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Abstract

A small group of lipid-conjugated Smac mimetics was synthesized to probe the influence of the 

position of lipidation on overall anti-cancer activity. Specifically, new compounds were modified 

with lipid(s) in position 3 and C-terminus. Previously described position 2 lipidated analog M11 

was also synthesized. The resulting mini library of Smacs lipidated in positions 2, 3 and C-

terminus was screened extensively in vitro against a total number of 50 diverse cancer cell lines 

revealing that both the position of lipidation as well as the type of lipid, influence their anti-cancer 

activity and cancer type specificity. Moreover, when used in combination therapy with inhibitor of 

menin−MLL1 protein interactions, position 2 modified analog SM2 showed strong synergistic 

anti-cancer properties. The most promising lipid-conjugated analogs SM2 and SM6, showed 

favorable pharmacokinetics and in vivo activity while administered subcutaneously in the 

preclinical mouse model. Collectively, our findings suggest that lipid modification of Smacs may 

be a viable approach in the development of anti-cancer therapeutic leads.
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Apoptosis, (programmed cell death, PCD) is a physiologically important mechanism 

controlling homeostasis, host defense, normal development, and the suppression of 

oncogenesis. Defects in apoptosis are associated with various human pathologies including 

cancer1–5, neurodegeneration6;7, and inflammatory and autoimmune diseases8;9. Apoptosis 

is regulated by Inhibitors of Apoptosis Proteins (IAPs)10–12 which contain one or more of 

Baculovirus IAP Repeat (BIR) domains12;13. BIRs are capable of binding to and inhibiting 

various caspases, enzymes belonging to cysteine–aspartyl proteases family, which are 

crucial for the apoptotic process14. Several mammalian IAPs have been identified to date 

including: neuronal IAP (NIAP), cellular IAP1 (cIAP1), cellular IAP2 (cIAP2), X 

chromosome-linked IAP (XIAP), survivin, ubiquitin-conjugating BIR domain enzyme 

apollon, melanoma IAP (ML-IAP) and IAP-like protein 2. XIAP appears to be the most 

potent caspase inhibitor family member15;16 which effectively inhibits three caspases: 

caspase-3, −7, and −917–20. IAPs function is in turn regulated by the second mitochondria 

derived activator of caspases (Smac), also called direct IAP binding protein with low pI 

(DIABLO)21;22 which has been identified as an endogenous pro-apoptotic antagonist of IAP 

proteins promoting programmed cell death21–25. Specifically, N-terminal tetrapeptide AVPI 

(Ala1-Val2-Pro3-Ile4) of Smac, so called binding motif21;22, is responsible for its pro-

apoptotic effects, as its binding to BIR2 and/or BIR3 domains abrogates the inhibition of 

caspases-3, −7, and −924;26. In the case of XIAP, both BIR2 and BIR3 domains are targeted 

by the homodimeric form of Smac while for cIAP1 and cIAP2 only BIR3 domain is engaged 

by a single AVPI binding motif27.

Mimetics of the second mitochondria derived activator of caspases (Smac) are promising 

therapeutic modalities in anticancer treatment28–47 with several analogs advancing into 

clinical trials32;41;42;46;48–50. Various monovalent and bivalent Smac analogs have been 

synthesized to date showing high potency, with bivalent compounds being particularly 

active35–37;39;43;44;47, due to their ability to bind both BIR2 and BIR3 XIAP domains.

We recently described potent, lipid-conjugated analogs of Smac51 with one compound 

(M11, Fig. 1) showing oral availability in murine model. Such encouraging results prompted 

our further systematic investigation of Smacs’ lipidation.
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Lipidation is often used in the drug development, including therapeutic peptides51–55 leading 

to new analogs with different pharmacological properties. Specifically, lipid-conjugation 

may result in increased oral availability56;57 and improved peptide stability, permeability and 

intestinal absorption54;58–66.

Mechanistically, attachment of the lipid moiety to therapeutic entity improves its binding to 

albumin58;67–69, which in turn increases the drug’s presence in circulation. Additional 

effects such as targeted excretion by the liver57;58;66 as well as interactions with high-density 

lipoprotein (HDL), and low-density lipoprotein (LDL) were also described70.

We previously established51 that lipidation of Smac analogs in position 2 is a viable method 

of modification. To ascertain the further utility of this approach we decided to synthesize 

additional analogs lipidated in position 3 and C-terminus. As changes in position 1 (N-

terminus) of Smacs are not well tolerated40;71 we decided not to probe such modifications.

Generally position 3 modified analogs had a sequence NMeAla-Tle-cis-4XPro-BHA, (SM4, 
SM6) or NMeAla-Tle-cis-4XPro-DPEA, (SM5, SM7), where X was either hexadecylthio- or 

3-pentadecylphenoxy-moiety (NMeAla-(N-methyl)alanine, Tletert-leucine, BHA-

benzhydrylamine, DPEA-2,2-diphenylethylamine). The core structure of these peptides is 

closely related to various potent analogs developed by Wang group35;37–39;43;44. The cis-

configuration in position 4 of the substituted proline (i.e. cis-4XPro) was chosen in consensus 

with the structure of the previously described monovalent potent compound, NMeAla-Tle-

(4S)-4-phenoxy-Pro-(R)-tetrahydronaphth-1-yl-amide (Kd = 5 nM) which was developed in 

Abbott Laboratories40 (Fig. 1). The sequence of C-terminally lipidated compounds (SM2, 
SM3) was based on the modified analogs we previously described47. In this case we decided 

to use the following sequence NMeAla-Tle-(4S)-4-phenoxy-Pro-Bip-NHCH2CH2-SH, 

containing both cis-4-phenoxy-proline and biphenylalanine (Bip). The C-terminal 

cysteamide provided means for further modification/lipidation based on the thiol group 

reactivity. This report describes the synthesis and biological properties of these novel 

compounds.

Smac mimetics lipidated in position 3 (SM4-SM7) were synthesized as either C-terminal 

benzhydryl-amides (BHA) or C-terminal 2,2-diphenylethyl-amides (DPEA). Synthesis was 

carried out in solution according to reaction Scheme 2, using if necessary, the CEM Liberty 

automatic microwave peptide synthesizer (CEM Corporation Inc., Matthews, NC) which 

was operated in manual mode, and applying tert-butoxycarbonyl (Boc) chemistry and 

standard, commercially available amino acid derivatives and reagents (Chem-Impex 

International, Inc., Wood Dale, IL). C-terminus-lipidated analogs (SM2, SM3) were 

synthesized sequentially from the non-lipidated parental compound (SM1) which was first 

S-alkylated giving SM2, which in turn was oxidized producing the corresponding sulfone 

(SM3) (see reaction Scheme 1). Parental analog SM1 (containing C-terminal cysteamide) 

was synthesized by the solid phase method using the CEM Liberty automatic microwave 

peptide synthesizer (CEM Corporation Inc., Matthews, NC), and 9-fluorenylmethyl-

oxycarbonyl (Fmoc) chemistry with cysteamine 4-methoxytrityl resin as a solid support 

(MilliporeSigma, Burlington, MA). A similar synthetic strategy was also used in the case of 

MEV analogs: MEV1 was synthesized on the solid support using Fmoc chemistry 
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(cysteamine 4-methoxytrityl resin) and was subsequently S-alkylated giving MEV2. M11 
was synthesized as previously described51. All compounds were purified by preparative 

reverse-phase high performance liquid chromatography (RP-HPLC) to >95% homogeneity 

and their purity was evaluated by the electrospray ionization mass spectrometry (ESI-MS) as 

well as an analytical RP-HPLC.

Detailed experimental methods, analytical data for obtained peptides as well as an example 

of MS-spectra and the corresponding analytical RP-HPLC profile are presented in 

Supplementary material.

Generally, synthesis of analogs SM1-SM7 proceeded efficiently and was carried out with 

minimal purification of the intermediates due to the simplicity of the final products. Overall, 

three different lipids were used to modify the desired compounds. C-terminal modification 

of SM1 was carried out exclusively using the stearyl chain (C18) afforded by 1-

bromooctadecane (see Scheme 1). The S-alkylated compound SM2 was synthesized using a 

previously described 1,1,3,3-tetramethylguanidine (TMG) driven alkylation of thiol(s) in 

organic solvents72 that we adapted to peptides47;51;73. Notably, S-alkylation of MEV1 was 

carried out in a similar manner, however 2.2 eq. of 1-bromooctadecane and 3 eq. of TMG 

were used (Scheme 3). Oxidation of thioether-containing compound SM2 to corresponding 

sulfone (SM3) was carried out using Oxone® (2KHSO5∙KHSO4∙K2SO4, 3 eq.) in methanol/

water (9:1) mixture for 5 hours74.

Preliminary screen of new Smac mimetics was carried out exclusively in vitro using growth 

inhibition assay (PrestoBlue™, Invitrogen, Carlsbad, CA) and various cancer cell lines. In 

our view this approach provides more reliable data than pure biophysical method(s) (e.g. 

measurement of binding affinity to BIR2/BIR3 XIAP domain) as it takes into account not 

only binding potency but also cell permeability, stability in the cell’s microenvironment, the 

compounds’ solubility, etc. Notably, we successfully used the same workflow before in 

studies that yielded M11 and potent bivalent analog SMA17–2X47;51. Obtained results are 

summarized in Tables 1&2 and an example of cell growth curves is presented in Fig. 2. 

Initially compounds SM1-SM7 and M1151 (orally active Smac mimetic lipidated in position 

2) were tested against a set of 20 diverse cancer cell lines including: breast cancer, liver 

cancer, leukemia, lymphoma, melanoma, prostate cancer, colon cancer and head & neck 

cancer (for full list see Table 2) which were arbitrarily selected. Analysis of obtained results 

suggested that the C-terminal lipidation strategy produced analogs with greater therapeutic 

potential which in turn prompted us to test compounds SM1-SM3 against additional cancer 

cell lines (in total, 50 cancer cell lines were tested, see Table 1 for complete list). Orally 

available analog M11 was also tested in this additional set. Generally, obtained results 

suggest that the position of lipidation as well as the type of lipid, influence bioactivity. In 

most cancer cell lines, the highest bioactivity was observed for analogs SM2/SM3 (C-

terminal lipidation), followed by SM6/SM7 (position 3 lipidation with 3-

pentadecylphenoxy-moiety) which were slightly more potent than position 2 modified 

analog M11. In the case of 3-pentadecylphenoxy-lipid-modified compounds, C-terminal 

benzhydryl-amide (BHA) seems to be preferred moiety (SM6) over C-terminal 2,2-

diphenylethyl-amide (DPEA) (SM7). Position 3 lipidation with hexadecylthio-group does 

not appear to be a good modification strategy as analogs SM4 and SM5 show low 
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bioactivity. However, in this case the preference for the type of C-terminal amide seems to 

be reversed as DPEA containing SM5 appears to be generally more active than BHA 

containing SM4. Oxidation of a thioether group to the corresponding sulfone (SM2 versus 
SM3) also affects bioactivity but observed effects seem to depend on the type of cancer cell 

line. Specifically, in most tested breast cancer cell lines improvement in bioactivity was 

observed due to oxidation, and a reversed trend was present in leukemia and the majority of 

prostate cancer cell lines, with limited influence observed for pancreatic and head & neck 

cancer cell lines. Lipid-conjugation in position 4 (SM2 versus SM1) generally appears to be 

beneficial although a reverse effect was also observed in the majority of prostate cancer and 

some lymphoma cell lines. Similar results were also observed before for position 2 

lipidation51. As in vitro bioactivity of our compounds varies, with EC50 values from ~140 

nM to 63.1 μM depending on the cancer cell line, it is difficult to draw clear conclusions 

regarding their utility as the same compound may be particularly active against one cancer 

cell line (e.g. SM2: FaDu/EC50=0.19±0.02 μM) and virtually inactive against another (e.g. 

SM2: LNCaP/EC50=63.1±5.7μM, VCaP/NA). Nonetheless, it is important to note that the 

reported to date in vitro results for various Smac mimetics showed even better bioactivity 

which in some cases was in low nanomolar range35;39;43–45;47 (i.e. 16: IC50= 0.9±0.2 nM44, 

24: IC50= 1.2±0.3 nM39, 13: IC50= 3.4±0.6 nM43, etc.).

Analysis of the data revealed also that analog SM2 exhibits significant bioactivity against 

various leukemia cell lines, including mixed lineage leukemia (MLL) cell lines KOPN-8 and 

Molt-4. Since acute leukemias with translocations of the MLL gene constitute about 5% to 

10% of acute leukemias in adults75 and 70% of acute leukemias in infants76 and remain 

mostly incurable diseases75;77, we decided to test whether SM2 shows synergistic effects 

when used in combination therapy with the inhibitor of menin−MLL1 protein interactions, 

(such interactions are crucial for leukemogenesis in the case of MLL78). To this end, we 

used an analog MEV2 which is modified/double-lipidated derivative of the previously 

described compound MCP-179. Results are summarized in Table 3. In this case, selected 

leukemia and lymphoma cell lines were treated with MEV1 (non-lipidated precursor), 

MEV2, SM2 and an equimolar mixture of MEV2 and SM2. Findings show that indeed in 

many cases using the Smac/menin−MLL1 inhibitor combination therapy may be beneficial 

(KOPN-8, MV-4–11, Nalm-6, SEM, CEM-R, CEM-TL, THP-1, TF-1), however results may 

vary depending on the type of cancer. To confirm those results we performed an additional 

flow cytometry apoptosis assay on the KOPN-8 leukemia cell line which has shown 

promising results in the preliminary cell growth inhibition assay. The KOPN-8 cells were 

treated with either 1 μM or 10 μM concentrations of SM2, MEV2, or an equimolar mixture 

of SM2 and MEV2, cultured for a specific period of time and subsequently stained with the 

annexin V and propidium iodide (PI). Obtained time course samples were assayed using the 

BD LSRFortessa™ cell analyzer (BD Biosciences, San Jose, CA). Results (Fig. 3) 

confirmed that indeed there are strong synergistic effects of lipidated Smac/menin−MLL1 

inhibitor combination therapy since an equimolar mixture of SM2 & MEV2 promoted 

markedly higher levels of apoptosis measured as annexinV+/PI+ double positive population 

in all time points (see Fig. 3B).
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To assess whether observed bioactivity of our lipidated Smac mimetics is indeed due to an 

increase in apoptosis, we measured enzymatic activity of caspases-3/7 and −9 in a metastatic 

breast cancer cell line, MDA-MB-231 and the MLL rearranged leukemia cell line, KOPN-8, 

that were treated with various concentrations (0–50 μM) of analogs: M11, MEV2, SM2 and 

SM6. Interestingly, in the case of MDA-MB-231 cells, only caspase-3/7 seem to be 

selectively affected by the treatment with lipidated Smac analogs (Fig. 4), regardless of the 

position of lipidation resulting in a ~6.4.7÷10.0 fold increase in enzymatic activity. 

Nonetheless, the most robust response seems to be generated by position 3 lipidated 

compound SM6 (~9.3 fold increase). Those results are in line with our previous findings51 

which reported the same caspase-3/7 specificity for both monomeric and dimeric position 2 

lipidated Smacs. Moreover, potent effects observed for all lipid modified Smac derivatives 

are still approximately 30% less effective than our previously described tail-to-tail dimer, 

SMAC17–2X47. In addition, menin−MLL1 inhibitor MEV2 had no effect on the promotion 

of apoptosis in the MDA-MB-231 cancer cells. However, in the KOPN-8 mixed lineage 

leukemia cell line only MEV2 shows any significant increase in enzymatic activity of 

caspase-3/7 (~3.6×) which perhaps is not surprising since MEV2 was designed to interfere 

with menin−MLL1 protein interactions. Similarly to Smacs, MEV2 does not affect 

caspase-9 driven apoptosis. In the same system lipidated Smacs exhibit very limited effects 

(SM2: ~1.5 and SM6: ~1.4 fold increase, M11: inactive).

To characterize further the most promising lipidated analogs SM2 and SM6, we performed 

preliminary pharmacokinetic (PK) studies in the mouse model. Experimental animals were 

individually weighed and subsequently received a single subcutaneous (SC) dose (10 mg/kg) 

of each compound. Blood samples were collected at specified time points via retro-orbital 

bleeding and analyzed using the Agilent 6460 Triple Quadrupole LC/MS System (Agilent 

Technologies, Santa Clara, CA). For analog SM2 observed plasma half-life (t1/2) is 

~28.8±1.0 h (Fig. 5A) and for the compound SM6 is t1/2≈39.9±1.0 h (Fig. 5). Those figures 

are significantly higher than previously observed values for position 2 lipidated monomeric 

analog M11 (t1/2≈2.2 h), and also its dimeric counterpart D7 (t1/2≈2.8 h)51.

The utility of analogs SM2 and SM6 was tested further in the preclinical subcutaneous 

engraftment mouse model in vivo. Both analogs were administered subcutaneously at 10 

mg/kg or 20 mg/kg doses (2×5 injections) in 2% Cremophor EL (SigmaAldrich, St Louis, 

MO). The treatment of the experimental, cancer bearing animals with both SM2 and SM6 
resulted in a dose dependent anticancer response (Fig.5). The treatment of animals with 10 

doses of both lipidated Smacs at the escalating dosage from 10 to 20 mg/kg showed 

progressively longer tumor growth delay values (Table 4) reaching ~8.0 and ~8.9 days of 

delay for SM2 and SM6 respectively at the 20 mg/kg dose. These results are slightly lower 

than values previously reported for position 2 lipidated analog M11 which exhibited ~11.0 

days of tumor growth delay at 15 mg/kg dose51. Moreover, lipidated Smac derivatives are 

significantly less active than previously described dimeric derivatives, including SMAC17–
2X47 with reported tumor growth delay values: ~10.2 days at 2.5 mg/kg dose and ~23.4 days 

at 7.5 mg/kg dose. Similarly, more promising in vivo activity profiles were also reported for 

2739, SM-16435, and SM-120044 with the latter providing complete and durable tumor 

regression in the preclinical animal model. Despite of lower potency, our data suggest that 
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lipid modification of Smac mimetics is a viable approach as the specific position of 

lipidation strongly affects anti-cancer properties/specificity. This provides the means for a 

“personalized” approach to treatment, especially, as a component(s) in combination therapy. 

In our view such promising properties warrant further experimentation.

In conclusion, a novel family of monomeric anticancer Smac mimetics lipidated in positions 

3 and C-terminus, was synthesized, and characterized in vitro and in vivo. An extensive 

screen for anticancer activity against various human cancer cell lines was performed 

revealing the role of the position of lipidation in overall anti-cancer activity and cancer type 

specificity. Selected analogs, SM2 and SM6, were characterized further in murine model 

showing favorable pharmacokinetics, and in vivo efficacy. Moreover, SM2 showed strong 

synergistic effects when used in combination with inhibitor of menin−MLL1 protein 

interactions. Collectively, our findings suggest that lipid modification of Smac mimetics is a 

viable approach in the development of novel anticancer candidates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of (A) orally available Smac analog M1151 and (B) a potent monovalent analog 

developed by Abbott Laboratories40.
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Figure 2. 
Examples of cell viability curves obtained for KOPN-8 mixed lineage leukemia cell line 

treated with (A) compounds lipidated in position 2 (M11) and C-terminus (SM2, SM3), and 

(B) compounds lipidated in position 3 (SM4-SM7).
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Figure 3. 
Apoptotic effects of selected compounds measured by flow cytometry in annexin V/PI assay 

(A), and corresponding annexin V+/PI+ double positive population values (B). KOPN-8 

mixed lineage leukemia cells were treated at 10 μM concentrations with lipidated 

compounds MEV2, SM2 and equimolar mixture of MEV2 and SM2.
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Figure 4. 
An increase in enzymatic activity of caspases-3/7 and −9 in MDAMB-231 and KOPN-8 

cells treated with peptides M11, SM2, SM6, and MEV2 at various concentrations (dose 

response).
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Figure 5. 
PK and in vivo experiments. Plasma levels after subcutaneous single dose administration of 

(A) SM2 and (B) SM6 at 10 mg/kg dose. Anticancer effects of SM2 and SM6 in a xenograft 

mouse model (C).
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Scheme 1. 
Synthesis of C-terminally lipidated Smac derivatives. Conditions: (a) 1-bromooctadecane/

BuOH/TMG/48h/90°C; (b) MeOH/H2O/Oxone®/5h. Abbreviations: BuOH–n-butanol, 

MeOH-methanol, Oxone®−2KHSO5∙KHSO4∙K2SO4, TMG–1,1,3,3-tetramethylguanidine.
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Scheme 2. 
Synthesis of Smac analogs lipidated in position 3. Conditions: (a) BHA or DPEA/

TCTU/NMM/DMSO/75°C/10 min/MW; (b) (1) 4M HCl in 1,4-dioxane/30 min; (2) Boc-

(L)-tertLeu-OH/TCTU/NMM/DMSO/75°C/10 min/MW; (c) (1) 4M HCl in 1,4-dioxane/30 

min (2) Boc-N-Me-(L)-Ala-OH/TCTU/NMM/DMSO/75°C/10 min/MW; (d) Tos-Cl/Py/

0°C→r.t./48 h; (e) (1) 3-pentadecylphenol/BuOH/TMG/48h/90°C; (2) TFA/30 min; (f) (1) 

1-hexadecanethiol/K2CO3/NMP/72 h/90°C; (2) TFA/30 min. Abbreviations: BHA–

benzhydrylamine, Boc-Hyp-OH–N-tertbutoxycarbonyl-trans-4-hydroxy-L-proline, Boc-(L)-

tertLeu-OH–N-tertbutoxycarbonyl-L-tert-leucine, Boc-N-Me-(L)-Ala-OH–N-

tertbutoxycarbonyl-N-methyl-L-alanine, BuOH–n-butanol, DMSO–dimethylsulfoxide, 

DPEA–2,2-diphenylethylamine, MW–microwave synthesis, NMM–N-methylmorpholine, 

NMP–N-methyl-2-pyrrolidone, Py–pyridine, TCTU–O-(6-chloro-1-hydrocibenzotriazol-1-

yl)-1,1,3,3-tetramethyluronium tetrafluoroborate, TFA–trifluoroacetic acid, TMG–1,1,3,3-

tetramethylguanidine.
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Scheme 3. 
Synthesis of MEV2 analog. Conditions: (a) 1-bromooctadecane/BuOH/TMG/48h/90°C. 

Abbreviations: BuOH–n-butanol,TMG–1,1,3,3-tetramethylguanidine.
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Table 1.

Cell growth inhibition of various cancer cell lines induced by analogs SM1-SM3 and M11.

Cell line SM1 SM2 SM3 M11

Breast Cancer EC50 (μM)

BTTR 9.0±0.7 2.1±0.2 1.2±0.1 5.5±0.3

BT-474 9.7±1.2 0.32±0.1 0.61±0.1 5.5±0.5

HCC1954 3.9±0.4 0.42±0.1 0.24±0.08 4.4±0.2

MCF-7 10.2±0.4 25.6±3.2 48.2±6.7 24.7±5.5

MDA-MB-231 6.0±0.9 24.7±1.1 69.8±14.4 3.0±0.3

MDA-MB-361 8.9±0.3 1.7±0.5 0.26±0.04 3.1±0.2

T-47D 7.0±0.3 1.3±0.06 1.3±0.03 7.7±0.3

Liver Cancer

HepG2 8.1±0.5 1.7±0.1 2.1±0.1 6.4±0.3

Hep3B 7.1±0.2 0.21±0.03 0.24±0.04 7.3±0.1

Leukemia

Jurkat 33.7±3.9 6.2±0.7 11.6±2.3 8.2±0.6

KOPN-8 1.1±0.07 1.0±0.06 1.1±0.04 2.4±0.3

HL-60 2.3±0.5 2.0±0.3 17.1±2.4 18.2±2.9

Molt-4 2.8±0.4 1.0±0.08 24.6±3.1 6.9±1.0

MV-4–11 2.4±0.3 34.9±3.2 29.2±3.7 12.9±1.2

Nalm-6 5.3±0.4 4.1±0.6 50.0±4.3 12.5±2.1

SEM 5.1±0.2 10.3±1.1 15.1±2.2 11.8±1.1

Lymphoma

CEM-R 2.9±0.1 8.9±0.3 12.6±1.5 7.6±0.6

CEM-TL 1.7±0.2 5.5±0.4 14.2±2.7 3.8±0.5

HH 2.5±0.1 19.9±1.6 18.2±2.1 8.2±1.1

Hut-78 2.8±0.2 3.6±0.2 6.3±0.3 6.9±0.8

THP-1 2.5±0.3 8.7±0.8 12.2±1.5 12.3±1.1

U937 5.7±0.8 NA NA 16.2±3.5

TF-1 11.7±0.7 3.2±0.4 4.9±0.1 12.2±1.1

Melanoma

M229 6.3±0.4 2.9±0.1 3.3±0.1 12.4±0.6

M233 6.9±0.3 9.5±0.3 11.3±0.7 21.4±1.7

M249 6.2±0.2 8.0±0.9 5.6±0.2 12.9±0.6

M263 5.6±0.2 2.9±0.1 2.8±0.1 12.8±0.1

SKMEL28 6.1±0.3 9.9±0.6 11.3±1.0 15.9±0.9

Osteosarcoma
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Cell line SM1 SM2 SM3 M11

MG63 5.4±0.5 2.7±0.1 4.3±0.1 15.1±1.0

Pancreatic Cancer

AsPC-1 19.7±2.1 1.2±0.08 2.0±0.1 80.3±6.2

BxPC-3 4.1±0.3 1.4±0.04 1.5±0.03 10.8±0.5

COLO 357/FG 8.0±0.2 NA NA NA

PANC-1 6.8±0.1 5.1±0.9 4.7±0.6 23.5±2.4

Prostate Cancer

22Rv1 5.8±0.8 51.0±4.6 10.0±0.7 6.1±0.2

DU145 6.2±0.7 12.8±2.3 12.0±0.3 7.0±0.9

LNCaP 5.6±0.2 63.1±5.7 10.5±0.8 6.6±0.3

PC-3 6.7±0.2 2.2±0.1 2.3±0.2 27.9±3.5

VCap 7.0±0.3 NA 13.9±1.3 6.9±0.3

Colon Cancer

HCT-116 5.8±0.4 1.5±0.06 1.5±0.04 9.4±0.7

SW480 9.2±1.4 12.9±1.2 25.7±3.3 18.3±0.9

T84 6.2±0.6 2.0±0.1 1.8±0.06 10.9±1.0

Head & Neck Cancer

FaDu 3.9±0.2 0.19±0.02 0.64±0.1 18.8±4.5

UM-SCC-1 5.8±0.1 1.1±0.05 1.7±0.02 9.0±0.3

UM-SCC-5 5.9±0.7 0.96±0.1 0.73±0.1 8.9±0.6

UM-SCC-6 6.0±0.5 5.4±0.3 4.8±0.3 23.6±3.9

UM-SCC-12 5.5±0.3 1.1±0.1 1.1±0.03 14.9±2.0

UM-SCC-38 4.1±0.3 0.33±0.08 0.14±0.01 9.1±0.5

UM-SCC-74A 7.4±0.5 2.3±0.1 2.2±0.1 16.7±1.4

UM-SCC-178 7.3±0.4 2.7±0.09 3.8±0.1 20.2±1.6
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Table 2.

Cell growth inhibition of various cancer cell lines induced by analogs SM4-SM6.

Cell line SM4 SM5 SM6 SM7

Breast Cancer EC50 (μM)

BTTR 11.1±0.6 5.1±0.4 1.3±0.3 2.9±0.2

BT-474 NA 10.8±2.1 2.7±0.3 7.0±0.3

HCC1954 NA 17.5±0.6 3.0±0.4 19.8±1.5

MCF-7 NA 16.8±0.7 13.4±1.3 24.4±1.6

MDA-MB-231 32.3±1.3 15.1±0.8 7.2±0.5 10.9±0.2

MDA-MB-361 NA 25.0±1.8 6.8±0.8 9.9±0.4

T-47D 28.2±3.3 19.3±0.9 6.2±0.3 9.0±0.2

Liver Cancer

HepG2 24.3±2.5 32.0±3.1 2.8±0.2 5.4±0.2

Hep3B 21.4±2.7 12.4±1.7 0.87±0.09 2.2±0.2

Leukemia

KOPN-8 8.2±0.5 5.9±0.5 3.6±1.1 11.1±0.9

Molt-4 11.2±0.6 12.1±0.8 22.5 ±1.6 NA

Nalm-6 NA 26.9±3.1 0.77±0.05 11.1±1.0

Til-1 3.9±0.2 3.8±0.2 9.0±0.5 12.2±0.7

Lymphoma

CEM-TL 6.2±0.1 6.5±0.7 3.6±0.9 3.5±0.3

TF-1 12.2±0.5 8.8±0.5 3.2±0.1 5.2±0.2

Melanoma

M229 22.6±3.3 11.6±2.4 9.8±0.2 14.3±0.4

Prostate Cancer

DU145 45.4±3.8 12.2±1.6 4.9±0.4 9.3±0.5

VCap 12.9±0.6 8.9±0.2 12.2±0.5 18.1±0.8

Colon Cancer

T84 NA 11.1±1.7 9.3±0.6 10.6±1.0

Head & Neck Cancer

FaDu 11.8±0.6 5.4±0.1 0.67±0.04 1.5±0.1
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Table 3.

Cell growth inhibition of various cancer cell lines induced by analogs MEV1, MEV2, SM2 and equimolar 

mixture of SM2 and MEV2.

Cell line MEV1 MEV2 SM2 MEV2+SM2

Leukemia EC50 (μM)

Jurkat NA 21.7±0.7 6.2±0.7 11.8±0.6

KOPN-8 NA 1.0±0.1 1.0±0.06 0.81±0.02

HL-60 NA 12.3±1.2 2.0±0.3 3.6±0.1

Molt-4 NA 6.5±0.5 1.0±0.08 4.2±0.3

MV-4–11 NA 9.2±0.6 34.9±3.2 4.9±0.2

Nalm-6 NA 5.6±0.2 4.1±0.6 2.9±0.2

SEM NA 6.4±0.2 10.3±1.1 3.2±0.1

Lymphoma

CEM-R NA 4.4±0.3 8.9±0.3 2.5±0.07

CEM-TL NA 5.9±0.3 5.5±0.4 2.9±0.2

THP-1 NA 9.5±0.3 8.7±0.8 2.0±0.1

TF-1 NA 4.2±0.2 3.2±0.4 2.4±0.06
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Table 4.

Tumor growth delay values obtained for SM2 and SM6 analogues.

Compound Dose (mg/kg) Delivery route Tumor Growth Delay at 500 mm3 (days)

SM2 10 SC ~3.0

SM2 20 SC ~8.0

SM6 10 SC ~5.1

SM6 20 SC ~8.9
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