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Abstract

Many protein engineering problems involve finding mutations that produce proteins with a particular function.
Computational active learning is an attractive approach to discover desired biological activities. Traditional active learning
techniques have been optimized to iteratively improve classifier accuracy, not to quickly discover biologically significant
results. We report here a novel active learning technique, Most Informative Positive (MIP), which is tailored to biological
problems because it seeks novel and informative positive results. MIP active learning differs from traditional active learning
methods in two ways: (1) it preferentially seeks Positive (functionally active) examples; and (2) it may be effectively extended
to select gene regions suitable for high throughput combinatorial mutagenesis. We applied MIP to discover mutations in
the tumor suppressor protein p53 that reactivate mutated p53 found in human cancers. This is an important biomedical
goal because p53 mutants have been implicated in half of all human cancers, and restoring active p53 in tumors leads to
tumor regression. MIP found Positive (cancer rescue) p53 mutants in silico using 33% fewer experiments than traditional
non-MIP active learning, with only a minor decrease in classifier accuracy. Applying MIP to in vivo experimentation yielded
immediate Positive results. Ten different p53 mutations found in human cancers were paired in silico with all possible single
amino acid rescue mutations, from which MIP was used to select a Positive Region predicted to be enriched for p53 cancer
rescue mutants. In vivo assays showed that the predicted Positive Region: (1) had significantly more (p,0.01) new strong
cancer rescue mutants than control regions (Negative, and non-MIP active learning); (2) had slightly more new strong cancer
rescue mutants than an Expert region selected for purely biological considerations; and (3) rescued for the first time the
previously unrescuable p53 cancer mutant P152L.
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Introduction

Engineering existing proteins to change their properties [1,2] is

an important task with many applications as diverse as environ-

mental protection, synthetic biomaterials, and pharmacology [3–8].

Here we apply machine learning techniques to engineer the tumor

suppressor protein p53. We choose where to mutate cancerous p53

to restore tumor suppressor function, using structure-based features

derived from in silico protein homology models.

Biology of p53 Cancer Rescue Mutants
The p53 gene encodes a tumor suppressor protein that is a key

cellular defense against cancer. p53 mutations occur in about 50%

of human cancers. The vast majority of these mutations are single

point missense mutations in the p53 core domain [9–12]. Thus,

many human cancers express full-length p53 cancer mutants that

lack tumor suppressor function. As demonstrated in vivo, p53 cancer

mutants can be reactivated through intragenic second-site suppres-

sor (‘‘cancer rescue’’) mutations [13–15]. Reactivated p53 holds

great therapeutic promise because animal models have shown that

reintroduction of active p53, even in advanced tumors, leads to

tumor regression [16–18]. Consequently, there have been many

efforts to find small molecule drugs that mimic the cancer rescue

effect of reactivating p53 and suppressing tumor growth [19–24].

Despite some promising discoveries in p53 in specific, and small

molecule docking in general, these efforts are hampered by a limited

understanding of the p53 mutation-structure-function relationship

[11,25–28]. A larger and more diverse collection of cancer rescue

mutations that reactivate p53 cancer mutants is therefore desired.

Such a collection could lead to insight into general structural

changes that can rescue p53 cancer mutants, and thereby facilitate

rational drug design approaches by exploiting similar effects.

Several p53 cancer rescue mutants were identified previously by

random mutagenesis in a region spanning amino acid residues 225–

241. A portion of this region (235,239, and 240) thus was empirically

identified as a ‘‘Global Suppressor Motif’’, the first p53 cancer rescue

region [13]. The biological goal of this paper is to use computational

techniques to discover novel p53 cancer rescue mutants and regions.
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Integrated Experimental Design
The active learning paradigm was developed in the machine

learning community to reduce the number of expensive examples that

need to be acquired to build an accurate classifier [29]. Active learning

typically starts with a small initial amount of labeled data. The initial

data is used to determine a small informative set of unlabeled

examples to label. Once labeled, these new examples are added to the

pool of labeled data and a new unlabeled set is chosen. The process

repeatedly labels new data until the classifier reaches some pre-

determined criteria. Active learning methods increase the efficiency

and cost effectiveness of the process by reducing the number of

examples that need to be labeled. The active learning paradigm is

readily applicable to biological experimentation, as it reduces the

number of tedious and expensive experiments to be performed.

In a biological active learning paradigm, a computational

classifier is trained with an initial set of examples labeled by direct

experimentation. In the case of p53 cancer rescue mutants [4], this

initial set consists of empirically labeled p53 mutants. The

computational classifier then predicts which mutants should next

be labeled to most improve the classifier accuracy. These mutants

are then made, labeled by biological assays, and added to the

classifier. The cycle repeats, iteratively improving classifier

accuracy and adding to the set of p53 mutants with known

function. In this way, an optimum active learning classifier would

adequately explore a mutant sequence space while using a

minimum amount of expensive biological experimentation [4].

It is important to note that in the context of biological

experimentation, the slowest part of active learning is generally the

biological experiments required to label the unknown examples.

Therefore, any reference to speed in this paper refers to the

number of expensive biological experiments (i.e. iterations of the

active learning cycle) and not to computational speed. The

computational goal of this paper is to provide and test

computational methods that can discover gene regions wherein

mutations produce proteins with a desired function, while

requiring as few experiments as possible.

Traditional Active Learning
Here we present a formal description of the active learning

problem. Notation is summarized in Text S1.

Let T be the Total set of all examples under consideration. Each

example mutant, m, has a labeling function, A, such that

A mð Þ= Positive, Negative, or Unknown. During each active

learning iteration, i, T is partitioned into two groups: (1) TK ,i,

examples with Known labels (i.e., A mð Þ= Positive or Negative);

and (2) TU ,i, examples with Unknown labels (i.e., A mð Þ= Unknown).

A third set, TC,i, Chosen from TU ,i, contains n examples to be tested

and labeled in this step.

During each iteration the classifier provides a decision function,

h mð Þ, trained on the examples with a known label, TK,i. Each

unlabeled example m is predicted by the decision function h mð Þ to

be Positive or Negative.

A score function, score mð Þ, ranks each example in TU ,i . As a

control, Random active learning assigns each mutant a random

score. The n highest ranked examples become TC,i and are then

tested and labeled. TC,i is merged with TK ,i to create TK,iz1 and

deleted from TU ,i to create TU ,iz1.

In the case of the p53 cancer rescue mutants here, each example

mis a p53 mutant. A mð Þ= Positive if and only if mutant mexhibits

wild-type like p53 transcription activator activity.

Structure of this Paper
The Methods section presents a description of active learning,

the MIP paradigm, computational evaluation methods, and

the biological experimental design. The Results section shows

in silico results indicating the computational techniques best

suited to the p53 cancer rescue mutant problem and in vivo

results showing how well those techniques performed in

experiments. The Discussion section recites medical signifi-

cance, sketches possible computational extensions of the MIP

method, and concludes that a computational classifier and

modeled structure-based features can guide function-based

experimental discovery.

Methods

Active learning refers to a body of iterative machine learning

techniques designed to train an accurate classifier using the

minimum number of expensive examples [29–32]. The Most

Informative Positive (MIP) method, introduced here, preferentially

selects examples (i.e., p53 mutants) predicted to be both

informative and Positive. The MIP computational method can

be used to modify any active learning method that does not

consider predicted class as a criterion for choosing which

expensive examples to learn. Here, MIP modified the active

learning algorithms described in [4] and was used to select regions

in the p53 tumor suppressor protein.

This section contains:

(1) An introduction to structure-based features and active

learning.

(2) A description of the MIP active learning method.

(3) Metrics for evaluating how quickly an active learning

algorithm uncovers Positive mutants.

(4) The data sets used for in silico evaluation.

(5) The general Regional Selection algorithm.

(6) Regional Selection as implemented for the p53 cancer rescue

problem.

(7) A brief overview of the biological techniques used to test the

mutant regions.

Foundations: Structure-Based Features and Active
Learning

The techniques presented in this paper build on previous

research using machine learning techniques to find p53 cancer

Author Summary

Engineering proteins to acquire or enhance a particular
useful function is at the core of many biomedical
problems. This paper presents Most Informative Positive
(MIP) active learning, a novel integrated computational/
biological approach designed to help guide biological
discovery of novel and informative positive mutants. A
classifier, together with modeled structure-based features,
helps guide biological experiments and so accelerates
protein engineering studies. MIP reduces the number of
expensive biological experiments needed to achieve novel
and informative positive results. We used the MIP method
to discover novel p53 cancer rescue mutants. p53 is a
tumor suppressor protein, and destructive p53 mutations
have been implicated in half of all human cancers. Second-
site cancer rescue mutations restore p53 activity and
eventually may facilitate rational design of better cancer
drugs. This paper shows that, even in the first round of in
vivo experiments, MIP significantly increased the discovery
rate of novel and informative positive mutants.

Predicting Positive p53 Cancer Rescue Regions
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rescue mutants [3,4]. This section contains a brief overview of the

foundational structure-based features and active learning tech-

niques.

Structure-based features [3,4] for each mutant considered were

extracted from atomic-level homology models. Modeled mutant

proteins were produced in silico using the B chain of the wildtype

p53 core domain crystal structure (PDB ID: 1TSR) [33]. Amino

acids were substituted and model energies were minimized using

the AmberTM molecular modeling software [34]. Features [3]

were extracted from the minimized mutant model using 1D

sequence and amino acid substitution information, 2D surface

cartographical and electrostatic models, 3D steric analysis, and

‘‘4D’’ thermal stability predictions. Those features on the surface

of the p53 core domain outside known binding sites [35] were

compressed, resulting in 5,867 features per mutant. Conditional

Mutual Information Maximization [36] selected various subsets of

these features. It was found that 550 selected features resulted in

the highest classifier accuracy [4].

Seven previously studied [4] active learning algorithms were

used here. Two of these methods are standard active learning

techniques, taken from the literature, that work by separating the

data into two classes with an n-dimensional hyper-plane.

Minimum Marginal Hyperplane [37] selects examples based

on the margin, i.e., the ‘‘distance’’ from the hyper-plane.

Maximum Entropy [38] selects examples based on a class

probability calculated from the margin and is related to the

information theory concept of entropy. Two methods, Maxi-

mum Marginal Hyperplane and Minimum Entropy, are negative

controls expected to perform badly. They were created by

choosing the least informative example in the previous two

methods. The other three methods were created specifically for

this p53 cancer rescue research project [4] and are based on the

anticipated change in classifier accuracy or correlation coeffi-

cient if a given example is chosen and labeled. These include

Additive/Maximum Curiosity [4], which uses a cross-validated

correlation coefficient to estimate classifier accuracy, and

Additive Bayesian Surprise, which is based on the Kullback-

Leibler (KL) divergence [39].

MIP Methodology
MIP optimizes the mutants chosen so that they are most likely

to both improve the classifier and rapidly uncover Positive

examples. To understand why this is important, suppose that

Positive examples are sparse, as here, and one has only sufficient

resources to assay 100 new examples. MIP active learning seeks to

maximize the number of novel Positive examples discovered

during those 100 assays, and at the same time quickly improve

classifier accuracy. Traditional active learning also seeks to find an

accurate classifier quickly, but may discover only very few novel

Positives while so doing.

MIP active learning chooses TC,i by first considering only those

unlabeled examples predicted to be Positive (i.e., h mð Þ= Positive).

Those predicted to be Positive and having the highest score,

score mð Þ, are chosen for TC,i. Only if too few examples in TU ,i

were predicted to be Positive would a Negative informative

example be chosen for TC,i.

Active learning algorithms may become MIP algorithms by

preferentially labeling those informative examples that are also

predicted to be Positive. There are many ways to apply MIP to a

specific active learning algorithm. Here we give a simple exam-

ple, which shows a general approach and applies to nearly all

active learning algorithms. Recall that score mð Þ ranks unlabeled

examples, and high-ranking examples are chosen to be labeled at

the next iteration. To convert a traditional active learning

algorithm to a MIP active learning algorithm, it is sufficient to

weight the scoring function so that examples predicted to be

Positive have a higher score than those predicted to be Negative:

scoreMIP mð Þ~score mð Þzw ð1Þ

where w is a constant with wwmaxx score xð Þð Þ if h mð Þ= Positive,

and w~0 if h mð Þ= Negative.

Metrics: Halfway Point, Accuracy, Correlation Coefficient
For this paper and much biological research, the goal of

iterative exploration is to uncover as many informative Positive

examples as quickly as possible, i.e., with the fewest biological

experiments. We require metrics to measure success at this task.

The Halfway Point metric measures the fraction of iterations

necessary before half of all Positive examples in an unlabeled data

set are uncovered. Several additional metrics were explored to

measure how quickly Positive examples were found, including

enrichment factor and positive area, but only Halfway Point is

presented here for illustrative clarity because it is simple to explain

and it provides similar results to the other metrics.

Formally, Halfway Point = j � nð Þ=jTU ,1j, where j is the smallest

number of iterations such that TK, jz1 contains half of all Positive

mutants in TU ,1 and n~jTC,1j is the number of mutants labeled at

each iteration.

Since MIP optimizes a classifier to preferentially choose

Positive mutants for TC,i, it is reasonable to wonder if there may

be a corresponding loss of classifier accuracy. One way to

estimate classifier accuracy for an active learning algorithm is to

use the average 10-fold cross-validated accuracy and correla-

tion coefficient of the training set TK ,i across all iterations of one

or more of the Data Partitions described below. Accuracy is the

fraction of correct predictions. The correlation coefficient is a

standard of the machine learning community [40], and a better

measure than accuracy when the data set contains unbalanced

numbers of Positive and Negative examples. This is the usual

case for biological data sets such as the p53 cancer rescue

mutant data set, where the ratio of Negative to Positive mutants

is about 4:1.

Several other metrics for accuracy were explored, including

forward prediction accuracy, 3-point accuracy, and a more

complicated cross-validation strategy, OECV [4]. Average 10-fold

cross-validated accuracy and correlation coefficient were chosen

for illustrative clarity here because they are simple to explain and

give similar results to the other metrics.

Evaluation In Silico
To evaluate the MIP methodology in silico, MIP and non-MIP

versions of seven active learning methods plus a random control

were compared using the cross-validated metrics described above.

Three previously studied partitions of the data set [4] were used to

compare to previous research. These partitions test three common

starting conditions for active learning:

(1) Data Partition 1: Few mutants in TK ,1 and many in TU ,1, i.e.,

jTK,1j= 25 and jTU ,1j= 236.

(2) Data Partition 2: Similar numbers of mutants in TK ,1 and

TU ,1, i.e., jTK ,1j= 123 and jTU ,1j= 138.

(3) Data Partition 3: Many mutants in TK,1 and few in TU ,1, i.e.,

jTK,1j= 204 and jTU ,1j= 57.

The data set had about 20% Positive and 80% Negative

mutants.

Predicting Positive p53 Cancer Rescue Regions
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Regional Selection
Active learning and MIP as discussed so far apply to individual

mutants. Limitations of this approach include loss of classifier

accuracy when applied to new mutants from unfamiliar regions,

leading to many experiments that yielded few Positive examples

[4]. We generalized MIP active learning to apply to single amino

acid changes in contiguous gene regions. This generalization

supported several desirable outcomes. It allowed MIP active

learning to exploit high throughput saturation mutagenesis

techniques. The resulting training set enrichment should allow

more accurate prediction of new Positive mutants, especially those

requiring multiple amino acid changes. Regions enriched for

rescue mutants may indicate promising candidate drug target sites.

Formally, let Ma be the set of all mutants containing a cancer

mutation plus a single putative rescue at amino acid location a,

excluding mutants that exist in the initial training set TK ,1. Let

Positive Meana~
X

m[Positivea

score mð Þ
jPositiveaj

ð2Þ

where Positivea is the subset of Ma for which h mð Þ= Positive.

Positive regions were ranked by summing PositiveMeana across

each region. The Positive Region used below was chosen to be the

10 sequential amino acid long window with the highest average

PositiveMeana across that window.

Similarly, let

Negative Meana~
X

m[Negativea

score mð Þ
jNegativeaj

ð3Þ

where Negativea is the subset of Ma for which h mð Þ= Negative.

The Negative Region was chosen to be the 10 sequential amino

acid long window with the highest average NegativeMeana across

that window.

A similar non-MIP control region was constructed to be

informative to the classifier regardless of whether mutants were

predicted to be Positive or Negative. Let

Meana~
X

m[Ma

score mð Þ
jMaj

ð4Þ

The non-MIP Region was chosen to be the 10 sequential amino

acid long window with the highest average Meana across that

window.

Regional Selection Implementation
To detect p53 cancer rescue regions, the task is to identify areas

of the p53 core domain that are likely to have many Positive

cancer rescue mutants. We considered ten p53 cancer mutants

that are commonly found in human cancer [12] and can be

constructed so that they differ by two or more nucleic acid changes

from the wild-type. Ma consisted of these 10 common p53 cancer

mutants paired with all possible single amino acid changes at each

location in the core domain. All predictions and curiosity

calculations were made with a training set, TK ,1, of 463 mutants

(91 Positive and 372 Negative). These 463 mutants contained the

261 mutants used for the Data Partitions plus 202 created during

other experiments using variants of the yeast assay described below

[3,4,13,14].

The MIP Additive Curiosity [4] algorithm was used to choose

the regions because it performed best in in silico trials (see Results).

It was adapted to select three 10-amino acid long regions in the

p53 core domain: a Positive region, a Negative region, and a non-

MIP control region. A Weka Support Vector Machine, SMO,

[41], was used to predict the activity, h mð Þ, for each mutant. The

score for each mutant was calculated using MIP Additive

Curiosity. These values were averaged over every possible 10-

amino acid window. The classifier considered the resulting 34,776

putative cancer rescue mutants and selected ,3,980 mutants in

three regions. These regions were selected for the following criteria

as described above:

(1) Positive Region: predicted to be informative and contain

novel Positive mutants.

(2) Negative Region: a control predicted to be informative and

contain few Positive mutants.

(3) non-MIP Region: a control predicted to be informative

regardless of mutant activity.

As another control, these regions were compared to:

(4) Expert Region: a control selected for biological considerations

by an expert p53 cancer rescue biologist and hypothesized to

contain Positive cancer rescue mutants.

The Expert Region, spanning residues 114–123, was considered

a potential cancer rescue region because several Positive muta-

tions with multiple amino acid changes occurred there spontane-

ously in previous cancer rescue mutant screens. Therefore, this

region was considered likely to have cancer rescue mutants with

single amino acid changes ([13]; Brachmann, R. K., personal

communication).

No single amino acid change cancer rescue mutations had been

found previously in any of the Positive, Negative, non-MIP, or

Expert regions.

Regional Saturation Mutagenesis and Yeast Assay
All mutants produced in this study were initially created with

a novel regional saturation mutagenesis method based on the

Quick Change site-directed mutagenesis kit (Stratagene, La

Jolla, CA, USA), (manuscript in preparation). Briefly, a set

of overlapping degenerate oligonucleotides was designed such

that each primer contained exactly one random codon. A

standard site-directed mutagenesis reaction was performed

with a mixture of oligonucleotides that collectively represented

each possible codon change in the target region (30 base pairs).

The overlapping primer design prevented multiple mutations

in the same mutagenesis product. The generated mutants were

analyzed for p53 activity using a yeast-based p53 activity

assay [13].

Briefly, yeast cells were engineered to depend on active p53 for

expression of the URA3 gene. The URA3 gene product is required

for the synthesis of uracil. When cells are grown in medium lacking

uracil, cell growth is proportional to p53 activity (URA3

expression). The products of the saturation mutagenesis for all

ten p53 cancer mutants in all tested regions were first selected for

their ability to grow in the absence of uracil, indicating re-

activated p53. All putative positive mutants were analyzed by

DNA sequencing to determine the nature of the rescue mutation.

Mutations were then recreated by site-directed mutagenesis,

confirmed by resequencing, and retested.

As shown in Figure 1, mutants were designated as strong

Positive mutants if the yeast cell growth was very robust.

Mutants contained in yeasts that showed minimal growth were

designated as weak Positive mutants. Strong and weak Positive

mutants were collectively designated Positive. Those that did

not grow were designated Negative. p53 mutants are described

Predicting Positive p53 Cancer Rescue Regions
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as ,Cancer Mutation._,putative rescue mutation.. For

example, P152L_q100i identifies a cancer mutation with

leucine replacing proline at amino acid 152 and a putative

rescue mutation with isoleucine replacing glutamine at amino

acid 100.

Results

Most Informative Positive (MIP) active learning was designed to

find Positive examples, here p53 cancer rescue mutants, as quickly

as possible. Fourteen active learning methods (seven implemented

as MIP algorithms) and one random control were tested. The MIP

method Additive Curiosity performed best in silico, so was used to

select the Positive, Negative, and non-MIP regions. These regions

were assayed for novel p53 cancer rescue mutants.

This section contains:

(1) The in silico performance comparison of MIP and non-MIP

active learning algorithms.

(2) The regions selected by the regional selection algorithms.

(3) Novel rescue mutants discovered in the Positive, Negative,

and non-MIP regions.

(4) Other predicted p53 regions.

(5) 3D Visualizations of the putative rescue regions and

significant mutants.

Comparison of MIP and non-MIP Active Learning
Methods

For the purposes of this study, the best active learning method

was the method with the lowest Halfway Point, i.e., the method

that discovered half of the Positive mutants in the test set using the

smallest fraction of possible iterations. From Table 1, the best MIP

method reached the Halfway Point in 33% fewer iterations, and

the average MIP algorithm needed 28% fewer iterations, than

their non-MIP counterparts (p,0.006). Even the MIP versions of

the negative control methods, Maximum Marginal Hyperplane

and Minimum Entropy, performed better than any of the non-

MIP methods.

A graph showing the Halfway Point for select active learning

types with Data Partition 1, jTK,1j= 25 and jTU ,1j= 236, is

presented in Figure 2.

Applying the MIP methodology improves how quickly a given

active learning algorithm uncovers the Positive mutants, but

what effect does it have on overall classifier accuracy? The 10-

fold cross-validated results, presented in Table 2 and Table 3,

show that MIP reduced the cross-validated accuracy by on

average 1.1% (statistically significant, p-Value = 0.012) and the

correlation coefficient by on average 0.001 (not significant, p-

Value = 0.755).

Positive, Negative, Non-MIP, and Expert Regions
The MIP Additive Curiosity algorithm performed best in

Tables 1, 2, and 3, and so was used to select three 10 amino acid

long regions as the Positive, Negative, and non-MIP Regions. The

Positive Region from residues 96–105 had the highest average

PositiveMean score (.938) and contained 351 mutants predicted to

be Positive out of 1900 total. The Negative Region from residues

223–232 had the highest average NegativeMean score (.937) and

contained 33 mutants predicted to be Positive. The non-MIP

Region from residues 222–231 had the highest Mean score (.938)

and contained 53 mutants predicted to be Positive. For

comparison, the Expert Region from residues 114–123 had a

Figure 1. Growth results at different yeast concentrations. Wild-
type refers to yeasts containing the wild-type p53 strain. Mutants
annotated with (S) are strong Positive cancer rescue mutants, (W) are
weak Positive cancer rescue mutants, and (N) are Negative mutants.
Different numbers of yeast cells expressing wild-type or mutant p53 as
indicated were spotted on growth media. The numbers of cells spotted
(from left to right) was 10,000, 2,000 and 400 cells. Cells were then
cultured at 37uC for 2 days and cell growth was assessed by the
observable increase in cells, which is proportional to the starting cell
number. Rescue mutants were designated as ‘‘strong’’ if they showed
better growth at the 2,000 cells per spot position than the cancer
mutant at 10,000 cells per spot. Rescue mutants were considered
‘‘weak’’ when growth advantage was only obvious when the 10,000
cells per spot were compared between rescue mutant and cancer
mutant.
doi:10.1371/journal.pcbi.1000498.g001

Table 1. Active learning halfway points.

Active Learning Type non-MIP MIP

Additive Curiosity 0.472 0.317

Maximum Curiosity 0.406 0.341

Minimum Marginal Hyperplane 0.423 0.356

Additive Bayesian Surprise 0.463 0.365

Maximum Entropy 0.461 0.388

Minimum Entropy 0.666 0.381

Maximum Marginal Hyperplane 0.639 0.403

Random (100 Trials) 0.502 +/20.084

The Halfway Points are averaged across the three data sets discussed in the
Methods section. Applying a paired Student’s t-test to these seven active
learning methods reveals a two-tailed p-value = 0.011.
doi:10.1371/journal.pcbi.1000498.t001

Predicting Positive p53 Cancer Rescue Regions
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PositiveMean score of (.462) and contained 34 mutants predicted

to be Positive. See Figure 3 for the scores across possible Positive

and Negative Regions and Figure 4 for a graph illustrating those

regions within the p53 core domain.

Regional Saturation Mutagenesis produced all possible single

amino acid mutations in these regions combined with the 10

common cancer mutants tested. A biological selection was

Figure 2. MIP versus non-MIP halfway points. Shown are the fraction of Positive mutants uncovered by MIP Maximum Curiosity and Additive
Curiosity compared with their non-MIP counterparts. The intersections with the dotted horizontal line correspond to the Halfway Point.
doi:10.1371/journal.pcbi.1000498.g002

Table 2. 10-fold cross-validated accuracy.

Active Learning Type non-MIP MIP

Additive Curiosity 73.4% 73.5%

Maximum Curiosity 72.9% 72.7%

Minimum Marginal Hyperplane 73.4% 72.1%

Additive Bayesian Surprise 74.7% 72.5%

Maximum Entropy 73.3% 72.1%

Minimum Entropy 73.4% 72.3%

Maximum Marginal Hyperplane 74.9% 73.1%

Average of seven methods above 73.7% 72.6%

Random (100 Trials) 72.4% +/24.36

The average 10-fold cross-validated accuracy for all training sets across the
three Data Partitions discussed in the Methods section. Applying a paired
Student’s t-test to these seven active learning methods reveals a two-tailed p-
value = 0.012.
doi:10.1371/journal.pcbi.1000498.t002

Table 3. 10-fold cross-validated correlation coefficient.

Active Learning Type non-MIP MIP

Additive Curiosity .402 .423

Maximum Curiosity .390 .400

Minimum Marginal Hyperplane .404 .392

Additive Bayesian Surprise .428 .404

Maximum Entropy .393 .386

Minimum Entropy .370 .381

Maximum Marginal Hyperplane .409 .396

Average of seven methods above .399 .398

Random (100 Trials) .304 +/2.131

The average 10-fold cross-validated correlation coefficient for all training sets
across the three Data Partitions discussed in the Methods section. Applying a
paired Student’s t-test to these seven active learning methods reveals a two-
tailed p-value = 0.755.
doi:10.1371/journal.pcbi.1000498.t003
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performed to identify all rescue mutants based on re-activation of

p53 cancer mutants in vivo.

The summary of these results is recorded in Table 4. The Positive

Region contained 8 strong and 3 weak mutants, the Expert Regions

contained 6 strong and 7 weak mutants, while the Negative and

non-MIP regions each contained only 2 weak mutants.

Table 4 also shows the p-values associated with the null

hypothesis ‘‘Positive mutants are equally likely to be drawn from

the Positive Region as the Negative, non-MIP, or Expert Region.’’

From this analysis we are at least 99.5% confident (one-tail) that

the Positive Region contains more strong cancer rescue mutants

than the Negative or non-MIP Region. Similarly, we infer that

there is no significant difference between the number of cancer

rescue mutants in the Positive and Expert regions.

Novel p53 Cancer Rescue Mutants
The novel p53 cancer rescue mutants found in the Positive,

Negative, and non-MIP regions are presented in Table 5 and

summarized in Table 6. Three different cancer mutants were

rescued by these regions: P152L, R158L and G245S. R158L was

rescued strongly by the Positive Region, and weakly by the

Negative and non-MIP regions. G245S was rescued weakly by the

Negative and non-MIP regions. P152L, a previously unrescued

cancer mutant, was rescued only by the Positive Region, and

rescued strongly.

Other Predicted p53 Regions
In addition to Additive Curiosity, six other (non-Random) active

learning methods were considered. Table 7 shows the Positive,

Negative, and non-MIP regions selected by those other methods.

The non-MIP region was similar to the Negative region due to the

preponderance of predicted Negative mutants in the test set.

Minimum Entropy and Maximum Marginal Hyperplane are

versions of Maximum Entropy and Minimum Marginal Hyper-

plane (repectively) designed to do poorly, as negative controls.

Indeed, the Negative Region chosen by Minimum Entropy

overlaps nine of ten residues with the Positive Region chosen by

Minimum Marginal Hyperplane. Similarly the Negative Region

chosen by Maximum Marginal Hyperplane overlaps eight of ten

residues with the Positive Region chosen by Maximum Entropy.

One might wonder if the classifier would have found the Expert

region as a Positive Region in future experiments. Figure 5

indicates the next Positive regions that would be selected, after the

mutants found in the current Positive, Negative, and non-MIP

regions, but not the Expert region, were added to the training set.

There, the most informative positive mutants were found in the

region from 130–156, but the region 103–119 also scored well,

overlapping the Expert Region (114–123). This is somewhat

surprising as the classifier does not consider the Expert criteria,

i.e., whether or not this residue appeared in a rescue mutant

previously.

Figure 3. Scores for Positive and Negative Regions using Additive Curiosity. The score at each residue is the average Additive Curiosity
score for the preceding ten residues. For example, the Positive Score at residue 105 scores the region from 96–105 to test if it is the best Positive
Region. The non-MIP Scores are omitted because they are nearly indistinguishable from the Negative Scores.
doi:10.1371/journal.pcbi.1000498.g003
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Visualizations of Results
To better understand the regions selected and their relationship

to the p53 protein, it is helpful to consider molecular visualizations

of p53. Here, p53 is visualized with UCSF Chimera [33,42].

Figure 6 presents a visualization of the Positive, Negative, non-MIP,

and Expert regions on the p53 core domain. It is noteworthy that all

of the regions selected in this study appear near the surface of the

p53 molecule even though that was not explicitly a criterion in their

selection. Figure 7 shows the surface residues selected by the mutual

information algorithm [36] to be significant in determining the

activity of p53 mutants [12]. Figure 8 shows all known single amino

acid rescue mutations. Figure 9 shows the 10 cancer mutants

presented in Table 6, Figure 10 including the newly rescued P152L.

Figure 10 shows a different visualization of Figure 7.

Discussion

This paper introduced Most Informative Positive (MIP) active

learning, based on machine learning techniques and modeled

structure-based features, to help guide biological experiments. The

method discovered novel and informative positive results.

Figure 4. Regional saturation mutagenesis scores and selections. Count indicates the number of mutants predicted to be Positive at each
residue in the p53 core domain and is represented as black dots corresponding to the leftmost y-axis. Average Curiosity Score is the average Additive
Curiosity score for the mutants predicted to be Positive at each residue and is represented as solid purple diamonds connected with lines and
corresponding to the rightmost y-axis. The solid green circles indicate contiguous regions of 10 or more residues that have high Curiosity and are
predicted to be Positive. The solid red squares indicate the contiguous regions of 10 or more residues that have high Curiosity and are predicted to
be Negative. The purple diamonds indicate contiguous regions that an expert might expect to contain rescue mutants based on previous
experiments. The light blue +s with the lines descending to the x-axis indicate the region explored in Baroni, et al., (2004), though this region is not
treated specially, nor is even known, by the classifier. The Positive, non-MIP, Negative, and Expert regions ultimately selected are presented above the
plot and labeled with P, n, N, and E respectively. No single amino acid rescue mutations had been found previously in any of the Positive, non-MIP,
Negative, or Expert regions.
doi:10.1371/journal.pcbi.1000498.g004

Table 4. Novel Positive cancer rescue mutant counts &
statistics.

Positive Negative non-MIP Expert

(96–105) (223–232) (222–231) (114–123)

# Strong 8 0 0 6

p-value - 0.008 0.008 0.791

# Weak 3 2 2 7

p-value - 1.000 1.000 0.344

# Total 11 2 2 13

p-value - 0.022 0.022 0.839

The range of numbers listed below the region names are the amino acid
locations covered by that region. All p-values are two-tailed p-values; the
corresponding one-tailed values are half what is listed.
doi:10.1371/journal.pcbi.1000498.t004
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Medical Significance of the Data Set
The ten different cancer mutants studied here account for about

one million diagnosed cancers per year. The rescue of cancer

mutant P152L by a mutation in the Positive Region is the first

report that this common cancer mutant can be rescued at all.

The in silico identification and biological verification of a new

cancer rescue region is a small but hopefully useful step towards

selection of p53 surface regions that potentially result in p53

cancer rescue when appropriately modified. Such regions

eventually might be targeted by small molecule drugs. For

example, Figure 10 shows an area on the surface of the p53 core

domain that is: (1) away from the DNA binding region; (2)

overlapping or adjacent to the Positive Region; (3) implicated by

mutual information as influential in determining p53 activity;

and (4) located where structural changes restore functional

activity to some cancerous p53 mutants. Better knowledge of

p53 mutant structure-function relationships eventually might

lead to successful pharmaceutical manipulation of p53 mutant

function.

It has been hypothesized that different p53 cancer rescue

mutants have different rescue mechanisms corresponding to

different types of cancer mutations [22,25]. For example, the

Expert Region rescued the more frequent p53 cancer mutant

G245S while the Positive Region did not. Conversely, the Positive

Region is unique in its ability to rescue the P152L mutant.

Different rescue regions may implement different rescue mecha-

nisms, and so contribute different facets to knowledge of cancer

rescue.

Extensions
From Figure 4, the Expert Region had both low average

curiosity (.462) and relatively few (34) mutants predicted

Positive. Thus, this region was not selected by the classifier,

yet a significant number of rescue mutants were identified in

this region. This is not surprising, as the classifier was not

directly exposed to the criteria used for selecting the Expert

Region. Conversely, it is not surprising that an expert cancer

biologist could pick a fruitful region for reasons unknown to the

classifier. Adding expert-level knowledge to a performance

system is a long-time success story of artificial intelligence [43].

Integrating diverse expert sources and methods using bioinfor-

matics leads to biomedical discovery acceleration [44]. Adding

new features that encode expert or literature knowledge directly

into the feature vector that encodes each example is one simple

way to make expert knowledge visible to any feature-based

learning system.

Similarly, the classifier does not now weigh the medical impact

of different p53 cancer mutants. Cancer mutation occurrence

frequencies were not given to the classifier, so it is not surprising

that it rescued a less frequent cancer mutant than did the expert.

Weighting by cancer mutation frequency, or by any other desired

utility function, is one simple way to implement a selection

preference for some informative Positives over others.

Table 6. Novel Positive cancer rescue mutants by cancer
mutation.

Cancer Mutation Positive Negative Non-MIP

(96–105) (223–232) (222–231)

7: R249S 0 0 0

8: G245S 0 (1) (1)

14: H179R* 0 0 0

16: R273L 0 0 0

22: R248L 0 0 0

23: R158L 4 (1) (1)

26: R280T* 0 0 0

27: P151S* 0 0 0

32: P152L* 4+(3) 0 0

34: P278L* 0 0 0

Total 8+(3) 0+(2) 0+(2)

The number listed before the cancer mutant is the frequency rank of that
cancer mutant occurring in human cancer. e.g., R249S is the 7th most frequent
single codon p53 mutation found in human cancer biopsies [12]. Weak Positive
cancer rescue mutant counts are in parentheses. Mutants marked with asterisks
had never been rescued at the beginning of this study.
doi:10.1371/journal.pcbi.1000498.t006

Table 7. Region selection by active learning algorithms.

Active Learning Type Positive Negative non-MIP

Additive Curiosity 96–105 223–232 222–231

Maximum Curiosity 100–109 222–231 222–231

Minimum Marginal Hyperplane 141–150 108–117 122–131

Additive Bayesian Surprise 96–105 222–231 222–231

Maximum Entropy 243–252 206–215 206–215

Minimum Entropy 170–179 140–149 140–149

Maximum Marginal Hyperplane 210–219 241–250 241–250

The range of numbers listed below the region names are the amino acid
locations covered by that region. Note that Minimum Entropy and Maximum
Marginal Hyperplane were control active learning methods designed to work
particularly poorly. More details are available in the supporting information
Table S1.
doi:10.1371/journal.pcbi.1000498.t007

Table 5. Novel Positive cancer rescue mutants by name.

Positive Region Negative/non-MIP Region Artifactual Mutants

P152L_q100i R158L_e224p (W) P152L_s106p

P152L_q100s G245S_t231y (W) P152L_l137m

P152L_q100t P152L_d207e

P152L_y103c R158L_l201p

R158L_q100f R158L_q100h_q104a

R158L_q100n R158L_q100a_q104r

R158L_q100s

R158L_q100t

P152L_q100a (W)

P152L_k101e (W)

P152L_k101n (W)

Mutants are named with the cancer mutation appearing first with capital letters
followed by the putative cancer rescue mutation(s) appearing after the
underscore. P152L means that the proline at the 152nd amino acid location in
p53 is mutated into a leucine. The mutants appearing italicized with a (W), e.g.,
P152L_k101e, etc., are weak cancer rescue mutants. All others are strong cancer
rescue mutants. Artifactual Mutants are cancer rescue mutants that contained
more than one cancer rescue mutation or were not in any of the regions, due to
background mutagenesis and limitations in early versions of the saturation
mutagenesis technique.
doi:10.1371/journal.pcbi.1000498.t005
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Figure 5. New scores for Positive Regions using new data from the non-expert regions. The score at each residue is the average Additive
Curiosity score for those mutants predicted to be Positive for the preceding ten residues. The classifier here was trained with the original 463 mutants
used in Figure 4, all Positive cancer rescue mutants found in the Positive, Negative, and non-MIP Regions, and all mutants from those three regions
that were not Positive labeled as Negative. The vertical lines show the original Expert Region from residues 114–123.
doi:10.1371/journal.pcbi.1000498.g005

Figure 6. The four p53 regions visualized with the UCSF Chimera
package. The blue atoms near the DNA are the Expert Region, the red
atoms near the top are the Negative and non-MIP Regions, and the green
atoms near the bottom right are the Positive Region.
doi:10.1371/journal.pcbi.1000498.g006

Figure 7. Surface residues selected by mutual information. The
blue atoms are those on the p53 surface ranked in the top 50 by the
mutual information algorithm as influential on determining classifier
accuracy.
doi:10.1371/journal.pcbi.1000498.g007
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Conclusion
MIP active learning using modeled structural features was

introduced and shown to be a useful framework for func-

tion-based biological research. It provided an analysis tool

yielding results that otherwise would have been unexpected or

unavailable.

From the perspective of a biologist, the computer-selected

Positive Region would not have been chosen as a poten-

tial region for cancer rescue: It did not contain any known cancer

rescue mutants, and none of the random biology-based approach-

es had ever identified rescue activity in this region. This result

provides a proof-of-concept that a computational classifier and

modeled structure-based features can provide insight to help guide

function-based experimental discovery.

Availability
All code and data used in this paper is freely available online at

https://sourceforge.net/projects/p53cancerrescue/files/. The da-

ta is also available in Dataset S1.

All mutant DNA vectors are available under standard material

transfer agreements through the UCI Office of Technology

Alliances (http://www.ota.uci.edu/).

Supporting Information

Dataset S1 The raw curiosity scores used to generate Figures 3

& 5 and select the regions shown Table 7.

Found at: doi:10.1371/journal.pcbi.1000498.s001 (2.17 MB ZIP)

Table S1 Table 7 - Region Selection by Active Learning

Algorithms as dynamically generated by Microsoft Excel. Intended

for use with Dataset S1.

Found at: doi:10.1371/journal.pcbi.1000498.s002 (0.23 MB XLS)

Text S1 Active Learning Related Symbols

Found at: doi:10.1371/journal.pcbi.1000498.s003 (0.06 MB DOC)
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Figure 8. Single cancer rescue mutations. The green atoms
clustered mostly in the center of p53 are single amino acid cancer
rescue mutations. The blue atoms, such as those on the left and
in the lower right corner, are those single cancer rescue muta-
tions that are also selected by mutual information as shown in
Figure 7.
doi:10.1371/journal.pcbi.1000498.g008

Figure 9. The ten p53 cancer mutants studied here. The red
atoms clustered primarily near the top left are those cancer
mutations that are currently unrescuable. The green atoms clustered
primarily near the lower left are the rescuable cancer mutations.
The yellow atoms near the right are the newly rescued P152
mutation.
doi:10.1371/journal.pcbi.1000498.g009

Figure 10. Rescue by p53 surface residues. The above visualiza-
tion is the same as Figure 9 but rotated and with the surface displayed.
doi:10.1371/journal.pcbi.1000498.g010
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