𝐿𝑟 𝐶𝑟

𝑉𝑥
) �̇�𝑑𝑒𝑠

 𝐼𝑧�̈�𝜓 = − (
𝐿𝑓𝐶𝑓 − 𝐿𝑟 𝐶𝑟

𝑉𝑥
) �̇�𝑦 (𝐿𝑓𝐶𝑓 – 𝐿𝑟 𝐶𝑟)𝑒𝜓 − (

𝐿𝑓
2𝐶𝑓 + 𝐿𝑟

2𝐶𝑟

𝑉𝑥
) �̇�𝜓 𝐿𝑓𝐶𝑓𝛿

−(
𝐿𝑓
2𝐶𝑓 𝐿𝑟

2𝐶𝑟

𝑉𝑥
) �̇�𝑑𝑒𝑠 − 𝐼𝑧�̈�𝑑𝑒𝑠

Assuming constant speed along the body x-axis (�̈�𝑑𝑒𝑠 = 0), then the new state space equations

become

[

�̇�𝑦
�̈�𝑦
�̇�𝜓
�̈�𝜓]

=

[

0 1 0 0

0
− (𝐶𝑓 𝐶𝑟)

𝑚𝑉𝑥

(𝐶𝑓 𝐶𝑟)

𝑚

− (𝐿𝑓 𝐶𝑓 − 𝐿𝑟𝐶𝑟)

𝑚𝑉𝑥
0 0 0 1

0
− (𝐿𝑓 𝐶𝑓 − 𝐿𝑟𝐶𝑟)

𝐼𝑧𝑉𝑥

(𝐿𝑓 𝐶𝑓 − 𝐿𝑟𝐶𝑟)

𝐼𝑧

− (𝐿𝑓
2𝐶𝑓 𝐿𝑟

2𝐶𝑟)

𝐼𝑧𝑉𝑥]

[

𝑒𝑦
�̇�𝑦
𝑒𝜓
�̇�𝜓

]

[

0
𝐶𝑓

𝑚
0
𝐿𝑓𝐶𝑓

𝐼𝑧]

𝛿

[

0
− (𝐿𝑓 𝐶𝑓 − 𝐿𝑟𝐶𝑟 +𝑚𝑉𝑥

2)

𝑚𝑉𝑥

0
− (𝐿𝑓

2𝐶𝑓 + 𝐿𝑟
2𝐶𝑟)

𝐼𝑧𝑉𝑥]

�̇�𝑑𝑒𝑠 (1.25)

 �̇� = 𝐴𝑥 𝐵𝛿𝛿 𝐵�̇��̇�𝑑𝑒𝑠

Notice that the model has 𝑉𝑥 within the 𝐴 and 𝐵 matrices, this means that if the speed of

the car is to change, the model needs to be updated which implies that this dynamic model is

parameter-varying. Such a form is known as a Linear-Parameter-Varying (LPV) form.

17

1.2.3.2.3 Road Grade Consideration

If on a non-flat track, the force of gravity now effects 1.15 and can be adjusted by the

new form

 �̇�𝑦 =
− (𝐶𝑓 + 𝐶𝑟)𝑉𝑦

𝑚𝑉𝑥

(𝐶𝑓 𝐿𝑓 − 𝐶𝑟 𝐿𝑟 − 𝑚𝑉𝑥

2)�̇�

𝑚𝑉𝑥

𝐶𝑓𝛿

𝑚𝑉𝑥
 𝑚𝑔𝑠𝑖𝑛(𝜙) (1.26)

Where g is the acceleration from gravity and ϕ is the road bank angle as shown in Figure 7. The

yaw dynamics of the vehicle are not affected by road bank angle and remain the same.

Figure 7: Road grade consideration

18

1.2.3.3 Methods for Measuring Cross Track Error

There are several different methods for calculating the cross-track error (CTE⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗) [2]. A

function-based approach Linear Function Interpolation (LFI) (see Error! Reference source not f

ound.) and a vector-based approach Linear Path Interpolation (LPI) are described below but was

found that the LPI was more stable due to possible infinite or zero slopes that could arise in the

LFI method.

The magnitude of the CTE⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ was calculated using linear functions and its sign was

determined by the sign of the function’s derivative. The high-level procedure called Linear

Function Interpolation (LFI) is first defined followed by a formal derivation.

LFI Procedure:

1. Calculate the slope and y-intercepts from the nearest points (𝑝1 𝑎𝑛𝑑 𝑝2) on the desired

trajectory where 𝑝1 is the closest point and 𝑝2 is the next point that respects the

orientation of the path

 𝑚𝑃 =
𝑌𝑝2 − 𝑌𝑝1

𝑋𝑝2 − 𝑋𝑝1
 and 𝑏𝑃 = 𝑌𝑝1 − 𝑋𝑝1𝑚𝑝

2. Create a linear function (P) using results from step 1

 𝑃 = 𝑚𝑃𝑋 𝑏𝑃

3. Create another linear function (𝑄) this is perpendicular to P and intersects the CG of the

vehicle (𝑝𝐶𝐺)

𝑑𝑄

𝑑𝑥
 = 𝑚𝑄 =

−1

𝑚𝑃
 and 𝑏𝑄 = 𝑌𝐶𝐺 − 𝑋𝐶𝐺𝑚𝑄

 𝑄 = 𝑚𝑄𝑋 𝑏𝑄

19

4. Determine the intersection point (𝑝𝐶𝑇𝐸) of the P and 𝑄 functions

 𝑃 = 𝑄

 𝑚𝑃𝑋𝐶𝑇𝐸 𝑏𝑃 = 𝑚𝑄𝑋𝐶𝑇𝐸 𝑏𝑄

 𝑋𝐶𝑇𝐸 =
𝑏𝑃 − 𝑏𝑄

𝑚𝑄 − 𝑚𝑃

 𝑌𝐶𝑇𝐸 = 𝑚𝑄𝑋𝐶𝑇𝐸 𝑏𝑄

5. Calculate the magnitude of the CTE⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ from the absolute distance from 𝑝𝐶𝐺 to 𝑝𝐶𝑇𝐸

 ‖𝐶𝑇𝐸⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ‖ = √(𝑋𝐶𝑇𝐸 − 𝑋𝐶𝐺)2 (𝑌𝐶𝑇𝐸 − 𝑌𝐶𝐺)2

6. Calculate the sign of the CTE⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ by evaluating the sign the derivative of Q

 𝑠𝑖𝑔𝑛(𝐶𝑇𝐸⃗⃗⃗⃗ ⃗⃗ ⃗⃗) = 𝑠𝑖𝑔𝑛 (
𝑑𝑄

𝑑𝑥
)

7. The CTE⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ is then calculated as the product of steps 5 and 6

 𝐶𝑇𝐸⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = 𝑠𝑖𝑔𝑛(𝐶𝑇𝐸)‖𝐶𝑇𝐸⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ‖

20

Figure 8: LFI method for calculating cross track error

 =

 =

 ,

 ,

 1
 1 , 1

 ,

21

LPI Procedure:

1. Create a unit vector (�⃗̂� 𝑝1𝑝2) from the two nearest points (𝑝1 and 𝑝2) on the desired

trajectory where 𝑝1 is the closest point and 𝑝2 is the next point in the path that respects the

orientation of the path

 �⃗̂� 𝑝1𝑝2 =
(𝑋𝑝2 − 𝑋𝑝1,𝑌𝑝2 − 𝑌𝑝1)

‖�⃗� 12‖

2. Create a normalized orthogonal vector (�⃗̂� 𝑝1𝑝2
⊥) from �⃗̂� 𝑝1𝑝2 (apply rotation with 𝜃 = 𝜋/)

 �⃗̂� 𝑝1𝑝2
⊥ = [

𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

] �⃗̂� 𝑝1𝑝2

3. Create a vector (�⃗� 𝑐𝑔𝑝1) from 𝑝𝐶𝐺 to 𝑝1

 �⃗� 𝑐𝑔𝑝1 = (𝑋𝐶𝐺 − 𝑋𝑝1, 𝑌𝐶𝐺 − 𝑌𝑝1)

4. The ‖𝐶𝑇𝐸⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ‖ and its sign (path being to the left or right of vehicle) is the result of the

following dot product

 ‖𝐶𝑇𝐸⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ‖ = �̂�⃗⃗ ⃗𝑝1𝑝2
⊥ ∙ 𝑉⃗⃗ ⃗𝑐𝑔𝑝1

5. The coordinate of the cross-track error point (𝑝𝐶𝑇𝐸) is the result of scaling �⃗̂� 𝑝1𝑝2 by the

following dot product

 𝑝𝐶𝑇𝐸 = (𝑋𝐶𝑇𝐸 , 𝑌𝐶𝑇𝐸) = �̂�
⃗⃗ ⃗
𝑝1𝑝2 (�⃗̂�

𝑝1𝑝2 ∙ 𝑉⃗⃗ ⃗𝑐𝑔𝑝1)

6. The CTE⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ is then calculated as the difference between p
CTE

 and p
CG

 𝐶𝑇𝐸⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = (𝑝𝐶𝑇𝐸 − 𝑝𝐶𝐺) = (𝑋𝐶𝑇𝐸 − 𝑋𝐶𝐺 , 𝑌𝐶𝑇𝐸 − 𝑌𝐶𝐺)

22

Figure 9: LPI method for calculating cross track error

23

1.3 System Identification

1.3.1 Introduction

The focus of this section is on the plant block and its dynamics, owing to the presence of

certain unknown parameters that need to be defined. Upon determining these parameters, a

complete understanding of the plant block and the models employed to describe it can be

attained, paving the way for the consideration of state estimation and control. The only goal in

this section is to establish values for the tire stiffness coefficients through system identification.

Most of the parameters can be closely approximated by measuring the vehicle's mass.

Depending on the scales available, the total mass can be determined by weighing the front and

rear axles or each tire individually, then summing them.

 𝑚𝑓 = 𝑚𝑓𝑟 𝑚𝑓𝑙

𝑚𝑟 = 𝑚𝑟𝑟 𝑚𝑟𝑙

 𝑚 = 𝑚𝑓 𝑚𝑟 (1.27)

The distances from the CG are estimated by the weight distribution and the actual length of the

vehicle which was measured simply with a measuring tape

 𝐿𝑓 = 𝐿 (1 −
𝑚𝑓

𝑚
) (1.28)

 𝐿𝑟 = 𝐿 (1 −
𝑚𝑟

𝑚
) (1.29)

The moment of Inertia is estimated by lumping the mass on the front and rear axles as individual

particles that are connected by a massless rod which is calculated as shown below

 𝐼𝑧 = 𝑚𝑓𝐿𝑓
2 𝑚𝑟𝐿𝑟

2 (1.30)

24

1.3.2 Least Squares

Now the only unknown parameters in the dynamic model given in 1.2.3.2 (shown below

for convenience) are the tire stiffness coefficients. This model is special as it can be reformed in

terms of the unknown parameters which leads to the idea of performing linear regression or

“least squares” to fit a line through the collected data (experiment setup and results are shown in

2.4.2.1) with the tire stiffness coefficients being the parameters to adjust the shape of this fit [5]-

[7], [11].

[
𝑉�̇�

�̈�
] = [

− (𝐶𝑓 + 𝐶𝑟)

𝑚𝑉𝑥

− 𝑚𝑉𝑥
2− (𝐿𝑓 𝐶𝑓 − 𝐿𝑟𝐶𝑟)

𝑚𝑉𝑥

− (𝐿𝑓𝐶𝑓 − 𝐿𝑟𝐶𝑟)

𝐼𝑧𝑉𝑥

− (𝐿𝑓
2𝐶𝑓 + 𝐿𝑟

2𝐶𝑟)

𝐼𝑧𝑉𝑥

] [
𝑉𝑦

�̇�
] [

𝐶𝑓

𝑚
𝐿𝑓 𝐶𝑓

𝐼𝑧

] 𝛿

𝑉�̇� =
− (𝐶𝑓 + 𝐶𝑟)𝑉𝑦

𝑚𝑉𝑥

(−𝑚𝑉𝑥

2− (𝐿𝑓 𝐶𝑓 – 𝐶𝑟𝐿𝑟))�̇�

𝑚𝑉𝑥

𝐶𝑓𝛿

𝑚

�̈� =
− (𝐿𝑓 𝐶𝑓 − 𝐿𝑟 𝐶𝑟)𝑉𝑦

𝐼𝑧𝑉𝑥
 −

(𝐿𝑓
2𝐶𝑓 + 𝐿𝑟

2𝐶𝑟)�̇�

𝐼𝑧𝑉𝑥

𝐿𝑓 𝐶𝑓𝛿

𝐼𝑧

𝑉�̇� = −
 𝑉𝑦

𝑚𝑉𝑥
𝐶𝑓 −

𝑉𝑦

𝑚𝑉𝑥
𝐶𝑟 −

𝐿𝑓 �̇�

𝑚𝑉𝑥
 𝐶𝑓

𝐿𝑟�̇�

𝑚𝑉𝑥
𝐶𝑟 − 𝑉𝑥�̇�

𝛿

𝑚
𝐶𝑓

�̈� = −
𝐿𝑓𝑉𝑦

𝐼𝑧𝑉𝑥
𝐶𝑓

𝐿𝑟𝑉𝑦

𝐼𝑧𝑉𝑥
𝐶𝑟 −

𝐿𝑓
2 �̇�

𝐼𝑧𝑉𝑥
𝐶𝑓 −

𝐿𝑟
2�̇�

𝐼𝑧𝑉𝑥
𝐶𝑟

𝐿𝑓𝛿

𝐼𝑧
𝐶𝑓

Combining coefficients

 𝑉�̇� = (
𝛿𝑉𝑥 − 𝑉𝑦 − 𝐿𝑓�̇�

𝑚𝑉𝑥
)𝐶𝑓 (

𝐿𝑟�̇� − 𝑉𝑦

𝑚𝑉𝑥
)𝐶𝑟 − 𝑉𝑥�̇�

 �̈� = (
𝐿𝑓 𝛿𝑉𝑥 − 𝐿𝑓𝑉𝑦 − 𝐿𝑓

2 �̇�

𝐼𝑧𝑉𝑥
)𝐶𝑓 (

𝐿𝑟𝑉𝑦 − 𝐿𝑟
2�̇�

𝐼𝑧𝑉𝑥
)𝐶𝑟

Vectorizing

[
𝑉�̇� 𝑉𝑥�̇�

�̈�
] =

[

 (

𝛿𝑉𝑥 − 𝑉𝑦 − 𝐿𝑓�̇�

𝑚𝑉𝑥
) (

𝐿𝑟�̇� − 𝑉𝑦

𝑚𝑉𝑥
)

(
𝐿𝑓𝛿𝑉𝑥 − 𝐿𝑓𝑉𝑦 − 𝐿𝑓

2�̇�

𝐼𝑧𝑉𝑥
) (

𝐿𝑟𝑉𝑦 − 𝐿𝑟
2�̇�

𝐼𝑧𝑉𝑥
)
]

[
𝐶𝑓
𝐶𝑟
]

25

Now discretizing using Euler

𝑑𝑥

𝑑𝑡
 = 𝐺(𝑥)

𝐺(𝑥) =
𝑑𝑥

𝑑𝑡
 ≈

∆𝑥

∆𝑡
 =

𝑥(𝑡 ∆𝑡) − 𝑥(𝑡)

∆𝑡

𝑥(𝑡 ∆𝑡) − 𝑥(𝑡) = 𝐺(𝑥)∆𝑡

Then

 [
𝑉𝑦(𝑘 1) – 𝑉𝑦(𝑘) 𝑉𝑥(𝑘)�̇�(𝑘)∆𝑡

�̇�(𝑘 1) – �̇�(𝑘)
]

 = [
(
𝛿(𝑘)𝑉𝑥(𝑘) − 𝑉𝑦(𝑘) − 𝐿𝑓�̇�(𝑘)

𝑚𝑉𝑥(𝑘)
)∆𝑡 (

𝐿𝑟�̇�(𝑘) − 𝑉𝑦(𝑘)

𝑚𝑉𝑥(𝑘)
)∆𝑡

(
𝐿𝑓𝛿(𝑘)𝑉𝑥(𝑘) − 𝐿𝑓𝑉𝑦(𝑘) − 𝐿𝑓

2 �̇�(𝑘)

𝐼𝑧𝑉𝑥(𝑘)
)∆𝑡 (

𝐿𝑟𝑉𝑦(𝑘) − 𝐿𝑟
2�̇�(𝑘)

𝐼𝑧𝑉𝑥(𝑘)
)∆𝑡

] [
𝐶𝑓
𝐶𝑟
]

Where k is a single sample data point. Now for an entire sequence of N data points from an

experiment, let

𝑌 =

[

𝑉𝑦(𝑘 1) − 𝑉𝑦(𝑘) 𝑉𝑥(𝑘)�̇�(𝑘)∆𝑡

�̇�(𝑘 1) − �̇�(𝑘)
⋮
⋮

𝑉𝑦(𝑁) − 𝑉𝑦(𝑁 − 1) 𝑉𝑥(𝑁)�̇�(𝑁)∆𝑡

�̇�(𝑁 1) − �̇�(𝑁)]

and

𝛷 =

[

 (

𝛿(𝑘) − 𝑉𝑦(𝑘) − 𝐿𝑓�̇�(𝑘)

𝑚𝑉𝑥(𝑘)
)∆𝑡 (

𝐿𝑟�̇�(𝑘) − 𝑉𝑦(𝑘)

𝑚𝑉𝑥(𝑘)
)∆𝑡

(
𝐿𝑓𝛿(𝑘) − 𝐿𝑓𝑉𝑦(𝑘) − 𝐿𝑓

2 �̇�(𝑘)

𝐼𝑧𝑉𝑥(𝑘)
) ∆𝑡 (

𝐿𝑟𝑉(𝑘)𝑦 − 𝐿𝑟
2�̇�(𝑘)

𝐼𝑧𝑉𝑥(𝑘)
)∆𝑡

⋮ ⋮
⋮ ⋮

(
𝛿(𝑁) − 𝑉𝑦(𝑁) − 𝐿𝑓�̇�(𝑁)

𝑚𝑉𝑥(𝑁)
)∆𝑡 (

𝐿𝑟�̇�(𝑁) − 𝑉𝑦(𝑁)

𝑚𝑉𝑥(𝑁)
)∆𝑡

(
𝐿𝑓𝛿(𝑁) − 𝐿𝑓𝑉𝑦(𝑁) − 𝐿𝑓

2 �̇�(𝑁)

𝐼𝑧𝑉𝑥(𝑁)
)∆𝑡 (

𝐿𝑟𝑉(𝑘)𝑦 − 𝐿𝑟
2�̇�(𝑁)

𝐼𝑧𝑉𝑥(𝑁)
)∆𝑡]

26

Or in compact form

 𝑌 = [
𝑦𝑇(𝑘)
⋮

𝑦𝑇(𝑁)
] and 𝛷 = [

𝜑(𝑘)
⋮

𝜑(𝑁)
]

Where,

𝑦𝑇(𝑘) = [𝑉𝑦(𝑘 1) − 𝑉𝑦(𝑘) 𝑉𝑥(𝑘)�̇�(𝑘)∆𝑡 �̇�(𝑘 1) − �̇�(𝑘)]

𝜑(𝑘) =

[

 (

𝛿(𝑘) − 𝑉𝑦(𝑘) − 𝐿𝑓�̇�(𝑘)

𝑚𝑉𝑥(𝑘)
)∆𝑡 (

𝐿𝑟�̇�(𝑘) − 𝑉𝑦(𝑘)

𝑚𝑉𝑥(𝑘)
)∆𝑡

(
𝐿𝑓𝛿(𝑘) − 𝐿𝑓𝑉𝑦(𝑘) − 𝐿𝑓

2�̇�(𝑘)

𝐼𝑧𝑉𝑥(𝑘)
)∆𝑡 (

𝐿𝑟𝑉(𝑘)𝑦 − 𝐿𝑟
2�̇�(𝑘)

𝐼𝑧𝑉𝑥(𝑘)
)∆𝑡

]

Note: 𝛷 is a 2Nx2 and 𝑌 is a 2Nx1

Then 𝜃

 𝑌 = 𝛷𝜃

 𝜃 = (𝛷𝑇𝛷)−1𝛷𝑇𝑌

 𝜃 = ([
𝜑(𝑘)
⋮

𝜑(𝑁)
]

𝑇

[
𝜑(𝑘)
⋮

𝜑(𝑁)
])

−1

[
𝜑(𝑘)
⋮

𝜑(𝑁)
]

𝑇

[
𝑦𝑇(𝑘)
⋮

𝑦𝑇(𝑁)
] (1.31)

This is the least-squares solution where:

• 𝛷 is the regressor matrix

• 𝑌 is the output matrix

• 𝜃 is the parameter vector

27

1.4 Optimal State Estimation

1.4.1 Introduction

The next focus of study is the estimator block, which aims to minimize the error between

the plant block (real system) and its models. The approach is to use the model to make

predictions, compare them with sensor measurements, and then multiply the difference by a gain

that minimizes the prediction and measurement. Calculation of the gain is based on sensor and

model noise, which results from assumptions made in the model. The first goal to achieve is to

be able to understand how the Kalman filter can fuse various sensor measurements together with

a vehicle model to provide a more accurate awareness of the vehicle’s orientation and location

with respect to some reference trajectory and the next goal is to understand the procedure for

using the Kalman filter in its various forms.

For effective vehicle control, many system properties that vary with time and speed must

be known but can be challenging to measure or calibrate. Kalman filters provide optimal

estimates of the vehicle's properties and states. The estimator block is depicted in Figure 10. The

Kalman filter is not derived here but can be solved through duality theory [9] which is described

later in 1.5 This insight facilitates the understanding of both control and estimation concepts,

indicating that the two processes are the inverses of one another. Tuning the estimator will be

discussed in the final section and the concept of observability is explored first.

28

Figure 10: Estimator block detailed view

1.4.2 Observability

Observability is a property of a system that can determine the initial state from future

inputs and outputs. This means that if some of the state variables in the system cannot be

measured directly with available sensors, but the system is observable, then it is possible to

estimate what the unmeasurable states would be provided the available input and output data of

the system. The observability matrix and Gramian are tools for determining if a system is

observable and evaluating the cost for estimating the states of the system [13]-[14]. Next is

defining the observability Gramian, which will be used in the filtering process discussed in the

next section.

For Continuous-Time System

 𝑊 = ∫ (𝛷(𝑡, 𝜏)𝑇𝐶𝑇𝐶𝛷(𝑡, 𝜏))𝑑𝜏
𝑡

0
 (1.32)

Discrete-Time System

𝑊 =∑ 𝛷(𝑡, 𝜏)𝑇𝐶𝑇𝐶𝛷(𝑡, 𝜏)
𝜏=𝑡

𝜏=0

 = 1 1 1 1

29

Observability criteria can be evaluated with either the observability matrix (𝑂(𝐴, 𝐶)) or

the PBH (Popov–Belevitch–Hautus) rank tests and is handled the same for continuous and

discrete time systems.

 𝑂(𝐴, 𝐵) =

[

𝐶
𝐶𝐴
𝐶𝐴2

⋮
𝐶𝐴𝑛−1]

 = [𝐶𝑇 𝐴𝑇𝐶𝑇 𝐴𝑇
2
𝐶𝑇 ⋯ 𝐴𝑇

𝑛−1
𝐶𝑇]

𝑇

 𝑟𝑎𝑛𝑘[𝑂(𝐴, 𝐶)] = 𝑟𝑎𝑛𝑘 [
𝐴 − 𝜆𝐼
𝐶

] = [(𝐴 − 𝜆𝐼)𝑇 𝐶𝑇]𝑇 = 𝑛

With the following definitions

• 𝐴 is the state matrix of the system

• 𝐶 is the output matrix of the system

• 𝜆 are the eigen values of 𝐴

• 𝑛 is the size of the square matrix (number of rows=numbers of columns) 𝐴

The matrix 𝐶 classifies which of the states 𝑥 that can be measured. This can vary depending on

what sensors are available. For example, if only 𝑒𝑦 can be measured, then 𝐶 would have the

following form

𝐶1 = [1 0 0 0]

Another example is if both 𝑒𝑦 and 𝑒𝜓 can be measured, then 𝐶 would have the following form

𝐶2 = [
1 0 0 0
0 0 1 0

]

If the rank of 𝑂(𝐴, 𝐶) = 𝑛 then the system is said to be observable. Using eq.(1.17) for 𝐴

(giving 𝑛=4) and 𝐶2 from the example above, along with eq.(1.27)-(1.30) and the following

values for the remaining analysis in this thesis

 𝑚𝑓 = 3 0𝑘𝑔 𝑎𝑛𝑑 𝑚𝑟 = 380𝑘𝑔

30

 𝐿 = .9718𝑚

 𝑉𝑥 = [1: 100]
𝑁

𝑟𝑎𝑑

 𝐶𝑓 = 59800
𝑁

𝑟𝑎𝑑
𝑎𝑛𝑑 𝐶𝑟 = 63 00

𝑁

𝑟𝑎𝑑

Yielded a rank 4 system which is equal to 𝑛 for the entire range of 𝑉𝑥, meaning that the system is

observable. This means that even using 𝐶2 as the measurement matrix, the entire state vector can

be reconstructed, providing estimates for the entire state vector 𝑥. This now introduces where the

Kalman filter comes in to calculate the optimal state estimate.

1.4.3 State Estimators

The Kalman filter is a mathematical tool used to estimate the state of a system based on

noisy observations. It is designed to work with linear systems that have Gaussian noise, and it

provides the optimal estimate of the system state under these assumptions. The linearized

Kalman filter is an extension of the Kalman filter that can be used for nonlinear systems by

linearizing the system around the current state estimate. The Extended Kalman filter is a further

extension that can be used for nonlinear systems by using the systems non-linear models during

the update processes. These filters are widely used in engineering and science for a variety of

applications, such as control and navigation. The proceeding sections highlight how these filters

are defined mathematically and how they differ from one another.

31

1.4.3.1 Kalman Filter

This is a linear time varying filter designed for linear systems. The procedure for the

Kalman filter is sequenced by a measurement update from available sensors and then a time

update to the model of the system [9-12]. The subscripts 𝑘 represent the quantity for the

discretized system at that sample time. The procedure is shown below.

Signal Model

 𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 𝐵𝑘𝑢𝑘 𝑤𝑘

𝑦𝑘 = 𝐶𝑘𝑥𝑘 𝑣𝑘

Time Update

 �̂�𝑘+1|𝑘 = 𝐴𝑘�̂�𝑘|𝑘 𝐵𝑘𝑢𝑘

𝑃𝑘+1|𝑘 = 𝐴𝑘𝑃𝑘|𝑘𝐴𝑘
𝑇 𝑄𝑘

Measurement Update

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐶𝑘
𝑇(𝐶𝑘𝑃𝑘|𝑘−1𝐶𝑘

𝑇 𝑅𝑘)
−1

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 𝐾𝑘(𝑦𝑘
𝑚 − 𝐶𝑘�̂�𝑘|𝑘−1)

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝑃𝑘|𝑘−1𝐶𝑘
𝑇(𝐶𝑘𝑃𝑘|𝑘−1𝐶𝑘

𝑇 𝑅𝑘)
−1
 𝐶𝑘𝑃𝑘|𝑘−1

Or in a more compact form

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐶𝑘
𝑇(𝐶𝑘𝑃𝑘|𝑘−1𝐶𝑘

𝑇 𝑅𝑘)
−1

�̂�𝑘|𝑘 = (𝐼𝑛 − 𝐾𝑘𝐶𝑘)(𝐴𝑘−1�̂�𝑘−1|𝑘−1 𝐵𝑘−1𝑢𝑘−1) 𝐾𝑘𝑦𝑘
𝑚

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐶𝑘)𝑃𝑘|𝑘−1

32

With the following definitions

● 𝑘 is the step index

● 𝐴𝑘 system dynamics matrix

● 𝐵𝑘 input matrix

● 𝐶𝑘 observation matrix of which states are actively being measured

● 𝑢𝑘 is the input (ie. δk)

● 𝑦𝑘
𝑚 is the unfiltered measurement

● �̂�𝑘|𝑘 filtered state estimate

● �̂�𝑘+1|𝑘 predicted state estimate

● 𝑤𝑘 process noise

● 𝑣𝑘 measurement noise

● 𝑄𝑘 process noise covariance matrix

● 𝑅𝑘 measurement noise covariance matrix

● 𝑃𝑘|𝑘 filtered covariance matrix

● 𝑃𝑘+1|𝑘 predicted covariance matrix

● 𝐾𝑘 Kalman gain

33

An example iteration is shown below starting with the initial guess/measurement

�̂�0|−1 = 𝐴−1�̂�−1|−1 𝐵−1𝑢−1

at step 𝑘 = 0

 𝐾0 = 𝑃0|−1𝐶0
𝑇(𝐶0𝑃0|−1𝐶0

𝑇 𝑅0)
−1

�̂�0|0 = �̂�0|−1 𝐾0(𝑦0 − 𝐶0�̂�0|−1)

𝑃0|0 = (𝐼 − 𝐾0𝐶0)𝑃0|−1

at step 𝑘 = 1

𝐾1 = 𝑃1|0𝐶1
𝑇(𝐶1𝑃1|0𝐶1

𝑇 𝑅1)
−1

�̂�1|1 = (𝐼𝑛 − 𝐾1𝐶1)(𝐴0�̂�0|0 𝐵0𝑢0) 𝐾1𝑦1

𝑃1|1 = (𝐼 − 𝐾1𝐶1)𝑃1|0

at step 𝑘 =

𝐾2 = 𝑃2|1𝐶2
𝑇(𝐶2𝑃2|1𝐶2

𝑇 𝑅2)
−1

�̂�2|2 = (𝐼𝑛 − 𝐾2𝐶2)(𝐴1�̂�1|1 𝐵1𝑢1) 𝐾2𝑦2

𝑃2|2 = (𝐼 − 𝐾2𝐶2)𝑃2|1

at step 𝑘 = 3

𝐾3 = 𝑃3|2𝐶3
𝑇(𝐶3𝑃3|2𝐶3

𝑇 𝑅3)
−1

�̂�3|3 = 𝐴2�̂�2|2 𝐵2𝑢2 𝐾3 (𝑦3 − 𝐶2(𝐴2�̂�2|2 𝐵2𝑢2))

𝑃3|3 = (𝐼 − 𝐾3𝐶3)𝑃3|2

⋮

The Kalman filter is a recursion, meaning that the state estimate and covariance at step 𝑘 need to

be stored and used on step 𝑘 1 to properly converge to the optimal solution.

34

1.4.3.2 Linearized Kalman Filter

This is a linearly time varying filter designed for nonlinear systems. The procedure for

the Linearized Kalman Filter (LKF) is very similar to the standard Kalman filter but allows for

state estimation of nonlinear system dynamics and measurements which requires some additional

care in the setup procedure. The difference is replacing the nonlinear equations simply with their

linearization around a nominal point but is solved identically to the linear Kalman filter. The

procedure is shown below.

Signal Model

 𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘, 𝑢𝑘, 𝑤𝑘)

 𝑦𝑘 = ℎ𝑘(𝑥𝑘, 𝑣𝑘)

Linearization

 𝐹𝑘 =
𝜕𝑓𝑘

𝜕𝑥
|𝑥=�̄� 𝐺𝑘 =

𝜕𝑓𝑘

𝜕𝑢
|𝑢=�̄� 𝐿𝑘 =

𝜕𝑓𝑘

𝜕𝑤
|𝑤=�̄�

 𝐻𝑘 =
𝜕ℎ𝑘

𝜕𝑥
|𝑥=�̄� 𝑀𝑘 =

𝜕ℎ𝑘

𝜕𝑣
|𝑣=�̄�

Time Update

 �̂�𝑘+1|𝑘 = 𝐹𝑘(𝑥𝑘 − �̄�) 𝐺𝑘(𝑢𝑘 − �̄�)

 𝑃𝑘+1|𝑘 = 𝐹𝑘𝑃𝑘|𝑘𝐹𝑘
𝑇 𝐿𝑘𝑄𝑘𝐿𝑘

𝑇

Measurement Update

 𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 𝑀𝑘𝑅𝑘𝑀𝑘
𝑇)
−1

 �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 𝐾𝑘 (𝑦𝑘
𝑚 − ℎ𝑘(�̂�𝑘|𝑘−1, 𝑣𝑘 = 0))

 𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1

With the following new definitions

● 𝐹𝑘 is the linearization of 𝑓𝑘 with respect to 𝑥𝑘

35

● 𝐺𝑘 is the linearization of 𝑓𝑘 with respect to 𝑢𝑘

● 𝐿𝑘 is the linearization of 𝑓𝑘 with respect to 𝑤𝑘

● 𝐻𝑘 is the linearization of ℎ𝑘 with respect to 𝑥𝑘

● 𝑀𝑘 is the linearization of ℎ𝑘 with respect to 𝑣𝑘

1.4.3.3 Extended Kalman Filter

The procedure for the Extended Kalman Filter (EKF) is very similar to the KF but differs

by using the nonlinear system dynamics and measurements in both time and measurement

updates for the state calculation and the calculations for the Kalman gain and covariance matrix

use the Jacobian of the non-linear state and output equations. The procedure is shown below

Signal Model

 𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘, 𝑢𝑘, 𝑤𝑘)

 𝑦𝑘 = ℎ𝑘(𝑥𝑘, 𝑣𝑘)

Jacobian of dynamics, measurement, and noise models

 𝐹𝑘 =
𝜕𝑓𝑘

𝜕𝑥
|𝑥 = �̂�𝑘|𝑘 𝐿𝑘 =

𝜕𝑓𝑘

𝜕𝑤
|𝑥 = �̂�𝑘|𝑘

 𝐻𝑘 =
𝜕ℎ𝑘

𝜕𝑥
|𝑥 = �̂�𝑘|𝑘−1 𝑀𝑘 =

𝜕ℎ𝑘

𝜕𝑣
|𝑥 = �̂�𝑘|𝑘−1

Time Update

 �̂�𝑘+1|𝑘 = 𝑓𝑘(𝑥𝑘, 𝑢𝑘 , 𝑤𝑘 = 0)

𝑃𝑘+1|𝑘 = 𝐹𝑘𝑃𝑘|𝑘𝐹𝑘
𝑇 𝐿𝑘𝑄𝑘𝐿𝑘

𝑇

Measurement Update

 𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 𝑀𝑘𝑅𝑘𝑀𝑘
𝑇)
−1

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 𝐾𝑘 (𝑦𝑘
𝑚 − ℎ𝑘(�̂�𝑘|𝑘−1, 𝑣𝑘 = 0))

36

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1

With the following new definitions

● 𝐹𝑘 is the Jacobian of 𝑓𝑘 with respect to 𝑥𝑘

● 𝐿𝑘 is the Jacobian of 𝑓𝑘 with respect to 𝑤𝑘

● 𝐻𝑘 is the Jacobian of ℎ𝑘 with respect to 𝑥𝑘

● 𝑀𝑘 is the Jacobian of ℎ𝑘 with respect to 𝑣𝑘

1.4.4 Tuning The Estimator

Tuning a Kalman filter involves adjusting the values of the parameters in the filter to

achieve the desired performance in estimating the system states. The two main parameters that

need to be tuned are the process noise 𝑄𝑘 and measurement noise 𝑅𝑘 covariance matrices. The

process noise covariance represents the level of uncertainty in the dynamic model of the system,

while the measurement noise covariance represents the level of uncertainty in the measurements

obtained from the sensors. One common approach to tuning the Kalman filter is to use trial and

error. This involves running simulations of the system with different values of the noise

covariances and observing the resulting estimation performance. The noise covariances can be

adjusted until the desired level of estimation accuracy is achieved.

It is important to note that tuning a Kalman filter is not usually a one-time task, as the

optimal noise covariances may change as the system operates in different conditions. Therefore,

periodic re-tuning of the Kalman filter may be necessary to maintain optimal estimation

performance.

37

Figure 11: Trial 1 of tuning

38

Figure 12: Trial 2 of tuning

39

Figure 13: Trial 3 of tuning

1.5 Optimal Control

1.5.1 Introduction

The final element of the block diagram is the control block seen in Figure 14, which aims

to apply an optimal input that minimizes the cost function, comprising of state performance and

control effort criteria. The concept is to use the optimal state estimate that is being calculated

from the estimator block as the feedback component and then include the important feed-forward

term that depends on a reference signal (𝑟𝑘) to reduce the steady-state errors when executing a

turn at a specific reference curvature [1].

40

The first goal to achieve is to be able to follow a straight path as close as possible, which

will be resolved by understanding the feedback component of the control design (how to

calculate the gain matrix 𝐾). The final goal is to be able to follow arbitrary paths that contain

curvature (with the assumption that the reference path has considered the vehicles dynamics

during its construction i.e. the vehicles minimum turning radius at various speeds) by adding

additional compensation with feed-forward (how to calculate the added steering term 𝛿𝑓𝑓).

The final goal is to be able to follow arbitrary paths that contain curvature (with the

assumption that the reference path has considered the vehicles dynamics during its construction

i.e. the vehicles minimum turning radius at various speeds.

As mentioned in the optimal estimation section, duality theory is used for deriving the

optimal feedback controller and is solved identically as in the estimation problem but in its

control form. Tuning the controller will be discussed in the final section and the concept of

controllability is explored first as it begins the process of achieving straight path tracking.

Figure 14: Control block detailed view

 =

41

1.5.2 Controllability

Controllability is a property of a system that can start at any initial state and be able to

return to the origin in a finite number of steps. If the states of the system are in terms of the error

dynamics from some specified reference, this means that given some initial error condition on

the system, it can drive the states back to zero error. The controllability matrix and Gramian are

tools for determining if a system is controllable and evaluating the cost of the state performance

of the system [13]-[14]. Now defining the controllability Gramian, which will be used in the

control process discussed in the next section.

Continuous-Time System

 𝑋 = ∫ (𝛷(𝑡, 𝜏)𝐵𝐵𝑇𝛷(𝑡, 𝜏)𝑇)𝑑𝜏
𝑡

0
 (1.33)

Discrete-Time System

 𝑋 = ∑ 𝛷(𝑡, 𝜏)𝐵𝐵𝑇𝛷(𝑡, 𝜏)𝑇𝜏=𝑡
𝜏=0

Controllability criteria can be evaluated with either the controllability matrix (𝐶(𝐴, 𝐵))

or the PBH (Popov–Belevitch–Hautus) rank tests and is handled the same for continuous and

discrete time systems.

 𝐶(𝐴, 𝐵) = [𝐵 𝐴𝐵 𝐴2𝐵 ⋅⋅⋅ 𝐴𝑛−1𝐵]

 𝑟𝑎𝑛𝑘[𝐶(𝐴, 𝐵)] = 𝑟𝑎𝑛𝑘[𝐴 − 𝜆𝐼 𝐵] = 𝑛

With the following definitions

• 𝐴 is the state matrix of the system

• 𝐵 is the input matrix of the system

• 𝜆 are the eigen values of 𝐴

• 𝑛 is the size of the square matrix (number of rows=numbers of columns) 𝐴

42

If the rank of C(A,B) = n then the system is said to be controllable. Using eq.(1.17) for 𝐴 (giving

𝑛=4) and 𝐵, along with eq.(1.27)-(1.30) and the following values

𝑚𝑓 = 3 0𝑘𝑔 𝑚𝑟 = 380𝑘𝑔 𝐿 = .9718𝑚 𝑉𝑥 = [1: 100]𝑚/𝑠

Yielded a rank 4 system which is equal to 𝑛 for the entire range of 𝑉𝑥, meaning that the system is

controllable. This means given the proper input to the system, the state will converge to the

origin. This now introduces the next discussion on how to calculate the optimal input.

1.5.3 Controllers

In control theory, there are several types of controllers used for controlling a system. The

Linear Quadratic Regulator (LQR) controller is a type of optimal controller used for controlling

linear systems. The Linear Quadratic Gaussian (LQG) controller is an optimal controller that

considers measurement noise and is used for controlling systems with noisy sensors. Both

controllers are derived in the following sections with the intent of to achieve the first goal. The

system in 1.2.3.2.2 has 2 poles sitting on the edge of the unit disk on the Z-plane (discrete time)

or 2 poles sitting at the origin of the S-plane (continuous time) which implies the system is

unstable and will be addressed using the controllers in the following sections to push the poles

inwards to the origin on the Z-plane or further into the left hand plane in the S-plane.

1.5.3.1 Linear Quadratic Regulator (Full State Feedback)

This type of controller would only be implemented if the consideration of both the sensor

noise and the errors in the model used to define the plant was negligible or in a noise-free

simulation. If either of these components are not negligible then the LQG controller discussed in

0 should be implemented. The infinite-horizon, continuous-time, LQR variant is derived below.

The state feedback controller 𝑢

43

 𝑢(𝑡) = 𝐾𝑥(𝑡)

Which minimizes the cost function J

 𝐽 = ∫ (𝑥(𝑡)𝑇𝑄𝑥(𝑡) 𝑢(𝑡)𝑇𝑅𝑢(𝑡))
∞

0
𝑑𝑡

With the following definitions

• 𝑄 is the semi-definite (𝑄 ⪰ 0) state performance weight matrix

• 𝑅 is the positive-definite (𝑅 ≻ 0) control effort weight matrix

• 𝐾 is the optimal feedback gain matrix

• 𝑥(𝑡) is the state of the system at time 𝑡

• 𝑢(𝑡) is the input for the system at time 𝑡 (𝑖𝑒. 𝛿(𝑡))

The closed loop system and solution

 �̇�(𝑡) = (𝐴 𝐵𝐾)𝑥(𝑡), 𝑥(0) = 𝑥0

𝑥(𝑡) = 𝛷(𝑡, 𝜏)𝑥0 = 𝑒
(𝐴 + 𝐵𝐾)𝑡𝑥0

The closed loop cost is then

 𝐽 = ∫ (𝑥(𝑡)𝑇𝑄𝑥(𝑡) (𝐾𝑥(𝑡))
𝑇
𝑅(𝐾𝑥(𝑡)))

∞

0
𝑑𝑡

𝐽 = ∫ (𝑥(𝑡)𝑇(𝑄 𝐾𝑇𝑅𝐾)𝑥(𝑡))
∞

0

𝐽 = 𝑥0
𝑇 (∫ (𝑒(𝐴 + 𝐵𝐾)

𝑇𝑡(𝑄 𝐾𝑇𝑅𝐾)𝑒(𝐴 + 𝐵𝐾)𝑡)
∞

0

)𝑥0

Now that the cost function is in terms of the controllability Gramian eq. (1.33), 𝐽 can then be

computed as

 𝐽 = 𝑥0
𝑇𝑋 𝑥0

Where X is the solution to the Lyapunov equation

 (𝐴 𝐵𝐾)𝑇𝑋 𝑋(𝐴 𝐵𝐾) 𝑄 𝐾𝑇𝑅𝐾 = 0

44

The goal now is evaluating the state feedback gain matrix 𝐾 which is found by completing the

squares

 𝐴𝑇𝑋 𝑋𝐴 − 𝑋𝐵𝑅−1𝐵𝑇𝑋 𝑄 (𝑋𝐵𝑅−1 𝐾𝑇)𝑅(𝑅−1𝐵𝑇𝑋 𝐾) = 0

Which identifies the solution for 𝐾

 (𝑋𝐵𝑅−1 𝐾𝑇)𝑅(𝑅−1𝐵𝑇𝑋 𝐾) ⪰ 0

 𝐾 = −𝑅−1𝐵𝑇𝑋 (1.34)

With this solution for 𝐾, it changes the Lyapunov equation to the Algebraic Riccati Equation

(ARE) in 𝑋

 𝐴𝑇𝑋 𝑋𝐴 − 𝑋𝐵𝑅−1𝐵𝑇𝑋 𝑄 = 0 (1.35)

To proceed, 𝑋 can be solved via the Hamiltonian matrix (𝐻) which requires an Eigen or

Schur decomposition. An Eigen decomposition is not always possible and is generally not used

in practice while the Schur decomposition is guaranteed to always exist [13] and is the method

explained below.

Making a substitution 𝑍 = 𝐵𝑅−1𝐵𝑇 in eq.(1.35) and then factoring into the following form

 𝐴𝑇𝑋 𝑋𝐴 − 𝑋𝑍𝑋 𝑄 = 0

𝑋𝐴 𝑄 − 𝑋𝑍𝑋 𝐴𝑇𝑋 = 0

(−𝑋𝐴 − 𝑄)(−𝐼) (−𝑋𝑍 − 𝐴𝑇)(−𝑋) = 0

[(−𝑋𝐴 − 𝑄) (−𝑋𝑍 − 𝐴𝑇)] [
−𝐼

𝑋
] = 0

[[−𝑋 𝐼] [
𝐴
−𝑄
] [−𝑋 𝐼] [

−𝑍
−𝐴𝑇

]] [
−𝐼

𝑋
] = 0

[-X I] [
A

-Q
-Z

-A
T] [

-I

X
]= 0

45

then identifying

 𝐻 = [
𝐴
−𝑄

−𝑍
−𝐴𝑇

]

now factoring 𝐻 into the Schur decomposition form

 𝐻 = 𝑈𝑇𝑈𝑇

where 𝑈 is given by

𝑈 = [
𝑈11
𝑈21

𝑈12
∗

𝑈22
∗]

With the following definitions

● 𝑈 : Is a full unitary matrix of Schur vectors

• 𝑈𝑖𝑗 corresponds to the stable left-hand plane (LHP) eigenvalues in 𝑇

• 𝑈𝑖𝑗
∗ corresponds to the unstable right-hand plane (RHP) eigenvalues in 𝑇

● 𝑇 : Is an upper triangular matrix with the Eigenvalues of 𝐻 along the main diagonal

● 𝐻 : Is Hamiltonian which abides the symmetric root property (every pole in the LHP has

a corresponding pole in the RHP)

This decomposition must be done carefully such that T is ordered from (left-most) LHP

Eigenvalues to (right-most) RHP Eigenvalues. This identifies the stable solutions that span the

first n columns of U, which U is related to the solution of eq.(1.35) by

 𝑋 = 𝑈21𝑈11
 −1 (1.36)

Where the matrix block indices are given by

 𝑈11 = 𝑈1:𝑛,1:𝑛

 𝑈21 = 𝑈𝑛+1:2𝑛,1:𝑛

46

1.5.3.2 Linear Quadratic Gaussian Control (Optimal State Estimate

Feedback)

The linear quadratic gaussian (LQG) controller at its core is simply the LQR controller

using the Kalman filtered state estimate for the state feedback controller. Through the dynamic

programming principle, the state covariance matrix can be numerically calculated through an

iterative process. This is because the value function is a contraction which implies that the

solution will converge to a steady state value in a finite number of steps for the finite horizon

problem. It is to be noted that the solution is not guaranteed to converge in the infinite horizon

problem unless a discounted cost is implemented. This section shows the principle of dynamic

programming and the dynamic programming equation [13], [15]. This method results in the

same solution for the covariance. The finite-horizon, discrete-time, LQG is used as the

stabilizing feedback controller and is defined as follows.

Consider the system of the form

 𝑓(𝑥, 𝑢, 𝑤) = �̂�𝑘+1 = 𝐴�̂�𝑘 𝐵𝑢𝑘 𝑤𝑘

 With the assumption 𝐸[𝑤𝑘] = 0 and 𝐸[𝑤𝑘
𝑇𝑤𝑘] = 𝑊

The state feedback controller

 𝑢𝑘 = 𝐾�̂�𝑘 Which minimizes the cost function

 𝐽 =
1

2
𝐸{∑ (𝑥𝑘

𝑇𝑄𝑥𝑘 𝑢𝑘
𝑇𝑅𝑢𝑘) 𝑥𝑇

𝑇𝐹𝑥𝑇
𝑇−1
𝑘=0 }

With the following definitions

• 𝑄 ⪰ 0 is the state performance weight matrix

• 𝐹 ⪰ 0 is the terminal cost weight matrix

• 𝑅 ≻ 0 is the control effort weight matrix

47

• 𝑤𝑘 is the mean noise at step 𝑘

• 𝐸[∙] is the expectation operator

• �̂�𝑘 is the optimal state estimate at step 𝑘 from the Kalman filter

• 𝑢𝑘 is the input for the system at step 𝑘 (𝑖𝑒. 𝛿𝑘)

Then defining the value function to be

 𝑉(𝑘, 𝑥) = 𝑚𝑖𝑛
𝑢
𝐽(𝑘, 𝑥, 𝑢)

𝑉(𝑘, 𝑥) = 𝑚𝑖𝑛
𝑢
{𝑙(𝑥, 𝑢) 𝐸[𝑉(𝑘 1, 𝑓(𝑥, 𝑢, 𝑤)]}

Where the running cost is now defined as

 𝑙(𝑥, 𝑢) =
1

2
(𝑥𝑘
𝑇𝑄𝑥𝑘 𝑢𝑘

𝑇𝑅𝑢𝑘)

Now guessing a solution for the value function to be of the form

 𝑉(𝑘, 𝑥𝑘) =
1

2
𝑥𝑘
𝑇𝑋𝑘𝑥𝑘 𝛾𝑘

 𝑉(𝑘 1, 𝑥𝑘+1) =
1

2
𝑥𝑘+1
𝑇 𝑋𝑘+1𝑥𝑘+1 𝛾𝑘+1

 𝑉(𝑘 1, 𝑥𝑘+1) =
1

2
(𝐴𝑥𝑘 𝐵𝑢𝑘 𝑤𝑘)

𝑇𝑋𝑘+1(𝐴𝑥𝑘 𝐵𝑢𝑘 𝑤𝑘) 𝛾𝑘+1

Then

 𝑉(𝑘, 𝑥𝑘) = 𝑚𝑖𝑛
𝑢
{
1

2
(𝑥𝑘
𝑇𝑄𝑥𝑘 𝑢𝑘

𝑇𝑅𝑢𝑘) 𝐸 [
1

2
(𝐴𝑥𝑘 𝐵𝑢𝑘 𝑤𝑘)

𝑇𝑋𝑘+1(𝐴𝑥𝑘 𝐵𝑢𝑘 𝑤𝑘)

𝛾𝑘+1]}

1

2
𝑥𝑘
𝑇𝑋𝑘 𝑥𝑘 𝛾𝑘 = 𝑚𝑖𝑛

𝑢
{
1

2
(𝑥𝑘
𝑇𝑄𝑥𝑘 𝑢𝑘

𝑇𝑅𝑢𝑘) 𝐸 [
1

2
(𝑥𝑘
𝑇𝐴𝑇 𝑢𝑘

𝑇𝐵𝑇 𝑤𝑘
𝑇)𝑋𝑘+1(𝐴𝑥𝑘 𝐵𝑢𝑘

𝑤𝑘) 𝛾𝑘+1]}

Knowing that 𝐸[𝑤𝑘] = 0

48

1

2
𝑥𝑘
𝑇𝑋𝑘 𝑥𝑘 𝛾𝑘 = 𝑚𝑖𝑛

𝑢
{
1

2
(𝑥𝑘
𝑇𝑄𝑥𝑘 𝑢𝑘

𝑇𝑅𝑢𝑘)
1

2
(𝑥𝑘
𝑇𝐴𝑇 𝑢𝑘

𝑇𝐵𝑇)𝑋𝑘+1(𝐴𝑥𝑘 𝐵𝑢𝑘)

𝐸 [
1

2
𝑤𝑘
𝑇𝑋𝑘+1𝑤𝑘 𝛾𝑘+1]}

Which then first identifies 𝛾𝑘

 𝛾𝑘 = 𝐸 [
1

2
𝑤𝑘
𝑇𝑋𝑘+1𝑤𝑘 𝛾𝑘+1]

1

2
𝑥𝑘
𝑇𝑋𝑘 𝑥𝑘 𝛾𝑘 = 𝑚𝑖𝑛

𝑢
{
1

2
(𝑥𝑘
𝑇𝑄𝑥𝑘 𝑢𝑘

𝑇𝑅𝑢𝑘)
1

2
(𝑥𝑘
𝑇𝐴𝑇𝑋𝑘+1𝐴𝑥𝑘 𝑥𝑘

𝑇𝐴𝑇𝑋𝑘+1𝐵𝑢𝑘

 𝑢𝑘
𝑇𝐵𝑇𝑋𝑘+1𝐴𝑥𝑘 𝑢𝑘

𝑇𝐵𝑇𝑋𝑘+1𝐵𝑢𝑘) 𝛾𝑘}

1

2
𝑥𝑘
𝑇𝑋𝑘 𝑥𝑘 =

1

2
(𝑥𝑘
𝑇(𝑄 𝐴𝑇𝑋𝑘+1𝐴)𝑥𝑘) 𝑚𝑖𝑛

𝑢
{
1

2
(𝑢𝑘
𝑇(𝑅 𝐵𝑇𝑋𝑘+1𝐵)𝑢𝑘)

1

2
(𝑥𝑘
𝑇𝐴𝑇𝑋𝑘+1𝐵𝑢𝑘

 𝑢𝑘
𝑇𝐵𝑇𝑋𝑘+1𝐴𝑥𝑘)}

1

2
𝑥𝑘
𝑇𝑋𝑘 𝑥𝑘 =

1

2
(𝑥𝑘
𝑇(𝑄 𝐴𝑇𝑋𝑘+1𝐴)𝑥𝑘) 𝑚𝑖𝑛

𝑢
{
1

2
(𝑢𝑘
𝑇(𝑅 𝐵𝑇𝑋𝑘+1𝐵)𝑢𝑘) 𝑢𝑘

𝑇𝐵𝑇𝑋𝑘+1𝐴𝑥𝑘}

Then letting

 �̃� = 𝑅 𝐵𝑇𝑋𝑘+1𝐵

𝐺 =
1

(𝑢𝑘
𝑇�̃�𝑢𝑘) 𝑢𝑘

𝑇𝐵𝑇𝑋𝑘+1𝐴𝑥𝑘

Seeking the minimum 𝑢𝑘, so

𝜕𝐺

𝜕𝑢
= 0 =

𝜕

𝜕𝑢
(
1

2
(𝑢𝑘
𝑇�̃�𝑢𝑘) 𝑢𝑘

𝑇𝐵𝑇𝑋𝑘+1𝐴𝑥𝑘)

Using vector derivative identities

𝜕

𝜕𝑦
(𝑦𝑇𝑀𝑦) = 𝑀𝑦 and

𝜕

𝜕𝑦
(𝑦𝑇𝑀𝑥) = 𝑀𝑥

then

𝜕𝐺

𝜕𝑢
= 0 = �̃�𝑢𝑘 𝐵

𝑇𝑋𝑘+1𝐴𝑥𝑘

Gives optimal control and gain

 �̂�𝑘 = −�̃�
−1𝐵𝑇𝑋𝑘+1𝐴𝑥𝑘

49

 𝐾 = −�̃�−1𝐵𝑇𝑋𝑘+1𝐴 𝑎𝑛𝑑 𝐾
𝑇 = −𝐴𝑇𝑋𝑘+1𝐵�̃�

−1 (1.37)

 �̂�𝑘 = 𝐾𝑥𝑘 (1.38)

Inserting �̂�𝑘

1

2
𝑥𝑘
𝑇𝑋𝑘 𝑥𝑘 =

1

2
(𝑥𝑘
𝑇(𝑄 𝐴𝑇𝑋𝑘+1𝐴)𝑥𝑘)

1

2
(𝑥𝑘
𝑇𝐾𝑇�̃�𝐾𝑥𝑘) 𝑥𝑘

𝑇𝐾𝑇𝐵𝑇𝑋𝑘+1𝐴𝑥𝑘

1

2
𝑥𝑘
𝑇𝑋𝑘 𝑥𝑘 =

1

2
(𝑥𝑘
𝑇(𝑄 𝐴𝑇𝑋𝑘+1𝐴 𝐾

𝑇(𝑅 𝐵𝑇𝑋𝑘+1𝐵)𝐾 𝐾
𝑇𝐵𝑇𝑋𝑘+1𝐴)𝑥𝑘)

Then Identifies the state covariance

 𝑋𝑘 = 𝑄 𝐴
𝑇𝑋𝑘+1𝐴 𝐾

𝑇(𝑅 𝐵𝑇𝑋𝑘+1𝐵)𝐾 𝐾
𝑇𝐵𝑇𝑋𝑘+1𝐴

Now plugging in (1.37) results in the Riccati Difference Equation (RDE)

 𝑋𝑘 = 𝑄 𝐴
𝑇𝑋𝑘+1𝐴 𝐴

𝑇𝑋𝑘+1𝐵�̃�
−1�̃��̃�−1𝐵𝑇𝑋𝑘+1𝐴 − 𝐴

𝑇𝑋𝑘+1𝐵�̃�
−1𝐵𝑇𝑋𝑘+1𝐴

Upon further simplification leads to

𝑋𝑘 = 𝑄 𝐴
𝑇𝑋𝑘+1𝐴 − 𝐴

𝑇𝑋𝑘+1𝐵�̃�
−1𝐵𝑇𝑋𝑘+1𝐴

𝑋𝑘 = 𝑄 𝐴
𝑇𝑋𝑘+1(𝐼 − 𝐵�̃�

−1𝐵𝑇𝑋𝑘+1)𝐴

 𝑋𝑘 = 𝑄 𝐴
𝑇𝑋𝑘+1(𝐼 − 𝐵(𝑅 𝐵

𝑇𝑋𝑘+1𝐵)
−1𝐵𝑇𝑋𝑘+1)𝐴 (1.39)

It should be noted that as 𝑘 → ∞ eq.(1.39) will approach a steady state and result in the

Discrete Algebraic Riccati Equation (DARE). To proceed, 𝑋𝑘 can be solved via the value

iteration method. The iteration begins by initializing eq.(1.39) with the Final cost 𝐹 and then

iteratively solves the RDE backwards in time to the current sample time 𝑘. Depending on the

system, this method can converge very quickly, and its implementation is very straightforward

which is given in an algorithm found in 2.2.5. Below is an example of the value iteration method.

 XT = F

XT-1=Q+A
T
F (I-BR̃

-1
BTF)A

𝑋𝑇−2 = 𝑄 𝐴
𝑇𝑋𝑇−1(𝐼 − 𝐵�̃�

−1𝐵𝑇𝑋𝑇−1)𝐴

50

⋮

𝑋𝑘+1 = 𝑄 𝐴
𝑇𝑋𝑘+2(𝐼 − 𝐵�̃�

−1𝐵𝑇𝑋𝑘+2)𝐴

𝑋𝑘 = 𝑄 𝐴
𝑇𝑋𝑘+1(𝐼 − 𝐵�̃�

−1𝐵𝑇𝑋𝑘+1)𝐴

Lastly, it should be noted the similarities in the expressions for the gain 𝐾 and covariance

𝑋 derived in this section with their counterparts shown in 1.4.3.

1.5.4 Tuning The Controller

Tuning a controller for a parameter and time varying dynamic system is not an easy feat

but can be done with the help of a simulation of the system which can look at the system’s zero-

state response, impulse response, and reference tracking performance. With LQG, the controller

is tuned by modifying the 𝑄 and 𝑅 matrices. The 𝑄 matrix is tuned for the output state

performance (i.e. driving the errors to zero) and the 𝑅 matrix is for modifying the input control

effort (i.e. amount of effort applied to steering angle). The following sections show the

differences between using a constant 𝑄𝑐 and its speed varying form 𝑄𝑐(𝑉𝑥). The track used for

the following analysis can be seen in Appendix A in Figure 50.

1.5.4.1 Constant Weights

In Error! Reference source not found., Error! Reference source not found., Error!

Reference source not found. the measured, filtered and steering inputs can be seen at speed

ranging from 10-80m/s with the following configuration of 𝑄𝑐 and 𝑅𝑐

 𝑄𝑐 = [

0.0 5 0 0 0
0 0.001 0 0
0 0 0.01 0
0 0 0 0.001

]

 𝑅𝑐 = [0.1]

51

Figure 15: Trial 1 results of vehicle states for 𝑄𝑐~constant

52

Figure 16: Trial 1 results of vehicle error states for 𝑄𝑐~constant

53

Figure 17: Trial 1 results of the optimal steering inputs for 𝑄𝑐~constant

It is seen that the vehicle at speeds greater than 50m/s has significant oscillations,

unacceptable cross track error and is coincidently asymptotically stable due to the steering

constraints preventing higher magnitude steering values to be applied to the vehicle.

The gains from trial 1 were too strong at higher speeds so the values in 𝑄𝑐 are reduced

further in trial 2 and again in Error! Reference source not found., Error! Reference source

not found., Error! Reference source not found. the measured, filtered and steering inputs can

be seen at speed ranging from 10-80m/s with the following configuration of 𝑄𝑐 and 𝑅𝑐

 𝑄𝑐 = [

0.0175 0 0 0
0 0.0007 0 0
0 0 0.007 0
0 0 0 0.0007

]

 𝑅𝑐 = [0.1]

54

Figure 18: Trial 2 results of vehicle states for Q

c
~constant

55

Figure 19: Trial 2 results of vehicle error states for 𝑄𝑐~constant

56

Figure 20: Trial 2 results of the optimal steering inputs for 𝑄𝑐~constant

It is seen that the same issue persists in trial 2 without having much effect on the response

of the vehicle’s stability and path tracking capabilities.

The values in 𝑄𝑐 are reduced even further in trial 3 to attempt to reduce oscillations in the

system. Again in Error! Reference source not found., Error! Reference source not found.,

Error! Reference source not found. show the measured, filtered and steering inputs can be seen

at speed ranging from 10-80m/s with the following configuration of 𝑄𝑐 and 𝑅𝑐

 𝑄𝑐 = [

0.00 5 0 0 0
0 0.0001 0 0
0 0 0.001 0
0 0 0 0.0001

]

 𝑅𝑐 = [0.1]

57

Figure 21: Trial 3 results of vehicle states for 𝑄𝑐~constant

58

Figure 22: Trial 3 results of vehicle error states for 𝑄𝑐~constant

59

Figure 23: Trial 3 results of the optimal steering inputs for 𝑄𝑐~constant

It’s now observed that the system has reached a much more stable point by reducing the

oscillations but at the cost of having a higher cross track error than in the previous trial. The

following section seeks to reduce the errors for a range of speeds by allowing 𝑄𝑐 to varying with

𝑉𝑥.

1.5.4.2 Parameter Varying Weights

Since the model given in eq.(1.25) is LPV, the weights that go into the cost function

were explored further by letting them vary with velocity as the system did. It was seen that as the

velocity increased, the Q matrix performed better when its components progressively got smaller

while the 𝑅 matrix remained constant. Linear and non-linear trends were studied and found that

60

the non-linear fits performed the best in terms of consistent vehicle behavior at a range of speeds.

This study could be explored further to determine even better performance.

Defining that each state performance weighting function abide by the power law which

can be seen in Figure 24 and Figure 25.

 𝑞𝑖
𝑐(𝑉𝑥) = 𝑎𝑖𝑉𝑥

𝑏𝑖 (1.40)

Figure 24: Choice of weights for each state

61

Figure 25: Parameter varying 𝑄𝑐(𝑉𝑥) using power law fit

Now the state performance weight matrix will be updated as the longitudinal velocity of

the vehicle changes providing a more robust solution at wide range of speeds which can be seen

in more detail in Figure 26, Figure 27, and Figure 28.

 𝑄𝑐(𝑉𝑥) =

[

𝑞1
𝑐(𝑉𝑥) 0 0 0

0 𝑞2
𝑐(𝑉𝑥) 0 0

0 0 𝑞3
𝑐(𝑉𝑥) 0

0 0 0 𝑞4
𝑐(𝑉𝑥)]

 𝑅𝑐 = [0.1]

62

Figure 26: Results of vehicle states for 𝑄𝑐(𝑉𝑥)

Figure 27: Results of vehicle error states for 𝑄𝑐(𝑉𝑥)

63

 Figure 28: Results of the optimal steering inputs for 𝑄𝑐(𝑉𝑥)

Now having a more robust controller at a range of operating speeds, the final step in

tuning the controller is reducing the steady state errors which is discussed in the next section.

It’s worth noting that for some circumstances it may be better to calculate the optimal

feedback gain “offline” and use the “gain scheduling” approach for handling a wide range of

operating speeds. These gains can be loaded as a lookup table or even create some fitted curves

to them to be used online to potentially increase runtime performance of the controller. An

example can be seen in Figure 29. The downside is that now the control is limited to a certain

state of the system which is technically changing over time and could be accounted for during

online calculation of the control gain.

64

Figure 29: Optimal feedback gains for 𝑄𝑐(𝑉𝑥)

1.5.5 Resolving Steady State Error

Continuing with state space model from eq.(1.25) in its compact form

 �̇� = 𝐴𝑥 𝐵𝛿𝛿 𝐵�̇��̇�𝑑𝑒𝑠

Due to the presence of 𝐵�̇��̇�𝑑𝑒𝑠, the errors of the system will not all converge to zero

when traveling along some path that has a non-zero curvature. The path reference signal into the

control block that was previewed earlier in Figure 14 will now be considered to attempt to

decrease the tracking errors further by compensating the controller in eq.(1.38) with the feed-

65

forward term 𝛿𝑓𝑓. The Laplace transform and the final value theorem are used to analyze the

steady state of the new proposed closed loop system to reveal the value of 𝛿𝑓𝑓

Letting

 𝛿 = 𝐾𝑥 𝛿𝑓𝑓 (1.40)

Then the new closed loop system

�̇� = 𝐴𝑥 𝐵𝛿(𝐾𝑥 𝛿𝑓𝑓) 𝐵�̇��̇�𝑑𝑒𝑠

�̇� = (𝐴 𝐵𝛿𝐾)𝑥 𝐵𝛿𝛿𝑓𝑓 𝐵�̇��̇�𝑑𝑒𝑠

Now taking the Laplace transform

ℒ{�̇� = (𝐴 𝐵𝛿𝐾)𝑥 𝐵𝛿𝛿𝑓𝑓 𝐵�̇��̇�𝑑𝑒𝑠}

𝑠𝑋(𝑠) = (𝐴 𝐵𝛿𝐾)𝑋(𝑠) 𝐵𝛿ℒ{𝛿𝑓𝑓} 𝐵�̇�ℒ{�̇�𝑑𝑒𝑠}

𝑠𝑋(𝑠) − (𝐴 𝐵𝛿𝐾)𝑋(𝑠) = 𝐵𝛿ℒ{𝛿𝑓𝑓} 𝐵�̇�ℒ{�̇�𝑑𝑒𝑠}

(s𝐼 − (𝐴 𝐵𝛿𝐾))𝑋(𝑠) = 𝐵𝛿ℒ{𝛿𝑓𝑓} 𝐵�̇�ℒ{�̇�𝑑𝑒𝑠}

𝑋(𝑠) = (s𝐼 − (𝐴 𝐵𝛿𝐾))
−1
(𝐵𝛿ℒ{𝛿𝑓𝑓} 𝐵�̇�ℒ{�̇�𝑑𝑒𝑠})

Now evaluating ℒ{�̇�𝑑𝑒𝑠} with the steady state assumption that the vehicle travels with a constant

speed 𝑉𝑥 along a constant path curvature 𝜅 then

ℒ{�̇�𝑑𝑒𝑠} =
𝜅𝑉𝑥
𝑠

And asserting that the sought out 𝛿𝑓𝑓 is also constant then

ℒ{𝛿𝑓𝑓} =
𝛿𝑓𝑓

𝑠

𝑋(𝑠) = (s𝐼 − (𝐴 𝐵𝛿𝐾))
−1
(𝐵𝛿

𝛿𝑓𝑓

𝑠
 𝐵�̇�

𝜅𝑉𝑥
𝑠
)

𝑠𝑋(𝑠) = (s𝐼 − (𝐴 𝐵𝛿𝐾))
−1
(𝐵𝛿𝛿𝑓𝑓 𝐵�̇�𝜅𝑉𝑥)

66

Now applying the final value theorem which states

lim
𝑡→∞

𝑥(𝑡) = lim
𝑠→0
 𝑠𝑋(𝑠)

Then the steady state 𝑥𝑠𝑠 is

𝑥𝑠𝑠 = lim
𝑡→∞

𝑥(𝑡) = lim
𝑠→0
 𝑠𝑋(𝑠) = lim

𝑠→0
((s𝐼 − (𝐴 𝐵𝛿𝐾))

−1
(𝐵𝛿𝛿𝑓𝑓 𝐵�̇�𝜅𝑉𝑥))

𝑥𝑠𝑠 = (−(𝐴 𝐵𝛿𝐾))
−1
(𝐵𝛿𝛿𝑓𝑓 𝐵�̇�𝜅𝑉𝑥)

With

𝐾 = [𝑘𝑒𝑦 𝑘�̇�𝑦 𝑘𝑒𝜓 𝑘�̇�𝜓]

Which can be solved symbolically in Matlab to produce

 𝑥𝑠𝑠 =

[

𝛿𝑓𝑓

𝑘𝑒𝑦

0
0
0]

[

 −

𝜅

𝑘𝑒𝑦
(

𝑚𝑉𝑥
2

(𝐿𝑓+𝐿𝑟)
(
𝐿𝑟

𝐶𝑓
−
𝐿𝑓

𝐶𝑟
(1 − 𝑘𝑒𝜓)) − (𝐿𝑓 𝐿𝑟 − 𝐿𝑟𝑘𝑒𝜓))

0
𝜅

𝐶𝑟(𝐿𝑓+𝐿𝑟)
(−𝐶𝑟𝐿𝑓𝐿𝑟−𝐶𝑟𝐿𝑟

2 𝐿𝑓𝑚𝑉𝑥
2)

0]

 (1.41)

Then

𝛿𝑓𝑓 = 𝜅(
𝑚𝑉𝑥

2

(𝐿𝑓 𝐿𝑟)
(
𝐿𝑟

𝐶𝑓
−
𝐿𝑓

𝐶𝑟
(1 − 𝑘𝑒𝜓)) (𝐿𝑓 𝐿𝑟 − 𝐿𝑟𝑘𝑒𝜓))

Under further inspection

𝛿𝑓𝑓 = 𝜅 (𝑉𝑥
2 (
𝑚

𝐿
(
𝐿𝑟

𝐶𝑓
−
𝐿𝑓

𝐶𝑟
)) (

𝑚𝑉𝑥
2𝐿𝑓

𝐿𝐶𝑟
− 𝐿𝑟)𝑘𝑒𝜓 𝐿)

Identifying that

𝐾𝑣 =
𝑚

𝐿
(
𝐿𝑟

𝐶𝑓
−
𝐿𝑓

𝐶𝑟
)

67

Is known as the understeer gradient, then

𝛿𝑓𝑓 = 𝜅𝑉𝑥
2𝐾𝑣 𝜅 (

𝑚𝑉𝑥
2𝐿𝑓

𝐿𝐶𝑟
− 𝐿𝑟) 𝑘𝑒𝜓 𝜅𝐿

Now that 𝛿𝑓𝑓 has been found, it can be seen in eq.(1.41) it’s not possible for 𝑒𝜓 to reach

zero steady state error but the controller is able to achieve a zero steady state error for 𝑒𝑦. Results

for including 𝛿𝑓𝑓 with the same 𝑄𝑐(𝑉𝑥) are shown in Figure 30, Figure 31, and Figure 32, which

dramatically improve path tracking performance even at the higher speeds. With this new

capability, future work could include improving the design of the weight functions in the state

performance matrix 𝑄𝑐(𝑉𝑥) given by eq.(1.40) to further reduce the lateral errors. It can be seen

in Figure 61 that the current form of the controller completely breaks down at 100m/s without

the aid of 𝛿𝑓𝑓 but in Figure 66 shows how it brings the system back to being stable but still has

an unacceptable lateral error. Plots of the various paths used for testing can be seen in Appendix

A and detailed runs at all the various speeds can also be seen in Appendix B.

68

Figure 30: Vehicle states with Q(Vx) and feed-forward

69

Figure 31: Vehicle error states with Q(Vx) and feed-forward

70

Figure 32: Calculated steering values with Q(Vx) and feed forward

71

Chapter 2 Implementation

2.1 Introduction

For implementing everything in chapter 1, the following sections include the (pseudo)

code for the algorithms used provide a general understanding of how one would go about coding

them in various languages that they feel comfortable using. The source code on GitLab is all in

python3 and Matlab. Once these algorithms are understood comes to how use them which is

shown in the autonomous vehicle framework that was created for this thesis using a popular

robotics software called ROS2. General knowledge of what ROS2 is and how to use it within the

framework is also provided so that the reader may dive into the world of ROS and to show how

powerful this software is for robotic applications when it comes to industry ready products or

experimenting new ideas. ROS2 was used to implement all the experimental procedures for

collecting data and testing the controller in both the simulator and on the physical car. Lastly, the

results of the various topics discussed throughout this thesis are presented for validation. It is

suggested that the reader has basic Linux skills which will complement all the setup procedures

and use developer tools such as GitLab and Docker. Brief introductions to both GitLab and

docker are given which as well provide the crucial components of collaboration, version control,

and product distribution for the autonomous framework (UCSD Robocar) that was created. It is

to be noted that the concepts and ideas discussed here can be applied to many other types of

frameworks or projects because of the generality that was maintained throughout the

construction of UCSD Robocar.

72

2.2 Core Algorithms

The following sections provide the code for the main algorithms used for path tracking.

These algorithms are written in stand-alone format for robust reusability. It is better practice to

have code written in object-oriented-programming (OOP) format because it makes functions and

variables more accessible throughout the rest of the framework and makes updating current or

implementing new algorithms a much smoother process. The following section breaks down the

step-by-step process of the core control algorithms that are used in the autonomous vehicle

control package software.

2.2.1 Discrete Parameter-Varying Dynamic Car Model

This program allows for updating the bicycle car model and then discretized as it is a

parameter-varying system. It will need to be updated at every time step at runtime to allow for

varying velocity operation.

ALGORITHM 1: DISCRETIZING AND UPDATING DYNAMIC MODEL

 INPUT: Longitudinal velocity (𝑉𝑥)

 OUTPUT: Discrete state space matrices (𝐴𝑑 , 𝐵𝑑)

1 if 𝑽𝒙 ≤ 𝑽𝒎𝒊𝒏

2 𝑉𝑥= 𝑉𝒎𝒊𝒏

3 𝐴, 𝐵 ← update continuous-time dynamics as function of 𝑉𝑥

5
𝐴𝑑 , 𝐵𝑑 ← 𝑧𝑒𝑟𝑜𝑠(𝑠𝑖𝑧𝑒(𝐴, 𝐵)) initialize each discrete matrix to be same size as continuous

matrix

6 for k = 0:max_iteration

7 𝐴𝑑 = 𝐴𝑑
(𝐴𝑇𝑠)

𝑘

𝑘!

8 𝐵𝑑 = 𝐵𝑑
𝐴𝑘𝑇𝑠

𝑘+1

(𝑘 1)!
𝐵

9 end

73

2.2.2 Parameter-Varying Weight Functions

This algorithm is for updating the state performance weight matrix that will vary with Vx

which allows for achieving design specifications at all possible Vx the vehicle could be at. The

control effort weight matrix was set to a constant and read from a configuration file. The

coefficients ai, bi for each state can be computed offline or a single time upon initialization of the

controller.

ALGORITHM 6: CALCULATE WEIGHTS

 INPUT: Longitudinal velocity and the size of A (𝑉𝑥, 𝑠𝑖𝑧𝑒(𝐴))

 OUTPUT: State performance and control effort weights at time sample k (𝑄𝑘 , 𝑅𝑘)

 𝑸 = zeros(size(𝑨))initialize matrix of zeros with same size as A

1 for i = 0:length(𝑸𝒌) run loop for each state

2 𝑎𝑖, 𝑏𝑖 ← read from configuration file for state i

3 𝑸(𝑖, 𝑖) = 𝑎𝑖𝑉𝑥
𝑏𝑖 assign state i performance in its diagonal position

4 end

5 𝑹𝒌 ← read from configuration file (does not vary with longitudinal velocity)

6 𝑸𝒌 ← 𝑸

2.2.3 Cross-Track Error

This algorithm will calculate the current cross-track error with respect to the center of

gravity of the vehicle. It expects that the two closest points in the path to the vehicle are provided

but can be easily found by finding the index of the minimum Euclidean distance between the

vehicle and the path and then taking the next index in the array as the second closest point. This

74

assumes that the path provided is orientated such that each successive point is the next point for

the vehicle to move towards. It will need to be updated at every time step at run time.

ALGORITHM 7: CALCULATE 𝐂𝐓𝐄

 INPUT:
Closest two points in desired path and vehicle position with respect to its

center of gravity ((𝑋𝑝1, 𝑌𝑝1), (𝑋𝑝2, 𝑌𝑝2), (𝑋𝑐𝑔, 𝑌𝑐𝑔))

 OUTPUT: Lateral error to desired path (CTE)

1 �⃗� 12 = (𝑋𝑝2 − 𝑋𝑝1, 𝑌𝑝2 − 𝑌𝑝1) Vector connecting 2 closest points of path to follow

2 �̂�12
⊥⃗⃗ ⃗⃗ ⃗ =

(𝑌𝑝2−𝑌𝑝1,−(𝑋𝑝2−𝑋𝑝1))

‖�⃗� 12‖
 Unit vector perpendicular to path

3 �⃗� 𝐶𝐺1 = (𝑋𝐶𝐺 − 𝑋𝑝1, 𝑌𝐶𝐺 − 𝑌𝑝1) Vector from point 1 to the vehicle position

4 𝐶𝑇𝐸⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = (𝑋𝐶𝐺 − 𝑋𝑝12, 𝑌𝐶𝐺 − 𝑌𝑝12) cross-track error vector

5 𝑪𝑻𝑬 = �⃗⃗� 𝑪𝑮𝟏 ⋅ �̂�𝟏𝟐
⊥⃗⃗ ⃗⃗⃗⃗ ⃗

 cross-track error (sign of this product will dictate to left or right

of path)

2.2.4 Covariance Matrix

This algorithm solves the RDE/DARE depending on the max iteration specified. If set to

1, the calculation should only be performed once and will be the solution to the RDE. If solved

recursively until the previous covariance is equal to the current covariance, then it has solved the

DARE.

ALGORITHM 2: SOLVE RDE/DARE

 INPUT:
discrete system dynamics and weights at sample k

 (𝐴𝑘, 𝐵𝑘, 𝑄𝑘, 𝑅𝑘, 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙 ∶ 𝑋𝑘−1)

 OUTPUT: current and predicted state covariance matrix (𝑋𝑘, 𝑋𝑘+1)

1 if optional is not none

2 𝑋 ← initialize as 𝑋𝑘−1

3 else

4 𝑋 ← initialize as 𝑄𝑘

6 for i = 0:max_iteration

75

7 𝑋 = ((𝐼 − 𝐵(𝐵𝑘
𝑇𝑋𝐵𝑘 𝑅𝑘)

−1𝐵𝑘
𝑇)𝑋

8 end

9 𝑿𝒌 = 𝑿

10 𝑿𝒌+𝟏 = 𝑨𝒌
𝑻𝑿𝒌𝑨𝒌 𝑸𝒌

2.2.5 Gain

This algorithm calculates both Kalman and feedback gains that coincide with the solution

to the RDE. This algorithm will need to be called at every time step at run time when updating

the gains with respect to the state equation matrices.

ALGORITHM 3: CALCULATE GAIN MATRIX

 INPUT:
discrete system dynamics and weights at sample k
(𝐴𝑘, 𝐵𝑘, 𝑄𝑘, 𝑅𝑘, 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙 ∶ 𝑋𝑘)

 OUTPUT: gain and variance matrices (𝐿, 𝐾, 𝑋)

1 if optional is not none

2 𝑿 ← 𝑋𝑘

3 else

4 𝑋𝑘, 𝑋𝑘+1 ← call algorithm 2 (𝐴𝑘, 𝐵𝑘, 𝑄𝑘, 𝑅𝑘)

5 𝑿 ←𝑋𝑘

6 𝑳 = (𝑩𝒌
𝑻𝑿𝑩𝒌 𝑹𝒌)

−𝟏
𝑩𝒌
𝑻𝑿 known as the “innovation gain” or “Kalman gain”

7 𝑲 = 𝑳𝑨𝒌 known as the “Feedback gain”

2.2.6 Linear Kalman Filter

This algorithm calculates the current filtered state-estimate of the vehicle and the states

covariance matrix for a single time step and will need to be called at every time step at run time

to keep updating the estimates based on current measurement data.

76

2.2.7 Extended Kalman Filter

This algorithm behaves the same as the linear Kalman filter but uses the non-linear

systems state and output equations when performing updates.

ALGORITHM 4: CALCULATE OPTIMAL STATE-ESTIMATE FROM LINEAR SYSTEM

 INPUT:

Current and previous discrete system dynamics, weights, previous state

covariance state estimate and input, and current measurement

(𝑠𝑦𝑠𝑘, 𝑠𝑦𝑠𝑘−1, 𝑄𝑘, 𝑅𝑘 , 𝑋𝑘|𝑘−1, �̂�𝑘−1|𝑘−1, 𝑢𝑘−1, 𝑦𝑘)

 OUTPUT: optimal state-estimate and variance (�̂�, 𝑋)

1 𝐿𝒌, 𝐾𝒌 ← call algorithm 5 to get gains (𝐴𝑘
𝑇 , 𝐶𝑘

𝑇 , 𝑄𝑘, 𝑅𝑘, 𝑋𝑘|𝑘−1)

2 𝐿𝒌, 𝐾𝒌 ← 𝐿𝑘
𝑇 , 𝐾𝑘

𝑇 by duality, take transpose to get estimation and innovation gains

3 𝑋𝑘, 𝑋𝑘+1 ← call algorithm 4 to get filtered covariances (𝐴𝑘
𝑇 , 𝐶𝑘

𝑇 , 𝑄𝑘, 𝑅𝑘 , 𝑋𝑘−1)

4 �̂� ← �̂�𝒌|𝒌 = (𝑰𝒏 − 𝑳𝒌𝑪𝒌)(𝑨𝒌−𝟏�̂�𝒌−𝟏|𝒌−𝟏 𝑩𝒌−𝟏𝒖𝒌−𝟏) 𝑳𝒌𝒚𝒌

5 𝑿 ← 𝑿𝒌+𝟏

ALGORITHM 5: CALCULATE OPTIMAL STATE-ESTIMATE FROM NON-LINEAR SYSTEM

 INPUT:
discrete system dynamics, previous state covariance, sensor weights
(𝐴𝑘, 𝐵𝑘, 𝐶𝑘, 𝐷𝑘, 𝑋𝑘−1, 𝑄𝑘, 𝑅𝑘, 𝑓𝑘(𝑥𝑘, 𝑢𝑘), ℎ𝑘(𝑥𝑘), 𝑦𝑘)

 OUTPUT: optimal state-estimate (�̂�, 𝑋)

1 𝐿, 𝐾 ← call algorithm 5 to get gains (𝐴𝑘
𝑇 , 𝐶𝑘

𝑇 , 𝑄𝑘, 𝑅𝑘 , 𝑋𝑘−1)

2 𝐿, 𝐾 ← 𝐿𝑇 , 𝐾𝑇 by duality, take transpose to get estimation and innovation gains

3 𝑿𝒌, 𝑿𝒌+𝟏
← call algorithm 4 to get filtered covariances

 (𝑨𝒌
𝑻, 𝑪𝒌

𝑻, (𝑭𝒌𝑸𝒌𝑭𝒌
𝑻), (𝑮𝒌𝑹𝒌𝑮𝒌

𝑻), 𝑿𝒌−𝟏)

4 �̂�𝒌|𝒌 = 𝒇𝒌−𝟏(�̂�𝒌−𝟏|𝒌−𝟏, 𝒖𝒌−𝟏) 𝑳(𝒚𝒌 − 𝒉𝒌𝒇𝒌−𝟏(�̂�𝒌−𝟏|𝒌−𝟏, 𝒖𝒌−𝟏))

5 𝑿 ← 𝑿𝒌+𝟏

77

2.2.8 LQG

This algorithm combines all the algorithms mentioned previously which will perform a

single LQG calculation and will need to be called at every time step at run time.

ALGORITHM 8: CALCULATE OPTIMAL STATE-ESTIMATE FEEDBACK CONTROLLER

 INPUT:

continuous system dynamics, previous discrete system dynamics, weights,

previous state covariance state estimate and input, and current measurement

(𝐴, 𝐵, 𝐶, 𝐷, 𝑠𝑦𝑠𝑘−1, 𝑉𝑥, 𝑄𝑘
𝑜 , 𝑅𝑘

𝑜 , 𝑋𝑘|𝑘−1
𝑜 , �̂�𝑘−1|𝑘−1, �̂�𝑘−1, 𝑦𝑘)

 OUTPUT:
optimal state-estimate feedback control, state, and variance

(�̂�𝑘, �̂�𝑘−1, �̂�𝑘−1|𝑘−1, 𝑋𝑘|𝑘−1
𝑜)

1 𝐴𝑘, 𝐵𝑘, 𝐶𝑘, 𝐷𝑘
← call algorithm 1 (𝐴, 𝐵, 𝐶, 𝐷, 𝑉𝑥) update CT model speed & convert to

DT

2 𝑄𝑘
𝑐 , 𝑅𝑘

𝑐
← call algorithm 2 (𝑉𝑥) these are the state performance weights for minimizing

control cost

3 𝐾𝑘
𝑐 ← call algorithm 5 (𝐴𝑘, 𝐵𝑘, 𝑄𝑘

𝑐 , 𝑅𝑘
𝑐) this is the feedback control gain

4 �̂�𝑘|𝑘, 𝑋𝑘|𝑘+1
𝑜 ← call algorithm 6 (𝑠𝑦𝑠𝑘, 𝑠𝑦𝑠𝑘−1, 𝑋𝑘|𝑘−1

𝑜 , 𝑄𝑘
𝑜 , 𝑅𝑘

𝑜 , �̂�𝑘−1|𝑘−1, �̂�𝑘−1, 𝑦𝑘)

5 �̂�𝒌 = −𝑲𝒌
𝒄 �̂�𝒌|𝒌 feedback controller to apply to plant

6 �̂�𝒌−𝟏, 𝒙𝒌−𝟏|𝒌−𝟏, 𝑿𝒌|𝒌−𝟏
𝒐 ← update values for next time step (�̂�𝒌, �̂�𝒌|𝒌, 𝑿𝒌+𝟏|𝒌

𝒐)

2.3 Human-Machine-Interface

2.3.1 Introduction

An autonomous vehicle framework (UCSD Robocar) was created in support of this

thesis. UCSD Robocar is built on top of a popular software used for robotic applications called

Robot Operating System (ROS and ROS2) was used for controlling the various scaled robot cars.

The framework provides flexibility from implementing traditional programming or machine

learning techniques to achieve an objective. The framework works with a vast selection of

popularly used sensors, controllers and actuators making it a robust framework to use across

various platforms. The framework has been tested in ROS simulators as well as on 1/16, 1/10,

78

1/5 scaled robot cars. For the Go-Kart and Indy vehicles, an industry provided framework was

used.

2.3.2 Development Platforms

There are 3 main embedded computers that were used to deploy the UCSD Robocar

framework on the physical robots and each of them are ARM based computer architectures and

belong to the NVIDIA Jetson family. Jetson Nano Jetson Xavier NX, and the Jetson AGX

Xavier.

Other computer architectures like X86 from intel and M1 from apple were also

compatible and were the main computers used when running simulations of robot behavior under

different conditions and controller performance criteria. The host OS on all the Jetson computers

use Ubuntu18 which is flashed through NVIDIA's Jetpack image. However, the docker image

uses Ubuntu20 which is an OS recommendation (essentially a requirement for not having to deal

with package installation issues) for using ROS2 and is discussed in more detail below.

Ubuntu in general is a great OS for robotic applications due to the large robotics community that

has used it to develop and share their works.

To be able to use different types of computer architectures and ensuring repeatability, a

docker image was created that runs Ubuntu20.04 and contains the UCSD Robocar framework

and all its software related dependencies which was extremely convenient and efficient when

making the transition from the simulator to the actual robot. To get the docker image working,

pull the UCSD Robocar docker image from docker hub onto the development computer. This

allows for plug-n-play capabilities if all the sensors and hardware are connected to the computer

properly.

79

2.3.3 ROS Introduction

ROS is used in this autonomous vehicle application for its built-in ecosystem for

receiving and sending sensor and control messages across many different programs in the

framework. The framework allows for both ROS-Noetic and ROS2-Foxy to work together

through another software tool called ROS bridge or can be used independently per requirement

of the application. ROS also has a large community of roboticists who share various packages

such as SLAM, sensor drivers, obstacle avoidance etc. that are all open sourced to make use,

understanding, and modifying them all in the hands of the developer.

ROS has a unique architecture which consists of various tools and communication

methods between numerous programs. In this introduction, only the concepts of nodes, topics,

launch files and parameters will be discussed. However, there are other core concepts such as

actions and services that can provide more robust functionality of what a robot/system is capable

of. This is meant to be a brief introduction as to what ROS is and to demystify its usage by

exposing the main ideas behind it.

2.3.3.1 Nodes

Nodes can be the source code or be the place where source code is imported to be used.

Nodes initiate the potential communication between various other nodes that might be running in

parallel. For any program that needs information or data from another program, a node must be

initialized! Without the creation of the node, the communication is severed from the rest of the

programs. Nodes can communicate (send data) with each other over a shared topic. If this topic

is not set up properly, there will not be any communication between the nodes.

80

2.3.3.2 Topics

Topics provide the means for 2 or more nodes to share data with one another. For at least

2 nodes to start talking to one another, at least one topic must be made, one node must publish to

a topic to send data, and another node must subscribe to that same topic to receive that data. A

simple example is shown in Figure 33. These topics can pass various types of data structures

from simple integers to custom defined data types which is very convenient and powerful when

attempting to create a framework of code to properly share data within itself.

Figure 33: ROS Topics with Nodes

2.3.3.3 Launch Files

These are one-stop-shop programs that can run numerous nodes simultaneously which

can be very powerful and convenient. For example, some robotic systems could have many

81

different nodes for various scenarios or environments that the robot could be in. They can also

load parameters into nodes to make programs much more robust and minimize user error. With

ROS2, Logic can also be implemented in these files because they’re in python. An example is

shown in Figure 34.

Figure 34: ROS Launch files with nodes

2.3.3.4 Parameters

Parameters in ROS are incredibly useful even with simple robotic applications.

Parameters can define physical robot limitations, behavior, information about the environment

the robot is in, and so much more. Parameters can be set inside of nodes and is possible to update

at run time in the terminal! They can always be viewed via the terminal as well for verification.

A simple example of using parameters is given in Figure 35. This example shows using the same

node (source code) and only updating a set of user defined parameters to achieve different

behavior or updating system properties when in different environments. This was exhausted on

the 3 different platforms used for testing the LQG controller and when changing track

conditions.

82

Figure 35: ROS Parameters in different environments

83

2.3.4 UCSD Robocar Framework Breakdown

Now having a basic understanding of ROS, The Autonomous framework that was created

for this thesis is broken down into the packages and nodes that must have been made to

implement all the theory from part 1. Figure 36 gives a high-level overview of how the

framework was structured. This piecewise structure allows for plug-in type capabilities which

makes it a robust solution for testing on different vehicle platforms, experimenting with new

controllers, or path planning techniques.

Figure 36: UCSD Robocar framework scheme

The navigation package is essentially the node manager of the UCSD Robocar

framework because it keeps track of all the names and locations of any node/launch file from the

other packages used in the framework. This includes sensor and actuator drivers as well as

navigation and control algorithms. This makes using the framework even simpler by removing

the requirement of remembering all the different launch files and package names. This package

dynamically builds a user-defined launch file at run-time through 2 different config files, 1 for

hardware equipped to the robot and the other for the set of desired nodes to use for a given

scenario. Direct application of this is shown later in Error! Reference source not found..

84

The sensor package contains all the required nodes/launch files needed to use the sensors

that are equipped to the car. The sensors include cameras, LiDAR, GPS, IMU, and wheel

encoders.

The actuator package contains all the required nodes/launch files needed to use the

actuators that are equipped to the car. The drivers include sensor-less brushed DC motors via

pulse-width-modulation (PWM), sensored brushless DC motor and servo motors via PWM.

The path package contains all the required nodes/launch files needed to create trajectories

for the car to follow in a pre-built map as well as in simulations. The path planners include

waypoint following via GPS, bug algorithms via LiDAR scans, lane guidance via camera, Hector

SLAM via LiDAR.

The control package contains all the required nodes/launch files needed to control the car

with various methods such as manual joystick, manual keyboard, PID, and LQG

2.3.4.1 Using the Framework

The first thing to do is update config files. The framework is setup such that most things a

user would need to change or modify can be done in a config file. If more intricate modifications

must be done, its recommended to use what currently works and create a new node to integrate

new behavior into the robot. This is explained more in Error! Reference source not found..

The following sections go over how to modify the config files to achieve a certain behavior such

us turning on sensors, manual control, lane guidance, etc.

85

2.3.4.2 Updating Parameters

Hardware configuration is as simple as flipping a switch. Since the launch files in ROS2

are now in python, we can dynamically build launch files. Meaning there is no need to have

several different “car configurations” that may have different hardware on them and instead have

a single launch file that can launch any needed component by changing a single number (that

number is explained below). There is only one file to modify and all that needs to be changed is

either putting a “0” or a “1” next to the list of hardware in the file. To select the hardware that the

robot has and that is required for the application, put a “1” next to it otherwise put a “0” which

means it will not activate.

Modify and save the car config with the sensors and actuators on the robot and then recompile.

From the terminal

source_ros2

gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/car_config.yaml

build_ros2

Very similar to hardware configuration, the nodes to use for a desired application is also

as simple as flipping a switch. There is only one file to modify and all that needs to be changed is

either putting a “0” or a “1” next to the list of robot behaviors/features. To select the desired

behaviors/features that the robot is going to perform for the application, put a “1” next to it

otherwise put a “0” which means it will not activate.

Modify and save the node config and then recompile.

From the terminal

source_ros2

gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/node_config.yaml

86

build_ros2

Vehicle parameters spanning from mass and length to sensor noise covariances, and

controller performance weights are all configurable outside of the source code. This means that

the user should never need to modify the source code to update any given parameter. Below are

the commands to update any parameter for the vehicle and controller performance.

From the terminal

source_ros2

gedit src/ucsd_robocar_hub2/ucsd_robocar_control2_pkg/config/car_config.yaml

build_ros2

Being able to manually control the vehicle is very useful and convenient when either

collecting data, troubleshooting hardware, or debugging. Below are the required commands to

get the car moving in manual mode.

Controls

• A “deadman” switch is enabled which means that button must be pressed and held (LB

on logitech) down in order for commands to be sent to the robot’s motors.

• The joysticks on the controller are what control the robot to move forwards/backwards

and turn.

From the terminal

source_ros2

Modify the hardware config file to turn on the vesc_with_odom

gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/car_config.yaml

Then modify the node config file to activate all_components and f1tenth_vesc_joy_launch

launch files

87

gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/node_config.yaml

Then rebuild and launch

build_ros2

ros2 launch ucsd_robocar_nav2_pkg all_nodes.launch.py

2.3.4.3 Sensor Visualization

After selecting the hardware that's equipped on the robot, let's visually verify that the

sensors are working. The current config file that is launched will display laser scan and image

data. If the robot has more sensors to visualized, they can be added through RVIZ.

Modify the hardware config file to turn on the sensors plugged in and want to visualize.

gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/car_config.yaml

Then modify the node config file to activate all_components and sensor_visualization launch

files

gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/node_config.yaml

Then rebuild and launch

build_ros2

ros2 launch ucsd_robocar_nav2_pkg all_nodes.launch.py

2.3.4.4 Data Collection

To collect data being broadcasted over the topics that are actively being published, turn

on whichever nodes needed to publish that topic information but make sure that the

rosbag_launch option in the node_config is also turned on which is the switch for data

collection. This will record ALL topics to the “rosbag” which is a unique file type to ROS. Then

88

a package called bagpy is used to convert the data into csv format which is useful for

viewing/analysis.

Modify the hardware config file to turn on any sensors equipped and needed for data collection

gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/car_config.yaml

Then modify the node config file to activate only all_components, rosbag_launch launch files

gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/node_config.yaml

Then rebuild and launch

build_ros2

ros2 launch ucsd_robocar_nav2_pkg all_nodes.launch.py

Figure 37 shows a diagram of all the nodes that need to be activated during the system

identification process which consists of all the sensors, actuators, and control methods.

Figure 37: UCSD Robocar system ID node tree

89

2.3.4.5 Running Simulator

A lightweight ROS2 simulator created by the F1 Tenth community using RVIZ was used

for various scenarios such as model validation, experiment repeatability and general

experimentation. The simulator uses a 2D dynamic bicycle-car model to simulate how the car

would move in an environment. There are several default maps available in the simulator, but it

is also possible to load in custom maps that could have been generated via SLAM techniques or

by CAD drawings.

NOTE: For the example below, the joystick is used as the controller so the user will need a

controller plugged into their computer. For manual control, the path planner is not activated.

NOTE: Only use the simulator on the X86 docker image and not the Jetson.

Then modify the node config file to activate only the simulator and f1tenth_vesc_joy_launch

launch files

gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/node_config.yaml

Modify the f1 tenth simulator config file to update the map (if needed)

gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/f1_tenth_sim.yaml

Then rebuild and launch

build_ros2

ros2 launch ucsd_robocar_nav2_pkg all_nodes.launch.py

90

2.3.4.6 Autonomous Mode with LQG

After verifying that all the sensors/hardware are working properly, system ID has been

completed, and weighting matrices have been resolved, tested controller in the simulator, it is

now time to test out the LQG controller on the physical robot.

From the terminal (if haven’t done already)

source_ros2

Modify the hardware config file to turn on the vesc_with_odom

gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/car_config.yaml

Then modify the node config file to activate all_components and f1tenth_vesc_joy_launch

launch files

gedit src/ucsd_robocar_hub2/ucsd_robocar_nav2_pkg/config/node_config.yaml

Then rebuild and launch

build_ros2

ros2 launch ucsd_robocar_nav2_pkg all_nodes.launch.py

Figure 38 shows a diagram of all the nodes that need to be activated during the autonomous

operation which consists of everything from the system identification process as well as the path

planner.

91

Figure 38: UCSD Robocar Autonomous node tree

92

2.4 Experimental Procedures

2.4.1 Sensor Calibration

2.4.1.1 PWM to Steering Wheel Angle

This experiment was to convert the pulse-width-modulation (PWM) signal data (input

data type to steering column motor on the car) to road wheel angle. The experiment flow goes as

follows at zero speed:

• From center position to max left/right limits of steering, record PWM values and measure

wheel angle deflection from the vehicle’s longitudinal axis directly (using geometry)

• Repeat a minimum of 3 trials

Now at low speed in manual mode:

• Find 𝑏𝑖𝑎𝑠 by finding the PWM value that puts the wheel angles in the straight position

and that the path taken by the robot follows a straight line for at least 3m

An example of finding the bias can be seen in Figure 39. Then Least squares can be performed to

determine the gain (slope) and offset/bias (y-intercept) of the linear relationship.

𝛿 = 𝐾𝑝𝑤𝑚 𝑏𝑖𝑎𝑠

Now the vehicle can be controlled with wheel angles vs PWM.

93

Figure 39: PWM to Steering Wheel Angle

2.4.1.2 Steering Wheel Angle to Road Wheel Angle

This experiment was to convert the normalized input servo motor angle to the road wheel

angle of the car. The experiment flow goes as follows for a constant speed

• Lock servo angle at some angle (𝜃𝑖)

• Measure the wheel angle (𝛿𝑖)

• Repeat a minimum of 3 trials

This was done for several discrete positions of the vehicles steering range

Then Least squares can be performed to determine the gain (slope) and offset/bias (y-intercept)

of the linear relationship.

𝛿 = 𝐾𝜃 𝑏𝑖𝑎𝑠

Now the vehicle can be controlled with wheel angles vs servo motor position.

94

2.4.1.3 RPM to Vehicle Speed

This experiment was to convert the input motor RPM (revolutions per minute) to the

longitudinal velocity of the car. The experiment flow goes as follows for a particular input motor

RPM value:

• Lock steering angle in straight position

• Have a “buffer” zone set to not measure transient

• Measure ∆𝑡 over the pre-defined distance of travel

• Repeat a minimum of 3 trials

This was done for several discrete rpm values of the DC motor to characterize the full

relationship. An example of the setup can be seen in Figure 40. Then Least squares can be

performed to determine the gain (slope) and offset/bias (y-intercept) of the linear relationship.

𝑉𝑥 = 𝐾𝜔 𝑏𝑖𝑎𝑠

Now the vehicle can be controlled with vehicle speeds vs motor RPM.

95

Figure 40: RPM to longitudinal velocity

The gain in this experiment relates to the effective gear ratio which is solved analytically as

follows

 𝜔𝑚𝑜𝑡𝑜𝑟𝑁𝑚𝑜𝑡𝑜𝑟 = 𝜔𝑐𝑙𝑢𝑡𝑐ℎ𝑁𝑐𝑙𝑢𝑡𝑐ℎ

 𝜔𝑐𝑙𝑢𝑡𝑐ℎ = 𝜔𝑚𝑜𝑡𝑜𝑟
𝑁𝑚𝑜𝑡𝑜𝑟

𝑁𝑐𝑙𝑢𝑡𝑐ℎ

 𝑉𝑤ℎ𝑒𝑒𝑙 = 𝜔𝑐𝑙𝑢𝑡𝑐ℎ𝑅𝑤ℎ𝑒𝑒𝑙

 𝑉𝑤ℎ𝑒𝑒𝑙 = (𝜔𝑚𝑜𝑡𝑜𝑟
𝑁𝑚𝑜𝑡𝑜𝑟

𝑁𝑐𝑙𝑢𝑡𝑐ℎ
) 𝑅𝑤ℎ𝑒𝑒𝑙

 𝑉𝑤ℎ𝑒𝑒𝑙 = 𝜔𝑚𝑜𝑡𝑜𝑟 (
𝑁𝑚𝑜𝑡𝑜𝑟

𝑁𝑐𝑙𝑢𝑡𝑐ℎ
𝑅𝑤ℎ𝑒𝑒𝑙) = 𝜔𝑚𝑜𝑡𝑜𝑟𝐺𝑅𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒

96

Figure 41: Speed to throttle correlation data

97

Figure 42: Measured speed over time

98

Figure 43: Correlation from RPM to longitudinal velocity

2.4.2 Parameter Measurements

Most parameters can be estimated well by measuring the mass of the vehicle. Depending

on what kind of scales are available, the front and rear axles can be weighted or each individual

tire and then summing them to get the total mass. Once the mass distribution is known, the

distances from the CG are estimated by the weight distribution and the actual length of the

vehicle which was measured simply with a measuring tape. Then the moment of inertia is

calculated using the mass distribution and rotation axis distances.

99

2.4.2.1 Tire Stiffness Coefficients

This experiment was done by collecting data from a specified steering angle reference

and constant speed. The reference signals were sinusoidal and varied in amplitude and frequency

to make sure that the system was continuously excited which is a requirement for system ID and

to have several independent data sets that can then be combined to get a more robust

approximation for various lateral tire forces acting on the vehicle. The experiment flow goes as

follows:

• Set constant vehicle speed, amplitude, and frequency of steering angle (max steering

angle, rotation speed)

• Collect, steering, GPS, and IMU data for length of experiment

• Repeat a minimum of 3 trials

Then with this data, least squares using eq.(1.31) can be performed to approximate these

parameters. The steering input and sensor measurements can be seen in Figure 45, Figure 46, and

Figure 47. The models given by eq.(1.17) and eq.(1.18) can then be used for validation which the

results can be seen in Figure 48 and Figure 49 respectively.

100

Figure 44: Tire Stiffness Coefficients Experiment

101

Figure 45: Steering and slip angle measurements

102

Figure 46: IMU measurements

103

Figure 47: GPS measurements

104

Figure 48: Slip model simulation results from ls

105

Figure 49: Lateral model simulation with

106

Appendix A Path Catalog

Figure 50: Las Vegas Motor Speedway (LVMS) track

107

Figure 51: LVMS track characteristics

108

Figure 52: Texas Motor Speedway (TMS) track data

109

Figure 53: TMS track characteristics

110

Figure 54: Purdue track data

111

Figure 55: Purdue track characteristics

112

Figure 56: System ID path 1

113

Appendix B Controller Performance

B.1 Without feedforward

Figure 57: LVMS without 𝛿𝑓𝑓 and 𝑉𝑥=10m/s

114

Figure 58: LVMS without 𝛿𝑓𝑓 and 𝑉𝑥=20m/s

115

Figure 59: LVMS without 𝛿𝑓𝑓 and 𝑉𝑥=50m/s

116

Figure 60: LVMS without 𝛿𝑓𝑓 and 𝑉𝑥=80m/s

117

Figure 61: LVMS without δff and Vx=100m/s

118

B.2 With feedforward

Figure 62: LVMS with 𝛿𝑓𝑓 and 𝑉𝑥=10m/s

119

Figure 63: LVMS with 𝛿𝑓𝑓 and 𝑉𝑥=20m/s

120

Figure 64: LVMS with 𝛿𝑓𝑓 and 𝑉𝑥=50m/s

121

Figure 65: LVMS with 𝛿𝑓𝑓 and 𝑉𝑥=80m/s

122

Figure 66: LVMS with δff and Vx=100m/s

123

Figure 67: TMS Indy vehicle states with 𝛿𝑓𝑓 and 𝑉𝑥= [10:80]m/s

124

Figure 68: TMS Indy vehicle error states with 𝛿𝑓𝑓 and 𝑉𝑥= [10:80]m/s

125

Figure 69: TMS Indy vehicle optimal steering inputs with 𝛿𝑓𝑓 and 𝑉𝑥= [10:80]m/s

126

Figure 70: TMS Indy vehicle trajectory at 𝑉𝑥= 80m/s

127

Figure 71: Purdue Indy vehicle states with 𝛿𝑓𝑓 and 𝑉𝑥= [10:20]m/s

128

Figure 72: Purdue Indy vehicle error states with 𝛿𝑓𝑓 and 𝑉𝑥= [10:20]m/s

129

Figure 73: Indy vehicle optimal steering inputs with 𝛿𝑓𝑓 and 𝑉𝑥= [10:20]m/s

130

Figure 74: Purdue Indy vehicle trajectory at 𝑉𝑥= 20m/s

131

References

1. Rajesh Rajamani. Vehicle Dynamics and Control. Spinger, 2006.

2. Joseph D. Rounsaville. Methods for Calculating Relative Methods for Calculating

Relative Cross-Track Err ack Error for ASABE/ISO or for ASABE/ISO Standard 12188-

2 from Discrete Measurements, University of Kentucky, Joseph S. Dvorak Timothy S.

Stombaugh, University of Kentucky 2016

3. Adarsh Patnaik, Manthan Patel, Vibhakar Mohta, Het Shah, Shubh Agrawal, Aditya

Rathore. Design and Implementation of Path Trackers for Ackermann Drive based

Vehicles. 2020

4. Peng, H., Tomizuka, M. Preview control for vehicle lateral guidance in highway

automation. Journal of Dynamic Systems Measurement & Control-Transactions of the

Asme, Vol. 115, No. 4, pp. 679-686, Dec 1993

5. Jihan Ryu. State and Parameter Estimation for Vehicle Dynamics Control using GPS.

PhD thesis, Stanford University, 2004

6. Jihan Ryu. Automatic Steering Methods for Autonomous Automobile Path Tracking,

PhD thesis, Carnegie Mellon University 2009

7. Paul Yih. Steer-by-Wire: Implications for Vehicle Handling and Safety. PhD thesis,

Stanford University, 2005

8. M. Doumiati, A. Victorino, A. Charara, D. Lechner, A method to estimate the lateral tire

force and the sideslip angle of a vehicle: Experimental validation, in: American Control

Conference (ACC), 2010, IEEE, 2010, pp. 6936–6942.

9. V. Balakrishnan1 and L.Vandenberghe. Connections Between Duality in Control Theory

and Convex Optimization. American Control Conference, 21 June 1995.

10. Fredrik Gustafsson. Sensor fusion for accurate computation of yaw rate and absolute

velocity. Linkoping University, Sweden 2001

11. D. M. Bevly, R. Sheridan, and J. C. Gerdes. Integrating ins sensors with GPS velocity

measurements for continuous estimation of vehicle sideslip and tire cornering stiffness. In

Proceedings of the 2001 American Control Conference, pages 25–30, Arlington, VA,

2001.

12. A. Gelb Joseph F. Kasper, Raymond A. Nash, Charles F. Price, Arthur A. Sutherland,

Applied Optimal Estimation, The M.I.T. Press, Cambridge, Massachusetts, 1974

13. F.L. Lewis, D. Vrabie, and V.L. Syrmos, Optimal Control, 3rd edition, John Wiley 2013

132

14. F.L. Lewis, Applied Optimal Control and Estimation: Digital Design and

Implementation, Prentice-Hall, New Jersey, TI Series, Feb. 1992.

