
UC Irvine
ICS Technical Reports

Title
The P-NUT system : an environment for modeling and analyzing concurrent systems

Permalink
https://escholarship.org/uc/item/6tz3k6z7

Authors
Razouk, Rami R.
Morgan, E. Timothy

Publication Date
1985

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6tz3k6z7
https://escholarship.org
http://www.cdlib.org/

Notice: This Materiaf
may be protected
by Copyright Law
(Title 17 U.S.C.)

The P-NUT System:
An Environment for Modeling and Analyzing O>ncurrent Systems

Rami R. Razouk
E. Timothy Morgan

ABSTRACT
65' ~/16

The availability of low-cost powerful processors has made distributed computer
systems a reality. Currently, the major stumbling block in the design of these systems is
the difficulty of designing and validating concurrent software which.is to control and ex
ecute on the new processors. There is a need· for new techniques and tools for modeling
and evaluating designs of distributed computer systems during early stages of design.
The Distributed Systems Project at UCI has been investigating Petri Net-based model
ing techniques and has developed a suite of tools, named P-NUT, for constructing and
analyzing complex Petri Net models. This paper describes the motivation behind the
selection of the Petri Net model, and describes the tools which currently exist.

Technical Report #85-16

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

July 1985

© Copyright - 1985

The P-NUT System:
An Environment for Modeling and Analyzing Cioncurrent Systems

Introduction

Rami R. Razouk
E. Timothy Morgan

Information and Computer Science Department
University of California, Irvine

ABSTRACT

The availability of low-cost powerful processors has made
distributed computer systems a reality. Currently, the
major stumbling block in the design of these systems is the
difficulty of designing and validating concurrent software
which is to control and execute on the new processors.
There is a need for new techniques and tools for modeling
and evaluating designs of distributed computer systems
during early stages of design. The Distributed Systems
Project at UCI has been investigating Petri Net-based
modeling techniques and has developed a suite of tools,
named P-NUT, for constructing and analyzing complex
Petri Net models. This paper describes the motivation
behind the selection of the Petri Net model, and describes
the tools which currently exist.

Recent advances in micro-electronics have sparked interest in the design of

distributed systems. Distributed processing is seen as a means of achieving higher

performance and greater reliability. The task of designing and implementing

concurrent software which is to control (and execute on) these systems is a difficult and

complex task. With- the added complexity there is a greater need for models which can

permit experimentation at early stages of the design process. These models must be

* This work has been supported in part by a MICRO grant co-sponsored by Hughes

Aircraft Co. and the University of California, and by a grant from the National Science

Foundation (grant no. DCR 84-06756).

page 1

supported by tools which can analyze them.

Petri Nets have long been touted as useful in modeling concurrent

hardware/software. A variety of extensions have been proposed which support

verification [Symons 80, Berthelot 82, Berthomieu 83) and performance evaluation

[Ramchandani 7 4, Sifakis 77, Ramamoorthy 80, Zuberek 80, Molloy 82, Razouk and

Phelps 84, Holliday and Vernon 85]. This dual use of the Petri Net model makes it a

rare breed. Generally techniques which support verification (e.g. temporal logic,

algebraic specifications) ignore timing and performance issues. Also, performance

models (e.g. queueing networks) usually abstract away functionality and cannot be

used for rigorous proofs of correctness. Yet in distributed systems issues of correctness

and performance are so tightly coupled that it is difficult to deal with one without the

other.

The Distributed Systems Project at UCI has focused on the use of Petri Nets to

model and evaluate distributed systems. The research has produced a suite of tools,

named P-NUT, which can be used to prove partial correctness and to evaluate

performance. In Section 1 of this paper, the basic requirements for analyzing

distributed systems are outlined. In Section 2, the Petri Net model on which this

research is based is briefly described. Section 3 summarizes some of the principles

which have guided the development of the tools which comprise the P-NUT system.

Section 4 describes the tools which currently exist.

1. Analysis of Distributed Syste~ ·

Designers of distributed systems (software and hardware) face a complex and

demanding task. Among the factors which contribute to the complexity of the task

are:

1. Distributed systems include multiple processors which can act simultaneously.

This "true concurrency" makes the design of distributed software more difficult

than the design of concurrent software (multiple processes executing on a single

page 2

processor).

2. Distributed systems are often expected to continue operating in the face of

processor failure and unreliable communication. These added requirements add

to the complexity of the designs.

3. Time is an important factor in distributed systems. The existence of multiple

processors, each with an essentially independent clock, makes synchronization

difficult. Timing errors can lead to incorrect operation and/or to degraded

performance.

In order to assist designers of distributed systems, new modeling and analysis

techniques (supported by tools) must be developed. The focus of these techniques

should be to provide the designer with a clear understanding of the "states" the

systems can reach and how those states can be reached. The state-space of a system

can be though.t of as a graph where nodes represent system states and where edges

represent events causing state transition. Unfortunately, the state-space of even the

smallest of distributed systems is extremely large. The introduction of time into any

model of such systems can make the state-space infinite. Any techniques which

requires exhaustive enumeration of all the states is therefore expected to be of limited

usefulness. Methods must be developed which allow designers to view this potentially

infinite state-space in a more compact and understandable form. The Distributed

Systems Project at UCI has been exploring two interrelated approaches to this

problem. The first approach relies on grouping system states into classes of states, and

exhaustively constructing graphs containing all classes of states. The second approach

constructs a subset of the system states by traversing a single long path through the

system state-space. -This approach maintains all the details of each system state. Each

of these approaches is briefly discussed below.

page 3

Exhaustive State Exploration:

As stated above, this approach is based on grouping states into classes. States

are generally grouped by omitting some of the details of the system state. In order to

more clearly understand the details which can be omited from a stated description it is

possible to view a state as consisting of three components:

1. Control component: This is the portion of the system state which relates to the

control state of each process (point of execution) and of each resource (busy,

free, ...).

2. Time component: This is the portion of the system state which describes the

timing relationship between various hardware and software components.

3. Data component: This is the portion of the system state dealing with data, and

data transformations.

The partitioning of a system state into these three components provides a

convenient set of criteria for grouping states. In the P-NUT system, methods have

been developed for grouping states according to the control component only (ignoring

timing and data) or according to both the control and timing components (ignoring

data). The first method allows the designer to focus strictly on control fl.ow anomalies

(e.g. deadlock, livelock), while the second adds timing thereby allowing the designer to

investigate timing issues from both correctness and performance standpoints.

Path exploration:

The most commonly used method of analyzing systems with large state-spaces is

to explore paths through the state-space. This technique is commonly referred to as

simulation. One should not lose sight of the fact that path exploration and exhaustive

state exploration are strongly related: path exploration attempts to reconstruct a

subset of the complete state space by traversing one long path through the graph of

system states; exhaustive state exploration attempts to reconstruct the complete state-

page 4

space (or a projection of that space) by exploring all paths out of every state.

The objective of the set of tools which are the subject of this paper is to provide

designers with the ability to explore the system state-space in the ways described

above. The model chosen as the basis of the analysis techniques and tools is the Petri

net model. This selection was based on the large body of theoretical work which exists

on Petri Nets, and based on the fact that it is the only model to date which has been

effectively used for both correctness proofs and performance evaluation. The next

section briefly introduces Petri Net models.

2. Petri Nets

The Petri Net model dates back to early work by Petri in the early 1960's

[Peterson 81]. Since that time the model has evolved from a purely theoretical model of

computation to a practical tool for design and analysis. A Petri Net consists of a set of

places (represented by circles) modeling conditions, and a set of transitions

(represented by bars) modeling events. A condition is said to hold if the corresponding

place holds tokens. Arcs connecting places to transitions describe the conditions which

must hold before an event occurs. Arcs connecting transitions to places describe the

conditions which hold after an event has occurred. The occurrence of an event (a

transition firing) removes tokens from input places (disabling the pre-conditions) and

places tokens on the output places (enabling the post-conditions). Control

dependencies, including parallelism, synchronization and resource sharing (the control

component described in Section 2) can be easily modeled as described in [Agerwala 79].

The simple communication protocol shown in Figure 1 can be used to illustrate

Petri Net models and to show the need for some of the extensions which have been

adopted in the research. The model consists of a Sender, a Receiver, and a

Transmission Medium (bi-directional). The Sender can be ready to send (place 1), can

be waiting for an acknowledgement (place 4) or can be preparing a message for

transmission (place 5). The Sender expects acknowledgements in place 6. The four

possible events in the sender are sending a message (transition 2), timeout (transition

page 5

Sender Medium Receiver

Figure 1. Model of Simple Protocol

3) successful receipt of acknowledgement (transition 7), and preparation of the next

message to send (transition 1).

The Receiver is always ready to receive (place 8) and expects messages in place

3. The only event possible in the Receiver is that a message is received and an

acknowledgement is sent (transition 6).

The transmission medium (in each direction) can only be in one of two states:

either it holds a message (a token in places 2 and 7) or it doesn't (no tokens). The

only possible events are the successful transmission of a message/acknowledgement

(transitions 5 and 8), or the loss of a message/ acknowledgement (transitions 4 and 9).

page 6

This simple example illustrates the need for some extensions which have been

adopted. To model processing and transmission delays, firing times are associated with

each transition. Once a transition begins to fire, it continues to fire until the firing

time elapses. To model timeouts, an enabling time is associated with each transition.

Once a transition is enabled, it is not allowed to fire until the enabling time has passed.

The transition must be enabled continually during that interval. In order to model

probabilistic events, firing frequencies can be associated with transitions which contend

with each other for tokens (modeling resources). The frequencies model the probability

of events happening. These extensions can model the timing component of a computer

system (as described in section 2).

The extensions discussed to this point can be used to construct abstract models

of systems. They are not useful if more detail is needed. For example, lengths of

messages cannot be modeled using the extensions listed above. In order to support

more detailed model, the extensions which form predicate/action nets have been

adopted [Diaz 82]. A user may specify predicates associated with transitions. These

predicates model data-dependent factors which may influence fl.ow of control. A user

may also specify actions (in the form of small algorithms) which describe the data

manipulation activities involved in each event. Section 4 gives brief examples of

predicates and actions.

3. Objectives and Design Phil~ophy

The main goal behind the P-NUT system is to develop a collection of tools that

a designer can "mix and match" in a variety of ways to achieve the overall objective of

modeling and analyzing concurrent software/hardware systems. This goal is ambitious

given that the P-NUT system is being developed in a university environment by

graduate students working toward their Ph.D. degree. In order to make the goal

achievable, care had to be taken in designing the overall structure within which the

tools fit. The overall design philosophy of P-NUT can be summarize in the following

two general rules:

page 7

1. The system is to be composed of small, highly specialized tools.

2. The tools interact by sharing a few "standard" representations. All tools should

interface with these forms, extracting from them only the needed information.

Below, each of these points is elaborated.

Small, specialized tools

The approach of building P-NUT out of a large number of small and specialized

tools was motivated by several factors. First, the small granularity of the tools permits

concurrent development of tools. Secondly, the tools can be highly optimized to

perform their function. Since many of the analyses being developed are

computationally intensive, efficiency (both in time and space) is critical to the success

of the project. Some significant gains have been achieved in the design of efficient

analysis tools [Razouk and Hirschberg 85]. Finally, the resulting environment

encourages innovation since the addition of tools requires little effort. There is no need

to understand the inner workings of existing tools in order to develop new ones.

This approach also has some drawbacks. A user is faced with a large number of

tools whose combined use is unclear. One remedy is to provide extensive

documentation of the tools with detailed examples of how the tools were used

collectively to achieve a goal. The system is currently aimed at sophisticated and

knowledgeable users (at least in the Petri Net world) who are expected to discover new

ways of combining the tools. Another drawback is that code re-use, while c,onsidered

an excellent idea, is not actively supported. Currently, a large degree of code sharing is

actually being done, but that is the result of the fact that the research group is rather

small (six members) ;

page 8

Few "standard" representations

Given that the system is to be composed of many small tools, some standards

had to be adopted for how the tools were to interface with one another. The tools have

been designed to fit together using UNIX8 "pipes". Each tool reads inputs from

standard input and produce results on standard output. The user determines if the

outputs are to be stored onto files, passed on to other tools, or both. This approach is

particularly useful for non-interactive tools. Interactive tools expect input from

standard input and from the user terminal.

The tools described below vary widely in their functionality. However, they all

operate on Petri Nets, Reachability Graphs or Execution Traces. The Petri Nets can

vary widely from standard "vanilla" Petri Nets to timed Petri Nets and even to fully

interpreted Petri nets. Regardless of the level of detail chosen by a designer, a

standard representation of the Petri Net is shared by all the tools operating on them.

Each tool extracts from the standard form the information it needs. For example, the

reachability graph builder ignores timing and interpretation. A Reachability Graph

represents a partial or a complete system state-space. As is the case with Petri Nets,

different tools expect different types of graphs. For example, performance analysis tools

expect timing information while other tools can operate on graphs which omit time.

Execution Traces represent paths through the system state space.

As the system is currently in its infancy, all the chosen standard forms are

textual, and even human-readable. Debugging is thereby simplified at the expense of

some efficiency:

In addition to the two guiding principles outlined above, the tools were also

designed to be portable. Since the intent of the research was to exchange techniques

and tools with other Universities and with Industry, simple and portable

implementations were deemed necessary.

UNIX is a registered trademark of the Bell System.

page 9

Translator i------'3~ Translator i----4------'3~
reprocessor

Timed
eachability

raph Builde

eachability
Graph

Builder

Simulator

Decision
Graph

Builder

eachability
Graph

Analyzer

Pretty
Printer

r - - - ..,

- - -::J. Plot I
\ I I
\ L ___ ..J

\
\

\
\

\
\

'r---.,
~Performance I

I Statistics I
L - - - ..J

Figure 2. The P-NUT System

4. The P-NUT Tools

r - - - .,
___ ::J.Performancel

I Analyzer I
L - - - ..J

Figure 2 shows the tools available in the P-NUT system. This section describes

each of the tools and presents brief examples of their use.

page 10

Translator

The Petri Net translator accepts textual representations of Petri nets and

transforms them into standard form processable by other tools. A simple Petri Net can

be represented as a set of transitions of the form:

input places-> output places

where each place is named and can be followed by the number of required tokens (in

parentheses). Transitions can also be named. Figure 3 shows the textual description

of the Petri Net in Figure 1, with the places given more descriptive names.

/* Sender * * /
tl: ackJeceived -> ready_to_send
t2: ready_to_send -> message, waitJor_ack
t3: waitJor_ack -> ready_to_send
t7: waitJor_ack, received_ack -> ackJe~eived

/* Sender to Receiver Medium * /
t4: message->
t5: message-> received_message

/* Receiver to Sender Medium * /
t8: ack -> received_ack
t9: ack ->

/* Receiver * /
t6: waitJor_message, received_message -> waitJor_message, ack

Figure 3. Textual Description of Simple Protocol.

The Petri Net Translator also supports the following extensions to Petri Nets:

1. Timing. Each transition in a Petri Net can have a triple associated with it (see

Figure 4). The first number is the enabling delay. The second number is the

firing time (processing delay). The third number is the relative firing frequency

which indicates how often this transition fires compared to other conflicting

transitions (transitions which share input places).

2. Predicates. Data variables can be used to simplify the Petri Net model. In

page 11

/* Sender ** /
tl: ackJeceived -> (0, 1 ms, -) ready _to_send
t2: ready_to....send -> (0, 1 ms,-) message, waitJor_ack
t3: waitJor_ack -> (1 sec, 1 ms, 0) ready_to....send
t7: waitJor_ack, received_ack -> (0, 13.5 ms, 1) ackJeceived

/* Sender to Receiver Medium * /
t4: message -> (0, 106.7, 5)
t5: message -> (0, 106.7 ms, 95) received_message

/* Receiver to Sender Medium * /
t9: ack -> (0, 106.7 ms, 5)
t8: ack -> (0, 106.7 ms, 95) received_ack

/* Receiver * /
t6: waitJor_message, received_message -> (0, 13.5 ms, -) waitJor_message, ack

Figure 4. Simple Protocol with Time.

order for the data variables to influence flow of control it is possible for a

designer to add predicates to transitions. These predicates must be true before

a transition can fire. The addition of predicates makes analysis for deadlocks

more difficult since the Petri Net itself is an incomplete model of the control

flow. Care must be taken in interpreting results of analyses which omit

predicates since predicates can introduce undesirable states.

3. Actions. Data variables can be altered during the firing of transition. A

transition can have a small program segment associated with it. This program

segment is executed when the transition fires, thereby altering the values of

shared variables.

Translator preprocessor

The translatqr described above is aided by a preprocessor which supports more

compact textual representations of Petri Nets. These compact representations are

particularly useful for Petri Nets whose structure is regular to the extent that

connections between places and transitions can be described using some simple

expressions. To best explain the concept, the dining philosopher problem is used as an

example.

page 12

Fork
i

Philosopher
i

Fork
(i + 1) mod n

Figure 5a. Petri Net of a Dining Philosopher

In the dining philosophers problem we have n philosophers (usually five)

separated by forks (or chop-sticks for lovers of Chinese food) seated around a table.

Each philosopher can access forks to his/her right and left. This problem can be easily

described by focusing on the behavior of the ith philosopher. This philosopher has

access to forks i ~nd (i+l) mod n. Figure 5a shows the Petri Net for the ith

philosopher and figure 5b shows the textual description which the preprocessor

supports. The preprocessor expands the net as shown in Figure 6. The expression

appearing in angle brackets (< >) is the initial state of the net.

page 13

for n=3 {

array philosopher_thinking(n), philosopher_lJork(n), forkJree(n)
array fork busy(n)

for i=O to n-1 {
:take_firstJeftJork[i]: philosopher_thinking[i], forkJree[i] -> philosopher_lJork[i],

fork_busy[i]
:take_firstJightJork[i]: philosopher_thinking[i], forkJree[(i+l) % n] -> philosopher_lJork[i],

fork_busy[(i+l) % n]
:take....secondJeftJork[i]: philosopher_lJork[i], forkJree[i] -> philosopher_eating[i],

fork_busy[i]
:take....secondJightJork[i]: philosopher_lJork[i], forkJree[(i+l) % n] -> philosopher_eating[i],

fork_busy[(i+l) % n]
:releaseJork[i]: philosopher_eating(i], fork_busy[i],

fork_busy[(i+l) % n] -> philosopher_thinking[i], forkJree[i],
forkJree[(i+l) % n]

<philosopher_thinking[i], forkJree[i]>
}
}

Figure 5b. Compact representation of Dining Philosophers

array philosopher_thinking(3), philosopher_1Jork(3), forkJree(3)
array fork_busy(3)
:releaseJorkO: philosopher_eatingO, fork_busyO, fork_busyl -> philosopher_thinkingO, forkJreeO, forkJreel
:take....secondJightJorkO: philosopher_lJorkO, forkJreel -> philosopher_eatingO, fork_busyl
:take....secondJeftJorkO: philosopher_lJorkO, forkJreeO -> philosopher_eatingO, fork_busyO
:take_firstJightJorkO: philosopher_thinkingO, forkJreel -> philosopher_lJorkO, fork_busyl
:take_firstJeftJorkO: philosopher_thinkingO, forkJreeO -> philosopher_lJorkO, fork_busyO
:releaseJorkl: philosopher_eatingl, fork_busyl, fork_busy2 -> philosopher_thinkingl, forkJreel, forkJree2
:take....secondJightJorkl: philosopher_lJorkl, forkJree2 -> philosopher_eatingl, fork_busy2
:take....secondJeftJorkl: philosopher_lJorkl, forkJreel -> philosopher_eatingl, fork_busyl
:take_firstJightJorkl: philosopher_thinkingl, forkJree2 -> philosopher_lJorkl, fork_busy2
:take_firstJeftJorkl: philosopher_thinkingl, forkJreel -> philosopher_lJorkl, fork_busyl
:releaseJork2: philosopher_eating2, fork_busy2, fork_busyO -> philosopher_thinking2, forkJree2, forkJreeO
:take....secondJightJork2: philosopher_1Jork2, forkJreeO -> philosopher_eating2, fork_busyO
:take....secondJeftJork2: philosopher_1Jork2, forkJree2 -> philosopher_eating2, fork_busy2
:take_firstJightJork2: philosopher_thinking2, forkJreeO -> philosopher_1Jork2, fork_busyO
:take_firstJeftJork2: plfilosopher..::.thinking2, forkJree2 -> philosopher_1Jork2, fork_busy2
<philosopher _thinkingO, forkJreeO>
<philosopher_thinkingl, forkJreel>
<philosopher_thinking2, forkJree2>

Figure 6. Output of the Preprocessor

page 14

Reachability Graph Builder

One analysis method currently supported in P-NUT is the automated

construction of reachability graphs. The reachability graph builder (RGB) operates on

simple Petri Nets, ignoring timing and interpretation information. RGB produces a

standard reachability graph which is suitable for processing by other tools such as the

pretty-printer and the reachability graph analyzer.

RGB was designed with great care in order to maximize its efficiency.

Reachability Graphs are known to grow exponentially (in general) with the number of

places, transitions and tokens in a net. In some cases, reachability graphs can be

infinite. In order to construct an efficient tool, several types of models were identified

where efficiency could be gained by taking advantage of the designer's understanding of

the problem. These cases are:

1. Bounded Graphs. If the designer knows that the reachability graph is bounded,

then the time-consuming task of checking for potentially infinite graphs is

eliminated. This yields large savings in time (and space since the arcs of the

graph need not be stored). Should the designer guess incorrectly, the program

enters an infinite loop. The designer can then abort the analysis and restart it

without the boundedness assumption.

2. Bounded at less that 127. In the vast majority of Petri Net models, the

maximum number of tokens in any place is a small integer. In such cases, the

number of tokens in a place is stored in a single byte rather than a full word (2

or 4 bytes depending of the execution environment). This saving in space

permits the generation of larger graphs. If the assumption is violated, the tools

does NOT detect the error. The designer is advised to use the reachability

graph analyzer to check for any states containing a place with 127 tokens. If

any are found, the analysis should be repeated.

3. Bounded at 1 (safe). In the case where the net being analyzed is safe, a single

bit is used to prepresent each place. Calculation of successors requires logical

page 15

operations (exclusive-OR) and can be done (in the case of a VAX

implementation) 32 bits at a time (32 places). This form of analysis executes

much faster than the others and requires significantly less space. For more

details on the relative performance of each of these tools the reader is referred to

[Razouk and Hirschberg 85]. If the safeness assumption is violated, the user is

notified.

This approach of using the designer's understanding of the problem to aid in

increasing the efficiency of the analysis has made it possible to analyze larger graphs

than previously possible. The largest graph built to date contains nearly 20,000 states

(9 dining philosophers) and, because it is safe, could be built in less than seven minutes

of CPU time on a VAX 750 (less time than it took to format this paper).

Timed Reachability Graph Builder

One of the novel tools in P-NUT is one which constructs reachability graphs

which incorporate time. This tools was inspired by work by Zuberek [Zuberek 80] as

extended in [Razouk and Phelps 84]. The tool constructs a graph where each node

contains a marking and a representation of the amount of time remaining before each

transition can fire and before each firing transition can finish firing. arcs in the graph

are weighted by the amount of time each state transition requires. Nodes with multiple

successors have probabilities associated with each outgoing arc.

The output of this tool is a standard reachability graph which can be processed

by other tools. A tools which compresses into a Decision Graph [Razouk and Phelps

84] has been built. A Decision Graph is a compacted version of the reachability graph

which contains all performance related information needed to derive performance

measures. A Performance Analyzer which processes these decision graphs is planned.

page 16

Pretty-Printer

One convenient tool for perusing reachability graphs is a pretty printer. This

tools accepts reachability graphs as input and accepts a set of user-defined parameters

to control the displaying of the graph. Normally, the pretty-printer displays the

complete graph, starting from the initial state, as a tree. Only successor links are

displayed, and the output is made as wide as the user's terminal. Each node is

represented by a number. At the end of the display, the marking corresponding to

each state is displayed next to the state number. Figure 7 shows a partial display of a

reachability graph.
0->6-> 18->0

• • •

I
+-> 25-> 3-> 16-> 25

I I I
I I +->24->6
I I
I +-> 15->25
I I I
I I +->22
I I
I +->14->24
I I I
I I +->o

0. forkJreeO,philosopher_thinkingO,forkJreel,philosopher_thinkingl,forkJree2,philosopher_thinking2
1. fork_busyO,philosopher_lJorkO,forkJreel,philosopher_thinkingl,forkJree2,philosopher_thinking2
2. forkJreeO,philosopher_lJorkO,fork_busyl,philosopher_thinkingl,forkJree2,philosopher_thinking2
3. for kJreeO ,philosopher_thinkingO ,for k_busy 1,philosopher_lJork 1,forkJree2 ,philosopher _thinkin g2
4. forkJreeO,philosopher_thinkingO,forkJreel,philosopher_lJorkl,fork_busy2,philosopher_thinking2

• • •

Figure 7. Sample Pretty-Printer output

page 17

The user-defined parameters allow a user to:

1. Display the graph backward. Starting from the initial state, predecessor links

are traversed (rather than successor links).

2. Control the width of the display. If the output is to be stored on a file for later

printing on a line printer, the designer can request the display to be geared to a

wider display (e.g. 132 columns).

3. Control the starting point of the display. A state other than the initial state

can be used as the starting point of the display.

4. Control the depth of the display. If the designer wishes to focus on part of the

graph, he/she can request that only successors (or predecessor) which are

reachable via paths of a certain length should be displayed. A depth of 0 causes

only a single state to be displayed.

Currently the pretty-printer is targeted for the lowest common denominator for

output devices. There is a clear need for more sophisticated graphical output.

Reachability Graph Analyzer

One of the most innovative tools in the P-NUT system is one which aids in

analyzing reachability graphs. The need for this tool arises from the size of typical

reachability graphs. Even if the graphs are finite, they are usually large. The efficiency

of our reachability graph builders allows us to construct very large graphs which

cannot be analyzed manually. The reachability graph analyzer was therefore built to

permit automated analysis of these graphs to aid in verifying that key properties are

satisfied.

The reachability graph analyzer (RGA) permits the user to define (in first-order

predicate calculus) a set of properties relating to states, places, transitions and state

transitions. These properties are then verified against the known set of reachable

states. Since the user defines the properties to be verified, RGA is capable of verifying

page 18

general properties such as deadlock-freeness, as well as system-specific properties (e.g.

the preservation of certain resources).

Because of the complexity of RGA, a full explanation of its capabilities are

beyond the scope of this paper. The reader is referred to [Morgan and Razouk 85,

Morgan 84] for further detail. For the purpose of this paper we will simply provide

some brief examples related to the dining philosophers problem.

In order to verify that the dining philosophers cannot deadlock a user can ask is

every state has at least one successor state (no terminal states). This question can be

formulated as:

forall s in S [nsucc(s) > OJ

where S is a predefined set of all reachable states. In this case the tool responds with

false. The user can then ask for the set of states which are deadlocks as follows:

{s in S I nsucc(s) = O}

In this case there is only one state in the set. The user can further define functions

which can be used to prove system specific properties. For example, the user can

define a function which returns the number of philosophers eating as follows:

philosophers_eating (s) [count] ::=count := 0 \

forall p in philosopher_eating [count := count + p(s); true] \

count

In this case the local variable count is used to accumulate the total number of tokens in

the set of places "philosopher_eating". The forall construct is used to loop. The user

can then use this function to verify that the total number of philosophers eating at

any time is less than or equal to the number of philosophers divided by the number of

forks required to eat. This question can be formulated as:

page 19

forall s' in S [philosophers_eating(s') < = 5/2]

This question is specific to the case of five dining philosophers. The tool responds with
,;

trne.

Since the tool provides a programming language, the designer can construct

complex algorithms for analyzing the graphs. As more experience is gained using the

tool, additional user-defined algorithms are added as built-ins. A recent extension to

the tools also allows it to process timed reachability graphs. This opens the possibility

of verifying properties of concurrent systems while taking timing assumptions into

consideration.

Decision Graph Builder

As described earlier, the primary function of the Decision Graph Builder is to

compress timed reachability graphs. The retained information consists of only nodes

with multiple successors (modeling non-determinism or decision making). All other

nodes and edges are collapsed with the information along the edges accumulated. For

example, long sequential paths through a timed reachability graph are replaced by one

edge labeled with the sum of all the delays along the original path.

Simulator

The reachability graph tools described above focus on exhaustive analysis. Each

tools focuses on some limited aspect of system behavior in the hope of making the

analysis manageable. It is still desirable to provide the designer with the capability of

examining the models in their full details. This can be accomplished by limiting the

' state-exploration to some limited subset of all system states. For this purpose, a

simulator has been built which exercises untimed, timed and interpreted Petri nets.

The design of the simulator focuses on simplicity and efficiency. A standard form of

simulation output has been developed and a set of output analysis tools (plotters and

statistical packages) are planned. An "animator" is also planned to take advantage of

page 20

high-resolution bit-map graphics. This animator is intended to provide graphical

representations of the operation of Petri Net models.

Conclusions

A set of useful and efficient modeling and analysis tools has been developed at

UCI as part of the P-NUT system. The tools allow designers to construct Petri net

models which have been extended to support timing and interpretation. These models

can be exhaustively analyzed (with and without time) and the results of the analyses

can be presented to the user in a flexible form. Simulation experiments can be used to

traverse selected portions of the total system state-space. The tools have been used to

verify some simple communication protocols (alternating-bit and X.21) and are

currently being used to derive performance measures for Intel's 286 processor (a

pipelined machine) and for a multiprocessor system.

Work is continuing on enhancements to the tools. Among the planned tools are

a Graphics Editor, an Animator, a Performance Analyzer and a variety of Plotting and

Performance Statistics tools. The work on P-NUT is, and will continue to be, in the

public domain. The tools are highly portable and currently require a C compiler and

and UNIX operating system. The tools execute directly on VAXes running UNIX 4.1,

4.2 and LOCUS.

Aclmowledgeimnts

The authors would like to acknowledge the member of the P-NUT group for

their contributions to this research: James Fradkin, Charles Phelps, Richard Sidwell,

and David Woo. The authors would also like to acknowledge the contributions of Dr.

Daniel Hirschberg.

page 21

References

[Agerwala 79] Agerwala, T. "Putting Petri Nets to Work," Computer, December 1979,
pp. 85-94.

[Berthelot 82] Berthelot, G. and Richard Terrat, "Petri Net Theory for the
Correctness of Protocols," Protocol Specification, Testing and
Verification, North Holland Pub. Co., (1982).

[Berthomieu 83] Berthomieu, B. and Menasche, M. "An Enumerative Approach for
Analyzing Time Petri Nets," Proceedings of the 1983 IFIP Congress,
Paris (Sept. 1983).

[Diaz 82] Diaz, M. "Modelling and analysis of communication and cooperation
protocols using Petri Net based models" Protocol Specification,
Testing and Verification, C. Sunshine (ed.) North-Holland
Publishing Co., 1982.

[Holliday and Vernon 85] Holliday, M. and M. Vernon "A Generalized Timed Petri
Net Model for Performance Analysis of Pipelined Architectures", To
appear in the proceedings of the International Workshop on Timed
Petri Nets, Torino Italy, July 1985.

[Molloy 82] Molloy, M., "Performance Modeling Using Stochastic Petri Nets," IEEE
Trans. on Computers, Vol. C-31, pp. 913-917, Sept. 1982.

[Morgan 84] Morgan, E.T. "RGA Users Manual" Technical Rept. No. 243, Information
and Computer Science Dept., University of California, Irvine,
December 1984.

[Morgan and Razouk 85] Morgan, E.T, and R. R. Razouk, "Computer-Aided Analysis
of Concurrent Systems," Proceedings of the 5th International
Workshop on Protocol Specification Veri Ji cation and Testing,
Toulouse, FRANCE, June 1985.

[Peterson J. 81] Peterson, J., Petri Net Theory and the Modeling of Systems,
Prentice-Hall, Inc., Englewood Cliffs, N.J. (1981).

[Ramamoorthy 80] -Ramamoorthy C.V. and G.S. Ho, "Performance Evaluation of
Asynchronous Concurrency Systems using Petri Nets," IEEE
Transaction on Software Engineering, SE-6, 5 (September 1980),
440-449.

[Ramchandani 74] Ramchandani, C. "Analysis of Asynchronous Concurrent Systems
by Timed Petri Nets," Ph.D. Thesis, Project MAC Report No.
MAC-TR-120, MIT (1974).

page 22

[Razouk and Phelps 84] Razouk, R.R. and C. Phelps "Performance Analysis Using
Timed Petri Nets," Proceedings of the 4th International Workshop
on Protocol Specification, Testing, and Verification, June 1984.

[Razouk and Hirschberg 85] Razouk, R.R. and D.S. Hirschberg "Tools for Efficient
Analysis of Concurrent Software Systems" Technical Report No. 85-
15, Information and Computer Science Dept., University of
California, Irvine, June 1985.

[Sifakis 77] Sifakis, J. "Petri Nets for Performance Evaluation," Measuring, Modeling
and Evaluating Computer Systems, Proceedings of the 3rd
Symposium, IFIP Working Group 7.3, H. Beilner and E. Gelenbe
(eds.), North Holland, 1977, pp. 75-93.

[Symons 80] Symons, F.J.W., "Verification of Communication Protocols using
Numerical Petri Nets," Australian Telecommunication Research,
14,1 (1980) 34-38.

[Zuberek 80] Zuberek, W .M., "Timed Petri Nets and Preliminary Performance
Evaluation," 7th Annual Symposium on Computer Architecture,
(1980)' pp. 88-96.

page 23

	20141030161654931_0001
	20141030161654931_0002
	20141030161654931_0003
	20141030161654931_0004
	20141030161654931_0005
	20141030161654931_0006
	20141030161654931_0007
	20141030161654931_0008
	20141030161654931_0009
	20141030161654931_0010
	20141030161654931_0011
	20141030161654931_0012
	20141030161654931_0013
	20141030161654931_0014
	20141030161654931_0015
	20141030161654931_0016
	20141030161654931_0017
	20141030161654931_0018
	20141030161654931_0019
	20141030161654931_0020
	20141030161654931_0021
	20141030161654931_0022
	20141030161654931_0023
	20141030161654931_0024
	20141030161910413_0001
	20141030161910413_0002
	20141030161910413_0003
	20141030161910413_0004
	20141030161910413_0005
	20141030161910413_0006
	20141030161910413_0007
	20141030161910413_0008
	20141030161910413_0009
	20141030161910413_0010
	20141030161910413_0011
	20141030161910413_0012
	20141030161910413_0013
	20141030161910413_0014
	20141030161910413_0015
	20141030161910413_0016
	20141030161910413_0017
	20141030161910413_0018
	20141030161910413_0019

