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a Computer Modeling Group, Calgary, 3710 33 Street NW, Alberta, T2L 2M1 Canada;
bCenter for Computational Sciences and Engineering, Computational Research Division,

Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8139, USA.

(Compiled January 4, 2019 )

In this paper we present a fourth-order in space and time block-structured adaptive mesh
refinement algorithm for the compressible multicomponent reacting Navier-Stokes equa-
tions. The algorithm uses a finite volume approach that incorporates a fourth-order dis-
cretization of the convective terms. The time stepping algorithm is based on a multi-level
spectral deferred corrections method that enables explicit treatment of advection and
diffusion coupled with an implicit treatment of reactions. The temporal scheme is embed-
ded in a block-structured adaptive mesh refinement algorithm that includes subcycling in
time with spectral deferred correction sweeps applied on levels. Here we present the de-
tails of the multi-level scheme paying particular attention to the treatment of coarse-fine
boundaries required to maintain fourth-order accuracy in time. We then demonstrate the
convergence properties of the algorithm on several test cases including both nonreacting
and reacting flows. Finally we present simulations of a vitiated dimethyl ether jet in 2D
and a turbulent hydrogen jet in 3D, both with detailed kinetics and transport.

Keywords: Spectral Deferred Corrections; High-Order Numerical Methods; AMR;
DNS; WENO schemes; Flame Simulations

1. Introduction

In this paper we present a new fourth-order adaptive mesh refinement (AMR) al-
gorithm for the multicomponent reacting compressible Navier-Stokes equations. The
new algorithm combines high-order discretizations in both space and time with block-
structured adaptive mesh refinement, making it an ideal approach for direct numerical
simulation of combustion on modern HPC architectures. The algorithm is based on an
adaptive finite volume spatial discretization coupled to a spectral deferred corrections
(SDC) temporal integration strategy. The SDC approach facilitates explicit discretiza-
tion of convection and diffusion with implicit discretization of reactions, enabling the
overall algorithm to treat stiff chemistry with a time-step set by CFL considerations
for convection and diffusion. The method incorporates a new approach to AMR time-
stepping that increases coupling between the levels and improves overall efficiency.

Compressible reacting flow, like many systems governed by PDEs, exhibits a range
of dynamic scales in both space and time with the finest scales existing in only a small
fraction of the total area of interest in the simulation. In this case, the use of local
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adaptation of the computational grid can reduce the total number of spatial degrees of
freedom necessary to resolve the solution compared to a uniform or static mesh. In this
paper, we focus on block-structured adaptive mesh refinement (AMR) in the context
of finite-volume spatial discretizations. The first block-structured AMR method for
hyperbolic problems is introduced by Berger and Oliger [1]. A conservative version
of this methodology for gas dynamics was developed by Berger and Colella [2] and
extended to three dimensions by Bell et al. [3]. Block-structured AMR has been applied
in a wide range of fields including astrophysics, combustion, magnetohydrodynamics,
subsurface flow, and shock physics, and there are a number of public-domain software
frameworks available for developing applications. See Dubey et al. [4] for a recent
survey of AMR applications and software.

The original conservative AMR strategy with subcycling, used in many of the previ-
ous citations, proceeds as follows. Considering a grid with only two levels for simplicity,
the solution is first advanced for one time step on the coarse grid. Next, the coarse
solution is interpolated in space and (possibly) time to supply boundary data for re-
fined regions of the grid. Then the solution on the fine regions is computed using the
supplied boundary data. Once fine grid solutions have been advanced to the same
time as coarse grids, the solution on coarse grid cells corresponding to fine regions are
overwritten by an average of the fine grid solution. Additionally, the solution in coarse
cells neighboring fine grids are corrected using the fine grid fluxes where available.
This step, referred to as re-fluxing, is necessary for global conservation. This two-level
approach can be applied recursively to multiple levels with specified refinement ratios
in space and time between levels.

Most of the previous work on AMR has focused on second-order finite volume dis-
cretizations of advection, diffusion and other processes using operator splitting or other
second-order temporal integration approaches. In this paper, our goal is to develop a
high-order AMR algorithm that combines the advantages of high-accuracy adaptive
spatial discretization with higher-order temporal integration methods appropriate for
AMR structures. McCorquodale and Colella [5] introduced a fourth-order AMR algo-
rithm for gas dynamics that combines a high-order reconstruction method for spatial
discretization with an explicit fourth-order Runge-Kutta approach for temporal inte-
gration. In the present study, the goal is to model reacting flow with detailed chemistry
that is potentially stiff on hydrodynamic time scales. Consequently, an implicit / ex-
plicit (IMEX) temporal integration strategy that couples an implicit treatment of
kinetics with explicit treatment of hydrodynamics can avoid both the severe time step
restriction due to explicit treatment of kinetics and the need to solve global nonlinear
implicit equations coupling hydrodynamics and kinetics in a fully implicit treatment.

The temporal method pursued here is based on spectral deferred corrections (SDC),
which is an iterative approach to temporal integration based on formulating temporal
integration in terms of a spectral collocation formula and solving the resulting system
using an efficient iterative algorithm. SDC has been shown to provide a flexible plat-
form for higher-order temporal integration with IMEX and/or multirate features (see
e.g. [6–8]). The SDC approach has previously been extended to include the possibility
of computing some of the correction iterations on coarsened versions of the problem.
These multi-level SDC methods (MLSDC) [9] aim to reduce the overall computational
cost of SDC by reducing the cost of some iterations and also are the basis of recently de-
veloped time-parallel methods [10]. Here we couple the structure of MLSDC with AMR
to develop an efficient fourth-order temporal integration method on block-structured
adaptive grids. The result is a time-stepping strategy, referred to as Adaptive Multi-
Level SDC (AMLSDC), in which we iterate over the entire adaptive grid hierarchy in
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space and time in a manner similar to full approximation scheme (FAS) multigrid. In
this approach, corrections from fine grids are directly coupled to the coarse-grid solu-
tion. This leads to a more accurate treatment of coarse-fine boundaries than traditional
AMR time-stepping algorithms in which coarse-grids are advanced independent of the
fine grids and the solutions are then synchronized through refluxing.

The remainder of this paper is organized as follows. In Section 2 we summarize
the multicomponent reacting compressible Navier-Stokes equations. Next, the single
grid algorithm that will form the basis of the AMLSDC approach is introduced in
Section 3. In Section 4 an overview of AMR is provided as well as the multi-level
SDC approach, followed by a description of the AMLSDC strategy. In Section 5, the
convergence properties of the methodology are demonstrated, and the ability of the
AMLSDC method to treat complex reacting flows is illustrated by simulation of a
two-dimensional dimethyl ether jet flame and a three-dimensional turbulent hydrogen
jet flame.

2. Governing equations

The multicomponent reacting compressible Navier-Stokes equations for Ns species are
given by

∂ρ

∂t
+∇ · (ρu) = 0, (1)

∂ρu

∂t
+∇ · (ρu⊗ u) +∇p = ∇ · τ , (2)

∂ρYs
∂t

+∇ · (ρYsu) = −∇ · Fs + ω̇s s = 1, 2, . . . , Ns, (3)

∂ρE

∂t
+∇ · [(ρE + p)u] = ∇ · (λ∇T ) +∇ · (τ · u)−∇ ·

∑
s

Fshs, (4)

where ρ is the density, u is the velocity, p is the pressure, E is the total energy (kinetic,
internal and chemical), T is the temperature and λ is the thermal conductivity. The
viscous stress tensor is given by

τ = η(∇u+ (∇u)T ) + (ξ − 2

3
η)(∇ · u)I, (5)

where η and ξ are the shear and bulk viscosities. For each of the chemical species s,
Ys is the mass fraction, Fs is the species diffusion flux, and ω̇s is the production rate.
The enthalpy term hs is given by:

hs =

∫ T

T0

cp,s dT + ∆h0
f,s, (6)

where ∆h0
f,s is the enthalpy of formation of the species s at T0 = 298.15K and cp,s is

the specific heat capacity at constant pressure.
The system is closed by an equation of state (EOS) that specifies p as a function of
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ρ, T and Ys. An ideal gas mixture for the EOS is assumed:

p = ρT
R

W
, (7)

where R is the universal gas constant and W is the mean molecular weight defined as

W = 1/

Ns∑
s=1

Ys
Ws

, (8)

where Ws is the molecular weight of species s.
Here the Soret and Dufour effects are ignored, and a mixture model for species

diffusion is employed. With these approximations, the species diffusion flux is given
by

F̄s = −ρDs

(
∇Xs + (Xs − Ys)

∇p
p

)
, (9)

where Xs and Ds are the mole fraction and the diffusion coefficient of species s,
respectively. Transport coefficients are computed using the EGLIB library [11]. In order
for species diffusion to be consistent with mass conservation, the fluxes are modified
by adding a correction term as follows,

Fs = F̄s − Ys
∑
j

F̄j . (10)

Since
∑

s Ys = 1, Eq. (10) implies that
∑

sFs = 0. Note that the equation of continuity
Eq. (1) becomes redundant when species diffusion is properly defined.

3. Single level algorithm

In this section, we describe the single level method that forms the basis of the MLSDC
algorithm, with an emphasis on the IMEX algorithm used to treat stiff kinetics. The
goal here is to construct an algorithm that is fourth-order in both space and time.
First, the spatial discretization procedures for convective and diffusive operators are
described in §3.1. Then, the IMEX SDC method is presented in §3.2, followed by a
discussion of the details of how reactions are treated in §3.3.

3.1. Spatial discretization procedures

The methodology presented here is based on finite volume discretizations in which the
solution is represented by the average of the conserved variables over a finite volume
cell. In a finite volume discretization, the point value at the center of a cell and the
cell average agree to second-order accuracy. Consequently these two quantities can be
equated when designing lower-order numerical methods; however, when constructing a
fourth-order discretization, the difference between the cell average and the point value
at the center of the cell needs to be accounted for in the discretization.
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The spatial discretization of the advection terms in the algorithm uses the con-
servative finite-volume WENO reconstruction presented in [12]. In this approach, the
solution is reconstructed at the cell interfaces with a fifth-order WENO reconstruc-
tion. The reconstructed solution is then interpolated to Gauss quadrature nodes on the
faces where the flux is computed using an HLLC Riemann solver. (A midpoint rule for
integrating fluxes is not sufficiently accurate for fourth-order convergence.) We note
that although the solution is reconstructed at cell interfaces with fifth-order WENO
procedure, the method is formally fourth-order accurate because we use a fourth-order
quadrature rule to integrate the flux over faces.

The diffusion terms are discretized using standard finite volume techniques. First,
the cell-averaged conserved variables are used to compute fourth-order approxima-
tions to point values at cell centers using the procedure outlined in McCorquodale
and Colella [5]. These point values of conserved quantities are then used to compute
primitive variables, ρ, U , p, T and Ys. Explicit formulae are then used to compute
derivatives needed to compute the diffusive fluxes at Gauss points on the cell-faces
directly. Similarly, diffusion coefficients are computed at cell centers using point val-
ues and are then interpolated to Gauss points. We refer the readers to [13] for the
formulae of high-order polynomial based reconstruction procedures.

3.2. Spectral Deferred Correction method on a single level

We adopt a method of lines approach to integrate the ODEs obtained from the finite
volume spatial discretization discussed above. Here, the goal is to accurately track
chemical mechanisms that are stiff relative to hydrodynamic time scales, making a
purely explicit discretization impractical. Instead, we use an IMEX approach that
treats advection and diffusion explicitly while treating reactions implicitly. We denote
by F (U(t)) the spatial discretization of the system where U is the vector of conservative
variables. (Here we have suppressed the explicit dependence of F on t; however, it is
straightforward to include explicit dependence on t.) The function F (U(t)) is then
split into stiff (FR) and non-stiff (FAD) parts, such that

F (U(t)) = FAD(U(t)) + FR(U(t)), (11)

where A, D and R denote advection, diffusion and reaction, respectively.
SDC methods are based on the integral form of the solution of a generic ODE

∂U(t)

∂t
= F

(
U(t)

)
, t ∈

[
tn, tn+1

]
; (12)

U(tn) = Un, (13)

as the integral

U(t) = Un +

∫ tn+1

tn
F
(
U(τ)

)
dτ. (14)

To discretize the integral, a single time-step
[
tn, tn+1

]
is divided into a set of M sub-

intervals, with M + 1 temporal nodes given by

tn = tn,0 < tn,1 < . . . < tn,M = tn+1. (15)
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Note that for notational simplicity, tm = tn,m. Here, the temporal nodes m are chosen
to be the appropriate Gauss-Lobatto quadrature nodes. Thus, the discrete reformula-
tion of Eq. (14) for the unknowns Um ≈ U(tm) is given by the collocation equation

Um = Un + ∆t

M∑
j=0

qm,jF
(
U j , tj

)
, m = 1, . . . ,M, (16)

where the quadrature weights qm,j are given by

qm,j ≡
1

∆t

∫ tm

tn
lj(τ) dτ, m = 1, . . . ,M ; j = 0, . . . ,M (17)

and (lj)j=0,...,M are the Lagrange interpolating polynomials determined by the collo-
cation nodes.

Eq. (16) can be recast in matrix form as

U = Un + ∆tQF (18)

where

U =
[
U1, . . . , UM

]T
, (19)

F =
[
F (U0, t0), . . . , F (UM , tM )

]T
, (20)

Q =


q1,0 q1,1 . . . q1,M

q2,0 q2,1 . . . q2,M
...

...
. . .

...
qM,0 qM,1 . . . qM,M

 (21)

and Un = [Un, . . . , Un]T . Here, Q is referred to as the integration matrix and is of
size M × (M + 1).

Equation (18) is an implicit equation for the unknowns U at all of the quadrature
nodes and is equivalent to a fully implicit Gauss Runge-Kutta method. Indeed, since
the integration matrix Q is dense, each entry of U depends on all other entries of U
through the function values in the vector F. SDC methods can be viewed as an iterative
scheme to solve Eq. (18) based on lower-order substepping over the quadrature nodes,
hence avoiding the need to solve an implicit equation coupling the solution at all nodes
(as would result from a direct application of a Newton type method to Eq. (18). Here,
the iteration is based on an explicit update for advection and diffusion and an implicit
update for reactions, which gives the iterative update equation

Um+1,k+1 = Um,k+1 + ∆tm
[
FAD

(
Um,k+1

)
− FAD

(
Um,k

)]
+ ∆tm

[
FR

(
Um+1,k+1

)
− FR

(
Um+1,k

)]
+ ∆tSm+1,k (22)

for m = 0, . . . ,M − 1, where

Sm+1,k =≈ 1

∆t

∫ tm+1

tm
F
(
Uk
)

dt (23)
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is computed by integrating the Lagrange interpolating polynomial. Specifically

S1,k =

M∑
j=0

q1,jF
(
U j,k

)
(24)

Sm+1,k =

M∑
j=0

(qm+1,j − qm,j)F
(
U j,k

)
, m > 1. (25)

The process of solving Eq. (22) is referred as an SDC sweep. Given an approximation
to the solution, the SDC sweep updates the solution at all of the collocation nodes
tm. When the SDC iterations converge, the solution converges to the the spectral
collocation method determined by the quadrature nodes and hence is of order 2M
with M + 1 Gauss-Lobatto nodes. In standard SDC methods for ODEs, the formal
accuracy of the approximation improves by one order for each sweep so that 2M
iterations are required to recover 2M th-order accuracy; however, for stiff equations,
this convergence can in practice be much slower. Here, our goal is to use information
from coarser grids to accelerate convergence, reducing the number of iterations needed
at the finest grid levels. In order to monitor convergence, the SDC residual at the last
node is computed as follows:

RM,k = Un + q · Fk − UM,k, (26)

where q is the last row of Q. The SDC iterations are terminated when |RM,k| < εSDC,
where |·| is the L2-norm, or when the number of SDC iterations has reached a maximum
value K.

3.3. Treatment of reactions

As discussed above for the spatial discretization, approximating the reactions using
the cell averages is not fourth order accurate. There are several choices for how to
address this issue. Here we reconstruct high-order point values (as done for diffusion),
compute an update due to reactions, and then construct the integral average over
each cell from the point values. At coarse-fine grid boundaries, space-time interpolated
values are required in one ghost cell to perform the interpolation.

The implicit equation for the reaction terms in (22) is solved with Newton’s method
using an analytical form of the Jacobian matrix. In combustion applications, chemical
kinetics can be extremely stiff so that a sufficiently accurate initial guess for Newton’s
method may not be available on the first SDC sweep. Hence, we provide an option
to use the stiff ODE integrator DVODE to sub-cycle the evaluation of the reaction
term during the first SDC sweep (k = 1) in order to obtain a sufficiently accurate
initial guess. We use a tolerance of 10−14 in all implicit solves, and in practice, the
number of Newton iterations needed decreases as the SDC iterations converge due to
the increasingly good initial guess provided by the previous SDC iteration.

4. Adaptive Mesh Refinement

This section presents the extension of the SDC method to an adaptive mesh refinement
framework. First, the basic principles of AMR are reviewed in §4.1, followed by the
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description of the MLSDC approach in §4.2. The extension of the MLSDC method to
the AMR framework, referred to as AMLSDC, is then presented in §4.3. Here, some
care is needed in the computation of the numerical fluxes at the boundaries of grids
of different levels of resolution. An algorithmic representation of the entire AMLSDC
strategy is then presented in §4.4.

4.1. Grid Hierarchy

As depicted in Figure 1, the computational domain is represented by a collection of
grids at different levels of resolution. The levels are denoted by ` = 0, . . . , L. The
entire computational domain is covered by the coarsest level (` = 0); the finest level is
denoted by ` = L. The finer levels may or may not cover the entire domain; the grids
at each level are properly nested in the sense that the union of grids at level ` + 1 is
contained within the union of grids at level ` buffered by a layer of ghost cells except at
physical boundaries. Here the grid generation algorithm ensures that there are at least
four ghost cells between levels so that boundary data needed to advance level ` can
be computed from data at level `− 1. For ease of implementation of the interpolation
procedures, the current algorithm assumes a ratio of 2 in resolution between adjacent
levels and that the cell size on each level is independent of direction.

Figure 1. Typical AMR grid structures in two dimensions.

The grid hierarchy in AMR changes dynamically over time. The initial grid hierarchy
and subsequent regridding steps follow the procedure outlined in [3]: given grids at
level `, an error estimation procedure is employed to tag cells where the error, as
defined by user-specified routines, is above a given tolerance. The specific criteria for
refinement used here are discussed below. The tagged cells are grouped into rectangular
grids at level ` using the clustering algorithm given in [14]. These rectangular patches
are refined to form the grids at level ` + 1. Large patches can be broken into smaller
patches for distribution to multiple processors. The process is repeated until either
an error tolerance criterion is satisfied or a specified maximum level is reached. In
regions previously covered by fine grids the data are simply copied from old grids to
new; in regions that are newly refined, data are interpolated from underlying coarser
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grids. Note that in the present algorithm, the interpolation between grids is done
with a fourth-order stencil that conserves the sum of finite volumes. Furthermore, we
enforce that regridding only occurs starting from level ` = 0; i.e., we only regrid at
the beginning of a coarse time step.

4.2. Multi-Level Spectral Deferred Correction method

Here we discuss the multi-level integration algorithm that forms the basis of the adap-
tive time-stepping algorithm. In [9,10], variations of SDC methods are introduced in
which SDC sweeps are performed on a hierarchy of different discretization levels. The
general strategy of multi-level SDC (MLSDC) methods is to reduce the computational
cost per time step by replacing some of the SDC sweeps for a given problem by sweeps
done on a coarsened version of the problem. Solutions on different levels are coupled
in the same manner as in the Full Approximation Scheme (FAS) used in multigrid
methods for nonlinear problems [15]. These FAS corrections modify the coarse grid
problem so that it converges to the coarse representation of the fine grid solution. We
note that the MLSDC algorithm corresponds to the special case of the AMR algorithm
in which the entire domain is refined to the finest level.

4.2.1. Node hierarchy and V-cycle algorithm

An MLSDC method is constructed by defining sets of collocation nodes, denoted by
t` for ` = 0, . . . , L, within a single time-step

[
tn, tn+1

]
. Each level ` is comprised of

M` + 1 collocation nodes so that t` =
[
t0` , . . . , t

M`

`

]
where tn = t0` < · · · < tM`

` = tn+1.

By convention, the first level ` = 0 is taken to be the coarsest (i.e., level ` = 0 has
the fewest number of collocation nodes). There are several possible ways in which
coarsening of the Gaussian integration nodes can be defined:

(i) they are proper subsets of fine nodes (i.e., t` ⊂ t`+1) but do not necessarily
correspond to classical Gaussian quadrature rules;

(ii) they correspond to Gaussian quadrature rules but are not necessarily proper
subsets of fine nodes;

(iii) they correspond to composite integration rules comprised of lower-order quadra-
ture rules.

These coarsening strategies are depicted in Figure 2.
In the present algorithm, a coarsening strategy based on composite integration rules

is adopted since the formal order of quadrature on each level is the same, which facil-
itates restriction in time. Furthermore, all examples presented in this paper use three
Gauss-Lobatto quadrature nodes, or compositions thereof so that all quadrature rules
are formally 4th order accurate. For example, the composite node-to-node integration
matrices Q0 and Q1 corresponding to levels 0 and 1 depicted in Figure 2.(iii) are given
by

Q0 =
1

24

(
5 8 −1
4 16 4

)
(27)
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Figure 2. Hierarchy of MLSDC collocation points for a three-level MLSDC method using 9 (diamonds), 5
(triangles), and 3 (circles) collocation points. The coarsening strategies described in §4.2.1 are shown: (i)

proper subsets starting with 9 Gauss-Lobatto nodes, (ii) formal quadrature rules corresponding to 9, 5, and

3 point Gauss-Lobatto rules, and (iii) composite quadrature based on composing the 3 point Gauss-Lobatto
rule. The composite quadrature rules are differentiated by the coloring of the nodes, which denote the span

of the Lagrange polynomials used to compute quadrature weights. Note that, as shown, the only difference

(highlighted by the dashed vertical lines) between the first two strategies occurs on level 2.

and

Q1 =
1

48


5 8 −1 0 0
4 16 4 0 0
4 16 9 8 −1
4 16 8 16 4

 (28)

respectively.
Unlike the single-level SDC method presented at §3.2, an MLSDC iteration between

k and k + 1 proceeds by cycling through the levels using a multigrid V-cycle strategy
[15]. Basically, the idea is to ensure a two-way coupling between levels during an entire
MLSDC iteration:

(1) after updating the solution from k to k + 1 on a level ` with an SDC sweep,
a correction term is computed and interpolated to fine level ` + 1 in order to
enhance the accuracy of the fine solution prior a new SDC sweep;

(2) fine information is propagated to coarse levels through restriction and by apply-
ing a FAS correction term that will be detailed in §4.2.2.

When used in the context of AMR, data from coarse grids is required to provide
boundary conditions for finer levels. This necessitates that the iteration between levels
start at the coarsest level, ` = 0. Note that this differs from the algorithm presented
in [9], where the authors start from the finest level first. Note also that as the present
paper focuses on the extension of the method to AMR, the specific details regarding
interpolation between levels as well as the computation of correction terms will be
presented in §4.3.1.

4.2.2. Full Approximation Scheme (FAS) correction

In MLSDC, the goal is to use coarser levels in both space and time to accelerate the
convergence of the SDC iteration on finer levels. Because the system is nonlinear, a
correction term is added to the coarse grid to represent the discrepancy between the
coarse and fine grid solutions so that when the iteration is converged, the coarse-
grid residual vanishes. The correction term for the Full Approximation Scheme (FAS)
coarse MLSDC levels is derived in [9,10]. Using the previous notation, the equation to
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be solved on the finest level L is

UL = Un
L + ∆tQLFL. (29)

For FAS we assume that we have a number of coarser levels ` = 0, ..., L − 1 in space
and time and corresponding discretizations. Then given an approximate solution U`,
the corresponding residual equation is

U` + δU` −∆tQ`F`(U` + δU`) = U` −∆tQ`F`(U`) + R` (30)

where δU` is the correction and R` = Un
` + ∆tQ`F`(U`) − U` is the residual. In

nonlinear multigrid, the residual equation is approximated at level ` by replacing the
coarse residual R` by the restriction R``+1R`+1 of the fine residual R`+1, where R``+1

is the restriction operator between levels `+ 1 and `. If we note that Un
` = R``+1U

n
`+1

and U` = R``+1U`+1, then Equation (30) corresponds to a modified equation

U` + δU` −∆tQ`F`(U` + δU`) = Un
` + τ ` (31)

where τ ` is the FAS correction on the coarse level given by

τ ` = ∆t
(
R``+1Q`+1F`+1 (U`+1)−Q`F`

(
R``+1U`+1

))
. (32)

Note that in the context of MLSDC the restriction operator R``+1 incorporates both
temporal (between MLSDC node hierarchies) and spatial restriction. Specific details
regarding time and space restriction in the AMR setting will be presented in §4.3.2.

4.3. Extension to Adaptive Multi-Level Spectral Deferred Correction
method

The MLSDC strategy described in §4.2 provides the basis for a new approach to time
integration in AMR algorithms. The new algorithm, denoted Adaptive Multi-Level
Spectral Deferred Correction (AMLSDC), couples AMR levels within an MLSDC time
step iteration. As depicted in Figure 3, the coarsest AMR level becomes the coarsest
MLSDC level, and subsequent AMR levels are integrated with increasing numbers of
quadrature nodes. The procedure followed is very similar to the MLSDC algorithm
presented in §4.2.1: to evolve the system within one time step, several V-cycles through
the AMLSDC hierarchy are performed, with FAS corrections updated as the iterations
proceed.

In the standard AMR time step approach, the solution is computed at level ` and
then the fine solution at level `+1 is advanced using boundary conditions interpolated
in space and time from the coarser levels. Here, we perform SDC sweeps on different
levels in a manner similar to a multigrid V-cycle. To preserve the fourth-order accuracy
of the single grid algorithm we require a fourth-order spatial interpolation and a tem-
poral interpolation that is consistent with the underlying quadrature rules. As noted
earlier, we begin the V-cycle at the coarsest level to provide ghost-cell data for finer
levels. The composite quadrature rules used for the temporal integration facilitate the
construction of the restriction operator and the FAS correction.
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ℓ = 0

ℓ = 1

ℓ = 2

tn tn+1

Figure 3. AMLSDC hierarchy. Each AMR level is associated with its own MLSDC level. The coarsest AMR

level is integrated with 3 Gauss-Lobatto nodes. Subsequent AMR levels are integrated with increasing numbers
of composite Gauss-Lobatto nodes.

4.3.1. Space and time interpolation for interior nodes and boundary ghost cells

Recall that in the MLSDC approach, a space and time interpolation is performed on
a correction term in order to improve the solution at finer levels before performing
the subsequent SDC sweep. There are several ways that one can interpolate between
levels. It has been found empirically that the method adopted and outlined below
minimizes the number of AMLSDC V-cycles required to reach convergence on the test
cases considered. As mentioned before, care must be taken concerning ghost-cells, and
the interpolation procedure between levels ` and `+ 1 differs from the procedure used
at interior nodes as explained below.

4.3.1.1. Interior nodes. The fine level interior cells (i.e., non-ghost cells) are up-
dated according to the following procedure:

(1) Compute the differences ∆U` ≡ Uk+1
` −Uk

` at each coarse node in t`.
(2) Interpolate ∆U` in space (here a high-order conservative quartic polynomial

interpolation is employed) at each coarse node in t` to obtain ∆U`+1.
(3) Interpolate ∆U`+1 in time (using polynomial interpolation), from the coarse

nodes in t` to all fine nodes in t`+1 to obtain ∆U∗`+1. At this point ∆U∗`+1
represents a coarse correction defined at all fine Gauss-Lobatto nodes.

(4) Update fine interior cells according to Uk
`+1 ← Uk

`+1 + ∆U∗`+1 at each fine node
in t`+1.

At this point the interior cells of the fine solution at each fine temporal node have
been updated with interpolated corrections from the grids at the next coarsest level.
Again, this corresponds to conservative interpolation in space followed by polynomial
interpolation in time. Specifically, interior cells on the fine level ` = 1 at quadrature
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points corresponding to m = 1, 2, 3, 4 are updated using

U1,k
`+1 ← U1,k

`+1 +
3

8
I`+1
`

(
U0,k+1
` − U0,k

`

)
,

+
6

8
I`+1
`

(
U1,k+1
` − U1,k

`

)
− 1

8
I`+1
`

(
U2,k+1
` − U2,k

`=0

)
,

U2,k
`+1 ← U2,k

`+1 + I`+1
`

(
U1,k+1
` − U1,k

`

)
,

U3,k
`+1 ← U3,k

`+1 −
1

8
I`+1
`

(
U0,k+1
` − U0,k

`

)
,

+
6

8
I`+1
`

(
U1,k+1
`=0 − U1,k

`=0

)
+

3

8
I`+1
`

(
U2,k+1
`=0 − U2,k

`=0

)
,

U4,k
`+1 ← U4,k

`+1 + I`+1
`

(
U2,k+1
` − U2,k

`

)
,

(33)

where I`+1
` is the spatial interpolation operator between level ` to `+ 1.

4.3.1.2. Ghost-cells. Because an SDC sweep only advances the solution on interior
cells, there is no solution in the ghost-cells at collocation nodes t`+1 that can be
corrected with the term ∆U`. The strategy adopted here is that an equation similar
to Eq. (16) can be solved in the ghost-cells, where the initial solution is interpolated in
space from the solution at iteration k on level `, and the function values are interpolated
in space and time but from values freshly updated at k + 1 on level `. Consequently,
the values in ghost-cells at collocation nodes t`+1 are expressed as follows:

Um,k`+1 = I`+1
`

(
U0,k
`

)
+ ∆t

M∑̀
j=0

q̄`,m,jI`+1
`

(
F
(
U j,k+1
`

))
, m = 1, . . . ,M`, (34)

where q̄`,m,j are quadrature weights for integrating the coarse-grid interpolating
polynomial to the fine grid quadrature points. It should be noted that the values
in the ghost-cells could be simply filled by the interpolated initial solution, viz.

Um,k`+1 = I`+1
`

(
Um=0,k
`

)
for all m. However, it has been found that the use of Eq. (34)

improves the convergence of AMLSDC iterations significantly. This observation high-
lights the crucial role of boundary conditions at borders of AMR patches and the need
to impose values in ghost-cells consistent with the collocation node hierarchy.

4.3.2. Restriction and FAS correction term

As explained in §4.2.2, the FAS correction term τ is computed to represent the differ-
ence between the solution at level ` and the finer solution at level `+1. This procedure
requires the application of a restriction operator. Recall that in the present algorithm,
the node hierarchy is built with a composite rule (see §4.2.1), which facilitates the
construction of the restriction operator in space and time. Indeed, for each coarse col-
location node in t`, the coarse solution Um` in a cell is set to be the average of the
cells at level U2m

`+1 that cover the coarse cell. Consequently, the restriction operator is
simply point-injection in time and averaging in space.

The restriction of the solution and the FAS correction term are then computed
according to following procedure:
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(1) On level `, for each collocation node, for cells covered by fine cells at level `+ 1,

the solution Um,k+1
` is updated as follows:

Um,k+1
` ← R``+1U

2m,k+1
`+1 . (35)

(2) The coarse function evaluations on level ` are integrated over the quadrature
points as follows:

Im,k+1
` = ∆t

M∑̀
j=0

q`,m,jF
(
U j,k+1
`

)
≈
∫ tm

tn
F
(
Um,k+1
`

)
dt, (36)

where q`,m,j represents the entry of the quadrature matrix at level `.
(3) Similarly, the fine function evaluations on level ` + 1 are integrated over the

quadrature points as follows:

Im,k+1
`+1 = ∆t

M`+1∑
j=0

q`+1,m,jF
(
U j,k+1
`+1

)
≈
∫ tm

tn
F
(
Um,k+1
`+1

)
dt. (37)

(4) The fine integral Im,k+1
`+1 is restricted in both time and space to level ` in order

to obtain Im,k+1
`∗ , so that

Im,k+1
`∗ = R``+1I

2m,k+1
`+1 . (38)

(5) Finally the FAS correction term τm` is computed as follows:

τm` = Im,k+1
`∗ − Im,k+1

` . (39)

4.4. Adaptive Multi-Level Spectral Deferred Correction algorithm

In this section, an algorithmic overview of the AMLSDC algorithm is provided. We first
describe an SDC sweep, then show how the SDC sweeps are organized into a V-cycle.
Finally, we present the overall AMLSDC time step algorithm. The SDC sweep proce-
dure presented in §3.2 is shown here in Algorithm 1. Basically, within one AMLSDC
iteration from k to k + 1 on a specific level `, the SDC sweep updates the solution at
each temporal collocation node m. Note that in the description of this algorithm, the
superscript k refers to the current approximation, which may include updates from
coarser or finer grids.

The procedure followed during an AMLSDC iteration from k to k + 1 is described
in Algorithm 2. It starts with the solution and function evaluations from the previous
iteration k, and performs a V-cycle through the grid hierarchy, from the coarsest level
to the finest level, and then back from the finest to the coarsest level.

The Algorithm 3 presents the overall structure of the procedure to advance from a
time-step tn to tn+1 on the coarsest level. After each AMLSDC iteration over k, the
convergence is checked with Eq.(26). If |R(k+1)| < εSDC or if the max number K of
AMLSDC iterations is reached, viz. k = K, a last SDC sweep if performed over all
the levels of the grid hierarchy with τ kL = 0 to enforce discrete conservation.
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Algorithm 1: IMEX SDC sweep algorithm for a single level.

Data: Solution Uk and function values FAD
(
Uk
)

and FR
(
Uk
)

for each

collocation node tm, and (optionally) FAS corrections τ k.
Result: Solution Uk+1 and function values FAD

(
Uk+1

)
and FR

(
U(k+1)

)
.

# Compute integrals

S1,k ←
∑M

j=0 ∆tq1,j

(
FAD

(
U j,k

)
+ FR

(
U j,k

) )
for m = 1 . . .M − 1 do

Sm+1,k ←
∑M

j=0 ∆t (qm+1,j − qm,j)
(
FAD

(
U j,k

)
+ FR

(
U j,k

) )
end

# IMEX sub-stepping for correction
for m = 0 . . .M − 1 do

Um+1,k+1 ←
Um,k+1 + ∆tm

(
Fm,k+1
AD − Fm,kAD + Fm+1,k+1

R − Fm+1,k
R

)
+ ∆tSm+1,k + τm,k

Evaluate Fm+1,k+1
AD

Evaluate Fm+1,k+1
R

end
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Algorithm 2: AMLSDC V-cycle iteration for multi-level hierarchy.

Data: From previous iteration k, initial solution Uk
` on all levels ` and function

values F
(
Uk
`=0

)
on coarse level ` = 0.

Result: Solution Uk+1
` and function values F

(
Uk+1
`

)
on all levels.

# Perform SDC sweep on coarse level

Uk+1
`=0 ,F

k+1
`=0 ← SDCSweep

(
Uk
`=0,F

k
`=0

)
# Cycle from coarse to fine levels
for ` = 0 . . . L− 1 do

# Interpolate coarse corrections and re-evaluate
for m = 0 . . .M do

Um,k`+1 ← InterpolateInteriorNodes
(
Um,k` , Um,k+1

`

)
# §4.3.1.1

Um,k`+1 ← InterpolateGhostCells
(
Um=0,k
` , f

(
Um,k+1
`

))
# §4.3.1.2

Evaluate Fm,k`+1

end

Uk+1
`+1 ,F

k+1
`+1 ← SDCSweep

(
Uk
`+1,F

k
`+1, τ

k
`+1

)
end

# Cycle from fine to coarse levels
for ` = L− 1 . . . 0 do

# Restrict, compute FAS and re-evaluate
for m = 0 . . .M do

Um,k+1
` ← Restrict

(
Um,k+1
`+1

)
# Eq. (35)

τm,k+1
` ← FAS

(
F
(
Um,k+1
`

)
, F
(
Um,k+1
`+1

))
# Eqs (36) to (39)

end

Uk+1
` ,Fk+1

` ← SDCSweep
(
Uk+1
` ,Fk+1

` , τ k+1
`

)
end

Algorithm 3: Main structure of a time-step iteration from tn to tn+1.

Data: Solution Un
` on all levels ` at time t .

Result: Solution Un+1
` on all levels at time t+ ∆t.

# Initial solution is spread over all collocation nodes

Uk
` ← Un` ; Fk

` ← f
(
Un` , t

m=0
)

# Cycle through AMLSDC iterations
for k = 1 . . .K do

# Performs V-cycles

Uk+1
` ,Fk+1

` ← AMLSDC Vcycle
(
Uk
` ,F

k
`

)
# Check convergence criteria with Eq.(26)

if (k = K) or (|Rk+1| < εSDC) then
Return

end

end

# Perform last SDC sweep to enforce mass conservation
for ` = 0 . . . L do

Un+1
` ,Fn+1

` ← SDCSweep
(
Uk+1
` ,Fk+1

` , τ k+1
` ≡ 0

)
end
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5. Results

In this section we present several numerical tests of the AMLSDC algorithm as imple-
mented in a code referred to as RNS. The results illustrate the convergence properties
of the multi-level temporal integration scheme and the behavior with adaptively re-
fined spatial grids. The first three examples are non-reacting flows. The first of these
in Section §5.1 focuses on the temporal convergence properties of the algorithm for
inviscid propagation of an acoustic pulse using a fixed multi-level spatial discretization
and demonstrates that no loss of convergence occurs when the pulse passes through
coarse/fine grid boundaries. The second example in §5.2 demonstrates convergence
for viscous simulation of a vortical flow using adaptive meshes that track a moving
vortex. The results demonstrate that the same level of accuracy can be achieved using
an adaptive mesh strategy as a uniform spatial discretization over the entire domain.
The final non-reacting case considers the roll-up of a Kelvin-Helmholtz instability in
§5.3. This example, which is highly sensitive to noise, demonstrates that adaptive mesh
refinement does not generate any artifacts at boundaries of coarse and fine grids that
impact the overall solution. The last four examples consider viscous reacting flows.
The first of these in §5.4 examines the temporal convergence properties of the algo-
rithm on ignition and propagation of a premixed hydrogen flame. The second example
in §5.5 investigates the accuracy of the flame speed for a premixed methane flame.
This example illustrates the resolution requirements needed to accurately resolve the
flame. The third reacting case in §5.6 considers a dimethyl ether jet flame. This exam-
ple provides a more comprehensive validation of the algorithm for reacting flows and
demonstrates the capability of the code to treat models with extremely stiff chem-
istry. The final example in §5.7 models a fully three-dimensional turbulent hydrogen
jet flame, illustrating the utility of the methodology for DNS of turbulent reacting
flows.

5.1. Propagation of a Gaussian acoustic pulse

The first test case, taken from [5], is the propagation of a Gaussian acoustic pulse.
The initial conditions are given as

ρ (r) =

{
ρref +A exp

(
−16r2

)
cos (πr)6 if r < 1/2

0 if r ≥ 1/2,
(40)

p (r) = pref + ρ (r) c2
0, (41)

ux,y (r) = 0, (42)

E (r) = p (r) / (γ − 1) ρ (r) , (43)

where A is an amplification factor and r is the distance from the center of the domain.
Here ρref = 1.4, pref = 1, γ = 1.4 and c0 is a reference sound speed defined as
c0 =

√
γpref/ρref = 1. Note that this test case involves only the Euler equations; the

diffusion and reaction terms are set to zero in Eqs. (1-4). Moreover, only one fictitious
species of unity molecular weight is advanced in the system of equations.

The propagation of the acoustic pulse will be investigated first in 1D and compared
to the standard fourth-order RK4 algorithm using the WENO spatial reconstruction
described above. Then, the AMLSDC strategy will be compared to the results reported
in [5] for 2D and 3D simulations of the propagation of the Gaussian acoustic pulse.
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5.1.1. One-dimensional case

The domain is periodic with Lx = 1. Here the amplification factor is set to A =
1.4 × 10−2. We simulate to t = 10 so that the two acoustic waves travel 10 times
through the computational domain in the left and right direction from the initial
pulse, and then merge at the end of the simulation to form the same shape as the
initial pulse.

The procedures to perform temporal convergence tests are as follows:

• simulations are performed over a range CFL numbers: 0.3, 0.5, 0.7, 0.9 and 1.1.
• the computational domain is discretized with three different grid configurations.

Two single-level grids are investigated: a coarse grid, with Nx = 256 points
and a fine grid Nx = 512 points. In addition, a two-level set of grids is also
investigated where the computational domain is fully covered by a coarse grid
having Nx = 256 points with additional level of mesh refinement on the middle
40% of the domain.

For this initial test we focus on the temporal convergence of the algorithm. Con-
vergence is measured using the L1-norm of the difference of the density between the
computed solution and a reference solution defined to be the computed solution for
CFL = 0.3:

ερ = L1
ρ (Ssol − Sref ) =

∑Nx

1 |ρsol − ρref |
Nx

, (44)

where subscripts sol and ref identify the numerical solution and the reference solution.
Note that for the two-level mesh, a composite error is computed by omitting the
solution on parts of the coarse level that are covered by a finer level of refinement.
We also compare to the a fourth-order AMR Runge-Kutta algorithm coupled to the
fourth-order conservative WENO spatial discretization. For these simulations εSDC is
set to 1× 10−12 and K = 4.

Results are presented in Figure 4. The diamond and circle symbols represent ερ com-
puted for different CFL numbers with the single-level mesh discretized with 256 and
512 cells, respectively, whereas the cross symbol represents ερ computed for different
CFL numbers with the two-level grids. The solid gray line at the top is a slope repre-
senting fourth-order convergence. The solid and dotted lines represent the simulations
performed with the AMLSDC and the RK4 methods, respectively.

All simulations demonstrate fourth-order convergence in time. Overall, for all of the
different meshes investigated, the discretization errors computed with the AMLSDC
method are about a factor of six lower than results computed with the RK4 method.
The solutions computed with the AMLSDC method give a similar numerical error to
the solutions computed with the RK4 method, but for a CFL condition number twice
as large. From the results in Figure 4, we can also evaluate the spatial rate of conver-
gence, which is approximately 3.9 for each CFL number considered. As expected, the
magnitude of the errors for the two-level simulations lie between those from the coarse
and fine uniform grids since the pulse travels across both coarse and fine grids. Careful
treatment of the coarse / fine boundary for RK4 as described in [5] and for AMLSDC
as discussed above avoids any order reduction for the temporal discretization.
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SDC	Nx=256	Single	Level
SDC	Nx=512	Single	Level
SDC	Nx=256	Two	Levels
RK4	Nx=512	Single	Level
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Figure 4. L1-norm of the discretization error ερ in density for different CFL numbers. The diamond and circle

symbols represent ερ computed with the single-level mesh discretized with 256 and 512 cells, respectively,
whereas the cross symbol represents ερ computed with the two-level grids. The solid and dotted lines represent

the simulations performed with the AMLSDC and the RK4 methods, respectively. The solid grey line is a slope

representing fourth-order convergence.

5.1.2. Multi-dimensional cases

We now consider the multidimensional version of the acoustic wave propagation prop-
erty as given in [5]. In this case, simulations are performed in a periodic domain of
dimensions [0, 1]D, where D denotes the dimension. Here, the amplification factor is
set to A = 1.4× 10−1. Other parameters remain the same, except that the CFL num-
ber is fixed at 0.5. We simulate to 0.24 on a mesh hierarchy composed of two levels,
where coarse grids cover the domain and finer level covers [1/4, 3/4]D.

Results are presented in Tables 1 and 2 for the 2D and 3D simulations, respectively.
Note that in contrast to the one-dimensional case, the max-norm of the densities be-
tween results is reported here. Overall, fifth-order of convergence is observed for the
AMLSDC temporal integration strategy coupled with WENO reconstructions imple-
mented in the RNS code. This rate of convergence is higher than expected and suggests
that the error is dominated by WENO reconstruction. Here we compare directly to
the results in reported in [5]. For the coarser grids in three dimensions, the algorithm
of McCorquodale and Colella is more accurate but at finer resolution, the AMLSDC
is more accurate in both two and three dimensions.

5.2. Two-dimensional convection of a diffusive vortex

The next test case consists of the simulation of the convection of a two-dimensional
vortex in a fully periodic square domain including the effects of viscosity. Here, the
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1/64 :
1/128

rate
1/128 :
1/256

rate
1/256 :
1/512

rate
1/512 :
1/1024

RNS 5.30e−6 5.18 1.45e−7 5.58 3.04e−9 5.06 9.10e−11

[5] 7.28e−6 3.97 4.66e−7 3.95 3.01e−8 3.99 1.90e−9

Table 1. Convergence of difference in density at time 0.24 for 2D Gaussian acoustic pulse, computed with
fixed grids on two levels with the present RNS code (first line) and results reported in [5] (second line). Columns

alternate between showing the max-norm of the densities between results with the indicated mesh spacing at

the coarser of the two levels, and the convergence rate.

1/16 :
1/32

rate
1/32 :
1/64

rate
1/64 :
1/128

rate
1/128 :
1/256

RNS 9.35e−4 2.93 1.22e−4 4.53 5.31e−6 5.52 1.16e−7

[5] 6.84e−4 3.39 6.54e−5 3.69 5.06e−6 3.78 3.70e−7

Table 2. Convergence of difference in density at time 0.24 for 3D Gaussian acoustic pulse, computed with
fixed grids on two levels with the present RNS code (first line) and results reported in [5] (second line). Columns

alternate between showing the max-norm of the densities between results with the indicated mesh spaciness at
the coarser of the two levels, and the convergence rate.

formulation of the problem is based on a problem proposed in [16], except the gas
mixture is air (YO2

= 0.233 and YN2
= 0.767). The computational domain is a box

with Lx = Ly = 0.01m. The configuration is a single vortex superimposed on a uniform
flow field along both the x and y-directions. The stream function Ψ of the initial vortex
is given by

Ψ = Γ exp

(
−r2

2R2
v

)
, (45)

where r =
√

(x− x0)2 + (y − y0)2 is the radial distance from the center of the vortex

located at [x0, y0]. Here Γ and Rv are the vortex strength and radius, respectively. The
velocity field is then defined as

ux =
∂Ψ

∂x
+ uy,ref , uy =

∂Ψ

∂y
+ uy,ref . (46)

The initial pressure field is given by

p (r) = pref exp

(
−γ

2

(
Γ

cRv

)2

exp

(
− r

2

R2
v

))
, (47)

and the corresponding density and energy fields are computed through the equation
of state, assuming a constant temperature Tref = 300K. The pressure pref is set to
101325Pa. The vortex is located at [x0, y0] = [0, 0] with parameters Γ = 0.11m2/s and
Rv = 0.1. The vortex is convected in the diagonal direction at a uniform velocity uref =
(10, 10)m/s. The simulations are performed over a physical time of 5ms, corresponding
to 5 flow through times (FTT), in order to accumulate enough numerical errors from
the spatial discretization schemes. Note that the Reynolds number is about Re = 2100.
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At this Reynolds number, the viscous effects are significant so that after 5 FTT we
can measure the effects of both advection and diffusion.

Two different sets of meshes are tested. First, simulations are performed on single
level uniform grids with Nx = Ny = 16, 32, 64, 128, 256, 512. Second, three sets of
two-level grids are used: the coarse grid are chosen to be Nx, Ny = 16, 32, 64, 128, 256,
and an additional level of mesh refinement is super-imposed over the vortex. In order
to make this patch of mesh refinement follow the vortex during its convection, a cell

tagging criterion based on the absolute value of the vorticity
(
ω = ∂uy

∂x −
∂ux

∂y

)
is used.

Basically, all cells on the coarse grid where |ω| > 1 are tagged for refinement. Similar
to the study performed in §5.1 for the one-dimensional acoustic wave, the L1-norm
errors ε for the x−velocity are computed using Eq. (44). Here, the reference solution
is chosen to be the next finest solution. Furthermore, all simulations are performed
with a fixed CFL = 0.5 and εSDC is set to 1× 10−12, with K = 4.

Single-level	grid
Two-level	grid

-4

ɛ

10−6

10−5

10−4

10−3

0.01

0.1

Nx
16 32 128 256

Figure 5. L1-norm of the discretization error ε computed for the x-velocity and for different mesh discretiza-
tions. The black solid and dotted lines represent ε computed with the single-level and two-level grid configura-

tions, respectively. The gray solid line is a virtual slope representing fourth-order convergence.

Results are presented in Figure 5. The black solid and dotted lines represent the
L1-norm errors ε computed for the single-level and two-level simulations, respectively.
The gray solid line represents fourth-order convergence. Both the uniform grid and the
adaptive grid simulations show fourth-order convergence, consistent with the order of
accuracy of the discretization. Furthermore, the errors for the adaptive simulations are
comparable to the uniform grid at the same resolution as the finest level in the hierar-
chy, demonstrating that the dynamic refinement is accurately tracking the important
parts of the flow field.
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5.3. Two-dimensional Kelvin-Helmholtz Instability

In §5.1 and §5.2 we showed that the AMLSDC strategy coupled with the conserva-
tive finite-volume method exhibited fourth-order in both space and time, even with
dynamic mesh refinement. The next test case investigates a more complex and chal-
lenging problem. As discussed in [17], the Kelvin-Helmholtz instability problem is very
sensitive to numerical discretization errors due to the highly nonlinear behavior of this
type of flow. It has been shown that numerical errors can seed spurious nonphysical
small-scale structures in the flow. Moreover, the authors in [17] formulated initial con-
ditions to ensure that no spurious numerical errors result from boundary conditions
or from randomly generated noise that can trigger the instability mechanism.

The test case consists a central layer moving to the right with flow above and below
moving to the left. A vertical velocity perturbation is super-imposed to initiate the
instability. The initial conditions are given as follows:

ρ (x, y) = 1, (48)

ux (x, y) = uref ×
[
tanh

(
y − y1

a

)
− tanh

(
y − y2

a

)
− 1

]
, (49)

uy (x, y) = A sin (2πx)×
[
exp

(
−(y − y1)2

σ2

)
+ exp

(
−(y − y2)2

σ2

)]
, (50)

p (x, y) = pref , (51)

Y (x, y) =
1

2

[
tanh

(
y − y2

a

)
− tanh

(
y − y1

a

)
+ 2

]
. (52)

Here, a = 0.05, σ = 0.2 and A = 0.01 are parameters controlling the flow structure
and the velocity perturbation, while γ = 5/3, uref = 10m/s and pref = 10Pa, so that
the overall Mach number is M ≈ 0.25. The computational domain is a rectangular
domain with Lx = 1m and Ly = 2m. We also set y1 = 0.5 and y2 = 1.5. Here a
non-diffusive tracer is introduced to track the mixing process of the two fluid layers.

First, simulations are performed for single-level grids of resolutions 128×256, 256×
512, 512 × 1024 and 1024 × 2048 cells. Second, AMR simulations are performed by
discretizing the coarsest level with 128 × 256 cells, and successively adding levels of
mesh refinement with a refinement ratio of 2. The refinement criterion is based on the
gradient of the fictitious species, and coarse cells are refined if |∇Y |/Y > 0.9∆x. In
all simulations, the time-step is set to ∆t = 1 × 10−4s. Note that in order to make
a more sensitive test, this case uses the Euler equations; diffusion and reactive terms
are set to zero in Eqs. (1-4). Note that εSDC is set to 1× 10−12 and K = 4.

Figure 6 presents the field of fictitious species Y at time t = 2s for 4 levels of mesh
refinement. The color map ranges from Y = 0 (white color) to Y = 1 (green color). The
Kelvin-Helmholtz instability process is clearly observable, with the two layers rolling
over each other to create a vortex. Figure 6 shows the decomposition of the domain
for each level of mesh refinement. White, gray and black boxes mark the second, third
and fourth level of mesh refinement, respectively. As expected, the finest level of mesh
refinement follows the interface between the flow mixing layers.

Quantitative results are presented in Figure 7a and 7b. Figure 7a shows the profile of
the fictitious species Y taken along the y−axis at x = Lx/2 for different uniform mesh
resolutions. The dashed-dotted, dashed, dotted and solid lines correspond to simula-
tions performed on uniform grids of 128× 256, 256× 512, 512× 1024 and 1024× 2048
points, respectively. For clarity, only a portion of the domain is presented. In this
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Figure 6. Field of the fictive species Y at time t = 2s for 4 levels of mesh refinement. The color map ranges from
Y = 0 (white color) to Y = 1 (green color). White, gray and black boxes represent the domain decomposition

on the second, third and fourth level of mesh refinement, respectively. Note that the image shows only the low

portion of the domain.

figure, the convergence of the solution under mesh refinement is clearly observable.
Figure 7b shows a zoom of Figure 7a, with the addition of results from the AMR
simulations. The square, diamond and circle symbols represent AMR simulations per-
formed with 2, 3 and 4 levels of mesh refinement, respectively. The AMR simulations
achieve roughly the same accuracy as the corresponding uniform grid at the resolution
of the finest AMR level. This demonstrates that the AMR algorithm can accurately
represent the solution without introducing artifacts at the coarse / fine boundaries
that impact the flow.

5.4. One-dimensional ignition and propagation of a premixed hydrogen
flame

Now we address the behavior of the AMLSDC algorithm for reacting flows. The first
test case investigates the convergence properties of the AMLSDC strategy with de-
tailed chemical kinetics. The physical problem is based on the test case in [18]. It con-
sists of the ignition and propagation of a one-dimensional premixed hydrogen flame.
A 9−species H2/O2 reaction mechanism [19] is used. The computational domain is
(−2mm, 2mm) with periodic boundaries. The initial pressure, temperature and veloc-
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Figure 7. Profile of the fictive species Y taken along the y−axis at the location x = Lx/2, and for different uni-
form mesh resolutions. The dashed-dotted, dashed, dotted and solid lines correspond to simulations performed

on a uniform unique level composed of 128× 256, 256× 512, 512× 1024 and 1024× 2048 points, respectively.

The square, diamond and circle symbols represent AMR simulations performed with 2, 3 and 4 levels of mesh
refinement. Panel.(b) is a zoom of Panel.(a).
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ity of the flow are set to

p(x) = p0

[
1 + 0.1 exp

(
−x

2

r2
0

)]
, (53)

T (x) = T0 + T1 exp

(
−x

2

r2
0

)
, (54)

u(x) = u0 sin

(
2π

Lx
x

)
, (55)

where p0 = 1atm, T0 = 300K, T1 = 700K, u0 = 3m.s−1 and r0 = 0.1mm. Moreover,
the mole fractions of species composing the mixture are initially set to zero, except
that

X(H2) = 0.5 + 0.025 exp

(
−x

2

r2
0

)
, (56)

X(O2) = 0.25 + 0.05 exp

(
−x

2

r2
0

)
, (57)

X(N2) = 1−X(H2)−X(O2). (58)

For this case we focus on temporal accuracy. The simulations are performed over a
physical time of 8× 10−6s, with εSDC set to 1× 10−12 and K = 4. The procedures to
perform the temporal convergence tests are as follows:

• simulations are performed with time-steps: ∆t = 2, 2.5, 3.75, 5, 6.25, 7.5, 10 ×
10−9s,
• the computational domain is discretized with three different grid configurations.

First we consider a baseline mesh with Nx = 64 points. The other two config-
urations are obtained by adding one or two levels of mesh refinement over the
entire domain. In this case the coarser grids provide an initial approximation to
the finer grids, similar to multigrid algorithms.

Figure 8 presents the L1-norm errors ε for a selection of variables. Here, the refer-
ence solution is the solution with ∆t = 2 × 10−9s. In Figure 8, the circle, square and
cross symbols represent the variables X(HO2), X(N2) and the velocity u, respectively.
The solid, dotted and dashed lines represent simulations computed with the uniform
mesh (Nx = 64) and the two-level and three-level meshes, respectively. Fourth-order
temporal convergence is observed except for X(HO2) at the finest level of mesh refine-
ment. Because of the relatively low mole fraction of this species, the numerical error
is close to machine precision and round-off errors pollute the result.

The temporal rates of convergence have been computed from the L1-norm errors ε
by linear regression, and results are reported in Table 3 for a selection of variables.
Again, an overall fourth-order convergence rate is observed for all the variables and
for all set of mesh grids, except for X(HO2) because the errors become too small to
capture the actual rate of convergence of the AMLSDC method (see discussion above).
From the results in Figure 8 we can also the estimate the spatial convergence rate,
which is between 3.8 and 4.0 depending on the variables investigated.
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Figure 8. L1-norm of the discretization error ε computed for X(HO2), X(N2) and the velocity u, represented
by the circle, square and cross symbols, respectively. The solid, dotted and dashed lines represent simulations

computed with the uniform mesh (Nx = 64), the two-level and three-level AMR meshes, respectively. The gray

solid line is a virtual slope representing fourth-order convergence.

Mesh

Variable 1 level 2 levels 3 levels

ρ 4.386 4.332 3.97

T 4.383 4.332 4.0

u 4.386 4.329 4.133

X(HO2) 4.329 3.802 1.28

X(H2O2) 4.384 4.33 4.246

X(N2) 4.386 4.329 4.24
Table 3. Rates of convergence computed from the L1-norm errors ε by using a best-fitting method.

5.5. One-dimensional premixed methane/air flame

The next test case assesses the performance of the AMLSDC strategy with AMR,
for computing the laminar flame speed of a one-dimensional premixed methane/air
mixture. Here, the flame speed SL is computed from the fuel consumption using

SL =

∫ L
0 ω̇CH4

ρuY u
CH4

(59)

where L is the length of the computational domain and the superscript u corresponds
to values in the unburnt region.

In order to provide initial data for the RNS code, the premixed methane/air flame is
first computed with the low-Mach number solver PeleLM [20]. The low Mach number
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approach allows larger time steps, leading to faster convergence in cases where the low
Mach number assumption is justified [21–23]. Moreover, the PeleLM software employs
an active control strategy [24] to adapt the inflow velocity so that the flame will stabi-
lize at a desired location in the computational domain. Methane and air are injected at
the inflow of a 1D domain with a mixture ratio φ = 0.7. The corresponding mass frac-
tions imposed at the inlet are YCH4

= 0.03926, YO2
= 0.22374 and YN2

= 0.737, while
other species are set to zero. At the opposite end of the domain, a characteristic out-
flow condition is imposed. The flow is initialized with a low resolution approximation
to the flame. We model methane combustion using the GRIMECH 3.0 mechanism [25],
which consist of 53 species and 325 chemical reactions. At convergence of PeleLM, the
flame is stabilized in the middle of the computational domain and the inflow velocity
corresponds to the actual laminar flame speed SL. Here SL = 18.89cm/s, which is in
agreement with published measurements and computational studies [26]. The solution
is then extracted as an initial solution for the RNS code.

Several simulations are performed with the RNS code. The length of the compu-
tational domain is Lx = 0.03m. The domain is discretized with a base mesh with
Nx = 128 points, corresponding to ∆x ≈ 0.23mm, which gives approximately five
points across the flame fronts. The refinement criterion for AMR is set so that cells
where YHCCO > 5 × 10−7 are tagged for mesh refinement up to a maximum of 3
additional levels. Thus, at the finest level of mesh refinement ∆x ≈ 0.03mm, which
corresponds to a flame front discretized with about 40 points. Note that εSDC is set to
1 × 10−12 and K = 4; however, in practice convergence is reached for two AMLSDC
iteration (K = 2).

The case with 3 levels of refinement bears further scrutiny. As explained in §4.2,
the number of Gauss-Lobatto (GL) collocation nodes are increased on each additional
level of mesh refinement. The baseline algorithm uses 3 GL nodes, so that for 3 levels
of refinement, the finest level uses 17 GL nodes. In order to reduce the number of
GL collocation nodes at the finest level, another strategy is investigated here. The
maximum number of GL collocation nodes is set to 9 so that the two first levels of the
mesh grid hierarchy use the same time step (no subcycling). Thus both level 0 and
level 1 only use 3 GL nodes.

The time evolution of the flame speed computed for different levels of mesh refine-
ment is shown in Figure 9. Note that Figure 9b is a zoom of Figure 9a. The cross
and square symbols represent the solution computed with 1 and 2 levels of mesh re-
finement, respectively. Circle and diamond symbols represent the solution computed
with 3 levels of mesh refinement using 9 and 17 Gauss-Lobatto collocation nodes, re-
spectively. Figure 10 presents the profile of ω̇CH4

in the flame front at physical time
1.2× 10−3s. The symbols are the same as in Fig. 9.

Results for the simulation with 1 additional level of mesh refinement are obviously
not physical. For the simulation with 2 additional levels of mesh refinement, the flame
speed stabilizes around 20cm/s after a long simulation time, and the profile of ω̇CH4

no
longer shows nonphysical oscillations. When 3 additional levels of mesh refinement are
imposed, the flame speed quickly reaches a stable value of SL = 18.85cm/s, which is
very close to the results from the low-Mach-number simulation. This study shows the
impact of the mesh resolution on the ability of the numerical methods to accurately
capture the combustion process, and demonstrates that the AMR strategy helps to
capture the physics by only refining the mesh in the region of interest in order to save
computational effort.

Table 4 presents the coarse time-step ∆t and the mean wall-clock CPU time for
a coarse time step for each simulation performed. When each level is refined in time
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as well as space, the algorithm takes the same coarse time step. However when the
second level is not refined in time compared to level zero, the minimum time-step is
divided by a factor of 2 in order to maintain the stability of the algorithm. In this
case, the mean wall-clock CPU time per step is lower than when 17 Gauss-Lobatto
nodes are use at the finest level. However, since the global time-step is also lower by a
factor of 2, the overall computational time is consequently larger. From results shown
in Figs. 9 and 10, both strategies give virtually identical results. While reducing the
maximum number of Gauss-Lobatto collocation nodes may not seem to be efficient
in the present one-dimensional test case, we emphasize that a large number of GL
collocation nodes at the finest level will lead to large memory requirements three-
dimensional simulations. This requirement will become worse if additional levels of
mesh refinement are used, which highlights an important trade-off between memory
usage and computational efficiency of the AMLSDC strategy presented in this paper.
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Three-level	AMR	with	9	GL	nodes
Three-level	AMR	with	17	GL	nodes
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Figure 9. Time evolution of the flame speed computed for different levels of mesh refinement. The cross and

square symbols represent the solution computed with 1 and 2 levels of mesh refinement, respectively. Circle

and diamond symbols represent the solution computed with 3 levels of mesh refinement and with 9 and 17
Gauss-Lobatto collocation nodes, respectively. Panel b is a zoom of Panel a.

Total levels of the grid hierarchy

2 levels 3 levels 4 levels, 9 GL nodes 4 levels, 17 GL nodes

∆t[×10−7s] 1.4 1.4 0.7 1.4

CPU Time [s] 0.42 0.78 0.87 1.18
Table 4. Global time-step ∆t and mean wall-clock CPU time by iteration for each simulation performed over

different mesh and Gauss-Lobatto nodes hierarchy.

5.6. Two-dimensional dimethyl ether jet

The simulations presented in the previous sections are simplified test cases to assess the
numerical accuracy and stability of the AMLSDC strategy, as well as to validate the
physical behavior for reacting flows. Here we present a more complex case, simulation
of a reacting two-dimensional dimethyl ether (DME) jet. DME is a surrogate for
oxygenated fuels such as those produced from biomass. DME is numerically challenging
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Figure 10. Profile of ω̇CH4
in the flame front at the physical time 1.2× 10−3s. The cross and square symbols

represent the solution computed with 1 and 2 levels of mesh refinement, respectively. Circle and diamond
symbols represent the solution computed with 3 levels of mesh refinement and with 9 and 17 Gauss-Lobatto

collocation nodes, respectively.

to simulate because the chemistry involved is extremely stiff and would require very
small time-steps for purely explicit time-integration schemes, leading to unpractical
requirements; however, the AMLSDC strategy developed in the present paper is well-
suited to treating this type of combustion simulation.

The numerical set-up is similar to the simulations reported in [18]. The two-
dimensional computational domain consists of a square of dimensions −0.00114m<
x < 0.00114m and 0 < y < 0.00228m. A skeletal 39 species mechanism is used to
model the dimethyl ether chemistry [27]. A premixed jet of DME and nitrogen sur-
rounded by a weak co-flow of air flows into a preheated domain at 1525K filled with
air at an initial pressure of 40atm. The inflow pressure is also set to 40atm with
temperature, velocity and species mole fractions given by

T0 = ηTjet + (1− η)Tair, (60)

u0x = 0, (61)

u0y = ηujet + (1− η)uair, (62)

X0 = ηXjet + (1− η)Xair, (63)

where Tjet = 400K, Tair = 1525K, ujet = 51.2m.s−1, and uair = 0.1ujet. The profile of
the jet is controlled by the parameter η, which is given by

η =
1

2

(
tanh

x+ x0

σ
− tanh

x− x0

σ

)
, (64)
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where x0 = 5.69 × 10−5m and σ = 0.5x0. The species mole fractions for the jet and
air states are set to zero, except that

Xjet (CH3OCH3) = 0.2, (65)

Xjet (N2) = 0.8, (66)

Xair (O2) = 0.21, (67)

Xair (N2) = 0.79. (68)

An inflow boundary is used at the lower y-boundary, whereas characteristic outflow
boundary conditions are applied at the other three boundaries. A perturbation is
imposed to the jet through the application of a sinusoidal variation in the inflow
velocity:

uy (x, t) = u0y + ũη sin

(
2π

Lx
x

)
sin

(
2π

Lt
t

)
, (69)

where ũ = 10m.s−1, Lx = 0.00228m and Lt = 10−5s.
The computational domain is discretized with a base mesh of 512 × 512 cells with

a maximum of 2 additional levels of mesh refinement. Two criteria for adaptive mesh
refinement are employed; namely, all cells where the magnitude of the vorticity |ω| >
5× 105s−1 or YH > 5× 10−6 will be tagged for refinement. The simulation is run for a
physical time of 5× 10−5s. Figure 11 presents the instantaneous temperature field at
5×10−5s, together with the corresponding grid hierarchy of 3 levels of mesh. Note that
for clarity, only the portion of the domain immediately surrounding the jet is shown.
The uniform baseline mesh is shown in Figure 11a. Here, each black box corresponds
to a 16× 16 grid. Figures 11a and 11b show the level 1 and level 2 grids, respectively,
illustrating how dynamic refinement adapts to the solution. Only the regions featuring
significant vortical structures or chemical reactions are refined, resulting in significant
computational savings by using a coarse grid in parts of the domain where higher
resolution is not needed.

The AMLSDC simulation with the RNS code are compared to results of low-Mach-
number code PeleLM discussed above [20] and a high-order DNS code published in[18].
For this low Mach number flow (M ≈ 0.13) we expect acoustic waves to have a
negligible effect on the dynamics. The initial set-up in the low-Mach-number PeleLM

code is the same as with RNS, except that the domain is discretized on only one level
with a mesh resolution of 2048× 2048 points, which corresponds to the finest level of
refinement in the RNS simulation.

Qualitative comparisons are presented in Figure. 12. Instantaneous fields of tem-
perature and YHCO at the physical time t = 5 × 10−5s are shown on the left (a and
b) and right (c and d) panels, respectively. Simulations performed with the low-Mach-
number code PeleLM are shown in Figure 12a and 12c, and simulations with RNS code
are in presented in Figure 12b and 12d. The results of the two codes are virtually
indistinguishable in spite of the difference between the two physical formulations and
numerical method that are used. (High-order DNS results, not shown, show the same
level of agreement.) These results show that the AMLSDC strategy, coupled with an
IMEX treatment for the evaluation of combustion, is able to treat a complex reacting
flow with stiff chemistry.
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(a) (b) (c)

Figure 11. Instantaneous temperature field at 5×10−5s, and corresponding grid hierarchy: (a) baseline mesh,
(b) first level of mesh refinement, (c) second level of mesh refinement.

5.7. Three-dimensional hydrogen-air jet

Finally, we present a computationally intensive 3D AMR simulation. The numerical
set-up is similar to the 2D simulation in §5.6. The computational domain is a cube of
dimensions −0.0015m< x < 0.0015m, −0.0015m < y < 0.0015m and 0 < z < 0.003m.
A 9 species and 21 reaction mechanism is used to model the hydrogen chemistry [19].
Similar to the DME problem, a premixed jet of hydrogen and air surrounded by a weak
co-flow of air flows into the domain filled with air at p =10atm and T =1300K. The
inflow pressure is set to 10atm, with temperature, mean inflow velocity and species
mole fractions are set according to Eqs. (60)-(63), with Tjet = 400K, Tair = 1300K,
ujet = 100m.s−1 and uair = 0.1ujet. Note that the initial mean velocity is set in the z
direction, the other components are set to zero. The profile of the jet is controlled by
the parameter η, which is given by

η =
1

4

(
1− tanh

r − r0

σr

)(
1− tanh

z − z0

σz

)
ifz − z0 < 5σz, (70)

η = 0 otherwise. (71)

Here, r =
√
x2 + y2, r0 = 1.5×10−4m, z0 = 4×105m, σr = 0.1r0 and σz = 1.3×10−5. A

time-varying turbulent field is superimposed to the inflow velocity u (x, y, t) to perturb
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Figure 12. Instantaneous fields of temperature (panels (a) and (b)) and YHCO (panels (c) and (d)) at the
physical time t = 5 × 10−5s. Simulations performed with the low-Mach-number code PeleLM are depicted in

panels (a) and (c), while simulations with the RNS code are in depicted panels (b) and (d).

the jet. The species mole fractions for the jet and air states are set to zero, except that

Xjet (H2) = 0.7, (72)

Xjet (N2) = 0.3, (73)

Xair (O2) = 0.21, (74)

Xair (N2) = 0.79. (75)

The computational domain is discretized with a base mesh of 128× 128× 128 cells
with a maximum of 2 additional levels of mesh refinement. Three criteria for adaptive
mesh refinement are employed; namely, all cells where the magnitude of the vorticity
|ω| > 2 × 107s−1, or YH > 1 × 10−5, or ∇T > 200, will be tagged for refinement.
An inflow boundary is used at the lower z-boundary, whereas characteristic outflow
boundary conditions are applied at the other three boundaries.

Figure 13 presents instantaneous results at nearly 9 × 10−5s, where panel (a) is a
planar projection of the 3D temperature field weighted by the magnitude of vorticity,
and panel (b) is a volume rendering of YH2O2

.
At the beginning of the simulation, the flame is not present inside the domain and

no additional levels of mesh refinement are needed, leading to a very low computa-
tional cost. Similar to the previous 2D simulation presented in §5.6, the farther the
flame propagates into the domain, the more of the grid is refined to resolve the flame
with an appropriate level of discretization. Once the flame is fully established, the

32



(a) (b)

Figure 13. Three-dimensional simulation of a reacting hydrogen-air jet. Panel (a): planar projection of the 3D
temperature field weighted by the magnitude of vorticity. Panel (b): volume rendering of YH2O2

.

finest level occupies about 11% of the domain. Even at this relatively low percentage,
approximately 87% of the work is on the finest level. With 512 cores, the time for one
CPU to advance one zone for a time step is approximately 2.2 milliseconds on Cori
at NERSC. Strong scaling to 8192 cores when there are only roughly 123 zones per
core only increases this time to 3.2 milliseconds, illustrating the good scalability of
the algorithm. These results show that the AMLSDC strategy, coupled with an IMEX
treatment for the evaluation of combustion and WENO-based schemes for the spatial
discretization, is able to be effectively utilize high performance computing to simulate
a complex three-dimensional turbulent reacting flow.

6. Conclusion

We have presented a new fourth-order in space and time block-structured adaptive
mesh refinement algorithm for the reacting compressible Navier-Stokes equations. The
spatial discretization uses a higher-order finite volume treatment of advection and dif-
fusion. The advective terms are treated with a fourth-order finite volume method using
WENO reconstructions for forming flux values. The method uses an implicit / explicit
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SDC temporal integration strategy that treats advection and diffusion explicitly while
treating reactions implicitly, enabling the methodology to handle stiff reaction kinetics.

A key feature of the new methodology is the introduction of a new approach to
time-stepping on an adaptive mesh hierarchy, referred to as AMLSDC. This new ap-
proach sweeps through all levels of the grid hierarchy in a fashion analogous to a
multigrid V-cycle. A FAS correction term is included in the discretization so that the
coarse-solution accurately reflects the behavior on the fine grid. Using the solution on
coarser levels to provide an approximation to the solution on finer levels reduces the
computational effort compared to a traditional AMR time-stepping algorithm by re-
ducing the number of SDC sweeps needed to achieve a given level of accuracy. For the
reacting flow cases presented here, the AMLSDC iteration typically converges in two
V-cycles, resulting in significantly fewer function evaluations on the fine grid than the
traditional approach. The more direct coupling between coarse and fine grids also leads
to improved accuracy at coarse / fine grid boundaries and avoids any order reduction.

Numerical examples of both non-reacting and reacting flow demonstrated the
fourth-order convergence of the methodology in space and time. We also validated
the algorithm on a dimethyl ether jet flame, demonstrating that the new algorithm
was able to match previously published numerical results. Finally, we demonstrated
the utility of the new methodology for simulation of a turbulent hydrogen jet flame.
Overall, the algorithm developed here combines the utility of higher-order discretiza-
tion and adaptive mesh refinement, making it a potentially valuable approach for DNS
of reacting flows.
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