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Abstract

Background: Circadian disruption is a potential risk factor for advanced prostate cancer, and 

light at night (LAN) exposure may disrupt circadian rhythms. We evaluated whether outdoor LAN 

increases the risk of prostate cancer.

Methods: We prospectively followed 49,148 participants in the Health Professionals Follow-up 

Study from 1986 through 2016. We estimated baseline and cumulative time-varying outdoor 

LAN with ~1 km2 resolution using data from the US Defense Meteorological Satellite 

Program’s Operational Linescan System, which was assigned to participants’ geocoded addresses. 

Participants reside in all 50 US states and reported a work or home address. We used multivariable 

Cox models to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association 

between outdoor LAN and risk of overall (7,175 cases) and fatal (915 cases) prostate cancer 

adjusting for individual and contextual factors.
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Results: There was no association between the interquartile range increase in cumulative 

LAN and total (HR:1.02, 95% CI 0.98, 1.06) or fatal (HR: 1.05, 95% CI: 0.96, 1.15) prostate 

cancer in adjusted models. However, there was a positive association between baseline LAN and 

total prostate cancer among non-movers (HR: 1.06, 95% CI:1.00,1.14) including among highly 

screened participants (HR: 1.11, 95% CI:1.01,1.23).

Conclusions: There was a suggestive positive association between baseline outdoor LAN and 

total prostate cancer. Additional studies with different measures of outdoor LAN and in more 

diverse populations are necessary.

Impact: To our knowledge, this is the first longitudinal cohort study exploring the relationship 

between outdoor LAN and prostate cancer.

Introduction

Prostate cancer is the most commonly diagnosed non-cutaneous cancer and the second 

leading cause of cancer death in men living in the United States(1). Despite its 

contribution to cancer burden, there are few established risk factors for prostate cancer, 

particularly potentially modifiable factors(2). Night shift work, via its influence on circadian 

rhythms, is considered probably carcinogenic to humans (Group 2A) by the World 

Health Organization(3,4). Multiple studies have reported associations between measures 

of circadian disruption and prostate cancer(5–9). Specifically, sleep problems, germline 

variants in circadian genes, and lower melatonin levels were associated with an increased 

risk of advanced prostate cancer in cohorts based in Iceland and the United States(5–7,10).

Circadian rhythms are behavioral, mental, and physical changes that lead to daily 

oscillations of biochemical and physiologic processes controlled by the suprachiasmatic 

nucleus, an internal clock comprised of 20,000 nerve cells located in the hypothalamus, that 

receive direct input from the eyes. Light plays a central role in regulating circadian rhythms 

through its direct input to the suprachiasmatic nucleus, it inhibits the production of the 

sleep promoting hormone melatonin, which has anticarcinogenic properties, and deregulates 

circadian genes involved in cancer pathways(11–13). In animal models, light at night can 

disrupt circadian rhythms and increases tumor growth across malignancies(13–16).

Artificial light at night is ubiquitous in modern societies and is a potentially modifiable 

factor. The amount of outdoor light at night (LAN) on the Earth’s surface has increased 

over time(17). To date, investigators have found a suggestive increase in breast cancer risk 

associated with higher outdoor LAN(18–24). Considering the impact of light on circadian 

rhythms, the association between different measures of circadian disruption and prostate 

cancer, and the suggestive results of breast cancer and outdoor LAN, outdoor LAN may be a 

risk factor for prostate cancer, another sex hormone-dependent cancer. The epidemiological 

data on outdoor LAN and prostate cancer risk is limited(22,25–27).

In this study, we examined the association between outdoor LAN and prostate cancer 

risk in a nationwide prospective cohort of health professionals. One of the challenges 

in defining prostate cancer etiology is its biologic and clinical heterogeneity. Moreover, 

routine screening with prostate-specific antigen (PSA) has led to increased detection and 
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diagnosis of asymptomatic, non-aggressive prostate cancer in health-conscious individuals, 

but the increased likelihood of diagnosis in these populations may not correspond to an 

increased risk of disease nor adverse disease-related outcomes(28–31). As such, there is a 

need to investigate risk factors for more aggressive disease and to carefully account for PSA 

screening. We hypothesized that participants living in locations of greater outdoor LAN have 

an increased risk of prostate cancer, particularly fatal prostate cancer.

Materials and Methods

Study population

We conducted this study in the Health Professionals Follow-up Study (HPFS), an ongoing 

cohort of 51,529 health professionals aged 40–75 years at enrollment in 1986 who identified 

as men. Participants completed questionnaires to provide information on demographics, 

lifestyle factors, medical history, and health outcomes including prostate cancer at baseline 

and every two years thereafter. Geocoded addresses were available from questionnaire 

mailing records from 1988 through 2016 and were located throughout the United States, 

representing all 50 states. Participants were asked if the listed mailing address was their 

home, work, or other address on the 1988 questionnaire. We used the 1988 address for 1986 

to begin follow-up in 1986. The follow-up rate at each two-year cycle exceeded 90% and 

mortality follow-up was over 98%(32).

We excluded participants who had a history of cancer prior to enrollment (other than 

nonmelanoma skin cancer) (N=2,076), were missing data on outdoor LAN (N=267), died 

before the return of the 1986 questionnaire (N=2), or had a missing date of birth (N=36). 

The study protocol was approved by the institutional review board of Harvard T.H. Chan 

School of Public Health and those of participating cancer registries as required.

Prostate cancer ascertainment

Incident prostate cancer diagnoses were first reported by participants on biennial 

questionnaires. Study personnel obtained and reviewed medical records, pathology reports, 

and a physician questionnaire for each reported case to confirm the diagnosis, and to extract 

information on pathology and clinical features of the tumor. If records were unavailable, 

diagnoses were confirmed via linkage to state tumor registries. Deaths were identified 

by reports from next of kin, postal service, and the National Death Index. We obtained 

data on treatment, disease progression, and metastases through biennial disease-specific 

questionnaires.

Our main analyses focused on the incidence of total or fatal prostate cancer, and as 

a secondary outcome, lethal prostate cancer. Total prostate cancer was defined as any 

diagnosis of prostate cancer, fatal as death from prostate cancer as the primary cause, 

and lethal as death with prostate cancer as the primary cause of death or development of 

metastasis at diagnosis (stage M1) or during follow-up. The event time for all outcomes was 

date of first diagnosis of prostate cancer.
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Outdoor LAN ascertainment

Average annual outdoor LAN was derived from satellite imagery data from the US 

Defense Meteorological Satellite Program’s (DMSP’s) Operational Linescan System, which 

is maintained by the National Oceanic and Atmospheric Administration’s (NOAA’s) Earth 

Observation Group(33). These annual averages were calculated after excluding sun and 

moon luminance, outer quarters of satellite swath, clouds, glare, fires, and atmospheric 

lightning. The imagery data has a resolution of 1 km2. We used the DMSP Global Radiance 

Calibrated Nighttime Lights high-dynamic range data because previous studies showed 

that the low dynamic range data did not accurately reflect differences in LAN across 

urban areas(34). We used interannual calibration coefficients by NOAA to derive exposure 

estimates to ensure comparability across years and satellites(35). These high-dynamic data 

were available for 1996, 1999, 2000, 2002, 2004, 2005, and 2010. We assigned an outdoor 

LAN value to each participant address – home, work, or other - over follow-up, addresses 

and LAN values were updated every two years. For addresses between 1988 and 1998, we 

assigned the LAN value based on data from 1996. We assigned the LAN value in 1988 to 

the 1986 time period. For addresses in 1998, we assigned the LAN value based on data 

from 1999. For addresses after 1998, we assigned exposure based on the most recent past 

LAN measure. We calculated cumulative average outdoor LAN for each participant at each 

biennial questionnaire, accounting for changes in participant addresses and LAN over time. 

As a secondary exposure, we examined the association between baseline LAN and each 

prostate cancer outcome.

Covariates

All covariates were chosen a priori based on confounding variables identified in prior 

research(2) and Directed Acyclic Graphs (DAGs)(36). Information on covariates was 

obtained on biennial follow-up questionnaires in HPFS. We adjusted for time-invariant 

covariates including race (white, non-white), height (≤ 68, 68>70,70>72, >72 inches), and 

family history of prostate cancer. Time-varying covariates were updated every two years at 

each biennial questionnaire and included: PSA screening in the prior time period (lagged 

by two-year interval), PSA screening intensity (reported PSA screening in over half of 

prior questionnaires, lagged by two-year interval), smoking status (never, current, former), 

quintiles of physical activity (MET-hours/week), body mass index, (BMI - underweight, 

normal, overweight, obese), quintiles of population density derived from the United States 

Decennial Census (1990, 2000, 2010), with places with a population of more than 1,000 

people per square mile defined as urban, and quintiles of neighborhood socioeconomic 

status (nSES). NSES was assessed using a composite score derived in HPFS(37). Data used 

to generate the nSES score were obtained from the United States Decennial Census (1990, 

2000, 2010) and the American Community Survey (2006–2010) and linked to participants’ 

addresses. The nSES score includes census tract level variables for educational attainment 

(% over 25 with college or higher education), income (median family income), wealth 

(median family home value, % families receiving interest dividends or rent income, % 

occupied housing units), employment status (% population 16 + years old unemployed), and 

racial composition (% White, % Black, % foreign-born). We calculated a summary index of 

nSES by z-scaling each component measure and then summing across the nine indicators.
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Statistical analysis

Person-time was accrued from the date of return of the baseline questionnaire in 1986 to 

the date of diagnosis of incident prostate cancer, date of death, or end of follow-up (January 

1, 2017), whichever came first. We used Cox proportional hazards models with calendar 

time on study as the time scale and stratified by age and questionnaire cycle to estimate 

hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between outdoor 

LAN and each of the three prostate cancer endpoints. The proportional hazards assumption 

was assessed by including interaction terms between time and our exposure; there was no 

evidence of nonproportionality. We tested for nonlinear relationships between LAN and each 

outcome using splines. We examined the possibly non-linear relation between outdoor LAN 

and the hazard ratio of total and fatal prostate cancer non-parametrically with restricted 

cubic splines(38). Tests for non-linearity used the likelihood ratio test, comparing the model 

with only the linear term to the model with the linear and the cubic spline terms. As 

no evidence of non-linearity was observed, we modeled LAN continuously, scaled to an 

interquartile range (IQR) increase (Supplementary Figure 1).

Multivariable-adjusted models for total prostate cancer were adjusted for race, height, family 

history of prostate cancer, reported PSA screening in the prior questionnaire cycle, PSA 

screening intensity, neighborhood SES, and population density. Models for fatal prostate 

cancer were additionally adjusted for smoking status, physical activity, and BMI. Since 

outdoor LAN may have greater relevance at home residence, we also repeated our main 

analysis among the subset of men who reported a home address at baseline.

To assess sensitivity to the choice of etiologic window used for our outdoor LAN 

measure, we conducted a secondary analysis looking at the relationship between baseline 

outdoor LAN and total and fatal prostate cancer among men who did not move over the 

follow-up period and reported a home address at baseline. We also evaluated potential 

effect modification by population density (≥1,000 people/mi2 vs <1,000 people/mi2), 

neighborhood SES (below vs above the median nSES index), and PSA screening intensity 

(reported PSA screening in more than 50% of the prior questionnaires vs not) using 

likelihood ratio tests and reported stratified models.

Data Availability

The data generated in this study are available upon request from the corresponding author.

Results

After exclusions, our analytic sample included 49,148 participants, with 7,175 total and 915 

fatal prostate cancer cases over 1,125,157 person-years of follow-up. Maps of participant 

locations and outdoor LAN in 2010 (Figure 1) display the geographic extent and exposure 

distribution in this study. The age-adjusted characteristics of the study population are shown 

in Table 1. The average age of the participants over follow up was 64.2 years, and 90.7% 

were white. Men who lived in areas with the highest quintile of outdoor LAN were less 

physically active, less likely to be white, and less likely to have a PSA test. They also 

lived in areas with a higher neighborhood SES and higher population density compared 
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to participants in the lowest quintile. In 1988, 34.7% of the participants reported a home 

address, 43% reported an office address, 1.6% reported other, and 20.7% did not report the 

type of address (Table 1).

In the analysis in the full cohort, there was no statistically significant association between 

cumulative average LAN and total (HR:1.02, 95% CI 0.98, 1.06) or fatal (HR: 1.05, 95% 

CI: 0.96, 1.15) prostate cancer in fully adjusted models (Table 2). Results were similar when 

restricted to participants who reported a home address at baseline (N=17, 983) (Table 2). 

An interquartile increase in baseline LAN was associated with a 6% increase in the hazard 

of total prostate cancer (HR: 1.06, 95% CI:1.00,1.14) in the subset of participants who 

reported a home address and who did not move over follow-up (N=15,132). There was no 

clear association with fatal prostate cancer (HR: 0.94, 95% CI: 0.79, 1.11) in this group 

(Table 2). Results for lethal prostate cancer were similar to those for fatal prostate cancer 

(Supplementary Table 1).

There was no evidence of effect modification by urbanicity or neighborhood SES for fatal or 

total prostate cancer in the whole cohort or in those who reported a home address at baseline 

(Table 3). In the whole cohort, there was a slight positive association between cumulative 

average outdoor LAN and fatal prostate cancer in those who were not highly screened 

(HR:1.07, 95% CI:0.97, 1.19), while there was no clear evidence for an association between 

outdoor LAN and fatal prostate cancer among those who were highly screened (HR: 0.95, 

95% CI:0.77, 1.19). However, this finding was not statistically significant (p-het=0.17). In 

the subset of the cohort that reported a home address at baseline, there was an association 

with total prostate cancer among those who were more frequently PSA screened (HR:1.11, 

95% CI:1.01,1.23), but not in those less frequently screened (HR:1.03, 95% CI:0.94,1.12) 

(p-het=0.08). We observed similar results for lethal as fatal prostate cancer (Supplementary 

Table 2).

Discussion

In this large prospective study with 30 years of follow-up, we did not find an association 

between cumulative average outdoor LAN during follow-up and overall prostate cancer. 

However, we found a small increased risk of total prostate cancer associated with higher 

baseline outdoor LAN among participants who reported a home address at baseline and who 

did not move over follow-up. These findings are consistent with the hypothesis that outdoor 

LAN has a delayed effect on carcinogenesis. It is also possible that the home address at 

baseline better captures the participants’ exposure to LAN in the evening so there is less 

exposure misclassification than in the whole cohort. However, this latter explanation is less 

likely since we did not observe an association between cumulative average outdoor LAN and 

prostate cancer among those who reported a home address at baseline.

There is limited research looking at the relationship between outdoor LAN and prostate 

cancer, but our findings align with prior literature. An ecological study found a positive 

association between country level exposure to outdoor LAN and age-standardized prostate 

cancer rates(25,27). A district-level ecological study in South Korea found a positive 

association between outdoor LAN and prostate cancer(26). A case-control study conducted 
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in Spain found an inverse association between outdoor LAN in the visual spectrum and 

prostate cancer risk overall(22). This study also found an increased odds of overall prostate 

cancer with higher levels of self-reported indoor LAN and outdoor LAN in the blue 

light spectrum(22). Light in the blue spectrum is more biologically relevant, decreasing 

melatonin levels and in turn is more likely to impact carcinogenesis, particularly of 

hormone-dependent cancers(39–41). DMSP-OLS outdoor LAN data available in HPFS only 

includes information on light intensity.

Light at night may increase prostate cancer susceptibility via multiple biological 

mechanisms. Exposure to light inhibits the release of melatonin, a hormone released by 

the pineal gland that has anti-carcinogenic properties, its suppression increases the risk 

of carcinogenesis. Another potential mechanism is that light at night is a general stressor 

that weakens the immune system and acts as an endocrine disruptor. Extended hours 

of light during nighttime allows people to participate in nighttime activities, which can 

disrupt the circadian rhythm on a daily basis and increase the risk of hormone-dependent 

diseases, including prostate cancer(42). Further, studies have found that circadian genes 

regulate cancer pathways such as proliferation, DNA damage response, metabolism, and 

apoptosis(43,44).

In HPFS some participants reported their work addresses instead of their home address, 

which could introduce non-differential measurement error in assessing outdoor LAN if 

participants’ outdoor LAN exposure occurs in the home setting. However, many people 

tend to live close to their work and if they work long hours, exposure to outdoor LAN at 

work could also be of importance. We were able to distinguish between home and work 

addresses, and findings for cumulative average outdoor LAN were similar to the whole 

cohort when restricted to individuals who reported a home address at baseline. There is also 

potential for misclassification of light at night since we are using satellite-based exposures 

with a resolution of 1km2, which may be an imprecise estimate of individual exposure to 

outdoor light at night(45). Although having a personal exposure level of these environmental 

exposures would help further elucidate prostate cancer etiology, collecting personal level 

data on these exposures is more costly and challenging to measure over long time periods. 

Ambient exposure metrics allow us to include a larger sample size as well as long-term 

exposure information, which is essential for studying cancer etiology. Further, there is 

potential for residual confounding due to the high correlation between outdoor LAN and 

urbanicity. Areas with higher levels of outdoor LAN are more likely to be urban and there 

is greater access to care in urban areas, so the positive association we see between baseline 

outdoor LAN and prostate cancer could be explained by this residual confounding. However, 

our study population consists of health professionals with similar access to care and we 

adjusted for PSA screening and population density, so residual confounding is unlikely to 

explain our results.

A potential limitation is that the DMSP-OLS data has low spatial resolution compared to 

other measurements now available, including satellite images from VIIRS-DNB as well as 

photos taken by astronauts from the international space station(21,22). This lower resolution 

could lead to measurement error and limited power to examine this relationship(46). Further, 

we were not able to differentiate spectral bands or study the impact of blue light in prostate 
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carcinogenesis, which has the greatest impact on melatonin production and was found to be 

associated with greater prostate cancer risk(22). However, these alternate exposure measures 

were not available prior to 2011 when the majority of the cases in HPFS were diagnosed. 

Using DMSP-OLS data allowed us to assess the long-term, time-varying impact of outdoor 

LAN, which is the most relevant for the slow process of carcinogenesis and the long latency 

observed in prostate cancer specifically.

Our study had some strengths to consider. This was a large prospective cohort study with 

address data on the individual level. Given updated information on addresses, our study 

included time-varying outdoor LAN measurements, as well as detailed and time-varying 

data on important prostate cancer risk factors and geographic correlates of outdoor LAN. 

The cohort included a large number of participants and prostate cancer cases, and high 

cohort retention over follow-up. Also, HPFS participants live throughout the United States, 

making our analysis representative of the large geographic differences in amount of outdoor 

LAN in the country. Biennial questionnaires collected detailed information on the history of 

prostate cancer screening, this detailed information on PSA screening allowed us to address 

potential diagnostic bias by adjusting for two measures of PSA screening and to conduct 

analyses stratified by screening intensity. We were able to study clinically relevant endpoints 

of fatal and lethal prostate cancer. This is important given the clinical heterogeneity in 

prostate cancer, which poses a challenge in studying prostate cancer etiology(29). Further, 

more aggressive forms of prostate cancer appear to have a different set of risk factors(2,28).

In summary, we did not find an association between cumulative average outdoor LAN and 

prostate cancer risk overall but did observe a positive association between baseline LAN and 

total prostate cancer in the population that reported a home address at baseline and did not 

move over follow-up. Future studies should examine this relationship in more racially and 

socioeconomically diverse populations as there are large disparities in both light pollution 

exposure and prostate cancer outcomes in the United States, with Black men more likely 

to live in areas with high levels of light pollution and experiencing higher prostate cancer 

incidence and mortality than white men(30,47–49). Further, it would be important to explore 

this relationship with other measures of outdoor LAN that have higher resolution and in 

which spectral bands can be distinguished (e.g. VIIRS and photos from the international 

space station).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Participant locations and outdoor LAN in the United States (A) Locations of addresses of 

HPFS participants in 1988 and (B) 2010 U.S. Defense Metereological Satellite Program’s 

(DMSP’s) Operational Linescan System (OLS) light at night (LAN) data in nanowatts per 

centimeter squared per streradian
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Table 1:

Age-standardized characteristics by quintile of cumulative outdoor light at night (LAN) among participants in 

the Health Professionals Follow-up Study from 1986 to 2016

Cumulative Outdoor Light at Night (nW/cm2/sr)

Characteristics Total Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

Participants, no. 49,148 11,982 14,009 14,958 14,811 12,257

Age (years)* 64.2 (11.3) 64 (11.4) 64.4 (11.3) 64.6 (11.2) 64.4 (11.2) 63.7 (11.2)

Cumulative LAN (nW/cm2/sr) 37.3 (32.6) 5.7 (2.7) 15.5 (3.4) 29.4 (4.4) 47.1 (6.1) 88.6 (31.2)

Baseline LAN (1986) 
(nW/cm2/sr)

39.9 (35.7) 6.3 (4.1) 16.9 (8.8) 31.8 (12.1) 50.5 (15) 93.4 (34.7)

Height (inches) 70.2 (2.8) 70.3 (2.7) 70.3 (2.7) 70.2 (2.8) 70.1 (2.8) 69.9 (2.9)

BMI (kg/m2) 26.1 (3.8) 26.3 (3.9) 26.1 (3.8) 26.1 (3.7) 26 (3.8) 25.9 (3.8)

Physical activity (MET-hour/
week)

32.2 (28.7) 33.3 (30.6) 32.9 (29.3) 32.8 (28.8) 31.8 (27.9) 30.2 (26.4)

White, % 90.7 92.9 92.4 91.1 89.9 87.2

Smoking status

- Never, % 56.0 54.9 55.4 56.0 56.7 57.0

- Former, % 38.8 39.2 39.4 39.1 38.5 38.0

- Current, % 5.2 5.9 5.2 4.9 4.8 5.0

Family history of prostate 
cancer, %

11.9 12.7 11.8 11.8 12.1 11.0

Ever had PSA test, % 85.8 85.0 86.9 86.7 86.4 84.1

Had PSA test in prior period, % 30.3 29.8 31.4 32.2 31.2 26.9

PSA test on at least half of all 
questionnaires, %

30.5 28.9 31.8 32.7 32.0 26.7

Address type (1988)

- Home, % 34.7 48.7 38.4 33.4 29.1 23.8

- Office, % 43.0 29.3 39.9 44.8 48.6 52.7

- Other, % 1.6 2.5 2.2 1.5 1.1 0.8

- Not reported, % 20.7 19.5 19.5 20.3 21.2 22.6

Address type (2008)

- Office, % 15.9 12.3 14.9 15.9 18.0 18.9

- Home, % 67.8 71.4 69.9 67.3 65.9 63.8

- Not reported, % 15.7 14.8 14.7 16.2 15.7 17.0

- Both, % 0.6 1.5 0.5 0.5 0.3 0.3

Population density, (People/
mile2)

3,948.9 
(9,416.1)

531.76(966.8) 1,766.3 
(2,017.5)

2,908.1 
(2,930.7)

4,172.9 
(4,543)

10,368.8 
(187,121)

Neighborhood SES 0 (3.8) −2.4 (2.9) −0.5 (3.4) 0.6 (3.7) 1 (3.6) 1.5 (3.8)

Urban (≥ 1,000 people/miles2), 
%

66.4 15.2 54.6 78.2 89.3 95.1

Census region

- Northeast, % 21.6 21.2 22.5 22.2 18.8 23.5

- Midwest, % 26.3 30.7 23.8 22.8 26.0 28.0

- South, % 28.9 29.3 31.7 30.4 28.7 24.4
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Cumulative Outdoor Light at Night (nW/cm2/sr)

Characteristics Total Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

- West, % 23.2 18.8 22.0 24.6 26.5 24.0

Values are means(SD) or medians(Q25, Q75) for continuous variables; percentages or ns or both for categorical variables, and are standardized to 
the age distribution of the study population.

*
Value is not age adjusted
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Table 2.

Hazard ratios and 95% confidence intervals of the association between outdoor light at night (LAN) and 

prostate cancer risk in HPFS (1986–2016)

Total population (n=49,148)

Total Fatal

Exposure Cases (PYs) aHR (95% CI) bHR (95% CI) Cases (PYs) aHR (95% CI) cHR (95% CI)

dCumulative LAN 7,175(1,125,157) 0.99 (0.97, 
1.02)

1.02 (0.98, 
1.06) 915 (1,131,169) 1.05 (0.97, 

1.13)
1.05 (0.96, 
1.15)

e Home addresses (n=17,983)

dCumulative LAN 2,847(389,614) 1.01 (0.97, 
1.06)

1.04 (0.98, 
1.10) 409 (391,913) 0.99 (0.89, 

1.11)
0.98 (0.85, 
1.14)

dBaseline LAN 
in nonmovers 
(N=15,132)

2,348 (326,942) 1.04 (0.99, 
1.09)

1.06 (1.00, 
1.14) 359 (328,813) 0.98 (0.86, 

1.10)
0.94 (0.79, 
1.11)

a
Age, calendar time

b
Age, race, PSA screening, family history of prostate cancer, height, neighborhood SES, population density

c
Age, race, PSA screening, family history of prostate cancer, height, neighborhood SES, population density, physical activity, body mass index 

(BMI), smoking

d
per IQR increase

e
Men who reported having a home address in 1988
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Table 3:

Hazard ratios and 95% confidence intervals for the association between outdoor light at night (LAN) and 

prostate cancer incidence in HPFS 1986–2016, stratified by PSA screening intensity, urbanicity, and 

neighborhood socioeconomic status (nSES)

Total prostate cancer Fatal prostate cancer

Model aHR (95% CI) bHR (95% CI) Phet aHR (95% CI) cHR (95% CI) Phet

Stratified by PSA screening intensity

Cumulative LAN in the total population

Total population (N=49,148) Cases (PYs)=7,175 (1,125,157) Cases (PYs)=915 (1,131,169)

eLow PSA screening intensity 0.99 (0.95, 1.02) 1.01 (0.97, 1.06) 0.47 1.08 (0.99, 1.17) 1.07 (0.97, 1.19) 0.17

fHigh PSA screening intensity 1.01 (0.97, 1.06) 1.03 (0.97, 1.09) 0.94 (0.78, 1.12) 0.95 (0.77, 1.19)

Baseline LAN in those who reported a home address

d Nonmovers (N=15,132) Cases (PYs)=2,348 (326, 942) Cases (PYs)= 359 (328,813)

eLow PSA screening intensity 1.00 (0.94, 1.07) 1.03 (0.94, 1.12) 0.08 1.00 (0.87, 1.16) 0.93 (0.76, 1.14) 0.73

fHigh PSA screening intensity 1.09 (1.01, 1.17) 1.11 (1.01, 1.23) 0.88 (0.67, 1.14) 1.01 (0.72, 1.42)

Stratified by Urbanicity (urban: >1,000 people/mile 2 , nonurban: <1,000 people/mile 2 )

Cumulative LAN in the total population

Total population (N=49,148) Cases (PYs)=7,175 (1,125,157) Cases (PYs)=915 (1,131,169)

 Urban 0.99 (0.96, 1.03) 1.02 (0.98, 1.06) 0.67 1.06 (0.97, 1.16) 1.06 (0.95, 1.17) 0.94

 Nonurban 1.07 (0.98, 1.16) 1.04 (0.94, 1.13) 1.06 (0.80, 1.39) 1.03 (0.77, 1.37)

Baseline LAN in those who reported a home address

dNonmovers (N=15,132) Cases (PYs)=2,348 (326, 942) Cases (PYs)= 359 (328,813)

 Urban 1.04 (0.98, 1.10) 1.06 (0.99, 1.14) 0.91 0.95 (0.81, 1.11) 0.93 (0.78, 1.12) 0.80

 Nonurban 1.10 (0.89, 1.37) 1.04 (0.82, 1.32) 0.73 (0.38, 1.40) 0.74 (0.38, 1.43)

Stratified by neighborhood SES at the median

Cumulative LAN in the total population

Total population (N=49,148) Cases (PYs)= 7,175 (1,125,157) Cases (PYs)= 915 (1,131,169)

Low 1.01 (0.96, 1.06) 1.03 (0.97, 1.10) 0.32 1.05 (0.93, 1.20) 1.03 (0.88, 1.21) 0.66

High 0.98 (0.94, 1.02) 1.01 (0.97, 1.06) 1.04 (0.94, 1.15) 1.07 (0.95, 1.20)

Baseline LAN in those who reported a home address

dNonmovers (N=15,132) Cases (PYs)= 2,348 (326, 942) Cases (PYs)= 359 (328,813)

Low 1.05 (0.97, 1.15) 1.08 (0.96, 1.21) 0.53 0.85 (0.66, 1.10) 0.69 (0.48, 1.01) 0.27

High 1.01 (0.94, 1.07) 1.06 (0.98, 1.15) 1.00 (0.85, 1.19) 1.07 (0.87, 1.31)
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a
Adjusted for age and calendar time

b
Adjusted for age, calendar time, race, PSA screening, family history of prostate cancer, height, neighborhood SES

c
Adjusted for age, calendar time, race, PSA screening, family history of prostate cancer, height, population density, physical activity, body mass 

index (BMI), smoking

d
Men who reported having a home address in 1988 and did not move over follow-up

e
Reported a PSA test in less than 50% of questionnaires in prior time periods

f
Reported a PSA test in 50% or more of questionnaires in prior time periods
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