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Children use one-to-one correspondence to establish equality after learning to
count

Rose M. Schneider and David Barner
{roschnei, dbarner}@ucsd.edu

Department of Psychology
University of California San Diego

Abstract

Humans make frequent and powerful use of external symbols
to express number exactly, leading some to question whether
exact number concepts are only available through the acqui-
sition of symbolic number systems. Although prior work has
addressed this longstanding debate on the relationship between
language and thought in innumerate populations and semi-
numerate children, it has frequently produced conflicting re-
sults, leaving the origin of exact number concepts unclear.
Here, we return to this question by replicating methods pre-
viously used to assess exact number knowledge in innumer-
ate groups, such as the Pirahã, with a large sample of semi-
numerate US toddlers. We replicate previous findings from
both innumerate cultures and developmental studies showing
that numeracy is linked to the concept of exact number. How-
ever, we also find evidence that this knowledge is surprisingly
fragile even amongst numerate children, suggesting that nu-
meracy alone does not guarantee a full understanding of exact-
ness.
Keywords: Number; language; cognitive development; con-
ceptual development

Introduction
Human numerical abilities are built upon a foundation of core
cognitive mechanisms shared with nonhuman animals; hu-
mans, however, enjoy a concept of number that is both ex-
act and unbounded, and far exceeds the limits of what these
foundational systems afford (Carey & Barner, 2019). Hu-
mans are distinct from other animals in another critical sense,
however, in that they regularly use symbols to externalize
these exact number representations. This relationship be-
tween the uniquely human capacities of symbolic expression
and exact number representation has prompted an enduring
debate about whether representations of exactness are depen-
dent upon knowledge of a symbolic number system.

There is generally agreement that, even without access to
exact number language, humans possess two numerical rep-
resentation mechanisms: the Parallel Individuation (PI) sys-
tem, which can represent small sets (3-4), and the Approx-
imate Number System (ANS), which offers imprecise repre-
sentations of large quantities (Feigenson, Dehaene, & Spelke,
2004). While both mechanisms are available early in life
(Izard, Sann, Spelke, & Streri, 2009; Wynn, 1992a) and are
refined over development, neither is capable of supporting
large exact number representations. Although the PI system
furnishes precise representations, it is limited to quantities
of 3 or 4, and while the ANS supports large number repre-
sentations, they are imprecise. In particular, a key failing of

the ANS in capturing integer properties is that it operates as
a function of the ratio between two quantities (i.e., Weber’s
law). Thus, the ANS cannot detect quantity differences when
ratios are sufficiently small (e.g., 9:10).

There is some evidence from innumerate cultures that,
without access to linguistic number, human numerical repre-
sentations are limited to these two systems and do not permit
representations of large exact numerosities. Gordon (2004)
investigated how the Pirahã, an indigenous Amazonian group
with no exact number language, perform on a task requiring
them to create a set of objects matching an experimenter’s.
In the simplest version of this task, the experimenter placed a
row of objects (e.g., batteries) in front of the participant, and
then asked them to copy the set with another collection of ob-
jects. The logic of this task as a test of exact number stems
from Hume’s Principle – that one-to-one correspondence be-
tween sets ensures exact equality. Therefore, if a participant
understands this, then they should use one-to-one correspon-
dence to generate matches for all numerosities. On the other
hand, if no such knowledge exists, then their matches for
large quantities should show the ratio-dependent signatures
of the ANS.

Using this diagnostic, Gordon (2004), and later Everett &
Madora (2012), found that the Pirahã succeeded for items
within the PI range (e.g., up to 3 or 4), but approximated
for larger quantities, even when one-to-one correspondence
could be easily established. While these results seem to sug-
gest the concept of exact equality is linked to symbolic num-
ber language, they were contradicted by Frank, Everett, Fe-
dorenko, & Gibson (2008), who found that the Pirahã could
deploy one-to-one correspondence for all numerosities, al-
though they were less likely to do so when this correspon-
dence was more difficult to establish (e.g., if the experi-
menter’s set was hidden after a brief presentation). However,
Everett & Madora (2012) contended that the participants who
succeeded in Frank et al. (2008) had been exposed to ex-
act number language and training on one-to-one procedures,
leaving open the possibility that these participants may have
failed the set-matching task without such training or symbolic
number language, consistent with Gordon (2004). Due to the
challenges associated with testing remote populations such as
the Pirahã, however, these discrepant findings are difficult to
adjudicate and resolve.

The origin of exact number concepts has also been ex-
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plored in another semi-numerate population: young chil-
dren. Although most children in industrialized cultures hear
number language early in life, they do not begin to acquire
the meanings of number words until around 2.5 years of
age (Wynn, 1992b), and even then do not achieve adult-like
knowledge of number words for at least another 2-3 years.
Children begin the learning process by acquiring the mean-
ings of small number words – e.g., one, two, three, four – one
at a time, in sequential order, over a period of many months,
and do not seem to understand their relationship to the count
list. Around 4 years of age, however, children progress be-
yond this “subset knower” stage, and acquire some form of
the “Cardinal Principle” (CP). These “CP-knowers” under-
stand how to use the count routine to generate sets for larger
number words (Wynn, 1992b), and they seem to possess a
qualitatively different understanding of number relative to
subset knowers (Sarnecka & Carey, 2008). The developmen-
tal trajectory associated with children’s number acquisition is
remarkably consistent (Mollica & Piantadosi, n.d.), and can
be reliably assessed in the lab, offering a compelling case
study in which to explore the origin of exact number concepts
and their relationship to symbolic number.

Recent investigations of whether children can reason about
large exact number prior to CP acquisition have produced
mixed results. For instance, Izard, Streri, & Spelke (2014)
found that subset knowers could track equality between 6
puppets placed on 6 tree branches, although they failed to
do so if the perceptual identity of the puppets changed. Sim-
ilarly, Sarnecka & Wright (2013) found that subset knowers
could use one-to-one correspondence to determine whether
two sets of 6 were “just the same.” Finally, Jara-Ettinger, Pi-
antadosi, Spelke, Levy, & Gibson (2017) found that subset
knowers could track changes to equality between two large
sets, indicating a fairly robust understanding of exact equal-
ity. In contrast, other work has shown that subset knowers fail
to spontaneously use one-to-one correspondence to establish
equality, even for sets within their PI range. For example, Ne-
gen & Sarnecka (2009) found that children’s ability to match
sets <5 cumulatively increased as a function of known num-
ber words. Additionally, Mix (1999) and Mix, Huttenlocher,
& Levine (1996) found that subset knowers’ ability to match
sets of 2-4 was significantly affected by their perceptual sim-
ilarity.

While the developmental literature suggests that subset
knowers may have some partial understanding of Hume’s
Principle, this work is limited in several ways. First, much
of the current literature focuses on sets within the PI range,
and does not compare performance between small and large
numerosities. Second, it leaves open whether subset know-
ers’ successes for larger quantities stems from understand-
ing the relationship between one-to-one correspondence and
exact number, or because this relationship was highlighted
within these paradigms. Finally, comparisons of nonsymbolic
one-to-one knowledge between subset and CP-knowers are
limited, leaving open the question of whether this knowledge

is affected by learning the significance of the count routine.
Here, we address these outstanding questions in the devel-

opmental literature along with a set of contested findings from
innumerate cultures. We adapt methods previously used in
work with the Pirahã (Everett & Madora, 2012; Frank et al.,
2008; Gordon, 2004) to investigate exact number knowledge
in a large group of 3- to 5-year-old children. Specifically,
we use the set-matching task to explore whether young chil-
dren recognize the nonsymbolic relationship between one-to-
one correspondence and exact equality, and how this knowl-
edge is related to their acquisition of symbolic number. In
Experiment 1, we replicate findings from innumerate cul-
tures and some of the developmental literature that numer-
acy is significantly related to performance on a set-matching
task. In Experiment 2, we rule out one alternative hypothesis
for CP-knowers’ increased accuracy in comparison to sub-
set knowers. Surprisingly, we find that while CP-knowers
outperformed subset knowers in both experiments, their per-
formance was far from ceiling. Together, our findings sug-
gest that the relationship between one-to-one correspondence
and exact number becomes more salient to children after they
have acquired the CP, and that this knowledge may continue
to develop for some time after children achieve this level of
numeracy.

Experiment 1
Method
This study was pre-registered on OSF (https://osf.io/
3wta2), and all methodological and analytical choices were
as preregistered, unless stated otherwise in-text.

Participants Our final analyzable sample included 144
children (Mage = 3.94 years, SDage = 0.52 years, range =
3.01 - 5.07 years) recruited from local preschools and the sur-
rounding community in San Diego, California, USA and Co-
mox Valley, British Columbia, Canada. In this sample, 70
were identified as CP-knowers, while the remaining 74 were
classified as subset knowers.

Procedure
Set-matching This task, modeled on Gordon (2004), was
framed as a “matching game.” Children were presented with a
6“x30” blue cardboard rectangle and a container with 15 fish.
The experimenter introduced the game by saying, “Let’s play
a matching game. Do you know what matching is? Matching
is when you make things look the same. So, in this game,
you’re going to make things look like each other.” The exper-
imenter explained that the child could put their fish in their
pond. Next, the experimenter then placed another blue board
with one plastic fish glued to the center directly above the
child’s and said, “Using your fish, can you make your pond
look like my pond?”

In an effort to replicate the methods of Gordon (2004) as
closely as possible, and to obtain a measure of children’s un-
prompted attention to exactness, the experimenter did not ex-
plicitly direct children to attend to number when giving ei-
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ther task instructions or feedback. One deviation from Gor-
don (2004) was the inclusion of two training trials with 1 and
2 fish (on the experimenter’s board), during which the chil-
dren received non-numerical feedback to ensure that they un-
derstood the purpose of the task (e.g., “Look! These ponds
match, because there is a fish here, and a fish here!”).

Boards were presented to children either in a Parallel or
Orthogonal orientation, based on Gordon (2004). In the Par-
allel orientation the experimenter’s board was was placed di-
rectly above the child’s, such that one-to-one correspondence
was a readily available strategy for solving the task. In the
Orthogonal orientation the experimenter’s board was placed
perpendicularly to the right of the child’s, requiring a spatial
transformation of one-to-one correspondence. All children
received tasks in both orientations, with Parallel trials pre-
sented before Orthogonal trials.

To test whether children’s ability to use one-to-one corre-
spondence was affected by the identity of sets (Mix, 1999;
Mix et al., 1996), we manipulated the similarity of the fish
relative to the experimenter’s between subjects. Half of the
children were randomly assigned to the Identical condition,
in which fish were the same for both the experimenter and
the child, and half were assigned to the Non-identical condi-
tion, in which fish where were matched on relative size, but
were different varieties.

Training trials were presented for both the Parallel and Or-
thogonal orientations in a fixed order (1, then 2). After pass-
ing these training trials, children received 5 test trials in both
board orientations with small (3, 4) and large (6, 8, and 10)
quantities with neutral feedback. Trial order was fixed for the
Parallel (3, 4, 10, 8, and 6) and Orthogonal (4, 3, 8, 10, and
6) orientations. Fish on the experimenter’s boards were al-
ways approximately 1” apart, regardless of set size; although
the set of 10 was spread across the majority of the board, the
maximum number of fish (15) could still be placed on the
board with approximately .25” separation.

Children who attempted to count were immediately
stopped and told “This isn’t a counting game - this is just
a matching game!” Counting attempts were relatively rare:
In both conditions, CP-knowers attempted counts on 64/700
trials, while subset knowers attempted counts 28/740 trials.

Give-N Children’s CP knowledge was assessed using an
abbreviated version of a titrated Give-N (Wynn, 1992b). The
experimenter gave the child a plate and 10 plastic objects
(e.g., bears, apples, buttons), and asked the child to place
some number on the plate. After children placed some num-
ber of objects on the plate and indicated that they were fin-
ished, the experimenter asked, “Is that N? Can you count and
make sure?” If the child answered in the negative, they were
permitted to fix the set. If children successfully generated a
given N, they were asked for N+1 on the next trial; other-
wise, they were asked for N-1. Children were considered CP-
knowers if they were able to generate sets of 6 (the maximum
number tested) at least 2 out of 3 times when requested. Chil-
dren were classified as subset knowers if they gave another N
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Figure 1: Mean accuracy on the set-matching tasks by CP-
knower level. Error bars represent 95% confidence intervals
computer by nonparametric bootstrap.

correctly at least two of three times, and did not give that N
more than once for another number, as in Wynn (1992b).

Results and Discussion
Our primary question was whether CP-knowers were more
likely than subset knowers to generate exact matches for both
large and small set sizes. To test this, we built a general-
ized linear mixed effects model (GLMM) predicting exact
matches from CP-knower status, set size, orientation (Par-
allel/Orthogonal), and age, with a random effect of sub-
ject.1 This model indicated that CP-knowers generated exact
matches significantly more often than subset knowers overall
(β = 1.09, p < .0001; Figure 1), even when controlling for age
(β = 0.3, p = .01). This final model also revealed decreased
accuracy with increasing set sizes (β = -1.24, p < .0001), and
for Orthogonal trials (β = -0.86, p < .0001). Follow-up anal-
yses found no interaction between set size and orientation (χ2

= 0.99, p = 0.32); however, there was a significant 3-way in-
teraction between set size, orientation, and CP-knower status
(χ2 = 12.5, p = 0.006), such that the difference in performance
between subset and CP-knowers for increasing set sizes was
greatest in Parallel, as opposed to Orthogonal, orientations (β
= 0.98, p = .002).

We next tested whether, consistent with prior work (Mix,
1999), CP-knowers were more likely than subset knowers
to ignore perceptual dissimilarities in this task by construct-
ing another GLMM predicting an exact match from an in-
teraction between CP-knower status and identity condition
(Identical/Non-identical), orientation (Parallel/Orthogonal),
set size, and age, with a random effect of subject. This model
indicated a significant interaction between set identity and
CP knowledge, with CP-knowers significantly more accurate
than subset knowers in the Non-identical condition (β = 1.13,

1All mixed effects models were fit in R using the lme4
package. The final model specification was: Correct ∼
CP-knower status + Set size + Orientation + Age +
( 1 | subject). Although we pre-registered a model containing
a CP-knower status x Set size interaction, a Likelihood Ratio Test
indicated that this interaction did not improve the fit of the main
effects model (χ2 = 1.2, p = .21).
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Figure 2: Mean absolute error for incorrect trials on the set-
matching tasks by CP-knower level. Error bars represent 95%
confidence intervals computer by nonparametric bootstrap.

p = .002), which was again significant when controlling for
age (β = 0.31, p = .007). In addition to these effects, this
model again indicated decreased accuracy when boards were
presented in the Orthogonal orientation (β = -0.86, p < .0001)
and with increasing set size (β = -1.24, p < .0001).

These analyses indicate that, when one-to-one correspon-
dence was a readily available strategy for matching sets, CP-
knowers were more likely than subset knowers to capitalize
on this relationship in order to generate numerically equal
matches, even when the two sets were perceptually dissim-
ilar. When the boards were presented in an Orthogonal ori-
entation, and one-to-one correspondence was less easily im-
plemented, however, CP-knowers’ performance for large nu-
merosities was not appreciably different from subset know-
ers’. However, despite CP-knowers’ increased accuracy for
boards in the Parallel orientation, their knowledge of one-to-
one’s significance was strikingly limited, with overall accu-
racy for large set sizes only 42% and far below adult-like
levels (Frank et al., 2008). This surprisingly variable per-
formance (Figure 3) suggests that acquisition of the CP alone
may not guarantee an understanding of exact equality and its
relationship to one-to-one correspondence.

Next, we also investigated errors in children’s matching as
a less conservative signal for whether they were attempting
a one-to-one match, even if they were not perfectly accurate.
We reasoned that exploring children’s errors as a complement
to our accuracy analyses may yield more information about
the matching strategy that children are deploying: If children
are attempting a one-to-one match, we should find that their
responses are closer to the target set, whereas if they are not
attempting a one-to-one match their errors should be farther
from the target set. For these analyses, we specifically inves-
tigated differences between subset and CP-knowers’ absolute
error (|Target set - Response|) on incorrect trials, as well as
their Coefficient of Variation (CoV).

We first analyzed differences between subset and CP-
knowers’ absolute error on incorrect trials with a linear mixed
effects model predicting absolute error from CP-knower sta-
tus, set size, orientation, and age, with a random effect of

subject.2 Likelihood Ratio Tests indicated a main effect of
CP knowledge (χ2(1) = 9.76, p = .004), with lower absolute
error for CP-knowers’ in comparison to subset knowers (β =
-0.79, p = .002), even when controlling for age (β = -0.21, p
= .10; Figure 2). Absolute error increased with set size (β =
0.39, p < .0001), and in the Orthogonal orientation (β = 0.57,
p < .0001).

Once again, we found evidence that CP-knowers are less
affected by perceptual dissimilarities when establishing nu-
merical equality; a second linear mixed effects model pre-
dicting absolute error from an interaction of CP knowledge
and Identity condition, set size, orientation, and age, with a
random effect of participant showed a significant interaction
between CP knowledge and Identity (χ2(1) = 10.3, p = .002),
such that CP-knowers had significantly lower error on Non-
identical trials in comparison to subset knowers (β = -1.39, p
= .001).

Finally, we also used CoV, which captures noise in partici-
pants’ responses to a given set size3 as an additional measure
of error in this task. Mirroring our accuracy and error anal-
yses above, CoVs were significantly lower for CP-knowers
in comparison to subset knowers for trials in both the Paral-
lel (t(142) = -5.73, p < .0001) and Orthogonal orientations
(t(141) = -4.99, p < .0001). While the slope of CoV rela-
tive to target quantity has been used to identify whether par-
ticipants are deploying a one-to-one or approximation strat-
egy in previous set-matching work (Everett & Madora, 2012;
Frank, Fedorenko, Lai, Saxe, & Gibson, 2012), this analysis
is not appropriate for our dataset for several reasons. First,
both the number of items that participants could use to match
sets, as well the area in which they could be matched, were
bounded, which truncated the full distribution of responses
for larger sets and affected CoV approximations. Prior work
has shown that such bounds preclude assessments of the kind
of scalar variability associated with ANS (Wagner, Chu, &
Barner, 2019). Second, accuracy in our task was much lower
than in previous work, and more children seemed to default
to error-prone heuristics to solve this task (e.g., many subset
knowers gave the maximum number of fish for large sets),
yielding noisier CoV estimates. Due to these considerations,
we cannot use CoV to make inferences about whether chil-
dren were using one-to-one correspondence or approximation
to solve this task.

Together, the results of our accuracy and error analyses
broadly replicate the finding that numeracy is significantly
related to the availability of exact number concepts. Sim-
ilar to the Pirahã, and consistent with developmental work

2The final model specification was: Absolute error ∼
CP-knower status + Set size + Orientation + Age + ( 1
| subject). Although we again pre-registered a model containing
a CP-knower status x Set size interaction, we pruned this interaction
after finding it did not improve the fit of the model (χ2 = 2.74, p =
.10).

3CoV was approximated as in Frank et al. (2012), with the for-
mula

√
(ti− ri)2/ti, where t is the target quantity, and r is the child’s

response.
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Figure 3: Frequency of set-size response (x-axis) for each target size in the Parallel condition, grouped by CP knowledge.

showing set-matching failures prior to CP acquisition, we
found that although subset knowers were generally accurate
for sets within their PI range, they were less likely to gener-
ate an exact match for large numerosities. In contrast, CP-
knowers were significantly more accurate in comparison to
subset knowers for these larger numerosities, with their pat-
tern of errors suggesting that a majority of children in this
group were potentially attempting to deploy one-to-one cor-
respondence. CP-knowers’ performance was far from ceiling,
however, and reflected some striking limitations. We return to
this novel finding in the General Discussion.

Experiment 2
In Experiment 1, we found that CP-knowers were much more
likely than subset knowers to establish exact equality between
two large quantities. One possible reason for CP-knowers
outperforming subset knowers in this task, however, is that
they might have subvocally counted the experimenter’s set
and used it to generate a match. Experiment 2 was designed
to test for this possibility.

Method
This study was pre-registered on OSF (https://osf.io/
pj4zy), and all methodological and analytical choices were
as preregistered, unless stated otherwise in-text.

Participants Our current sample includes 28 children out
of a planned sample of 40 (Mage = 4.38 years, SDage = 0.51
years, range = 3.25 - 5.03 years) recruited in preschools and
the surrounding community in San Diego, California, USA.
All children were classified as CP-knowers by the Give-N
task.

Procedures
Procedures and tasks were identical to Experiment 1 with
two exceptions in the set-matching task. First, because the
results of Experiment 1 indicated that children were unable
to use one-to-one correspondence with orthogonally oriented
sets, boards were only presented in a Parallel orientation, with

trial order for larger sets counterbalanced across participants.
Second, to test whether CP-knowers’ performance could be
explained by subvocal counting, after the last trial of set-
matching (8 or 10 fish) the experimenter covered both boards
and asked the child, “How many fish are in my pond?” If
the child did not know, they were prompted to guess. The
logic of this follow-up question was that, if the child had suc-
ceeded by counting, then they should provide an accurate an-
swer when asked to report the target set’s cardinality. To con-
trol for differences in working memory, and to test whether
children were capable of remembering a recently counted set,
the experimenter then let the child count the board, covered it
again, and then asked, “How many fish are in my pond?”

Results and Discussion

The majority of children (93%) were able to remember the
cardinality of a recently counted set. Of the 28 children cur-
rently included in this dataset, 15 first responded “I don’t
know.” Of the 13 children who first offered a numeric answer,
only 2 gave a correct response. Children who were able to
provide a numeric response gave verbal estimates that were,
on average, about 4 numbers off from the correct response
(Min = 1, Max = 18, SD = 5.5). Additionally, these chil-
dren did not show evidence of having counted as they were
generating their sets, as their verbal responses were almost 5
numbers off from the size of the set they had generated (M
= 4.92, SD = 3.7). Finally, children who gave a numeric re-
sponse did not have higher overall mean performance in com-
parison to children who were unable to provide a numeric
response (t(26) = 0.37, p = 0.72). Together, these results sug-
gest that the greater accuracy CP-knowers demonstrated in
Experiment 1 was likely not due to subvocal counting.

Additionally, we found that CP-knowers’ set-matching
performance closely matched Experiment 1, with 93% accu-
racy for small numerosities (compared with 89% in Experi-
ment 1), and 40% accuracy for large numerosities (compared
with 42% in Experiment 1).
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General Discussion
Although concepts associated with linguistic expressions
such as “eleven” are unequivocally tied to symbolic num-
ber, it is unknown whether the idea that number can be ex-
act is only available through exact number language. Pre-
vious work exploring this question has produced conflicting
results, with exact number representations sometimes hing-
ing on symbolic number (Everett & Madora, 2012; Gordon,
2004; Negen & Sarnecka, 2009); and sometimes being avail-
able in its absence (Frank et al., 2008; Jara-Ettinger et al.,
2017). In the current work, we returned to this question with
a large sample of children to explore whether one diagnostic
of exact number – the ability to use one-to-one correspon-
dence to generate numerically equal matches – changed as a
function of symbolic number acquisition.

By adapting a method previously used in innumerate cul-
tures, we provide a broad and flexible test of children’s ex-
act number knowledge at varying stages of their symbolic
number acquisition. Our findings adjudicate between previ-
ous studies by providing a large and robust set of findings,
replicated across two experiments, that show a link between
large exact number representations and knowledge of sym-
bolic number language. We replicate previous findings with
the Pirahã and young children that numeracy is related to
exact number concepts (Everett & Madora, 2012; Gordon,
2004; Negen & Sarnecka, 2009): While both subset and CP-
knowers were generally accurate on the set-matching task
for quantities within the PI range, only CP knowers were
more likely to generate an exact (as opposed to approximate)
match for larger quantities. Subset knowers, on the other
hand, were unlikely to spontaneously deploy a set-matching
strategy that would guarantee exact, rather than approximate,
equality. These findings are compatible with Gordon’s (2004)
claim that large exact number concepts are related to numer-
acy, but sharpen this claim to show that (1) simply knowing
some exact number words is not sufficient to acquire a full
understanding of one-to-one correspondence, and (2) even
learning to count does not ensure perfect performance on this
task.

While CP-knowers were more accurate than subset know-
ers, their performance was surprisingly variable and well be-
low adult levels (Frank et al., 2008). This indicates that
while acquisition of the CP may make one-to-one correspon-
dence more accessible, knowledge of the CP alone may not
be sufficient to furnish a complete understanding of how ex-
act number and one-to-one correspondence are related. One
possible reason for this pattern of performance may be that
children learn the significance of one-to-one correspondence
not through number language, but through its associated pro-
cedures. Specifically, as CP-knowers learn how to deploy
one-to-one correspondence in the count routine to create a
partition between counted and uncounted sets, they may no-
tice that one-to-one procedures can also be deployed non-
symbolically to the same end, as in the set-matching task.
Thus, it is possible that CP-knowers’ increased accuracy on

the set-matching task may not reflect new conceptual knowl-
edge stemming solely from exact number language, but rather
their abstraction of a general principle from learning the pro-
cedures of the count routine. Through gaining more experi-
ence with deploying the count routine and recognizing how it
is coextensive with nonsymbolic one-to-one procedures, CP-
knowers may discover the integral role of one-to-one corre-
spondence in exact number.

This hypothesis may account for CP-knowers’ variable
performance in the current work; CP-knowers are an un-
bounded group, and demonstrate a high degree of hetero-
geneity in both their understanding of counting and the inte-
gers. For example, many young CP-knowers may have only
a surface-level understanding of counting, and blindly deploy
it to generate cardinalities without necessarily grasping its
deeper logical entailments and numerical meaning (Barner,
2017). Prior work has shown that many children discover
other properties of the integers, such as the successor function
(Cheung, Rubenson, & Barner, 2017), well after acquiring the
CP, suggesting that as children progress from a procedural to
numerical understanding of the count list, their understand-
ing of exact number similarly grows more robust. Children’s
performance here raises the possibility that a full understand-
ing of the role of one-to-one correspondence in establishing
equinumerosity may emerge some time after acquiring the
CP. Future work should investigate the trajectory of this un-
derstanding, and its implications for the development of other
numerical knowledge (Carey & Barner, 2019).

There are two important limitations of this work. First,
because we wished to provide a measure of children’s un-
prompted attention to exactness, our ambiguous instructions
to “Make your pond look like mine” may have created too
large a hypothesis space, prompting some children to gen-
erate matches on the basis of length, density, or some other
set feature. That subset knowers’ matching behavior was af-
fected by set identity is consistent with this alternative, and
with prior work showing that perceptual identity is more
salient than numerical equality for subset knowers (Izard et
al., 2014; Mix, 1999), and even some CP-knowers (Chan &
Mazzocco, 2017). Second, the set-matching paradigm does
not fully rule out an approximation strategy. Children’s ANS
becomes more precise after they acquire the CP (Shusterman,
Slusser, Halberda, & Odic, 2016), leaving open the possibil-
ity that CP-knowers’ lower rates of error and higher accuracy
may reflect some mix of both one-to-one and approximation
strategies. These limitations provide direction for future work
testing the effects of directing children’s attention to num-
ber, and also disambiguating between different set-matching
strategies.

Together, this work provides key data on the previously
unclear role of language in the development of exact number
concepts. We find that, consistent with the hypothesis that
the availability of exact number concepts is linked to exact
number language (Núñez, 2017), children with limited sym-
bolic number knowledge struggled on a nonsymbolic test of
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exact equality. While children with greater symbolic number
knowledge had higher accuracy, their performance on even
the simplest version of this task was surprisingly low, sug-
gesting that exact number language alone may not be suffi-
cient to fully grasp Hume’s Principle, and that the numerical
significance of one-to-one correspondence may be discovered
through counting experience. Future work should explore the
development of this knowledge in numerate children, and the
process through which children might acquire a more com-
plete understanding of the relationship between one-to-one
correspondence and exact number.
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