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Abstract

Towards Efficient and Robust Neuromorphic Computing Systems

by

Ling Liang

Spiking neural networks (SNNs) are known as the third generation of neural networks.

For an SNN, the bio-inspired neural dynamics endow the great potential to simulate the

neural behaviors of the brain; the additional temporal information propagation provides a

larger space to make a comprehensive decision; the binary format and the sparse activities

of spikes make SNNs quite energy efficient when considering the real deployment. High

accuracy, high efficiency, and high robustness are several attractive features of the brain.

In the early stage, the bio-plausible unsupervised training methods are the main-

stream but restrict the learning accuracy of SNNs. Recently, the emerging supervised

training algorithms inspired by backpropagation through time (BPTT) have successfully

boosted the accuracy. However, the implementation complexity of these BPTT-based

algorithms is explosively growing, which raises a much higher demand for hardware re-

sources. To improve the training efficiency, this dissertation proposes two solutions to

optimize the BPTT-based training. The first solution is to directly design an ASIC

accelerator for SNNs while the other is to optimize the dataflows on GPU.

On the other side, how to improve the robustness of SNNs is critical for building a

reliable neuromorphic system. This dissertation first discusses how to disturb an SNN

model through adversarial examples, and then conducts an in-depth analysis of the SNN

robustness. With the observations, a robust training method for SNNs is inspired by the

robustness certification in neural networks.
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Chapter 1

Introduction

Humans never stop trying to understand the mechanism of the brain. Based on the

current studies, the neuron is the basic unit to dynamically process and propagate infor-

mation [1]. Spiking Neural Network (SNN) is known as the third generation of neural

network [2], which is enlightened by the behavior of neurons. Because of the bio-inspired

philosophy of SNN, it has three distinguishable characteristics compared to artificial

neural networks (ANNs). Firstly, the neuronal dynamics in SNN make it possible to

simulate the real neuron system in the brain. Secondly, the additional temporal axis en-

ables SNN to accept more inputs and build a more complex directed graph to propagate

information. Thirdly, the event-driven based spike pattern makes SNNs widely deployed

in neuromorphic devices for low-power brain-inspired computing.

Currently, SNNs are shown promising ability in processing dynamic and noisy infor-

mation with high-efficiency [3, 4] and have been applied in a broad spectrum of tasks

such as optical flow estimation [5], spike pattern recognition [6], SLAM [7], probabilis-

tic inference [4], heuristically solving NP-hard problem [8], quickly solving optimization

problem [9], sparse representation [10], robotics [11], and so forth.

1



Introduction Chapter 1

1.1 Spiking Neural Network Training

How to train an SNN model with expected functionality is an essential problem for

the SNN community. Many early studies have proposed unsupervised local learning

based on the biological observation of local synaptic plasticity. In this family, spike

timing-dependent plasticity (STDP) [12, 13, 14, 15, 16, 17, 18] has been widely explored,

wherein each synaptic weight is modified locally based on the local spiking timing of

the neurons wired by the synapse. However, such local synaptic plasticity suffers low

accuracy and limited model scale, which is why its use in practical applications has been

limited.

In order to improve the accuracy of SNNs, the algorithms in training ANNs are

borrowed. Recently, an explicit format of gradient descent to train ANNs has been

adapted and applied in training SNNs [19]. Due to the spatio-temporal data paths in

SNNs, backpropagation through time (BPTT) is a good fit. Previous studies at the

algorithm level have demonstrated the effectiveness of BPTT for SNN learning [20, 21,

22, 23, 6, 24], which can achieve higher accuracy.

Besides the functionality, how to train SNNs efficiently is also an important research

topic. Currently, GPUs are still the mainstream platform for neural network train-

ing, while they are tailored for ANNs rather than SNNs. This can be reflected by the

ANN-aware optimization for the GPUs’ hardware architectures, programming libraries,

training frameworks, etc. However, such optimization cannot fully utilize the special

data format and computing paradigm of SNNs, thus causing inefficiencies when training

SNNs on GPUs.

Beyond GPUs, researchers have also developed domain-specific chips for SNNs, usu-

ally termed as neuromorphic chips [25, 26, 27, 28, 29, 9, 30]. Here we focus on the ones

targeting SNN learning rather than inference [31, 32, 33, 34, 35, 36]. Nearly all currently

2



Introduction Chapter 1

available SNN learning chips adopt local synaptic plasticity such as STDP for weight

update. The good locality without backpropagation makes it easier to implement on de-

centralized many-core neuromorphic architectures. Although they enjoy low power and

fast response, they still cannot escape from the low accuracy of these local learning rules.

This is also one of the major reasons why neuromorphic chips have not yet achieved

similar commercial success as deep learning accelerators.

1.2 Spiking Neural Network Security

With more attention to SNNs, the security problem becomes quite important. Here

we focus on adversarial attack [37], one of the most popular threat models for neural

network security. In adversarial attack, the attacker introduces imperceptible malicious

perturbation into the input data to mislead the model’s classification result. Although

the adversarial attack is a well-studied topic in ANNs, it is still in its infant stage in the

SNN domain.

For ANNs, the gradient-based attack method is the most efficient method [38, 39,

40, 41, 42, 43], however, there are several challenges in attacking an SNN model us-

ing the gradient-based methodology. First, the input gradient in SNNs presents as a

spatio-temporal pattern that is hard to obtain with traditional learning algorithms like

the gradient-free unsupervised learning [13, 18] and spatial-gradient-based ANN-to-SNN-

conversion learning [44]. Second, the gradients are continuous values, incompatible with

the binary spiking inputs. This data format incompatibility impedes the generation of

spike-based adversarial examples via gradient accumulation. At last, there is severe gra-

dient vanishing when the gradient crosses the step firing function with a zero-dominant

derivative, which will interrupt the update of adversarial examples.

In the meantime, how to improve the robustness of an SNN under adversarial attack

3
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is important. CROWN-IBP [45, 46, 47] is one of the most promising certified training

methods to improve the robustness of a neural network model. The CROWN-IBP method

will compute the output boundary for a given bounded input. The core mission in

CROWN-IBP certified training is to find the upper and lower bound function for each

operation and find tight linear relaxation for non-linear operations. However, the current

CROWN-IBP method cannot be directly applied to SNNs. Firstly, the neuron dynamic

in SNNs is more complicated. Hence, new boundary functions should be defined to bound

the unique non-linear operations in SNNs. Secondly, SNNs accept both spike and digital

inputs, which requires additional boundary generalization for different input types.

1.3 Contributions

The goal of this dissertation is to design efficient BPTT-based training frameworks

for SNNs and explore a robust SNN model against adversarial attack.

For BPTT-based SNN training, the complex neuron modeling and additional tempo-

ral axis make the training inefficient for GPUs. In order to improve training efficiency,

this dissertation provides an accelerator solution and a GPU framework:

• Propose an accelerator (H2Learn) [48] which consists of a Forward Engine, a Back-

ward Engine, and a Weight Update Engine. In Forward Engine and Weight Update

Engine, a LUT-based design enables efficient multiplications and accumulations. In

Backward Engine, an architecture that utilizes both the input and output sparsity

is designed to reduce the computation overhead. See Chapter 3.

• Design a framework that can accelerate the BPTT-based training on GPUs [49].

The framework first optimizes the training dataflow to reduce the memory overhead.

Then, kernel optimization is applied to the complex neuron modeling to reduce the

kernel launching time. See Chapter 4.

4
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In order to acquire a robust SNN model, this dissertation first explores the adversarial

attack in SNNs. Then, the robust training with certified defense is designed to improve

the SNN robustness.

• Design an algorithm to generate adversarial examples for SNNs efficiently [50]. The

proposed algorithm can generate adversarial examples for both spike and digital

inputs. Various techniques are designed to reduce the introduced perturbation on

adversarial examples and handle the gradient vanishing problem during the attack.

See Chapter 5.

• Introduce a robust training method for SNNs [51], which is enlightened by the certi-

fied defiense method. The proposed robust training method designs new boundary

functions for each non-linear function in SNN. Also, the boundary for different

input types is formalized. See Chapter 6.

5



Chapter 2

Background and Related Work

This chapter first provides a detailed elaboration of the BPTT-based SNN training.

Then, several related studies on neuromorphic chips for both inference and training are

introduced. A summary of the research on SNN security is presented at last.

2.1 Preliminary of Spiking Neural Networks

Compared to the early stage of unsupervised SNN training, BPTT-based learning al-

gorithms exhibit extraordinary accuracy boost on the general tasks. This section presents

a detailed algorithm description of the BPTT-based SNN training.

2.1.1 Neuron Modeling

In SNNs, a neuron is the basic structural unit as shown in Figure 2.1, which is com-

prised of dendrite, soma and axon. Many neurons connected by weighted synapses form

an SNN, in which the binary spike events carry information for inter-neuron commu-

nication. Dendrite integrates the weighted pre-synaptic inputs, and soma consequently

updates the membrane potential and determines whether to fire a spike or not. When

6



Background and Related Work Chapter 2

Time Step

Soma Dendrite

Axon

Synapse

Figure 2.1: Neuronal Components

the membrane potential crosses a threshold, a spike will be fired and sent to post-neurons

through axon.

In order to simulate the neuron behavior, this disertation adopts the well-studied

leaky integrated-and-fire (LIF) for the neuron modeling [52]. Specifically, Figure 2.2(a)

illustrates the behaviors of a spiking neuron. The input spikes are first weighted by

synapses and then integrates by dendrites to update the state of membrane potential at

soma. Once the membrane potential exceeds a threshold (thf ), the neuron fires a spike

event to its post-connected neurons and resets its membrane potential to a reset value

(usually zero); otherwise, nothing happens but the leakage of the membrane potential.

A spiking neuron in SNNs is different from an artificial neuron in ANNs. Specifically, (1)

there is an intrinsic temporal domain in a spiking neuron but not in an artificial neuron;

(2) the membrane potential updating of a spiking neuron depends on both the historic

state and the input integration, while the accumulated pre-activation in an artificial

neuron just integrates inputs; (3) spiking neurons communicate with each other using

binary spike events (0 or 1) while artificial neurons use continuous activations.

Fig. 2.2(b) shows a spiking network. The information propagates in both spatial and

temporal domains. The output of an SNN is in a 2D spike pattern rather than a 1D

vector in ANNs. The classification result is determined by the coding scheme of output.

The rate coding [53, 54] is the commonly adopted one that the neuron fires the most

indicates the recognized class. Notice that the network structure of SNNs can be arbitrary

7
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∑𝒔[𝟎]
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𝑡
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Figure 2.2: Introduction of SNNs: (a) behavior of a single spiking neuron; (b) a
spiking neural netowrk; (c) the input format.

in principle, but the fully-connected (FC) layers based multilayered perceptron (MLP)

and the convolutional (Conv) layers based convolutional neural network (CNN) are two

usual cases, which is similar to ANNs. Benefited from the binary format of neuronal

inputs/outputs, the multiplier-based matrix operations can be eliminated during SNN

inference, which becomes the source of high efficiency in SNN hardware design.

2.1.2 BPTT-based Spiking Neural Network Training

Since BPTT-based SNN training can improve the accuracy of SNNs dramatically,

this dissertation focuses on the BPTT-based training algorithms. There are three stages

during the training: forward pass (FP), backward pass (BP), and parameter update

(PU). The FP stage is illustrated in Figure 2.3(a). Specifically, the LIF dynamics is

governed by

ssslt = fire(mmml
t − thf ), (2.1)

mmml
t = α ·mmml

t−1 · (1− ssslt−1)︸ ︷︷ ︸
temporal

+ xxxl
t︸︷︷︸

spatial

, (2.2)

Here, mmml
t and ssslt represent the membrane potentials and the spike events of the neurons

in the l-th layer at the t-th time step. The neuron would fire a spike and send it to the

8
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post-synaptic neurons once the membrane potential larger than the firing threshold thf .

fire(·) is the Heaviside step function, i.e., fire(x) = 1 if x ≥ 0; fire(x) = 0 otherwise.

The membrane potential is comprised by the temporal part and the spatial part. In the

temporal part, if the neuron did not fire a spike in the previous time step, the membrane

potential decays by a factor α, otherwise, the it will be reset to 0. The spatial part xxx is

the result after CONV/FC which follows

xxxl
t[j] =

∑
k
sssl−1
t [k] ∗wwwl[k, j] + bbbl[j]. (2.3)

Conv/FC takes the spike events of the previous layer as inputs, wherein the weights www

and biases bbb are trainable parameters.

Temporal
𝒎𝟎

𝟎 𝒔𝟎𝟎

𝒎𝟏
𝟎 𝒔𝟏𝟎 𝒘𝟎

𝒘𝟎 𝒎𝟎
𝟐 𝒔𝟎𝟐

𝒎𝟏
𝟐 𝒔𝟏𝟐𝒘𝟏

𝒘𝟏

Timestep

LayerSpatial

𝑓𝑖𝑟𝑒

Temporal
𝛁𝒎𝟎

𝟎 𝛁𝒔𝟎𝟎

𝛁𝒎𝟏
𝟎 𝛁𝒔𝟏𝟎

𝛁𝒎𝟎
𝟏 𝛁𝒔𝟎𝟏

𝛁𝒎𝟏
𝟏 𝛁𝒔𝟏𝟏𝒘𝟎

𝒘𝟎 𝛁𝒎𝟎
𝟐 𝛁𝒔𝟎𝟐

𝛁𝒎𝟏
𝟐 𝛁𝒔𝟏𝟐𝒘𝟏

𝒘𝟏

Timestep

LayerSpatial

𝑓𝑖𝑟𝑒′

(a)

(b)

𝒎𝟎
𝟏 𝒔𝟎𝟏

𝒎𝟏
𝟏 𝒔𝟏𝟏

Figure 2.3: Information propagation path of (a) the forward pass and (b) the backward
pass in BPTT for SNN learning.

In the BP stage, the gradients propagate along the opposite direction of the arrows

in Figure 2.3(a), which can be illustrated with Figure 2.3(b). The gradients of the spikes

9
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and the membrane potentials are calculated as

▽ssslt[k] = ▽mmml
t+1[k] · (−α ·mmml

t[k])︸ ︷︷ ︸
temporal

+
∑

j ▽xxx
l+1
t [j] ∗wwwl+1[k, j]︸ ︷︷ ︸

spatial

, (2.4)

▽mmml
t = ▽mmml

t+1 · α · (1− ssslt) + ▽ssslt · fire′(mmml
t). (2.5)

The spike gradients ▽ssslt are obtained from both temporal and spatial directions. The tem-

poral part is derived from the temporal part of Equation 2.2, while the spatial part is the

gradient format of Conv/FC in Equation 2.3, where ▽xxx = ▽mmm. The membrane potential

gradients ▽mmml
t are acquired by calculating the partial derivative of Equation 2.1-2.2. The

derivative of the fire function does not exist in principle. We adopt an approximation

[20] to simulate the derivative:

fire′(mmml
t[i]) ≈


η, thl <mmml

t[i] < thr,

0, otherwise,

(2.6)

where η is a decay factor.

In the PU stage, the parameter update is derived from Equation 2.3, which follows

▽wwwl[k, j] =
∑

t
▽xxxl

t[j] ∗ sssl−1
t [k], (2.7)

▽bbbl[j] =
∑

t,nj

▽xxxl
t[nj]. (2.8)

Finally, the SNN model will be updated with the computed parameter gradients.

Compared with the traditional unsupervised learning rules, such as STDP, BPTT-

based SNN learning algorithms can always achieve higher accuracy and scalability. An

10
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accuracy comparison between these two learning algorithm is shown in Table 2.1.2.

Method Ref Dataset Net Accuracy

STDP

[14] MNIST CNN 93.30%

[13] MNIST MLP 95.00%

[16] MNIST CNN 97.50%

[15] MNIST CNN 98.40%

[55] CIFAR10 CNN 63.64%

[56] CIFAR10 CNN 75.20%

[57] CIFAR10 CNN 66.23%

BPTT

[24] MNIST MLP 98.60%

[20] MNIST MLP 98.89%

[21] MNIST CNN 99.49%

[21] N-MNIST MLP 98.88%

[23] N-MNIST CNN 99.20%

[6] N-MNIST CNN 99.44%

[6] CIFAR10 CNN 89.83%

[6] CIFAR10-DVS CNN 58.10%

Table 2.1: Accuracy comparison for SNN learning: STDP vs. BPTT.

2.2 Related work on SNN Acceleration

2.2.1 Chips for SNN Inference

Many neuromorphic chips target SNN inference. Some of them adopt mixed-analog-

digital circuits based designs [31, 33, 58] that are usually power efficient but suffer low

accuracy and poor programmability. The modern neuromorphic chips prefer fully digital

designs [32, 34, 35, 36, 59]. In particular, TrueNorth [32] achieves low power via event-

driven asynchronous circuits; Tianjic [34, 35] bridges ANNs and SNNs using a hybrid

architecture with a unified routing infrastructure; Spinalflow [36] designs an accelerator

that can skip redundant computations via input scattering. Different from them for SNN

inference, H2Learn targets SNN learning.

11
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2.2.2 Chips for SNN Training

Most of SNN learning chips are designed to implement local synaptic plasticity rules.

Similarly, there are also analog circuits based designs [25, 27] and digital solutions [28, 29,

9, 30]. Specifically, ODIN [28] is the digital version of ROLLS [27] with only one core per

chip, and MorphIC [29] is an enhanced version with a hierarchical routing topology; Loihi

[9] adopts a many-core architecture, while FlexLearn [30] further extends the scope of

synaptic plasticity rules. Some studies exploit either SNN inference or training on FPGA

[60, 61, 62]. Unlike implementing the local synaptic plasticity rules with lower accuracy,

H2Learn selects the BPTT learning rule to achieve high accuracy and elaborates the

architecture to achieve high efficiency. We also notice a recent work [63] supporting BP

(not BPTT) for SNNs, but it adopts a LIF variant without temporal propagation, focuses

on exploiting the non-volatile memory technology, and only shows results on the small

MNIST dataset with two FC layers.

2.2.3 Accelerating on GPUs

Also, recent studies explore accelerating SNN training on GPUs [64]. However, cur-

rent GPU platform is hard to utilize the binary character of spike and high sparsity during

SNN training. Besides learning chips for SNN, many training accelerators target ANNs

[65, 66, 67, 68]. Because SNNs involve distinct operand characteristics, e.g., the more

complex neuronal dynamics and the additional timestep dimension, those ANN-oriented

accelerators cannot be directly applied for SNN training.

12
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2.3 Related work on SNN Security

Recently, researchers attempt to evaluate the well-studied attack methods in ANNs

on SNNs [69], such as PGD, SparseFool, and adversarial patch. Instead of attacking

SNN directly, a model conversion method can transfer attack an SNN to the counterpart

ANN [70]. Besides gradient-based attack methods, some gradient-free attack methods

are designed that only need to know the input, such as trial-and-error perturbation [71]

and dash attack [72]. However, these attack methods either suffer high computational

complexity or do not compatible with various input formats.

Researchers also investigated the impact of hyper-parameter selection [73] and input

filtering [72] on the adversarial attack in SNNs. However, these methods do not directly

promote the classification behavior of a given SNN model.

13



Chapter 3

H2Learn : High-Efficiency Learning

Accelerator for High-Accuracy

Spiking Neural Networks

Although BPTT based SNN training achieves much higher accuracy than traditional un-

supervised learning algorithms, current general-purpose processors suffer from low train-

ing efficiency when performing BPTT for SNNs due to the ANN-tailored optimization.

This Chapter introduces H2Learn, a novel architecture that can achieve high efficiency

for BPTT-based SNN learning which ensures high accuracy of SNNs. In the beginning,

we characterized the behaviors of BPTT-based SNN learning. Benefiting from the binary

spike-based computation in the forward pass and the weight update, we first design look

up table (LUT) based processing elements in Forward Engine and Weight Update Engine

to make accumulations implicit and to fuse the computations of multiple input points.

Second, benefited from the rich sparsity in the backward pass, we design a dual-sparsity-

aware Backward Engine which exploits both input and output sparsity. Finally, we apply

a pipeline optimization between different engines to build an end-to-end solution for the
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BPTT-based SNN learning. Compared with the modern NVIDIA V100 GPU, H2Learn

achieves 7.38× area saving, 5.74-10.20× speedup, and 5.25-7.12× energy saving on several

benchmark datasets.

3.1 Overview and Motivation

Currently, two bottlenecks hinder the progress of SNNs: (1) low accuracy of conven-

tional local learning rules (e.g., STDP), limiting their competitiveness and application

scope in practice; (2) low execution efficiency on GPUs, limiting the exploration of the

model scale and space (indirectly limiting accuracy). The former can be significantly

improved by the BPTT algorithm, and the latter is due to GPUs’ specific optimization

for ANNs, rather than for SNNs with special data format and computing paradigm.

Therefore, we propose to design an efficient accelerator for BPTT-based SNN training to

improve the competitiveness of neuromorphic chips.

3.1.1 Low-Accuracy SNN Learning on Neuromorphic Chips

In order to build high-efficiency domain-specific chips for SNN learning, researchers

have designed neuromorphic chips. However, almost all of them [25, 26, 27, 28, 29, 9, 30]

adopt unsupervised learning rules inspired by bio-plausible synaptic plasticity, such as

STDP [12], the good locality of which makes it hardware friendly. However, in practical

applications, this rule cannot be accepted due to the low accuracy when performing

mainstream tasks (see Table 2.1.2) and the difficulty in scale-up when encounter complex

tasks, which are the major reasons why neuromorphic chips are suffering skepticisms and

are not applied widely as deep learning accelerators.
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3.1.2 Low-Efficiency SNN Learning on GPUs

GPUs play the backbone role in neural network training. However, current GPU

hardware architectures (e.g., tensor cores on NVIDIA GPUs), programming libraries

(e.g., cuDNN), and model training frameworks (e.g., TensorFlow and Pytorch) are mainly

optimized for ANNs rather than SNNs, causing inefficiencies when training SNN models.

Specifically, there are mainly three inefficiencies on GPUs to train an SNN model

with the BPTT learning algorithm. First, GPUs can only accelerate either high-precision

computation (e.g., FP16, FP32) or low-precision computation (e.g., INT1, INT8, INT16);

however, the major operations such as Conv and FC in SNN training involve both binary

operands and floating-point operands, which is not optimized by GPUs. Second, the

sparsity optimization libraries on GPUs are hard to bring real acceleration if the sparsity

pattern is irregular. For example, according to the official white paper of cuSPARSE [74],

GPUs can achieve speedup only when the irregular sparsity is greater than 95%. The

last inefficiency is the lack of SNN-training-oriented dataflow optimization on GPUs. In

SNNs, the specific neuron model (with temporal dynamics and bivariate iteration) and an

additional timestep dimension are involved, such that a more complex dataflow distinct

from that of ANNs should be considered to reduce the memory footprint.

Table 3.1.2 shows that SNN training is much slower than ANN training on GPU

under the same network structure.

Dataset Latency of ANNs Latency of SNNs Performance Drop

MNIST 12.12s 138.55s 11.43×
CIFAR10 12.98s 147.07s 11.33×
ImageNet 0.72hr 7.47hr 10.37×

Table 3.1: Latency of one training epoch for ANNs and SNNs under the same network
structure on NIVIDIA V100 GPU.
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3.1.3 High-Accuracy and High-Efficiency SNN Learning

BPTT Learning for High Accuracy. Recently, researchers began to borrow ideas

from the learning of ANNs. Typically, the gradient-descent-based backpropagation al-

gorithms have been applied in SNN training [19, 20, 21, 22, 23, 6, 24], among which

the backprogation through time (BPTT) algorithm has become an effective way to train

SNN models with high accuracy via global optimization. Table 2.1.2 lists some reported

accuracies for SNNs learnt by STDP and BPTT. Apparently, BPTT shows superior accu-

racy. For the more difficult datasets like CIFAR10, ImageNet, and CIFA10-DVS, STDP

cannot provide good results while BPTT can do. Recent studies [75, 76] also try to reveal

the connection between backpropagation and the brain, which is interesting but out of

the scope of this dissertation.

Spike-based and Sparse Computing for High Efficiency. BPTT is a costly

learning algorithm with backpropagation across the entire network and all timesteps.

Fortunately, we find opportunities after a detailed algorithm profiling.

Dataset Layer conv1 conv2 conv3 conv4 conv5 conv6

MNIST O sparsity (%) 22.66 85.99 52.74 74.74 53.82 -

Acc: 99.67% I sparsity (%) 99.18 97.46 98.76 97.44 97.93 -

CIFAR10 O sparsity (%) 54.06 83.22 80.22 82.75 87.24 -

Acc: 87.63% I sparsity (%) 91.41 83.89 89.92 88.63 84.39 -

N-MNIST O sparsity (%) 59.89 86.13 92.95 - - -

Acc: 98.97% I sparsity (%) 97.24 97.36 99.26 - - -

CIFAR10-DVS O sparsity (%) 62.93 88.23 82.07 - - -

Acc: 63.00% I sparsity (%) 87.69 74.14 95.77 - - -

ImageNet O sparsity (%) 17.97 16.21 14.65 19.82 16.65 15.09

Acc: 60.90% I sparsity (%) 94.95 94.11 92.94 96.02 94.38 93.35

Table 3.2: Sparsity in the backward pass of BPTT during SNN learning. Abbreviation:
I-input, O-output.

There are three phases in the BPTT learning: forward pass, backward pass, and

weight update. In the forward pass and weight update, one of the two operands for the
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computational operations is a binary spike, which implies that the costly multiplication

units are no longer needed. In the backward pass, although multiplication operations

cannot be avoided, there is rich sparsity that can be exploited. On one side, one of

the operands for the computational operations in the backward pass is the membrane

potential gradient that is sparse; on the other side, the outputs are the gradients of

spike activities, a part of which will be zeroed out when backpropagating through the

firing function. The detailed BPTT for SNN learning can be found in Section 2.1.2.

In Table 3.1.3, we present the input and output sparsity values of each layer during

backpropagation. It can be seen that the sparsity is quite rich, indicating opportunities

to reduce compute and storage.

3.1.4 Analysis of BPTT for SNN Learning

A detailed BPTT-based learning algorithm is presented in Section 2.1.2. Based on

the training process, we have the following observations:

• The spatial parts in Equation (2.2) & (2.4) and the weight gradient calculation

in Equation (2.7) require the Conv or matrix multiplication (MM) operation in

a Conv or FC layer, respectively. Other operations are element-wise, which have

much fewer workloads. Therefore, the architecture design of H2Learn makes more

efforts to accelerate the costly Conv or MM operations in the context of SNN

learning.

• The spikes are in the binary format, i.e. either 0 or 1. It is efficient to store the spike

data in a compact format and use LUT-based operation to reduce computation.

• Based on the fire′(·) in Equation (2.6), we can determine the valid neurons (marked

by ▽s̃) that allow the gradient to pass through during the backward pass, accord-

ing to their membrane potential values in the forward pass. Specifically, when a
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neuron’s membrane potential is within [thl, thr] in the forward pass, it is valid and

needs to calculate its spike gradient in the backward pass; otherwise, we can skip

the computation (termed as output sparsity in the Backward Engine design, see

Table 3.1.3). During forward pass, there is also no need to store the membrane

potentials (for the use in the temporal part of Equation (2.6)) of invalid neurons.

• The goal of learning is to update weights of the model via calculating weight gra-

dients. From Equation (2.7), we find that ▽www only requires membrane potential

gradients and does not involve spike gradients. Therefore, ▽sss can be treated as

intermediate data and merged into the ▽u calculation.

Stage Inputs Outputs Equations Major Operation

FP ml
t−1, s

l
t−1, s

l−1
t , wl−1 slt , m

l
t , ▽s̃

l
t Equation (2.3)

∑
j s

l−1
t [j]wl−1[j, i], spike-based OP

WU ▽ml+1
t , slt ▽wl Equation (2.7)

∑
t ▽m

l+1
t [j]slt[i], spike-based OP

BP ▽ml
t+1 , ml

t, ▽m
l+1
t , ▽m̃l+1

t , wl, ▽s̃lt, s
l
t ▽ml

t, ▽m̃
l
t Equation (2.4)

∑
j ▽m

l+1
t [j]wl[i, j], sparse FP16 OP

Table 3.3: I/O and the major operation of an SNN layer for each learning stage. The
variables in the binary format are marked in red.

The inputs, outputs, and the major operation of an SNN layer for each training stage

are listed in Table 3.3. The variables in the binary format are marked in red. We use

bit masks ▽s̃ss and ▽m̃mm to indicate which neurons have valid spike gradients and non-zero

membrane potential gradients in the backward pass, respectively.

3.2 Architecture of H2Learn

In this section, we first introduce how to handle data with different formats and

then detail the architecture design for each engine in H2Learn. Unlike the training

accelerators for ANNs that usually adopt one engine for all training stages [77, 78], we

design different engines for each SNN training stage. The philosophy behind this design

19



H2Learn: High-Efficiency Learning Accelerator for High-Accuracy Spiking Neural Networks
Chapter 3

is that the behavior of each training stage is distinct from each other. Specifically, (1)

different data formats, i.e., one of the operands in the forward pass and weight update

is a spike, however, all operands in the backward pass are real values; (2) different

computation characteristics, i.e., the forward pass and weight update can take benefits

from spikes to improve efficiency, however, the backward pass utilizes the input and

output sparsity to simplify computation; (3) different dataflows, i.e., the Conv (or MM)

dataflows in the forward and backward passes are distinct from that in weight update.

Based on these special features, that are distinct from ANNs, we design a Forward

Engine, a Weight Update Engine, and a Backward Engine, which form the backbone of

our H2Learn. Finally, these engines can be pipelined during training to gain optimized

overall performance.

0 1 1 1 0 1 0 1 a b c d e f g h
Binary Tile FP16 Tile

Tile
2

Tile
3

Tile
0

Tile
1

𝑇𝑖𝑙𝑒! (1 Byte)

𝑇𝑖𝑙𝑒"
(8)

𝑇𝑖𝑙𝑒"
(8)
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m
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p
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Figure 3.1: Illustration of feature map (FM) tiling: (a) an example of FM tiling; (b)
configuration of a tile with different data types.

Figure 3.1 shows the feature map (FM) tiling. The dimension of the FMs is T ×C ×

H ×W , where T represents the total number of timesteps, C,H and W stand for the

channel, height, and width, respectively. For an FM locating at timestep t and channel

c, we split it into several tiles as shown in Figure 3.1(a), and the tile corresponds to

the basic handling data unit in our design. In this work, we need to consider two data

types: binary spike data and floating-point 16-bit (FP16) data. Figure 3.1(b) shows the

example of a tile in the two data formats.
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3.2.1 Forward Engine

We design Forward Engine to handle the forward pass in BPTT learning. From Table

3.3, the Conv of the spatial part in Equation (2.2) is the most costly operation, which

is shown in Figure 3.2(a). Each time, Forward Engine takes T PE
max × CPE

sl−1 tiles from sl−1
t

and performs Conv with a part of weights whose size is k2 × CPE
sl−1 × CPE

ml to produce

T PE
max×CPE

ml tiles of partial sums pslt which belong to the spatial part of ul
t. Csl−1 and Cml

are the numbers of channels of sl−1 and ml, respectively. T PE
max, C

PE
sl−1 , and CPE

ml represent

the maximum number of timesteps, channels of sl−1 and ml that Forward Engine can

process at one time. k denotes the weight kernel size. In this work, we call such processing

as one grid iteration.
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Figure 3.2: Forward Engine: (a) operation; (b) microarchitecture.

Figure 3.2(b) shows the microarchitecture of Forward Engine. In this example, the

layout of the PE array is CPE
sl−1 rows by CPE

ml columns. In Forward Engine, each row
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shares the same Tiles from sl−1 and each column contributes to the same Tilem in ml.

The workflow of Forward Engine in a Conv layer includes following steps: 1 the PE

array receives sliding windows from sl−1
t and performs the LUT-based Conv (detailed

later); 2 each accumulator (Acc) integrates outputs from PEs of the same column;

3 when the partial sum pslt includes all Csl−1 channels, the result will be sent to Soma

to get slt, m
l
t (abandoned if out of [thl, thr]), and ▽s̃lt (needed in the backward pass).

The processing of different sliding windows, timesteps, and samples reuses the PE array

resource.
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Figure 3.3: Details of each function unit in Forward Engine: (a) LUT PE that performs
a part of LUT-based Conv; (b) Acc unit that performs the rest of LUT-based Conv via
inter-PE accumulation; (c) Soma unit that produces the spike, compressed membrane
potential , and spike gradient mask.

Figure 3.3 details each block. Figure 3.3(a) shows how to realize spike Conv using

LUT. In this example, we perform a Conv between a 2 × 2 weight kernel and a sliding

window in sl−1
t . The 2D Conv is traditionally executed as a dot product. However, the

inputs are binary spikes in SNNs, thus each sliding window can be represented as one

of fixed states, i.e., 2n states for n elements. Here, 4 binary input elements in a sliding

window have 16 patterns. We can calculate the Conv results for all possible patterns

in advance and store them in an LUT. With this design, we use the input spikes as an

access address to load results from the LUT.

However, the LUT-based solution might increase the data need to store. We mitigate
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the storage consumption by splitting a large LUT into several small sub-LUTs. In Figure

3.3(a), we use two sub-LUTs to cover different regions of the sliding window, and the

LUT size in one PE can be reduced from 16 to 8. Notice that one extra adder is required

to accumulate the partial results from sub-LUTs. We call this kind of PE units as LUT

PE. Section 3.3.2 shows the detailed analyses for optimal LUT setting. In our design,

each LUT PE loads the partial Conv results from all of its sub-LUTs, and the Acc unit

accumulates the outputs from the LUT PEs in the same column using an adder tree with

FP16 precision as Figure 3.3(b).

After finishing the spatial part compute, we feed the final pslt to the Soma unit which

will update the membrane potential and determine whether to fire a spike slt or not as

in Figure 3.3(c). According to our previous analysis, during the backward pass, we only

need to store the membrane potentials of valid neurons whose membrane potentials fall

into [thl, thr]. Therefore, Soma generates a compressed ul
t without storing zero elements

and also produces the corresponding binary spike gradient mask ▽s̃lt:

▽s̃lt[i] =


1, thl < ml

t[i] < thr,

0, otherwise.

(3.1)

For FC layers, the weight matrix size is Csl−1 × Cml . Each column of the PE array

belongs to a ml channel. We can treat the sub-LUTs in the same column as weight

buffers that contain weights of the same output channel but many input channels. The

number of input channels for each PE row relies on the size of sub-LUTs in each PE.

During processing, each sub-LUT exports a weight element to Acc if the corresponding

input spike is 1; otherwise exports 0. We do not compress ml
t in FC layers during the

forward pass, since the data volume is far smaller than that in Conv layers. The pooling

layer is integrated into the Soma unit.
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3.2.2 Weight Update Engine

We design Weight Update Engine to calculate the weight gradient. From Equation

2.7, the weight gradient is calculated by performing a Conv between slt and ▽ml+1
t , as

shown in Figure 3.4(a). Weight Update Engine takes T PE
max × Csl Tiles as inputs and

performs Conv with T PE
max × CPE

▽ml+1 Tilem to produce the partial sum pslt of ▽w
l whose

size is k2 × Csl × CPE
▽ml+1 .
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Figure 3.4: Weight Update Engine: (a) operation; (b) microarchitecture; (c)
LUT-based Conv.

Figure 3.4(b) presents the microarchitecture of Weight Update Engine. The numbers

of rows and columns correspond to T PE
max and CPE

▽ml+1 , respectively. Such correspondence is

different from the Forward Engine, since the column dimension is the input FM channel

in the Forward Engine while is the timestep in the Weight Update Engine. The workflow
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of Weight Update Engine includes two steps: 1 performs LUT-based Conv between sl

and ▽ml+1 in the PE array; 2 accumulates the outputs from LUT PEs of the same

column in the Acc unit. Notice that the processing of different sliding windows and

input channels reuses the PE array resource. Since sl is in the binary format, we can still

use the LUT-based Conv as in the Forward Engine. Figure 3.4(c) shows an example of

LUT-based Conv in the Weight Update Engine.

For FC layers, the weight gradient calculation requires a dot product between two

matrices whose sizes are Csl × T PE
max and T PE

max × C▽ml+1 . We directly feed elements in

▽ml+1 to the sub-LUTs. Every PE row shares inputs at the same timestep. Similar to

Forward Engine, each sub-LUT exports an element to the Acc unit based on the state of

the spike input.

3.2.3 Backward Engine

We design Backward Engine to compute the membrane potential gradient in the

backward pass. From table 3.3, Conv is the major operation, as shown in Figure 3.5(a).

Backward Engine takes T PE
max × CPE

▽ml+1 Tile▽m and performs Conv with corresponding

weight kernels (after 180 degree rotation) whose size is k2 × CPE
▽ml+1 × CPE

sl
to generate

T PE
max ×CPE

sl
tiles of partial sum pslt for ▽s

l
t. The operand data type here is FP16, which

increases the compute cost. However, we can exploit the output sparsity (indicated by

▽s̃lt pre-generated in the Soma unit during the forward pass). Moreover, we can utilize

the input sparsity in ▽m to further simplify computation. Specifically, we use a bitmap

▽m̃ to record the input sparsity information:

▽m̃l
t[i] =


1, ▽ml

t[i] ̸= 0,

0, otherwise.

(3.2)

25



H2Learn: High-Efficiency Learning Accelerator for High-Accuracy Spiking Neural Networks
Chapter 3

From the hardware perspective, we use input and output neuron IDs in a tile to locate

valid operands according to the corresponding bitmaps, which will be introduced latter.
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Figure 3.5: Backward Engine: (a) operation; (b) microarchitecture.

The microarchitecture of Backward Engine is shown in Figure 3.5(b). The PE array

layout is CPE
▽ml+1 rows by CPE

sl
columns. PEs in the same row share the same Tile▽m from

ml+1 and the corresponding ▽m̃l+1
t . PEs in the same column generate the partial sum

pslt of the spatial part of the same Tile▽s of s
l, also these PEs share the same ▽s̃lt.

26



H2Learn: High-Efficiency Learning Accelerator for High-Accuracy Spiking Neural Networks
Chapter 3

𝑚
!"

(c
om

pr
es
se
d)

Ef
fe
ct
ua

lO
Fi
nd

er

Sp
ike

Gr
ad
ie
nt

M
as
k:
∇𝑠
!"

Po
te
nt
ia
lG

ra
di
en
t

M
as
k:
∇
%𝑚
!"#
$

Ef
fe
ct
ua

lI
∩
O
Fi
nd

er

1
1

0
0

0
1

0
1

2
3

0 1 2 3
1 04

4

ID
Ta
g

0
0

1
1

2
1

3
0

∇𝑠
ID

(2
,3
) 0
1
0
1

∇
%𝑚
!"#
$

W
ei
gh
t:
𝑤
"

b
Pa
rt
ia
l

Su
m
:𝑝
𝑠 !"

PE
(F
lo
at
in
g
Po

in
t)

Ac
c

Po
te
nt
ia
l

Gr
ad
ie
nt
:∇
𝑚
!"#
$

0

0
1

2
3

0 1 2 3
04

4

0.
5

0.
2

d
c

a
b

0
1

2
3

In
st
ru
ct
io
n:

∇𝑠
ID

𝑤
ID

∇𝑚
ID

(2
,3
)

2
(3
,3
)

MAC

0.
2

(a
)

(b
)

(e
)

(d
)

(c
)

Pr
io
rit
y

En
co
de
r

Va
lid

Co
nv

ID
∇𝑠
ID

𝑤
ID
∇𝑚

ID
Cy
cle

1
(2
,3
)

1
(2
,4
)

i
2

(2
,3
)

2
(3
,3
)

i+
1

∇𝑠
ID

(2
,3
)

Ad
de
r

Tr
ee

PE
Gr
ou
p
0

Ac
cu
m
ul
at
ed

Pa
rt
ia
l

Su
m
:𝑝
𝑠 !"

𝑝𝑠
!"

𝛼∇
𝑚
!#
$

"
−
𝑚
!"

∇𝑠
!"

∇𝑠
!"

𝛼∇
𝑚
!#
$

"

𝛼
𝛼
∇𝑚

!"
∇𝑚

!"

≠
0

∇
%𝑚
!"

Ph
as
e
1

Ph
as
e
2

G
ra
d

𝑠 !"

0 1
0

0
1

2
3

-
-
-
-

1
0

0
2

-
-
-
-

co
l

ro
w

O
ut
pu

tI
D
Bu

ffe
r0

0
1

2
-
-
-
-
-

3
3

3
-
-
-
-
-

co
l

ro
w

O
ut
pu
tI
D

Bu
ffe

r:
∇𝑠
ID

O
ut
pu

tI
D
Bu

ffe
r1

0
1

2
3

0 1 2 3

0
1

0
1

0 0
0

0
0

1
0

0
11 1

1

0
1

2
3

0 1 2 3

Ge
tV

al
id

Co
nv

ID

Ge
tV

al
id

In
pu
tI
D

𝐸𝑞
2
:
∇𝑠
!"
𝑖
=
∇𝑚

!#
$

"
𝑖
−
𝛼𝑚

!"
𝑖
+
∑ %
∇𝑚

!"#
$
𝑖
𝑤
"
𝑖,
𝑗

Ph
as
e
1

𝐸𝑞
4
:
∇𝑚

!"
𝑖
=
∇𝑚

!#
$

"
𝑖𝛼

1
−
𝑠 !"
𝑖
+
∇𝑠
!"
𝑖𝑓
𝑖𝑟
𝑒′
(𝑚

!"
𝑖)

Ph
as
e
2

𝑝𝑠
!"

∇𝑚
ID

De
co
de
r

De
co
m
pr
es
s𝒎

𝒕𝒍

ID
De

co
de
r

0
1

2
3

0 1 2 3

PE
Gr
ou
p
1

PE
Gr
ou
p
n

∇𝑠
!"

0 1
𝛽0

∇𝑠
ID

∇𝑚
!"#
$

ID
&
Ta
g

Pr
io
rit
y

En
co
de
r

∇𝑚
ID

De
co
de
r

Ta
sk
Q
ue
ue

∇𝑠
!"

ID
De

co
de
r

De
co
m
pr
es
s𝑚

!"
𝑚
!"

(d
ec
om

pr
es
se
d)

∇𝑠
ID

Ex
am

pl
e

Ex
am

pl
e

Pr
io
rit
y

En
co
de
r

∇𝑚
ID

De
co
de
r

F
ig
u
re

3.
6:

D
et
a
il
s
of

ea
ch

fu
n
ct
io
n
u
n
it
in

B
ac
k
w
ar
d
E
n
gi
n
e:

(a
)
E
ff
ec
tu
al

O
u
tp
u
t
F
in
d
er

u
n
it
fi
n
d
s
n
eu

ro
n
ID

s
th
at

h
av
e
va
li
d
▽
s
an

d
d
ec
om

p
re
ss
es

u
l t,

ex
p
lo
it
in
g
ou

tp
u
t
sp
ar
si
ty
;
(b
)
E
ff
ec
tu
al

In
p
u
t∩

O
u
tp
u
t
F
in
d
er

u
n
it

ge
n
er
at
es

va
li
d
m
ic
ro
in
st
ru
ct
io
n
s
fo
r
ea
ch

C
o
n
v
op

er
at
io
n
in

th
e
P
E
u
n
it
,
ex
p
lo
it
in
g
b
ot
h
in
p
u
t
an

d
ou

tp
u
t
sp
ar
si
ty
;
(c
)
&

(d
)

P
E

a
n
d
A
cc

u
n
it
s
th
a
t
p
er
fo
rm

th
e
va
li
d
F
P
16

M
A
C
s
in

th
e
C
on

v
op

er
at
io
n
;
(e
)
G
ra
d
u
n
it

th
at

p
ro
d
u
ce
s
▽
u
l t
an

d
▽
ũ
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The workflow of Backward Engine in a Conv layer has the following steps: 1

Effectual O Finder gets the valid output neuron IDs (▽sIDs) for Conv according to

▽s̃lt, and decompresses the compressed ml
t into the original dense format; 2 Effectual

I∩O Finder further generates valid input and output neuron IDs for Conv according to

▽m̃l+1
t and the above ▽sIDs; 3 PEs perform Conv that exploits both input and output

sparsity; 4 the Acc unit accumulates partial sums from PEs of the same column; 5

the Grad unit calculates ▽slt and ▽ml
t. Finally, the produced ▽ml

t and the corresponding

▽m̃l
t serve as outputs. The processing of different sliding windows, timesteps (T PE

max), and

samples reuses the PE array resource.

Figure 3.6 shows each function unit in Backward Engine. Since the amount of work-

loads of Conv in membrane potential gradient calculation is far larger than that in other

stages, we consider multi-PEs (four-PEs in our experiments) in a PE group to improve

the parallelism of processing a tile. The first functionality of the Effectual O Finder unit

is to get the valid output neuron IDs (▽sIDs) according to the stored spike gradient mask

▽s̃lt in the forward pass. As an example shwon in Figure 3.6(a), we take two Output ID

Buffers to store the coordinates of ▽sIDs, which are shared by the PE groups in the

same column. ID Decoder scans the elements in ▽s̃lt row by row, and then writes ▽sIDs

into Output ID Buffers alternatively. In this way, the two buffers can save close amount

of ▽sIDs that need to be processed by PEs in a PE group. Each PE in a PE group

would process the workloads stored in one of the buffers, thus mitigating the workload

imbalance between PEs in a PE group. The second functionality of Effectual O Finder

is to decompress ml
t that is stored in a compressed form during the forward pass. This

decompression can make the element-wise operations in the Grad unit easier to execute.

Then, each Effectual O Finder unit sends ▽sIDs to the Effectual I∩O Finder units

in the same column to search valid multiplications in Conv (termed as valid Conv IDs)

wherein both input (▽m̃l+1
t ) and output (▽s̃lt) are valid (i.e., non-zero). The procedure
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is shown in Figure 3.6(b). We process two Output ID Buffers separately (marked in

blue and red). For example, computing the point ▽sID=(2,3) (marked in red) needs

a Conv between the sliding window ▽ml+1
t [2 : 3, 3 : 4] and the weight kernel. Given

the binary membrane potential gradient mask (▽m̃l+1
t ), we use a Tag to indicate the

state (valid/invalid) of the elements in the sliding window. Next, the Priority Encoder

produces a valid Conv ID per cycle based on the Tag. The valid weight value can be

found through wID which corresponds to the valid Conv ID and ▽mID can be easily

acquired based on the Conv ID and ▽sID in ▽mID Decoder.

Next, PE units perform the valid MACs. Figure 3.6(c) shows an example of the

workflow in one PE. Each PE in a PE group executes the MACs according to one of the

tasks in the corresponding Effectual I∩O Finder. The weight from wl and the input from

▽ml+1
t are read according to wID and ▽mID, respectively; the MAC result is written into

the partial sum (pslt) buffer. In real implementation, PEs in the same PE group write

the result to independent partial sum buffers. The accumulated results in a tile will be

reordered in the Acc unit. Different PEs in the same PE group reuse the weight buffer.

After all PE groups complete the Conv of a tile, PE groups in the same column send their

calculated partial sums to the Acc unit for accumulation. Note that, although we have

balanced the amount of ▽sIDs across the Output ID Buffers, the amount of valid Conv

IDs associated with each Output ID Buffer still varies due to the different input sparsity.

Thus, PEs in the PE array work asynchronously during execution but synchronize after

all PE groups complete the computation of a tile.

At last, we calculate ▽slt and ▽ml
t in the Grad unit. As in Equation (2.4)-(2.5),

we split the gradient calculation into two phases. In phase 1, Grad takes pslt, m
l
t and

▽ml+1
t to generate ▽slt. In phase 2, besides the calculation of ▽ml

t, we need to generate

the membrane potential gradient mask ▽m̃l
t that reflects the input sparsity of the next

backpropagated layer. These two phases can be easily implemented with element-wise
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operations.

For FC layers, we do not consider any sparsity, since the computation workloads in

FC layers are much fewer than those in Conv layers. We disable Effectual O Finders and

Effectual I∩O Finders when performing FC layers. In the PE array, the weight buffers

in the same column store the weights of different ▽ml+1
t channels but of the same ▽slt

channel. The pooling layer can be easily integrated into the Grad unit.

3.2.4 Overall Architecture and Pipeline

Overall Architecture

Figure 3.7 shows the overall architecture of H2Learn. In order to reduce the conflicts

in data load and store, we use three external memory spaces for simplicity. Specifically,

Mem 0 and Mem 1 are used to store spikes, membrane potentials, membrane potential

gradients, gradient masks, and weights. During the current forward pass, Forward En-

gine writes the results into Mem 0(1); while in the next forward pass, the results will

be alternatively written into Mem 1(0). Weight Update Engine and Backward Engine

request the saved data in the forward pass as their inputs. Mem 2 is designed to store

weight gradients that are only used by Weight Update Engine. In real implementation,

a single external memory space with a high-bandwidth arbiter is also a possible solution.

We consider the scalability of each processing engine in two directions. The first

direction is to increase the size of PE arrays. However, with this change, we should also

increase the capacity of global buffers and the off-chip memory bandwidth. Notice that

the numbers of rows and columns in each PE array correspond to the number of FMs

and timesteps in Conv layers, thus a too large PE array size will decrease the resource

utilization for a given Conv layer. Another direction is to increase the number of compute

units in a PE group and the number of Acc units. Specifically, in Forward Engine and
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Figure 3.7: Overall architecture of H2Learn.

Weight Update Engine, we increase the number of Acc units to process multiple tiles

simultaneously; in Backward Engine, we increase both the number of compute units in

a PE group and the number of Acc units. Besides the above scalability directions, we

can further use multiple H2Learns to build a distributed system. Each of them runs the

learning algorithm with different input samples, and the weight gradients are gathered

after all of them finish training.

Dataflow for One Layer during Training

The workloads for different engines in H2Learn are shown in Figure 3.2, Figure 3.4,

and Figure3.5. In order to process a network layer under different setting, each engine

adopt a specific dataflow. We can use four compute dimensions to describe the high-

level dataflow: 1. BT (batch and time step); 2. HW (height and width); 3. C l (input

channel); 4. C l+1 (output channel). The dataflows for each engine are shown in Figure

3.8. Forward Engine and Backward Engine involve neuronal dynamics units. We expect

the neuron dynamics engines can work in pipeline with the PE array. Therefore for these

two engines we first go through the BT dimension, since the neuronal dynamics has data

31



H2Learn: High-Efficiency Learning Accelerator for High-Accuracy Spiking Neural Networks
Chapter 3

Forward
Pass BT Cl HW Cl+1

Weight
Update Cl BT HW Cl+1

Backward
Pass BT Cl+1 HW Cl

on-PE
𝑤! reuse

on-PE
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Figure 3.8: Dataflows of different engines for one SNN layer. The execution flow
can be decoupled into BT (batch and timestep), HW (height and width), C l (input
channel), and C l+1 (output channel) dimensions.

dependency on the time step. Then, we go through C l and C l+1 dimensions for Forward

Engine and Backward Engine respectively to process neuronal dynamics. Another reason

we select the BT dimension first is that weights are stored on-chip, samples from different

batches and time steps can reuse the weights. The last two compute dimensions do not

have impact on performance. For Weight Update Engine, there is no neuronal dynamics

unit, thus the reuse of on-chip data has the highest priority. Since the spike data is in in

the binary format with small data volume, it has the lowest reuse priority in our design.

Based on the dataflow, H2Learn can process an SNN layer with arbitrary layer settings.

Execution Pipeline

Figure 3.9 shows the execution flow of training. The yellow, blue, and red boxes

indicate the execution in Forward Engine, Backward Engine, and Weight Update Engine,

respectively. The sub-batch represents the batch size that each engine can process at a

time. The batch group represents the number of sub-batches for the update of weights.

Although every sub-batch involves the calculation of weight gradients, only the last sub-

batch in a batch group triggers the weight update. Therefore, the overall batch size
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Figure 3.9: Overall pipeline during learning.

can be flexibly reconfigured by adjusting the batch group size. During training, the

three engines can be pipelined for higher throughput, i.e., when Backward Engine and

Weight Update Engine are processing the current sub-batch, Forward Engine can process

the next sub-batch. To enhance the overlap between forward and backward passes and

reduce the amount of data need to store in the forward pass, each sub-batch should

contain as few samples as possible. We set the sub-batch size to 4 in our design to well

utilize the hardware resource.

In addition, some networks involve an encoding layer that takes high-precision inputs

instead of binary inputs. We use the Backward Engine inH2Learn to process the encoding

layer. For the pooling layer without weights, we implement it in the Soma unit rather

than the LUT PE.

33



H2Learn: High-Efficiency Learning Accelerator for High-Accuracy Spiking Neural Networks
Chapter 3

3.3 Evaluation

3.3.1 Experimental Setup

Our experiments focus on pattern recognition tasks in both image and spike based

datasets that are widely used for SNN evaluation. The image-based datasets include

MNIST [79], CIFAR10 [80] and ImageNet [81] that are sampled to spikes; while the

spike-based datasets include N-MNIST [82] and CIFAR10-DVS [83] that are originally

acquired through DVS [84]. The network configurations are detailed in Table 3.3.1.

Dataset Input Size Network Structure

N-MNIST 32 ∗ 32 ∗ 2 ∗ T 128C3-128C3-AP2-384C3-384C3-AP2-

CIFAR10-DVS 42 ∗ 42 ∗ 2 ∗ T 512FC-512FC-10FC

MNIST 28 ∗ 28 ∗ 1 ∗ T 64C3(Encoding)-128C3-AP2-256C3-256C3-AP2-

CIFAR10 32 ∗ 32 ∗ 3 ∗ T 512C3-512C3-512FC-512FC-10FC

ImageNet 224 ∗ 224 ∗ T
64C3S2(Encoding)-128C3S2-256C3S2-256C3S2-

384C3-256C3-256C3S2-4096FC-4096FC-1000FC

Table 3.4: Network configurations. T is set to 10.

We build cycle accurate simulators for H2Learn and the accelerator baselines in our

experiments. The area and energy are measured through synthesized implementations.

We implement H2Learn’s RTL and synthesize it in Synopsis Design Compiler with TSMC

28nm library. The area and energy of GLBs are estimated via Cacti [85]. In our simu-

lation, we evaluate the average energy per operation for all compute and storage units,

and the total energy is obtained by estimating the number of operations.

The configuration of all engines in H2Learn are listed in Table3.3.1. In our evaluation,

we build a different baseline model for each engine. Specifically, for Forward Engine

and Weight Update Engine, the baseline models adopt non-LUT implementation which

consume 36,864 and 40,960 adders, under the parallelism of 4. For the baseline model of

Backward Engine, the Effectual O Finder and Effectual I∩O Finder units are removed
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LUT PE Array Size 64 (rows) × 16 (cols)

LUT PE 3 Sub-LUTs/PE, 16 Bytes/Sub-LUT

Forward Acc 3×64×16 (3072) adders, parallism=4

Engine # Somas 16

GLB 503 KB

Area 21.61 mm2

LUT PE Array Size 10 (rows) × 128 (cols)

LUT PE 2 Sub-LUTs/PE, 32 Bytes/Sub-LUT

Weight Updte Acc 2×10×128 (2560) adders, parallism=4

Engine GLB 2684 KB

Area 22.68 mm2

PE Group Array Size 16 (rows) × 64 (cols)

PE Group Size 4

# Effectual O Finders 64

Backward # Effectual I∩O Finders 16×64×4
Engine PE 16×64×4 MAC

Acc 16×64×4 adders

# Grads 64

GLB 4840.5 KB

Area 66.17 mm2

Table 3.5: Specifications of engines in H2Learn.
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and we do not exploit any sparsity.

Since H2Learn focuses on the training scenario of SNNs, our final target comparison

platform is the modern GPU, which is the backbone hardware for learning. The baseline

GPU version of BPTT-based SNN learning is realized through an open-source Pytorch

implementation without CUDA optimization [6]. Table 3.3.1 compares the overall spec-

ifications between H2Learn and NVIDIA V100 GPU [86]. The power consumption for

H2Learn can be acquired by evaluating the energy consumption and the training latency

for H2Learn. We took the max power consumption during SNN learning on H2Learn.

We will demonstrate that H2Learn can achieve substantial speedup and energy efficiency

improvement with far less area consumption in Section 3.3.3.

H2Learn GPU V100

Technology TSMC 28 nm TSMC 12 nm

Area 110.46 mm2 815 mm2

Clock Frequency 800 MHz 1530 MHZ

Off-chip Memory Bandwidth 128 GB/s×3 900 GB/s

Throughput 27.85 TFLOPS 15.7 TFLOPS

Power 20.57 W 300 W

Table 3.6: Specifications of H2Learn and NVIDIA V100 GPU.

3.3.2 Evaluation of Engines in H2Learn

Forward Engine & Weight Update Engine

Now, we evaluate the LUT-based Engines, i.e., Forward Engine and Weight Up-

date Engine. Fig. 3.10 shows how the PE configuration affects the area and energy

consumption, where both PEs and Acc units are considered. The baseline is a non-LUT

design. The LUT configuration is determined by the number of sub-LUTs per PE (#sub-

LUTs/PE) and the size of each sub-LUT (sub-LUT size). We assume that the size of

each sliding window in Conv is 3×3. We find that when we decrease the #sub-LUTs/PE,
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the area and energy of computation units (i.e., adders) are reduced, however, the require-

ment for register files is increased. This is actually a trade-off, i.e., fewer sub-LUTs per

PE can save more adders for compute but require more register files for storage.
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Figure 3.10: Evaluation of LUT PE in Forward Engine under different configurations:
(a) area and (b) energy.

We also estimate the area and energy consumption with different parallelism settings

in Acc units. Here the parallelism means that multiple tiles are simultaneously processed

in the LUT PE array and the resources for Acc units are copied accordingly. From the

results, it can be seen, besides the increased adders in Acc units, the requirement for

register files is also increased with a slower slope, since we do not scale up the number of

sub-LUTs but use MUX to make sure multiple elements can be read from each sub-LUT

in the meantime.

In our design, considering the unified sub-LUT size and lower overhead, we set the

#sub-LUTs/PE to 3 and the sub-LUT size to 8 in Forward Engine, corresponding to

3×3 sliding windows. In Weigh Update Engine, the #sub-LUTs/PE is 2 and the sub-

LUT size is 16, corresponding to 1×8 sliding windows. For a larger Conv kernel size,

we can partition it into multiple smaller kernels and map onto multiple LUT PEs. The

overall LUT sizes in Forward Engine and Weight Update Engine are 48 KB and 80 KB,

respectively.

Next, we analyze the entire Forward Engine and Weight Update Engine when per-
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Figure 3.11: Area, energy, and throughput of (a) Forward Engine and (b) Weight
Update Engine.

forming a Conv layer. The size of s, m, and ▽m is 4 × 10 × 256 × 56 × 56 (N × T ×

Cs(or Cm, or C▽m)×W×H), and the size of w is 3×3×256×256 (k×k×Cs×Cm(or C▽m)).

The results are shown in Fig. 3.11, where the baseline architecture adopts the naive

accumulation-based rather than LUT-based PE. We have the following observations: (1)

The PE array consumes most of the area and the LUT-based design can significantly

reduce the area overhead; (2) Although the outputs of both Forward Engine and Weight

Update Engine are in FP16, the number of columns in the PE array of Weight Update

Engine is much larger, leading to a larger GLB size; (3) The energy consumption with dif-

ferent parallelism setting is close, because the amount of total workloads under different

parallelism is identical; (4) The throughput can be improved as the parallelism increases

and the leakage energy can be reduced; (5) Compared to the baseline architecture when

the parallelism equals 4, our LUT-based solution can achieve 2.35× area saving, 2.58×
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energy saving in Forward Engine and 2.56× area saving, 3.00× energy saving in Weight

Update Engine. Notice that the partial sums in LUTs need to be reprogrammed by the

Acc units when the contents in LUTs need to change. Our dataflow in Fig. 3.8 can help

increase the reusability of the data in LUTs. Specifically, in Forward Engine, the slid-

ing windows along the height/width of a tile, batch, and timestep dimensions share the

same weights; in Weight Update Engine, the sliding windows share the same gradients

along the input channel dimension. Therefore, LUTs can be reused a lot of times once

reprogrammed, and the LUT reprogramming overhead iss negligible.

Backward Engine
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Figure 3.12: Backward Engine evaluation: (a) area overhead; (b) energy consumption
and speedup.

We adopt the same Conv layer as we used in Section 3.3.2. As depicted in Fig.

3.12(a), as the PE group size grows, the area overhead increases but the GLB size does

not change obviously since the resulting output volume keeps the same. In Fig. 3.12(b),
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we measure the energy and throughput, where we set both the sparsity of ▽s̃l (output

sparsity) and ▽m̃l+1 (input sparsity) to 75%. We first build a dense baseline model

without considering any input and output sparsity. We also adopt our architecture to

exploit only input or output sparsity as two other baselines. From the results, we find

that the leakage consumes a huge amount of energy, which mainly comes from GLB.

Another observation is that the energy consumption of the PE array (including the

Acc units) occupies the most in the dense architecture, because it cannot bypass any

computation. Also, the energy consumed by PE array is much higher when we consider

the input sparsity only, since more accumulations of the partial sums are needed when

compared with those considering the output sparsity. Since the sparsity settings of ▽s̃l

and ▽m̃l+1 are the same, the speedup results are similar when we consider the input or

output sparsity only. Finally, when we consider both the input and output sparsity , we

can achieve 5.19× speedup and 9.24× energy saving compared with the dense baseline

architecture.

Design Space Analysis

Table 3.3.1 shows the configurations ofH2Learn. We adopt output stationary dataflow

in all engines. Since the inputs of Forward Engine are binary spikes that are more com-

pact than the outputs, we set a larger number of rows (64) in the PE array. Because of the

output stationary dataflow, the result is written to external memory for every Cs/64 grid

iterations, which can help reduce the data traffic. Note that we use ping-pong buffer in

GLBs. In Backward Engine, both inputs and outputs are in the FP16 format. We shrink

the number of rows (16) but increase the number of columns (64), such that the amount

of inputs needing to feed is reduced and the outputs can take longer time (C▽m/16 grid

iterations) to be written to external memory. For Weight Update Engine, the number

of rows is set to 10 (allowing to deal with 10 timesteps during a grid iteration), and the
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number of columns (128) is selected according to the PE array sizes in other two engines.
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Figure 3.13: Evaluation of engines in H2Learn with different (a) number of PE array
rows, (b) number of PE array columns, and (c) parallelism.

Fig. 3.13 estimates the throughput of each engine in H2Learn with different architec-

ture configurations, including the number of PE array rows, columns, and the parallelism.

The configurations within the red boxes are our optimal selections for each engine in Ta-

ble 3.3.1, which consider both optimal performance and balanced compute resources in

different engines. The optimal selection can fully utilize but will not be blocked by the

off-chip memory bandwidth. Notice that when we evaluate one architecture configura-

tion, we will fix the other two at the optimal settings. We also adopt the same Conv layer

for evaluation as in Section 3.3.2. From the results, we find that the optimal settings
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can always gain a 2× speedup when compared with the corresponding halved settings.

This implies that the external memory bandwidth can satisfy our optimal settings. How-

ever, if we keep scaling up the PE array size or the parallelism, the throughput gain

would degrade. In Forward Engine, all architecture configurations cannot get another

2× speedup by doubling the optimal settings. In Weight Update Engine, each PE array

row deals with a unique timestep, thus the increase of extra rows is useless if the number

of timesteps is small; however, the throughput can be doubled when we scale up the

PE array columns or the parallelism. The reason is that, the final outputs of Weight

Update Engine is the weight gradients which have a small volume and can stay on-chip

until the entire Conv across all FMs finished. This lowers the bandwidth requirement and

leaves room for the increase of compute resources. For Backward Engine, the inputs (i.e.,

▽u) become the key factor to determine the external memory bandwidth requirement,

because the input data type is FP16 and the load of inputs across all channels is more

frequently than the write of stationary outputs. The further increase of PE array rows

and PE group size cannot achieve 2× performance gain due to the memory bandwidth

limitation. In contrast, when the number of PE array columns is doubled, 2× speedup

can be obtained, since the amount of input loads is unchanged.

3.3.3 Comparison with SpinalFlow and GPU

We compare H2Learn with a state-of-the-art SNN inference accelerator SpinalFlow

[36] and NVIDIA V100 GPU [86] on CIFAR10. The input and output sparsity of the net-

works are shown in Table 3.1.3. Since SpinalFlow only supports inference, in Fig. 3.14(a),

we compare our Forward Engine with it. We find that H2Learn achieves improvement

in terms of area and energy. Although SpinalFlow skips the computations with zero

inputs, they need to store entire weights of all output channels to perform computations
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associated with a valid input, which consumes large area for weight storage and signifi-

cant power consumption for data accesses. Our H2Learn still gets improvement via the

LUT-based design to fuse accumulations of multiple input points. From the functionality

perspective, H2Learn shows three distinctive characteristics: 1. H2Learn targets learning

while SpinalFlow focuses on inference; 2. H2Learn does not have restrictions on cod-

ing schemes, while SpinalFlow only supports temporal coding; 3. H2Learn can support

the first encoding layer with hybrid data formats while SpinalFlow cannot. Also, the

SpinalFlow cannot support the encoding layer for image-based datasets with continuous

inputs, which can be easily handled by Backward Engine in H2Learn.

Then, we compare the throughput of engines in H2Learn with NVIDIA V100 GPU

in Fig.3.14(b). We implement the GPU version of SNN learning in Pytorch. Different

from the sub-batch-wise pipeline in H2Learn as Fig.3.9, the forward pass and backward

pass (along with weight update) are performed sequentially at the grain of the whole

batch on GPUs as common handling. We find that H2Learn achieves speedup especially

in early layers during weight update. In shallow layers, the FM sizes are larger but the

number of channels is smaller; besides, weight update needs a 4D rather than 2D Conv.

GPU might be inefficient to handle these situations.
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Figure 3.14: Evaluation of H2Learn on CIFAR10: (a) Forward Engine compared with
SpinalFlow [36] SNN inference accelerator; (b) throughput of engines compared with
NVIDIA V100 GPU.

Fig. 3.15 shows the comparison between H2Learn and NVIDIA V100 GPU during
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training. Because we focus on the processor design and do not estimate the power of

the off-chip memory, here we exclude the HBM power of GPU for fairness. Among the

results, H2Learn achieve 5.74-10.20× speedup and 5.25-7.12× energy saving. We find

that H2Learn takes more benefits on the ImageNet dataset. The potential reason might

be caused by more data preprocessing on GPUs under a large FM size. At last, H2Learn

is 7.38× more efficient in area overhead.
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Figure 3.15: Comparison with NVIDIA V100 GPU in terms of (a) throughput, (b)
power, and (c) area.

3.3.4 Comparison with Loihi and FPGA

Model 32C3-AP2-64C3-AP2-128C3-AP2-512FC-10FC

Plateform Loihi H2Learn

Latency/sample (s) 1.02×10−3 1.15×10−4

Energy/sample (J) 6.60×10−5 3.33×10−4

Model 64C5(Encoding)-AP2-64C5-AP2-128FC-10FC

Plateform FPGA H2Learn

Latency/sample (s) 6.11×10−3 1.21×10−2

Energy/sample (J) 3.00×10−2 3.58×10−4

Table 3.7: Comparison with Loihi [9] and FPGA [87] for SNN inference. Here we set
T = 10 and the batch size to 1.

Except for the above baseline platforms such as SpinalFlow and GPU, researchers also
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design neuromorphic chips to support both inference and learning for SNNs. Currently,

Loihi [9, 88] is the most advanced and mature chip that can support unsupervised SNN

learning. One major reason that Loihi cannot directly implement BPTT-based SNN

training is that it is unable to store and load the huge intermediate data (e.g., membrane

potentials and spikes across all layers and all timesteps) during training. Thus, we

compare SNN inference between H2Learn and Loihi in Table 3.3.4. Here we get the

network model and performance on Loihi from reported data [89]. We evaluate the

SNN inference on H2Learn under the same network structure. From the results, the

Forward Engine in H2Learn can achieve 8.87× speedup but consume 5.06× more energy

compared to Loihi. Since Loihi adopts an event driven implementation, the energy

efficiency is better than H2Learn.

We further compare the performance of SNN inference between H2Learn and an

FPGA implementation [87] in Table 3.3.4. From the results, H2Learn achieves 50.50×

speedup and 83.79× energy saving. The main reasons that FPGA suffers a degraded

performance are due to the limited on-chip resources and low clock frequency.

3.4 Related Work

3.4.1 SNN Learning Algorithms

Besides the BPTT-based SNN learning adopted in this work, there is another fam-

ily of learning methods named ANN-to-SNN conversion [90, 91, 92, 93]. These learning

algorithms convert a pretrained ANN model to its SNN counterpart sharing the same net-

work structure. ANN-to-SNN conversion can achieve slightly better accuracy compared

to the direct learning with BPTT. However, ANN-to-SNN conversion methods usually

need much more timesteps to maintain accuracy, resulting in longer execution latency
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and higher energy consumption during the inference stage. In addition, some studies

also design specific learning algorithms [94, 95] to achieve higher accuracy. Although

additional circuits and dataflow design are required to support these learning methods

on H2Learn, we have solved most costly operations during training.

3.4.2 LUT in Neuromorphic Chips

In H2Learn, LUTs are exploited to calculate the partial sums of potentials. Some

other accelerators also adopt LUTs for SNN inference or training. Specifically, J. Pu et al.

[96] used LUTs to store the connections between neurons rather than to do computation.

SPARE [97] accelerates the high-order polynomials and transcendental functions in STDP

training with LUTs. In contrast, the functionality of LUTs in H2Learn is distinct from

these works.

3.5 Conclusion

This Chapter introduces H2Learn, an end-to-end accelerator that can implement

BPTT-based SNN learning for both high accuracy and high efficiency. The LUT-based

PE design in Forward Engine and Weight Update Engine exploits the spike-based compu-

tation; the dual-sparsity-aware Backward Engine exploits both input and output sparsity.

Compared with the modern NVIDIA V100 GPU, H2Learn demonstrates 7.38× area sav-

ing, 5.74-10.20× speedup, and 5.25-7.12× power saving on several typical benchmark

datasets.
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Chapter 4

Accelerating Spatiotemporal

Supervised Training of Large-Scale

Spiking Neural Networks on GPU

Previous Chapter provides an accelerator solution to improve the efficiency of BPTT-

based SNN training. However, training on GPUs still remains inefficient due to the

complex spatiotemporal dynamics and huge memory consumption, which restricts the

model exploration for SNNs and prevents the advance of neuromorphic computing.

In this chapter, a framework is introduced to solve the inefficiency of BPTT-based

SNN training on modern GPUs. To reduce the memory consumption, the dataflow

is optimized by saving CONV/FC results only in the forward pass and recomputing

other intermediate results in the backward pass. Then, we customize kernel functions

to accelerate the neural dynamics for all training stages. Finally, a Pytorch interface is

provided to make our framework easy-to-deploy in real systems. Compared to vanilla

Pytorch implementation, the proposed framework can achieve up to 2.13× end-to-end

speedup and consume only 0.41× peak memory on the CIFAR10 dataset. Moreover,

47



Accelerating Spatiotemporal Supervised Training of Large-Scale Spiking Neural Networks on GPU
Chapter 4

for the distributed training on the large ImageNet dataset, we can achieve up to 1.81×

end-to-end speedup and consume only 0.38× peak memory.

4.1 Overview and Motivation

Although BPTT-based training algorithms boost the accuracy of SNNs, it is ineffi-

cient to train an SNN model on GPUs. Compared to the well-optimized training of an

artificial neural network (ANN) model on GPU, training an SNN model with BPTT-

based algorithms would encounter two challenges: (1) there are more intermediate data;

(2) the spatiotemporal dynamics and computational operations are more complex. The

first challenge increases the memory consumption, which limits the exploration space of

SNN models given the same hardware resources. The second challenge causes frequent

GPU kernel launching that dramatically degrades the execution performance. Some re-

searches explore the optimization of CUDA codes on GPU for other applications such

as graph neural network [98], and Transformer [99]. These studies identify distinct op-

erations for each application, their optimization methods cannot be directly exploited in

BPTT-based SNN learning.

4.1.1 SNN Model

𝒔𝒕𝒍#𝟏 𝑪𝒐𝒏𝒗𝒍 𝑩𝑵𝒍𝒙𝒕𝒍 𝒚𝒕𝒍 𝒎𝒕
𝒍 𝒔𝒕𝒍

𝒔𝒕#𝟏𝒍#𝟏 𝑪𝒐𝒏𝒗𝒍 𝑩𝑵𝒍𝒙𝒕#𝟏𝒍 𝒚𝒕#𝟏𝒍 𝒎𝒕#𝟏
𝒍 𝒔𝒕#𝟏𝒍

Figure 4.1: Illustration of the “Conv→BN→LIF” information flow in the FP stage.

The SNN models used in this Chapter involve an additional batch-normalization op-
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eration in each layer. The dataflow of one SNN layer is shown in Figure 4.1. Sepcifically,

the membrane potential update in Equation 2.2 is substituted with

mmml
t = α ·mmml

t−1 · (1− ssslt−1)︸ ︷︷ ︸
temporal

+ yyylt︸︷︷︸
spatial

, (4.1)

where the spatial part yyy is the result after the BN operation, as in Figure 4.1. The BN

follows

yyylt[j] =
xxxl
t[j]− µl[j]√
(σl[j])2 + ϵ

γl[j] + βl[j], (4.2)

where xxxl
t[j] and yyylt[j] stand for Conv/Pool/FC and BN results of the j-th channel in the

l-th layer at the t-th time step, respectively. The BN [100] is achieved by subtracting

the mean µl[j] and dividing the standard deviation
√
(σl[j])2 + ϵ, where µl[j] and σl[j]

are the results from all elements in the j-th channel of xxxl across all samples in a batch

and time steps. ϵ is a small value to avoid the division error. γ and β are two trainable

parameters shared by all neurons in the same channel. In Equation 4.2, xxx can be the

spatial result from a Conv/Pool/FC layer. Taking the Conv result as an example, it is

calculated through Equation 2.3.

During the backward propagation, the gradient of spike ▽ssslt and membrane potential

▽mmml
t can be computed following Equation 2.4-2.5. From Equation 4.1, it is easy to find

that ▽mmml
t = ▽yyylt. Based on ▽yyylt, we can get the gradient of the Conv result ▽xxxl

t through

▽xxxl
t[j] =

γl[j]√
(σl[j])2 + ϵ

▽yyylt[j]−
III

n

∑
t,nj

▽ylt[nj]−
x̂xxl
t[j]

n

∑
t,nj

▽ylt[nj]x̂
l
t[nj]

 , (4.3)

x̂xxl
t[j] =

xxxl
t[j]− µl[j]√
(σl[j])2 + ϵ

, (4.4)

where ▽xxxl
t is comprised of the partial derivative of yyylt with respect to xxxl

t, µµµ
l, and σσσl in
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Equation 4.2, which corresponds to the three terms in the brackets of Equation 4.3. Since

the neurons in the same channel share identical mean and standard deviation values, nj

indicates the neurons in the jth channel and n denotes the total number of neurons in

the jth channel.

In the PU stage, we first update the trainable parameters of the BN operation fol-

lowing

▽γl[j] =
∑

t,nj

▽ylt[nj]x̂
l
t[nj], (4.5)

▽βl[j] =
∑

t,nj

▽ylt[nj]. (4.6)

The above parameter update is derived from Equation 4.2.

4.1.2 Motivation

Currently, most of the BPTT-based SNN studies are simulated on GPU with the

Pytorch programming environment [20, 100]. We use the vanilla Pytorch implementation

[100] to characterize the training performance. Figure 4.2 presents the latency and peak

memory consumption for training an SNN model with one epoch on the CIFAR10 dataset

under different model settings. The network size is medium and the structure is provided

in Table 4.1. The memory consumption for feature maps (i.e., sss, mmm, xxx, yyy) at each time

step is 71.13 MB. Net. with LIF + BN and Net. with LIF denote the networks with

and without BN. In order to estimate the impact of the fire function and the membrane

potential calculation (i.e., LIF dynamics), we additionally design a network with only

Conv/FC layers, which is denoted as Baseline. The Baseline network is functionally

incorrect and we just use it for comparison.

Figure 4.2(a) compares the peak memory consumption during training. Since the
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Figure 4.2: Characterization of the vanilla Pytorch implementation of SNN training
with one epoch on CIFAR10: (a) peak memory consumption; (b) latency.

peak memory consumption determines how many GPUs are needed, a lower memory

consumption can help reduce the resource overhead. It can be seen that incorporating

the LIF operation would increase the peak memory consumption by 1.69 ∼ 1.82×. The

increased memory consumption comes from uuu and sss. The further incorporation of BN

consumes 2.05 ∼ 2.23× peak memory compared to the baseline, due to the extra storage

of yyy. We find that the intermediate data consume lots of memory, which

finally impacts design space exploration for SNN models. Figure 4.2(b) further

compares the training latency. Compared to the baseline, the LIF dynamics increases the

training latency by 1.24 ∼ 1.31×; the further incorporation of BN consumes 1.40 ∼ 1.42×

latency compared to the baseline. From the result, the computation latency for

the operations besides Conv/FC cannot be ignored.

Given the above observations, we find that the optimization of LIF and BN operations

during SNN training is valuable.
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4.2 Optimization on GPU

In this section we first present how to optimize the BPTT-based SNN training

dataflow for saving the storage consumption. Then we detail our GPU kernel design

to fuse arithmetic operations for eliminating frequent kernel launching.

4.2.1 Dataflow Optimization

In SNN training, many intermediate variables are generated and stored in the FP

stage, which are accessed in BP and PU stages. Whereas, this causes huge memory

consumption. In order to reduce the memory overhead, we propose to only store parts

of intermediate data in the FP stage, and recompute the missing ones in BP and PU

stages.

𝑩𝑵𝒍𝒙𝒕𝒍 𝒚𝒕𝒍 𝒎𝒕
𝒍 𝒔𝒕𝒍

𝑩𝑵𝒍𝒙𝒕#𝟏𝒍 𝒚𝒕#𝟏𝒍 𝒎𝒕#𝟏
𝒍 𝒔𝒕#𝟏𝒍

𝑪𝒐𝒏𝒗𝒍%𝟏 𝒙𝒕𝒍%𝟏

𝑪𝒐𝒏𝒗𝒍%𝟏 𝒙𝒕#𝟏𝒍%𝟏

Figure 4.3: The optimized information flow that only stores xxx in the FP stage.

With the above idea, we choose to save Conv (or FC) results (i.e., xxx) as in Figure 4.3.

In this example, BN results, membrane potentials, and spike events are all abandoned in

the FP stage. The reason that we select Conv results to store is that Conv takes most

of computations, and thus recomputing Conv results may cause long training latency.

Although recomputing other intermediate data needs complex arithmetic computations,

all of them are element-wise that occupy fewer workloads.

The goal of BP and PU stages are to calculate the gradients of Conv results (i.e.,

▽xxxl), the gradients of Conv parameters (i.e., ▽wwwl+1 & ▽bbbl+1) and BN parameters (i.e.,
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▽γγγl & ▽βββl). Three steps can be summarized in BP and PU stages as Figure 4.4. In the

first step, we recomputemmml & sssl, which are abandoned in the FP stage, as in Figure 4.4(a).

Then, according to the recomputed sssl and the backpropagated ▽xxxl+1, we get the gradients

of Conv parameters in layer l+1. Also, we get the spatial part of ▽sssl in Equation 2.4, as

in Figure 4.4(b). In the last step, we compute ▽xxxl and the gradients of BN parameters,

as in Figure 4.4(c). The detailed algorithms for each step will be provided in the next

subsection.

𝒙𝒕𝒍 𝒚𝒕𝒍 𝒎𝒕
𝒍 𝒔𝒕𝒍
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Figure 4.4: The three steps in BP and PU stages: (a) recomputemmml and sssl (Algorithm
1); (b) compute the gradients of Conv parameters (i.e., ▽wwwl & ▽bbbl) and the spatial part
of ▽sssl (Algorithm 4); (c) compute the gradients of BN parameters (i.e., ▽γγγl & ▽βββl)
and the gradients of Conv results (i.e., ▽xxxl) (Algorithm 2 & 3).
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4.2.2 Kernel Optimization for BP and PU Stages

Except for the huge memory consumption in SNN training, the complex LIF dynamics

and BN in the vanilla Pytorch implementation degrade the performance dramatically due

to the frequently kernel launching. In this subsection, we explain how to optimize the

GPU kernel functions for those operations to accelerate the gradient calculation in BP

and PU stages.

… … ……

block ID = 0 block ID = 1 idxthread = block ID x block Dim + thread ID

j = floor(idxthread / (HW))

… … ……

… … ……

idxn = (tB + b)CHW + idxthread
TxB

CxHxW

Channel ID

… … …

T: time steps
B: batch size
C: channels
H: height
W: width

Figure 4.5: Correspondence between the feature map and threads for the kernel pro-
gramming. The feature map is stored with the row major order.

Since we abandoned the storage of membrane potentials and spike events in the FP

stage, we need to recompute mmml & sssl based on xxxl in BP and PU stages as shown in

Figure 4.4(a). The detailed kernel function is provided in Algorithm 1. Here, we fuse

all arithmetic operations into one kernel function to avoid the frequent kernel launching.

The update of membrane potentials and spike events are dominated by Equation 2.1-4.2.

The thread model for GPU kernels is presented in Figure 4.5. We first reshape the tensor

from the size of T ×B × C ×H ×W to a 2D format with the size of TB × CHW . With

this reshaping, each thread processes T × B elements and the total number of threads

is CHW . During the processing of the kernel function, we need to know the channel ID

(i.e., j) for each thread to get the corresponding parameters for BN. We also need to
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know the neuron’s location (i.e., idxn) in the original tensor to write back the calculated

results. In Algorithm 1, each thread calculates mmml and sssl for different time steps and

input samples in a batch, in which µl[j], σl[j], γl[j], and βl[j] keep unchanged under

the same j. During the kernel processing, mmml and sssl are calculated along the time steps

from 1 to T , since the calculation at the current time step has data dependency on the

previous time step according to Equation 2.2. Notice that this fused kernel function can

be directly applied in the FP stage to compute the spike events.

Algorithm 1: Fused FP Kernel with BN

Data: xxx ∈ RT×B×C×H×W ; µµµ, σσσ, γγγ, βββ ∈ RC ;
Result: mmm, sss ∈ RT×B×C×H×W ;

1 begin

2 µtmp = µ[j]; σtmp = σ[j]; γtmp = γ[j]; βtmp = β[j];

3 for b← 1 to B do
4 upre = 0; spre = 0;
5 for t← 1 to T do

6 // Eq. (2.2) & (4.2)

7 mpre = αmpre(1− spre) +
x[idxn]−µtmp√

σ2
tmp+ϵ

γtmp + βtmp;

8 // Eq. (2.1)
9 spre = mpre ≥ thf ;

10 m[idxn] = mpre; s[idxn] = spre;

11 end

12 end

13 end

After we obtain sssl, we can compute the spatial part of ▽sssl and ▽wwwl & ▽bbbl as Figure

4.4(b) by calling the functions in cuDNN. Then, we need to compute ▽xxxl and ▽γγγl & ▽βββl

as shown in Figure 4.4(c). Based on Equation 4.3, in order to get ▽xxxl, we need to get

the sum of ▽yyylx̂xxl and ▽yyyl for each channel first, which are ▽γγγl and ▽βββl as Equation

4.5-4.6. Thus, we first compute the gradients of BN parameters as the intermediate data

in BP and PU stages, as given in Algorithm 2. Based on Equation 2.5, the gradients

of membrane potentials at the current time step has data dependency on the next time
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step, therefore ▽mmml is calculated along time steps from T to 1, which is opposed to that

in Algorithm 1. The thread model in Algorithm 2 is also based on Figure 4.5.

Algorithm 2: Fused PU Kernel with BN

Data: xxx, mmm, ▽sssspatial ∈ RT×B×C×H×W ; µµµ, σσσ ∈ RC ;
Result: ▽yyysum, ▽ŷyysum ∈ RC×H×W ;

1 begin

2 µtmp = µ[j]; σtmp = σ[j];

3 for b← 1 to B do
4 ▽mnext = 0;
5 for t← T to 1 do
6 // Eq. (2.4) & (2.6)
7 if thl < m[idxn] < thr then
8 ▽stmp = ▽sspatial[idxn]− ▽mnext(αm[idxn]);
9 end

10 else
11 ▽stmp = 0;
12 end
13 // Eq. (2.5)
14 ▽mnext = ▽mnextα(m[idxn] < thf ) + η▽stmp;
15 // Eq. (4.4)

16 x̂tmp =
x[idxn]−µtmp√

σ2
tmp+ϵ

;

17 // Eq. (4.3), (4.5) & (4.6)
18 ▽ysum[idxthread]+ = ▽mnext;
19 ▽ŷsum[idxthread]+ = ▽mnextx̂tmp;

20 end

21 end

22 end

At last, we can obtain ▽xxxl according to Algorithm 3. In order to avoid extra memory

consumption, we do not store the gradients of BN results (i.e., ▽yyyl). Therefore, in

Algorithm 3, we recompute ▽mmml again, and go through the time steps from T to 1

considering the data dependency in the calculation of ▽mmm.

After going through all the required kernels in BP and PU stages, we give the overall

function in Algorithm 4. The inputs include the Conv results of the current layer (i.e.,

xxxl), gradients of Conv results of the next layer (i.e., ▽xxxl+1), Conv and BN parameters.
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Algorithm 3: Fused BP Kernel with BN

Data: xxx, mmm, ▽sssspatial ∈ RT×B×C×H×W ; µµµ, σσσ, γγγ, ▽yyymean, ▽ŷyymean ∈ RC ;

Result: ▽xxx ∈ RT×B×C×H×W ;
1 begin

2 µtmp = µ[j]; σtmp = σ[j]; γtmp = γ[j];
3 ▽ymean tmp = ▽ymean[j]; ▽ŷmean tmp = ▽ŷmean[j]

4 for b← 1 to B do
5 for t← 1 to T do
6 Repeat line 7∼19 in Alg. 2 to get ▽mnext and x̂tmp;
7 // Eq. (4.3)
8 ▽x[idxn] =

γtmp√
σ2
tmp+ϵ

(▽mnext − ▽ymean tmp − x̂tmp▽ŷmean tmp);

9 end

10 end

11 end

Algorithm 4: PU & BP CUDA

Data: xxxl, µµµl, σσσl, γγγl, βββl, wwwl+1, ▽xxxl+1;
Result: ▽xxxl, ▽γγγl, ▽βββl, ▽wwwl+1, ▽bbbl+1;

1 begin
2 // Apply FP to recompute uuul & sssl

3 mmml, sssl ← Alg. 1 (xxxl, µµµl, σσσl, γγγl, βββl);

4 // Apply PU to get gradients of parameters and intermediate data
5 // Eq. (2.7), (2.8), and (2.4)

6 ▽wwwl+1 = ▽xxxl+1 ∗ sssl; ▽bbbl+1 =
∑

▽xxxl+1;

7 ▽ssslspatial = ▽xxxl+1 ∗wwwl+1;

8 ▽yyylsum, ▽ŷyylsum ← Alg. 2 (xxxl, mmml, ▽ssslspatial, µµµ
l, σσσl);

9 // Eq. (4.5) & (4.6)

10 ▽γγγl, ▽βββl ← sum of ▽ŷyylsum, ▽yyylsum;

11 ▽ŷyylmean, ▽yyy
l
mean ← ▽γγγl/(TBHW ), ▽βββl/(TBHW );

12 // Apply BP to get ▽xxxl

13 ▽xxxl ← Alg. 3 (xxxl, mmml, ▽ssslspatial, µµµ
l, σσσl, γγγl, ▽ŷyylmean, ▽yyy

l
mean);

14 end
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The outputs contain the gradients of Conv results (i.e., ▽xxxl), gradients of Conv and BN

parameters.

In order to make our optimization easy-to-deploy, we design Pytorch interfaces1 which

can also support distributed learning.

4.3 Evaluation

4.3.1 Experimental Setup

In this work, we focus on the widely adopted image recognition tasks for evaluation.

Our experiments are implemented on two popular datasets: CIFAR10 and ImageNet.

The network configurations are detailed in Tab. 4.1. For the CIFAR10 dataset, we

design three models with different number of Conv layers; for the imageNet dataset, we

adopt an AlexNet-like network and ResNet34 to evaluate our optimization framework.

We use a vanilla Pytorch implementation [100] for the BPTT-based SNN training as the

baseline which contains BN operations.

4.3.2 Performance Analysis on CIFAR10

We first analyze the improvement of our optimization framework on the CIFAR10

dataset. Figure 4.6(a) shows the comparison without BN. From the results, our optimiza-

tion framework consumes much less memory for larger models, since the non-optimized

functions (e.g., data processing) for small networks consume a large portion of memory.

The peak memory consumption under different number of time steps presents little vari-

ance, since the portion of saved memory for each layer does not change. For the training

latency, our optimization achieves higher speedup as the number of time steps increases.

1https://github.com/liangling76/snn gpu training bptt
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The reason is that our kernel functions fuse the neural dynamics at all time steps. On

the contrary, the vanilla Pytorch updates the neural activities step by step which causes

more kernel launching time. For the models with different size, the speedup values are

similar, indicating that our optimization can provide a considerable speedup no matter

what the network structure is. Overall, for the models without BN, we can achieve max-

imum 2.13× end-to-end speedup and consume only 0.41× peak memory when compared

to the vanilla Pytorch implementation.

After involving the BN layer, our framework achieves less speedup but more memory

saving as Figure 4.6(b). The reason is that the BN layer introduces more intermediate

data recompute. Overall, for the models with BN, we can achieve maximum 1.94× end-

to-end speedup and consume only 0.33× peak memory when compared to the vanilla

Pytorch implementation.
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Figure 4.6: Peak memory consumption and performance comparison between our
optimization framework and the vanilla Pytorch implementation: (a) without BN;
(b) with BN.
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We further analyze the breakdown of memory consumption and computation time in

Fig 4.7. The vanilla Pytorch spends a higher portion of memory on feature map storage

and takes a lower portion of time for the kernel execution. This phenomena demonstrates

the efficiency of our framework in saving memory consumption and preventing frequent

kernel launching.

94.55%

5.45%

79.52%

20.48%

Baseline Ours

Kernel Execution Others

(b)

61.88%

38.12%22.95%

77.05%

Baseline Ours

(a)

Feature Maps Others

Figure 4.7: Comparison of the breakdown of (a) memory consumption and (b) compu-
tation time between the vanilla Pytorch implementation and our optimization frame-
work for the medium-size model with BN and T = 10.

4.3.3 Comparison with TorchScript
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Figure 4.8: Performance comparison in the FP stage between our optimization frame-
work and the Pytorch optimization with TorchScript on Cifar10.

The vanilla Pytorch implementation for the FP stage can be easily optimized through

TorchScript [101]. We compare our framework with TorchScript in Figure 4.8. From the

results, both frameworks achieve high speedup for small models, since a lower portion

61



Accelerating Spatiotemporal Supervised Training of Large-Scale Spiking Neural Networks on GPU
Chapter 4

of time is spent on Conv/FC layers. Our framework and Torchscript fuse operations in

one layer along the temporal and spatial directions, respectively. For larger models, our

framework achieves a higher speedup that indicates fusing operations along the temporal

direction is more efficient.

4.3.4 Performance Analysis on ImageNet

Finally, we analyze our optimization framework on the ImageNet dataset with dis-

tributed learning. The comparison to the vanilla Pyotrch implementation is shown in

Figure 4.9. For the peak memory consumption per GPU, we find that the vanilla Py-

torch implementation needs much more storage in distributed learning compared to the

single-GPU training. The reason is that the vanilla Pytorch implementation induces

extra memory overhead for some intermediate data such as x̂xxl
t. In our framework, the

additional storage consumption only comes from the calculation of the average param-

eter gradients between GPUs. Compared to the vanilla Pytorch impelementation, our

optimization framework only consumes 0.68× and 0.38× peak memory for ResNet34 and

AlexNet, respectively.
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Figure 4.9: Comparison between our optimization framework and the vanilla Pytorch
implementation for distributed learning on the ImageNet dataset: (a) peak memory
consumption per GPU; (b) training latency for one epoch.
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Compared to the single-GPU training, both frameworks achieve insignificant speedup

when using two GPUs. The reason is that, the distributed training needs additional com-

munication between GPUs, such as parameter synchronization. When further scaling up

to more GPUs, the latency is dramatically reduced due to the enhanced computing

power but the similar communication burden for each GPU compared to the case with

two GPUs. From the simulation results, our optimization framework can achieve maxi-

mum 1.58× and 1.81× end-to-end speedup for ResNet34 and Alexnet, respectively, when

compared to the vanilla Pytorch implementation.

4.4 Conclusion

This Chapter describes a framework that accelerates BPTT-based SNN training on

GPU. The framework first optimizes the dataflow by only storing the Conv results in the

FP stage to reduce the memory consumption. Then, several customized kernel functions

are designed to alleviate frequent kernel launching. Also, the Pytorch interfaces are

provided to make the framework easy-to-deploy.
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Chapter 5

Exploring Adversarial Attack in

Spiking Neural Networks with

Spike-Compatible Gradient

The previous two Chapters describe how to make SNN training efficient by designing an

accelerator and optimizing GPU kernels. In this Chapter, a new topic will be discussed,

which is the security of SNNs. As SNNs’ accuracy on general tasks becomes higher,

SNN security becomes important while lacking in-depth investigation. To this end, this

Chapter explores attacking an SNN model through adversarial examples, which is well

studied in ANNs.

5.1 Preliminaries and Challenges

In this Section, we first introduce the adversarial attack in ANNs. Then, the chal-

lenges of attack SNNs via adversarial examples are illustrated.
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5.1.1 Gradient-based Adversarial Attack

We take the gradient-based adversarial attack in ANNs as an illustrative example.

The neural network is actually a map from inputs to outputs, i.e., y = f(x), where x and

y denote inputs and outputs, respectively, and f : Rm → Rn is the map function. Usually,

the inputs are static images in convolutional neural networks. In adversarial attack, the

attacker attempts to manipulate the victim model to produce incorrect outputs by adding

imperceptible perturbations δ in the input images. We define x′ = x+δ as an adversarial

example. The perturbation is constrained by ∥δ∥p = ∥x′ − x∥p ≤ ϵ, where ∥·∥p denotes

the p-norm and ϵ reflects the maximum tolerable perturbation.

Generally, the adversarial attack can be categorized into untargeted attack and tar-

geted attack according to the different attack goals. Untargeted attack fools the model

to classify the adversarial example into any other classes except for the original correct

one, which can be illustrated as f(x + δ) ̸= f(x). In contrast, for targeted attack, the

adversarial example must be classified in to a specified class, i.e., f(x+δ) = ytarget. With

these preliminary knowledge, the adversarial attack can be formulated as an optimization

problem as below to search the smallest perturbation:


arg min

δ
∥δ∥p, s.t. f(x+ δ) ̸= f(x), if untargeted

arg min
δ
∥δ∥p, s.t. f(x+ δ) = ytarget, if targeted

. (5.1)

There are several widely-adopted adversarial attack algorithms to find an approxi-

mated solution. Here we introduce two of them: the fast gradient sign method (FGSM)

[38] and the basic iterative method (BIM) [39].

FGSM. The main idea of FGSM is to generate the adversarial examples based on the

gradient information of the input. Specifically, it calculates the gradient map of an input

image, and then adds or subtracts the sign of this input gradient map in the original
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image with multiplying a small scaling factor. The generation of adversarial examples

can be formulated as
x′ = x+ η · sign(▽xL(θ, x, yorginal)), if untargeted

x′ = x− η · sign(▽xL(θ, x, ytarget)), if targeted

(5.2)

where L and θ denote the loss function and parameters of the victim model. η is used

to control the magnitude of the perturbation. In untargeted attack, the adversarial

example will drive the output away from the original correct class, which results from

the gradient ascent-based input modification; while in targeted attack, the output under

the adversarial example goes towards the targeted class, owing to the gradient descent-

based input modification.

BIM. BIM algorithm is actually the iterative version of the above FGSM, which updates

the adversarial examples in an iterative manner until the attack succeeds. The generation

of adversarial examples in BIM is governed by


x′
k+1 = x′

k + η · sign(▽x′
k
L(θ, x′

k, yorginal)), if untargeted

x′
k+1 = x′

k − η · sign(▽x′
k
L(θ, x′

k, ytarget)), if targeted

(5.3)

where k is the iteration index. Specifically, x′
k equals the original input when k = 0.

In ANNs, several advanced attack methods can be potentially extended beyond BIM

based algorithm by optimizing the perturbation bound [40, 41, 42, 43] or avoiding the

gradient calculation [102, 103, 104, 105]. In this work, we aim at the preliminary ex-

ploration of an effective gradient-based SNN attack, thus adopting the most classic BIM

algorithm in our design.
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5.1.2 Challenges in SNN Attack
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Figure 5.1: Illustration of gradient-based adversarial attack: (a) overall flow including
forward pass, backward pass, and input update; (b) adversarial attack in ANNs; (c)
adversarial attack in SNNs and its challenges. xi and xs represent an input in image
and spike formats, respectively.

Even though the attack methodology can be independent of how the model is trained

(e.g., gradient-free unsupervised learning [106] or spatial-gradient-based supervised learn-

ing [70]) and it is not necessary to compute gradients when finding adversarial examples

(e.g., using trial-and-error methods [107, 71]), we take SNN models trained by BPTT

with high recognition accuracy for example and focus on the spatiotemporal-gradient-

based attack due to the potential for high attack success rate. Therefore, all our following

discussions about the challenges are restricted in this context. Figure 5.1(a) briefly il-

lustrates the work flow of adversarial attack based on gradients. There are three stages:

forward pass to obtain the model prediction, backward pass to calculate the input gradi-

ent, and input update to generate the adversarial example. This flow is straightforward

to implement in ANNs, as shown in Figure 5.1(b). However, the case becomes compli-

cated in the SNN scenario, where the processing is based on binary spikes with temporal

dynamics rather than continuous activations with immediate response. According to

Figure 5.1(c), we attempt to identify the challenges in SNN attack to distinguish from
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the ANN attack and compare our solution with prior studies.

Challenge1: Acquiring Spatiotemporal Gradients.

For SNNs, it is difficult to acquire the spatiotemporal gradients using conventional

SNN learning algorithms for the generation of adversarial examples with both spatial

and temporal components. For example, the unsupervised learning rules such as spike

timing dependent plasticity (STDP) [13] update synapses according to the activities

of local neurons, which cannot help calculate the input gradients. The ANN-to-SNN-

conversion learning methods [44] simply convert an SNN learning problem into an ANN

one with only spatial information, leading to the incapability in capturing temporal input

gradients. Recently, the backpropagation through time (BPTT) based learning algorithm

[20, 21, 22, 6, 3, 24] is broadly studied. This emerging supervised learning promises

accurate SNN attack via the direct acquisition of input gradients in both spatial and

temporal dimensions, which is adopted by us.

Challenge2: Incompatible Format between Gradients and Inputs.

The input gradients are in continuous values, while the SNN inputs are in binary

spikes (see the left of Figure 5.1(c), each point represents a spike event, i.e., “1”; other-

wise it is “0”). This data format incompatibility impedes the generation of spike-based

adversarial examples if we consider the conventional gradient accumulation. In this

work, we propose a gradient-to-spike (G2S) converter to convert continuous gradients

to spike-compatible ternary gradients. This design exploits probabilistic sampling, sign

extraction, and overflow-aware transformation, which can simultaneously maintain the

spike format and control the perturbation magnitude.
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Gradient Vanishing Problem.

The firing function in the LIF model in Equation (2.1) is actually a step function

that is non-differentiable. To address this issue, an approximation function is introduced

to simulate the derivative of the firing activity [20]. However, this approximation brings

abundant zero gradients outside the gradient window (to be shown latter), leading to

severe gradient vanishing during backpropagation. We find that the input gradient map

can be all-zero sometimes, which interrupts the gradient-based update of adversarial

examples. To this end, we propose a restricted spike flipper (RSF) to construct ternary

gradients that can randomly flip the binary inputs in the case of all-zero gradients. We use

a baseline sampling factor to bound the overall turnover rate, making the perturbation

magnitude controllable. Further more, we propose threshold tuning to deal with the

gradient vanish problem which cannot be handled by RSF.

5.1.3 Comparison with Prior Work on SNN Attack

The study on SNN attack is still in its infant stage. In this subsection, we summarize

existing approaches and clarify our differences compared with them.

Attack Method Data Source SpatialTemporal Gradient Computational Complexity Attack Effectiveness

Trial-and-Error [107] Image % Iter ×N × 2CFP Low

Trial-and-Error [71] Spike % Iter ×N × CFP Low

Model Conversion [70] Image % Iter × (CFP + CBP ) Low

This Work Spike/Image ! Iter × (CFP + CBP ) High

Table 5.1: Comparison with prior work on SNN attack.

Trial-and-Error Input Perturbation.

Such attack algorithms perturb inputs in a trial-and-error manner by monitoring the

variation of outputs. For example, A. Marchisio et al. [107] modify the original image
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inputs before spike sampling. They first select a block of pixels in the images, and then

add a positive or negative unit perturbation onto each pixel. During this process, they

always monitor the output change to determine the perturbation until the attack succeeds

or the perturbation exceeds a threshold. However, this image-based perturbation is not

suitable for the data sources with only spike events [82, 83]. In contrast, A. Bagheri et

al. [71] directly perturb the spike inputs rather than the original image inputs. The main

idea is to flip the input spikes and also monitor the outputs.

SNN/ANN Model Conversion.

S. Sharmin et al. [70] convert the SNN attack problem into an ANN one. They

first build an ANN substitute model that has the same network structure and parame-

ters copied from the trained SNN model. The gradient-based adversarial attack is then

conducted on the built ANN counterpart to generate the adversarial examples.

These existing works suffer from several drawbacks that would eventually degrade

the attack effectiveness. For the trial-and-error input perturbation methods, the compu-

tational complexity is quite high due to the large search space without the guidance of

supervised gradients. Specifically, each selected element of the inputs needs to run the

forward pass once (for spike perturbation) or twice (for image perturbation) to monitor

the outputs. The total computational complexity is Iter × N × CFP , where Iter is the

number of attack iterations, N represents the size of search space, and CFP is the compu-

tational cost of each forward pass. This complexity is much higher than the normal one,

i.e., Iter × (CFP + CBP ), due to the large N . Because it is difficult to find the optimal

perturbation in such a huge space, the attack effectiveness cannot be satisfactory given

a limited search time in reality. Regarding the SNN/ANN model conversion method,

an extra model transformation is needed and the temporal gradient information is lost

during the ANN pretraining. Using a different model to find gradients and the missing
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of temporal components will compromise the attack effectiveness in the end. Moreover,

this method is not applicable to the spiking data sources without the help of extra signal

conversion.

Compared with the above works we calculate the gradients in both spatial and tem-

poral dimensions without extra model conversion, which matches the natural SNN be-

haviors. Then, the proposed G2S and RSF enable the generation of spiking adversarial

examples based on the continuous gradients even if when meeting the gradient vanishing.

This direct generation of spiking adversarial examples makes our methodology suitable

for the spiking data sources. For the SNN models using image-based data sources, our

solution is also applicable with a simple temporal aggregation of spatiotemporal gradi-

ents. In summary, Table 5.1.3 shows the differences between our work and prior work.

We use effectiveness to assess an attack method. Usually, an effective attack method can

achieve high attack success rate with relative low complexity and better compatibility of

input data formats.

Please note that we focus on the white-box attack in this paper. Specifically, in the

white-box attack scenario, the adversary knows the network structure and model param-

eters (e.g., weights, uth, etc.) of the victim model. The reason of this scenario selection

lies in that the white-box attack is the fundamental step to understand adversarial attack.

Furthermore, the methodology built for the white-box attack can be easily transferred

to the black-box attack in the future.

5.2 Adversarial Attack Against SNNs

In this section, we first introduce the input data format briefly, and then explain the

flow, approach, and algorithm of our attack methodology in detail.
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5.2.1 Input Data Format

It is natural for an SNN model to handle spike signals. Therefore, considering the

datasets containing spike events, such as N-MNIST [82] and CIFAR10-DVS [83], is the

first choice. In this case, the input is originally in a spatiotemporal pattern with a

binary value for each element (0-nothing; 1-spike). The attacker can flip the state of

selected elements, while the binary format must be maintained. The image datasets are

also widely used in the SNN field by converting them into the spiking version. There

are different ways to perform the data conversion, such as rate coding [3, 6, 90] and

latency coding [108, 109, 110]. In this work, we adopt the former scheme based on

Bernoulli sampling that converts the pixel intensity to a spike train, where the spike rate

is proportional to the intensity value. In this case, the attacker can modify the intensity

value of selected pixels by adding the continuous perturbation. Figure 5.2 illustrates the

adversarial examples in these two cases.

Image Input Spiking Input

Original
Input

Adversarial
Input

Classified as ‘3’ Classified as ‘8’

Aggregated Spiking 
Input

Figure 5.2: The data format of original inputs and adversarial examples. The red and
blue colors denote two spike channels induced by dynamic vision sensors [84, 82].
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5.2.2 Attack Flow Overview

The overview of the proposed adversarial attack against SNNs is illustrated in Figure

5.3. The basic flow adopts the BIM method given in Equation (5.3).

The perturbation for spikes can only flip the binary states of selected input elements

rather than add continuous values. Therefore, to generate spiking adversarial examples,

the search of candidate elements is more important than the perturbation magnitude.

FGSM cannot do this since it only explores the perturbation magnitude, while BIM

realizes this by searching new candidate elements in different attack iterations. Next, we

describe the specific flow for spiking inputs and image inputs individually.

Loss
(MSE / CE)

 

  Exist Non-Zero
Gradient

Gradient-to-Spike 
Converter

Yes

NoSpiking Input

Image Input

BPFP

Sa
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A
ggregate

 

 

 
Restricted Spike
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Figure 5.3: Overview of the adversarial attack flow for SNNs with spiking or image
inputs. The flow consists of: 1○ calculating continuous spatiotemporal input gradients
via BPTT; 2○ generating spike-compatible input gradients; 3○ updating adversarial
examples. For image-based inputs, an additional aggregation of the input gradients
along the temporal dimension is needed.

Spiking Inputs

The blue arrows in Figure 5.3 illustrate this case. The generation of spiking adver-

sarial examples relies on three steps as follows. In step 1○, the continuous gradients are

calculated in the FP and BP stages by


δs′k = ▽xs′k

L(θ, xsk, yoriginal), if untargeted

δs′k = −▽xs′k
L(θ, xsk, ytarget), if targeted

(5.4)
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where δs′k represents the input gradient at the k-th iteration. Since all elements in

δs′k are continuous values, they cannot be directly accumulated onto the spiking inputs

xsk. Therefore, in the step 2○, we propose G2S to convert the continuous gradient to a

ternary one compatible with the spike input, which can simultaneously maintain the input

data format and control the perturbation magnitude. When the input gradient vanishes

(i.e., all elements in δs′k are zero), we propose RSF to construct a ternary gradient that

can randomly flip the input spikes with a controllable turnover rate. At last, step 3○

accumulates the ternary gradients onto the spiking input.

Image Inputs

Sometimes, the benchmarking models convert image datasets to spike inputs via

Bernoulli sampling. In this case, one more step is needed to generate image-style adver-

sarial examples, which is shown by the red arrows in Figure 5.3. After the above step

2○, the ternary gradient map should be aggregated in the temporal dimension according

to δik = 1
T

∑T
t=1 δs

t
k. In each update iteration, the intensity value of xik will be clipped

within [0, 1].

5.2.3 Gradient-to-Spike (G2S) Converter

There are two goals in the design of G2S converter in each attack iteration: (1) the

final gradients should be compatible with the spiking inputs, i.e., keeping the spike format

unchanged after the gradient accumulation; (2) the perturbation magnitude should be

imperceptible, i.e., limiting the number of non-zero gradients. To this end, we design

three steps: probabilistic sampling, sign extraction, and overflow-aware transformation,

which are illustrated in Figure 5.4.
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Figure 5.4: Illustration of gradient-to-spike (G2S) converter with probabilistic sam-
pling reducing the number of modified points, sign extraction ternarizing the continu-
ous gradients for spike compatibility, and overflow-aware transformation clipping the
data range in adversarial examples.

Probabilistic Sampling

The absolute value of the input gradient |δs′k| obtained by Equation (5.4) is first

normalized to lie in the range of [0, 1]. Then, the normalized gradient map norm(|δs′k|) is

sampled to produce a binary mask, in which the 1s indicate the locations where gradients

can pass through. The probabilistic sampling for each gradient element obeys


P (δmask = 1) = norm(|δs′k|)

P (δmask = 0) = 1− norm(|δs′k|)
. (5.5)

By multiplying the resulting mask with the original gradient map, the number of non-

zero elements can be reduced significantly. To evidence this conclusion, we run the attack

against the SNN model with a network structure to be provided in Table 5.4.1 over 500

spiking inputs from N-MNIST, and the results are presented in Figure 5.5. Given MSE

loss and untarget attack scenario, the number of non-zero elements in δs′k could reach 210.

After using the probabilistic sampling, the number of non-zero elements in δs′k ⊙ δmask

can be greatly decreased, masking out > 96% percentage.
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Figure 5.5: The number of elements with non-zero input gradients before and after the
probabilistic sampling. After the probabilistic sampling step, the number of selected
non-zero input elements for modification is reduced a lot for each class.

Sign Extraction

Now, we explain how to generate a ternary gradient map where each element is in

{−1, 0, 1} to match the spike inputs. This step is simply based on a sign extraction:

δs′′k = sign(δs′k ⊙ δmask) (5.6)

where we define sign(x) = 1 if x > 0, sign(x) = 0 if x = 0, and sign(x) = −1 otherwise.

Overflow-aware Transformation.

Although the above δs′′k is able to be ternary, it cannot ensure that the final adversarial

example generated by input gradient accumulation is still limited in {0, 1}. For example,

an original “0” element in xsk with a “−1” gradient or an original “1” element with a

“1” gradient will yield a “−1” or “2” input that is out of {0, 1}. This overflow breaks

the data format of binary spikes. To address this issue, we propose an overflow-aware

gradient transformation to constrain the range of the final adversarial example, which is

illustrated in Table 5.2.3.

After introducing the above three steps, now the function of G2S converter can be
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Before Transformation After Transformation

xs′k δs′′k xsk + δs′′k δsk xs′k + δsk

0/1 0 0/1 0 0/1

0 1 1 1 1

1 1 2 0 1

0 -1 -1 0 0

1 -1 0 -1 0

Table 5.2: Overflow-aware gradient transformation.

briefly summarized as below:

δsk = transform[sign(δs′k ⊙ δmask), xs′k] (5.7)

where transform(·) denotes the overflow-aware transformation. The G2S converter is

able to simultaneously keep the spike compatibility and control the perturbation magni-

tude.

5.2.4 Restricted Spike Flipper (RSF)

Dataset N-MNIST CIFAR10-DVS MNIST CIFAR10
#grad.-vanish. inputs (MSE) 130 41 436 103
#grad.-vanish. inputs (CE) 256 32 471 105

Table 5.3: Number of inputs with all-zero gradients at the first attack iteration. We
test the untargeted attack with over 500 inputs for each dataset.

Table 5.2.4 identifies the gradient vanishing issue in SNNs, which is quite severe.

Based on the previous study [20], the hyper-parameter thl and thr in Equation (2.6)

has an influential impact on the gradient approximation of the fire function. Generally,

a too small thr − thl would prevent gradients from passing through the neurons in the

backward pass, i.e., aggravating the gradient vanishing problem. However, a too large

thr − thl cannot precisely approximate the gradient of the firing function that should
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be a delta function rather than a wide pulse. Therefore, the gradient vanishing problem

cannot be fully resolved by simply increasing thr − thl. Therefore, we empirically select

proper thl and thr values (see Table 5.4.1) and propose RSF to address the gradient

vanishing problem. Specifically, we design two steps for RSF: element selection and

gradient construction, which are illustrated in Figure 5.6.
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Figure 5.6: Illustration of restricted spike flipper (RSF) with element selection picking
candidate elements through probabilistic sampling and gradient construction creating
spike-compatible gradients through spike flipping.

Element Selection

This step is to select the elements to flip the spike event. We provide a gradient

initialization that sets all elements to γ as the example provided in Figure 5.6. γ is a

factor within the range of [0, 1], which controls the number of non-zero gradients after

RSF. Now the probabilistic sampling in Equation (5.5) is still applicable to generate the

mask δmask.

Gradient Construction.

To maintain the spike format of adversarial examples, we just flip the state of spiking

inputs in the selected region. Table 5.2.4 illustrates the construction of ternary gradients

that are able to flip the spiking inputs.
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After Construction

xs′k δmask δsk xs′k + δsk

0/1 0 0 0/1

0 1 1 1

1 1 -1 0

Table 5.4: Gradient construction to flip spiking inputs.

With the above two steps, the spiking inputs can be flipped randomly with a good

control of the turnover rate. The overall function of RSF can be expressed as

δsk = construct(δmask, xs′k). (5.8)

5.2.5 Overall Attack Algorithm

Based on the explanations of G2S converter and RSF, Algorithm 5 provides the overall

attack algorithm corresponding to the attack flow illustrated in Figure 5.3. There are

several hyper-parameters in our algorithm, such as the maximum attack iteration number

(Iter), the norm format (p) to quantify the perturbation magnitude, the perturbation

magnitude upper bound (ϵ), the gradient scaling rate (η), and the sampling factor (γ) in

RSF. Notice that we use the average perturbation per point as the metric to evaluate the

perturbation magnitude for adversarial example with N pixel points, i.e., 1
N
∥x′

k+1−x′
0∥p.

5.3 Trap Effect in SNN Attack

This Chapter considers two design knobs that affect the SNN attack effectiveness:

the loss function during training and the firing threshold of the penultimate layer during

attack.
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Algorithm 5: The overall SNN attack algorithm.

1 Input: x, Iter, p, ϵ, η, γ;
2 if image input then xi0 = x; end
3 else xs′0 = x; end

4 for k = 1 to Iter do
5 if image input then
6 xs′k ← Bernoulli sampling on xi′k;
7 end

8 Get δs′k through Equation (5.4);

9 if gradient vanishing occurs in δs′k then
10 // RSF
11 δmask ← Probabilistic sampling on γ;
12 δsk = construct(δmask, xs′k);

13 end
14 else
15 // G2S converter
16 δmask ← Probabilistic sampling on norm(|δs′k|);
17 δsk = transform[sign(δs′k ⊙ δmask), xs′k];

18 end

19 if image input then

20 δik ← 1
T

∑T
t=1 δs

t
k; // Temporal aggregation

21 xi′k+1 = xi′k + δik;

22 if 1
N ∥xi

′
k+1 − xi′0∥p ⩾ ϵ then

23 break; // Attack failed

24 end

25 if attack succeeds then
26 return xi′k+1; // Attack successful

27 end

28 end
29 else
30 xs′k+1 = xs′k + δsk;

31 if 1
N ∥xs

′
k+1 − xs′0∥p ⩾ ϵ then

32 break; // Attack failed

33 end

34 if attack succeeds then
35 return xs′k+1; // Attack successful

36 end

37 end

38 end
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5.3.1 MSE and CE Loss Functions

We compare two widely used loss functions, mean square error (MSE) loss and cross

entropy (CE) loss. We observe that the gradient vanishing occurs more often when

the model is trained by CE loss. It seems that there is a “trap” region in this case.

Specifically, the output neurons cannot change the response any more no matter how

RSF modifies the input. As shown in Figure 5.7(a), when we use CE loss during training,

the gradient is usually vanished between the decision boundaries (i.e., the shaded area);

while this phenomenon seldom happens if MSE loss is used.
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Figure 5.7: Loss function analysis: (a) decision boundary comparison; (b) the number
of output spikes in the penultimate layer at different attack iterations. The shaded
area in (a) represents a “trap” area that receives zero gradient; the larger number of
spikes in the penultimate layer under CE probably introduces the “trap” effect.

For a deeper understanding, we examine the output pattern of the penultimate layer

(during untargeted attack) since it directly interacts with the output layer, as depicted

in Figure 5.7(b). Here the network structure will be provided in Table 5.4.1 and the

500 test inputs are randomly selected from the N-MNIST dataset. When the training

loss is MSE, the number of output spikes in the penultimate layer gradually decreases
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as the attack process evolves. On the contrary, the spike number first increases and

then stays unchanged for the CE trained model. Based on this observation, one possible

hypothesis is that more output spikes in the penultimate layer might increase the distance

between decision boundaries, thus introducing the mentioned “trap” region with gradient

vanishing.
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Figure 5.8: The number of output spikes in the penultimate layer with different firing
threshold in that layer. The increase of firing threshold in the penultimate layer is
able to reduce the number of spikes.

5.3.2 Firing Threshold of the Penultimate Layer

As introduced in the above subsection, the models trained by CE loss are prone to

output more spikes in the penultimate layer, leading to the “trap” region that makes the

attack difficult. To address this issue, we increase the firing threshold of the penultimate

layer during attack to reduce the number of spikes there. Notice that we only modify

the firing threshold in the FP stage during the generation of adversarial examples. With

the threshold tuning, we present the number of spikes again in Figure 5.8, where the

CE loss is used and other settings are the same with those in Figure 5.7(b). Compared

to the original threshold setting (thf = 0.3) in the previous experiments, the number of

output spikes in the penultimate layer can be decreased significantly on average. Latter

experiments in Section 5.4.4 will evidence that this tuning of firing threshold is able to

improve the adversarial attack effectiveness.
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5.4 Evaluation

5.4.1 Experiment Setup

We design our experiments on both spiking and image datasets. The spiking datasets

include N-MNIST [82] and CIFAR10-DVS [83] which are captured by dynamic vision

sensors [84]; while the image datasets include MNIST [79] and CIFAR10 [80]. For these

two kinds of dataset, we use different network structure, as listed in Table 5.4.1. For each

dataset, the detailed hyper-parameter setting during training and the trained accuracy

are shown in Table 5.4.1. For each model, we train it for 50 epochs, and the learning

rate decays by 0.1 at epoch 35. The default loss function is MSE. Since we focus on

the attack methodology in this work, we do not use the optimization techniques such as

input encoding layer, neuron normalization, and voting-based classification [6].

Dataset Network Structure

Spike Input-128C3-128C3-AP2-384C3-384C3-AP2-1024FC-512FC-10FC

Image Input-128C3-256C3-AP2-512C3-AP2-1024C3-512C3-1024FC-512FC-10FC

Gesture-DVS Input-64C3-128C3-AP2-128C3-AP2-256FC-11FC

Table 5.5: Network structure on different datasets. “C”, “AP”, and “FC” denote
convolutional layer, average pooling layer, and fully-connected layer, respectively.

Datasets Gesture-DVS N-MNIST CIFAR10-DVS MNIST CIFAR10

Input Size 32× 32× 2 34× 34× 2 42× 42× 2 28× 28× 1 32× 32× 3

thf 0.3 0.3 0.3 0.3 0.3

η 0.3 0.3 0.3 0.25 0.25

thr − thl 0.5 0.5 0.5 1 1

T 60 15 10 15 15

Time Bin 1ms 5ms 5ms - -

Acc (MSE) 91.32% 99.49% 64.60% 99.27% 76.37%

Acc (CE) - 99.42% 64.50% 99.52% 77.27%

Table 5.6: Hyper-parameter settings and model accuracy during training. (thr + thl = 2 · thf )
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We set the maximum iteration number of adversarial attack, i.e., Iter in Algorithm

5, to 25. We randomly select 50 inputs in each of the 10 classes for untargeted attack and

10 inputs in each class for targeted attack. In targeted attack, we set the target to all

classes except the ground-truth one. We use attack success rate and average perturbation

per point (i.e., ∥δ∥p) as two metrics to evaluate the attack effectiveness. Specifically, the

attack success rate is calculated in the same way as the prior work do [111, 38]: for

untargeted attack, it is the percentage of the cases that adversarial examples fool the

model to output a different label from the ground-truth one; for targeted attack, it is the

percentage of the cases that adversarial examples manipulate the model to output the

target label. Noted, during the calculation of attack success rate, we only consider the

original images that can be correctly classified to eliminate the impact of intrinsic model

prediction errors. The reason that we use the same perturbation metric of point-to-point

distance for both image-based and spike-based data sources is to simplify the comparison.

In the perturbation calculation, we adopt L2 norm, i.e., p = 2. For image-based datasets,

we normalize each input value into [0, 1].

5.4.2 Influence of G2S Converter

We first validate the effectiveness of G2S converter. Among the three steps in G2S

converter (i.e., probabilistic sampling, sign extraction, and overflow-aware transforma-

tion) as introduced in Section 5.2.3, the last two are needed in addressing the spike

compatibility while the first one is used to control the perturbation amplitude. There-

fore, we examine how does the probabilistic sampling affects the attack effectiveness.

Nnote that we do not use RSF to solve the gradient vanishing here.

Figure 5.9 presents the comparison of attack results over four datasets with or without

the probabilistic sampling. In this subsection we only estimate the attack success/failure
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Figure 5.9: Comparison of attack success rate and average perturbation over differ-
ent datasets with and without probabilistic sampling in G2S converter. “T”, “UT”,
“w/oS”, and “wS” refer to targeted attack, untargeted attack, G2S without proba-
bilistic sampling, and G2S with probabilistic sampling, respectively.
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rate for the input samples that do not encounter the gradient vanishing problem during

attack. Thus, three parts add up to 100%, i.e., the success rate, the failure rate, and the

percentage of the input samples that encounter the gradient vanishing problem.

We provide the following observations. First, the required perturbation amplitude

of targeted attack is higher than that of untargeted attack, and the success rate of

targeted attack is usually lower than that of untargeted attack. These results reflect the

difficulty of targeted attack that needs to move the output to an expected class accurately.

Second, the probabilistic sampling can significantly reduce the perturbation amplitude

in all cases because it removes many small gradients. Third, the probabilistic sampling

can maintain the attack success rate in most cases under targeted attack. Specifically, on

N-MNIST and CIFAR10 datasets, the probabilistic sampling can improve the targeted

attack success rate a lot (e.g., >80% on CIFAR10). Although the targeted attack success

rate is slightly lowered after applying the probabilistic sampling on CIFAR10-DVS, it

is not the mainstream and might be caused by the restriction on the number of attack

iterations. With the probabilistic sampling, the attack failure rate could be reduced to

almost zero if the gradient does not vanish.

5.4.3 Influence of RSF

Then, we validate the effectiveness of RSF. In RSF, the hyper-parameter γ controls

the number of selected elements, thus affecting the perturbation amplitude. Keep in mind

that a larger γ indicates a larger perturbation via flipping the state of more elements in

the spiking input.

We first analyze the impact of γ on the attack success rate and perturbation ampli-

tude, as shown in Figure 5.10. A similar conclusion as observed in Section 5.4.2 also

holds, that the target attack is more difficult than the untargeted attack. As γ decreases,
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Figure 5.10: Attack success rate and average perturbation with different γ settings.
“T” and “UT” refer to targeted attack and untargeted attack, respectively.
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the number of elements with flipped state is reduced, leading to smaller perturbation.

Whereas, the impact of γ on the attack success rate depends heavily on the attack sce-

nario and the dataset. For the easier untargeted attack, it seems that a slightly large

γ is already helpful. The attack success rate will be saturated close to 100% even if at

γ = 0.01. For the targeted attack with higher difficulty, it seems that there exists an

obvious peak success rate on these datasets where the γ value equals 0.05. The results

are reasonable since the impact of γ is two-fold: i) a too large γ will result in a large per-

turbation amplitude and might cause a non-convergent attack; ii) a too small γ cannot

move the model out of the region with gradient vanishing.
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Figure 5.11: Flipping times with different γ settings in RSF. “T” and “UT” refer
to targeted attack and untargeted attack, respectively. A smaller γ increases the
flipping times since the perturbation is not strong enough to push the model out of
the gradient vanishing region.

We also record the number of flipping times under different γ setting, as shown in

Figure 5.11. Here the “flipping times” means the number of iterations during the attack

process where the gradient vanishing occurs and the spike flipping is needed. When
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γ is large, the number of flipping times can be only one since the perturbation is large

enough to push the model out of the gradient vanishing region. As γ becomes smaller, the

required number of flipping times becomes larger. In order to balance the attack success

rate (see Figure 5.10) and the flipping time (see Figure 5.11), we finally recommend the

setting of γ = 0.05 in RSF on the datasets we tested.

5.4.4 Influence of Loss Function and Firing Threshold

Additionally, we evaluate the influence of different training loss functions on the attack

success rate. The comparison is summarized in Table 5.4.4. Here the G2S converter and

RSF are switched on. The model trained by CE loss leads to a lower attack success

rate compared to the one trained by MSE loss, and the gap is especially large in the

targeted attack scenario. As explained in Section 5.3.1, this reflects the “trap” region of

the models trained by CE loss due to the the increasing spike activities in the penultimate

layer during attack.

MSE Loss CE Loss

Dataset UT T UT T

N-MNIST 97.38% 99.44% 90.12% 16.78%

CIFAR10-DVS 100% 86.35% 100% 82.95%

MNIST 91.31% 55.33% 93.16% 47.81%

CIFAR10 98.68% 99.72% 98.48% 40.51%

Table 5.7: Impact of the loss function on the attack success rate (without firing
threshold optimization). “T” and “UT” refer to targeted attack and untargeted at-
tack, respectively.

To improve the attack effectiveness, we increase the firing threshold of the penultimate

layer during attack to reduce the spiking activities. Note that we only modify the penul-

timate layer’s firing threshold in the forward pass during the generation of adversarial

examples. The experimental results are provided in Figure 5.12. For untargeted attack,
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the increase of the firing threshold can improve the attack success rate to almost 100%

on all datasets. For targeted attack, the cases present different behaviors. Specifically,

on image datasets (i.e., MNIST and CIFAR10), the attack success rate can be quickly

improved and remained at about 100%; while on spiking datasets (i.e., N-MNIST and

CIFAR10-DVS), the attack success rate initially goes higher and then decreases, in other

words, there exists a best threshold setting. This might be due to the sparse-event nature

of the neuromorphic datasets, on which the number of spikes injected into the last layer

will be decreased severely if the firing threshold becomes large enough, leading to a fixed

loss value and thus a degraded attack success rate. Moreover, from the perturbation

distribution, it can be seen that the increase of the firing threshold does not introduce

much extra perturbation in most cases. All the above results indicate that appropriately

increasing the firing threshold of the penultimate layer is able to improve the attack

effectiveness significantly without enlarging the perturbation.

In Figure 5.12(a), we do not strictly bound ϵ, in order to avoid disturbing the analysis

of the firing threshold. The average perturbation magnitude values are shown in Figure

5.12(b), which are relatively small (within 0.08 in most cases). We further analyze the

attack success rate under the limitation of strict perturbation bounds. Specifically, during

attack iterations, if the average perturbation per point is greater than a pre-defined value

ϵ, the attack is considered as a failure. As shown in Figure 5.12(c), our attack method

can still achieve a considerable attack success rate with ϵ = 0.08 when compared to the

results in Figure 5.12(a) for most cases. While there is a degradation for targeted attack

over the N-MNIST dataset, which may be caused by the high sparsity of the spike inputs

in that dataset.
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5.4.5 Effectieveness Comparison with Existing SNN Attack

As discussed in Section 5.1.3, our attack is quite different from previous work using

trial-and-error input perturbation [107, 71] or SNN/ANN model conversion [70]. Beyond

the methodology difference, here we coarsely discuss the attack effectiveness. Due to the

high complexity of the trial-and-error manner, the testing dataset is quite small (e.g.,

USPS dataset [107]) or even with only one single example [71]. In contrast, we demon-

strate the effective adversarial attack on much larger datasets. For the SNN/ANN model

conversion method [70], the authors show results on the CIFAR10 dataset. In that work,

the authors used the accuracy loss of the model, which is caused by substituting the

original inputs with the adversarial examples, for the evaluation of the attack effective-

ness. We compare our attack results with theirs (inferred from the figure data in [70]) on

CIFAR10 under different ϵ configurations, as shown in Table 5.4.5. It can be seen that

our attack method can incur more model accuracy loss in most cases, which indicates

our better attack effectiveness.

ϵ 8/255 16/255 32/255 64/255

Untargeted [70] 37.50% 62.50% 75.00% 77.00%

Untargeted (ours) 50.47% 72.46% 76.67% 76.86%

Targeted [70] 20.00% 37.50% 52.50% 63.00%

Targeted (ours) 19.16% 42.36% 65.58% 71.48%

Table 5.8: Comparison of the accuracy loss between our work and prior work [70]
under different perturbation bounds.

5.4.6 Other Gradient Based Attack Methods and Datasets

In this subsection, we validate the effectiveness of the proposed attack methodology

using more experiments with advanced attack methods (e.g., CWL2 [42]) and dynamic

datasets (e.g., Gesture-DVS [112]).
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CWL2 is an advanced adversarial attack method that is widely applied in ANN attack,

which integrates a regularization item to restrict the magnitude of the perturbation. We

tailor Algorithm 5 to perform CWL2 attack against SNN models over image-based inputs.

The adversarial example generation follows

xi′k+1 = xi′k + δik − c× ▽xi′k
∥xi′k − xi′0∥22, (5.9)

where xi′0 and xi′k represent the original input and the adversarial example generated at

the kth attack iteration. c is a parameter that determines the impact of regularization

item. A larger c indicates smaller perturbation at the cost of possibly lower attack success

rate. The CWL2 attack would degrade to the classic BIM attack when c = 0.
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Figure 5.13: Attack effectiveness with CWL2 under different settings of c. A larger c
indicates a smaller perturbation but may compromise the attack success rate.

We tested the tailored SNN-oriented CWL2 attack on MNIST and CIFAR10 datasets

with different configurations of c. As illustrated in Figure 5.13, a slight increase of c
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(c = 0.1) helps reduce the perturbation magnitude without sacrificing the attack success

rate, compared to the results at (c = 0). However, when c is too large (c = 0.5), the

attack success rate decreases. For example, the targeted attack success rate on MNIST

dataset is reduced by up to 32.45% when c = 0.5.
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Figure 5.14: Attack effectiveness on the Gesture-DVS dataset.

In addition, we also applied our attack method on Gesture-DVS. The model config-

urations have been shown in Table 5.4.1. We only test the cases with MSE training loss

function for simplicity, and the attack results are shown in Figure 5.14. Our methodol-

ogy can still achieve a high attack success rate with acceptable perturbation even on this

dynamic dataset. The trend of attack success rate variation under different penultimate

layer threshold setting is similar to that on other spike-based datasets we have tested

earlier.

5.4.7 SNNs VS. ANNs Against Adversarial Attack

In this subsection, we further compare SNNs and ANNs against adversarial attack.

In essence, we make the comparison from two perspectives: the perturbation distance

demanded for successful attack; the transferability between the adversarial examples of

ANNs and SNNs. Here, the transfereability of model A’s adversarial examples on model

B represents the attack success rate of attacking model B with the adversarial examples

generated by model A. In our evaluation, a larger perturbation distance indicates more
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challenges to attack a model; a lower transferability implies that the adversarial examples

generated by one model are lower possible to attack other models successfully.
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Figure 5.15: Attack success rate comparison between ANNs and SNNs under gra-
dient-based attack. “T” and “UT” refer to targeted attack and untargeted attack,
respectively. (a)-(b) Independent attack; (c)-(d) Cross attack. In this scenario, at-
tacking SNNs requires larger perturbation than attacking ANNs and the adversarial
examples generated by attacking the ANN models fail to attack the SNN models.

In this subsection, we select image-based datasets, MNIST and CIFAR10s. For ANN

models, we use the same network structure as SNN models given in Table 5.4.1. The

training loss function is CE here. We test two attack scenarios: independent attack

and cross attack. For the independent attack, the ANN models are attacked using the

BIM method in Equation (5.3); while the SNN models are attacked using the proposed

gradient-based method and also a gradient-free method. Note that the firing threshold
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of the the penultimate layer of SNN models during attack is set to 2 in this subsection as

suggested by Figure 5.12. For the cross attack, we use the adversarial examples generated

by attacking the SNN models to mislead the ANN models, or vice versa.

From Figure 5.15(a)-(b), we can easily observe that all attack success rates are quite

high in the independent attack scenario. While, attacking the SNN models requires larger

perturbation than attacking the ANN models in the above experiment. From the results

of the cross attack in Figure 5.15(c)-(d), we find that using the adversarial examples

generated by attacking ANN models to fool the SNN models is very difficult, with only

<12% success rate, indicating the lower transferability of the ANN adversarial examples.

The observation in this scenario reflects that SNN adversarial examples are easier to

transfer to an ANN model with the same network structure.
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Figure 5.16: Attack success rate comparison between ANNs and SNNs under untar-
geted boundary attack. (a) Independent attack; (b) Cross attack. In this scenario,
attacking SNNs still requires larger perturbation than attacking ANNs; however, the
ANN adversarial examples on MNIST present better transferability than the SNN
adversarial examples.

Besides the gradient-based attack method, we also exam the gradient-free boundary

attack method [43]. Since the computational complexity of boundary attack is much

higher than the gradient-based attack, we only evaluate the untargeted attack. The
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results are depicted in Figure 5.16. We find that the required perturbation to attack

SNNs is still higher. However, under cross attack, the ANN adversarial examples present

better transferability than the SNN adversarial examples, which indicates the SNN model

in this scenario is easier to attack.

5.5 Conclusion

SNNs have attracted broad attention and have been widely deployed in neuromor-

phic devices due to the importance for brain-inspired computing. Naturally, the security

problem of SNNs should be considered. In this Chapter, we first identify the challenges

in attacking an SNN model with spatiotemporal-gradient-based methods, including the

incompatibility between the spiking inputs and the continuous gradients, and the gra-

dient vanishing problem. Second, we design a gradient-to-spike (G2S) converter and a

restricted spike flipper (RSF) to address the mentioned two challenges, respectively. Our

methodology can control the perturbation amplitude well and is applicable to both spik-

ing and image data formats. Interestingly, we find that there is a “trap” region in SNN

models trained by CE loss, which can be overcome by adjusting the firing threshold of

the penultimate layer. We conduct extensive experiments on various datasets and show

99%+ attack success rate in most cases, which is the best result on SNN attack. Fur-

thermore, we compare the attack of SNNs and ANNs. From our empirical results, the

adversarial examples for SNNs require a larger perturbation distance, but it still remains

open whether SNNs can be more robust than ANNs against adversarial attack.

For future work, we recommend several interesting topics. Although we only study the

white-box adversarial attack to avoid shifting the focus of presenting our methodology,

the black-box adversarial attack should be investigated because it is more practical.

Fortunately, the proposed methods in this work can be transferred into the black-box
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attack scenario. Second, we only analyze the influence of loss function and firing threshold

due to the page limit. It still remains an open question that whether other factors can

affect the attack effectiveness, such as the gradient approximation form of the firing

activities, the time window length for rate coding or the coding scheme itself, the network

structure, and other solutions that can substitute G2S and RSF. Third, more appropriate

evaluation metrics should be designed to evaluate the perturbation for spike data. Fourth,

a more comprehensive research to compare the robustness between ANNs and SNNs

against adversarial attack is an interesting topic. Fifth, the attack against physical

neuromorphic devices rather than just theoretical models is more attractive. At last,

compared to the attack methods, the defense techniques are highly expected for the

construction of large-scale neuromorphic systems.
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Chapter 6

Toward Robust Spiking Neural

Networks Against Adversarial

Perturbation

As spiking neural networks (SNNs) are deployed increasingly in real-world efficiency

critical applications, the security concerns in SNNs attract more attention. In previous

Chapter we demonstrate an SNN can be attacked with adversarial examples. How to

build a robust SNN becomes an urgent issue. Recently, many studies apply certified

training in artificial neural networks (ANNs), which can improve the robustness of an

NN model promisely. However, existing certifications cannot transfer to SNNs directly

because of the distinct neuron behavior and input formats for SNNs. In this Chapter, we

first design S-IBP and S-CROWN that tackle the non-linear functions in SNNs’ neuron

modeling. Then, we formalize the boundaries for both digital and spike inputs. Finally,

we demonstrate the efficiency of our proposed robust training method in different datasets

and model architectures.
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6.1 Overview and Preliminaries

With more attention to the study of SNNs, the security issues raise concerns in the

community. Adversarial attack [37, 42, 113, 114] is one of the most intuitive ways to

evaluate the robustness of a model. In adversarial attacks, the attacker generates adver-

sarial examples to fool a model predicting wrong. Currently, SNNs are demonstrated can

be attacked through adversarial examples [70, 69, 72]. It is urgent to explore an efficient

way to improve the robustness of SNN models.

Previously, researchers have investigated the impact of hyper-parameter selection [73]

and input filtering [72] on the adversarial attack in SNNs. However, these methods do

not directly promote the classification behavior of a given SNN model. Unlike SNNs, how

to improve the robustness of an artificial neural network (ANN) is well studied. Recently,

trianing a neural network model with certified defense methods [115, 116, 46, 47] show

remarkable guarantee to improve the model’s robustness. CROWN-IBP [46] is one of the

most promising certified training methods with polynomial computianal cost compared

with natural training. The CROWN-IBP method will compute the output boundary for

a given bounded input. The core mission in CROWN-IBP certified training is to find

the upper and lower bound function for each operation and find tight linear relaxation

for non-linear operations. However, the current CROWN-IBP method cannot be directly

applied to SNNs. Firstly, the neuron dynamic in SNNs is more complicated. Hence, some

new boundary functions should be defined to bound the unique non-linear operations in

SNNs. Secondly, SNNs accept both spike and digital inputs, which requires additional

boundary generalization for different input types.

Enlightened by certification training in ANNs, in this work, we designed an end-to-end

robust training method to improve the robustness of an SNN model against adversarial

attacks. Specifically, our major contributions can be summarized as follows:
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• We design S-IBP and S-CROWN to tackle the non-linear fire function and tem-

poral update in SNNs which firstly introduce SNNs to the linear relaxation based

verification family.

• We formalized ℓ0-norm and ℓ∞-norm boundaries for spike and digital inputs, re-

spectively.

• Our proposed methods are evaluated on MNIST [79], FMNIST [117] and NMNIST

[82] datasets. The experinetal results show that we can achieve a maximum 37.7%

attack error reduction with 3.7% original accuracy loss.

6.1.1 Input Format

In this Chapter, we focus on the image recognition tasks. The input of an SNN can

be spike events captured by dynamic vision sensors [118], which naturally fits the input

layer of an SNN. Also, SNNs can take a digital image as input, however, sampling should

be involved before feeding to the SNN. Specifically, we adopt Bernoulli sampling [3] for

digital inputs that follows

P (ẋt[i] = 1) = x̂[i]. (6.1)

We use ẋt to represent the spike input at time step t. x̂ is the digital input after nor-

malization to [0, 1] for each pixel. For a digital input, the probability that a pixel i in

the corresponding spike input has a spike event equals to its normalized gray value. The

example of spike and digital inputs are shown in Figure 5.2.

6.1.2 Adversarial Attack in SNN

In this Chapter we adopt the utargeted white-box gradient-based attack that proposed

in Chapter 5. The framework of the adversarial attack in SNNs is shown in Figure 6.1.
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Figure 6.1: The framework of untargeted white-box gradient-based attack on SNN.

In adversarial attack, the attacker adds imperceptible noise on the input to fool the

model generating an incorrect prediction result. In untargeted attack senario, the model

predicts the adversarial example as any other class except the ground-truth, which can

be formulated as

argmin
δ
∥δ∥p, s.t. f(x+ δ) ̸= f(x). (6.2)

Here, f(·) is the prediction result of an SNN model, x is the original input, and δ is the

noise added on the input. In most cases, it is easier to find an adversarial example if

the attacker knows the models, i.e., the parameters and the structure of the model. The

adversarial attacks that know all of the model information are called white-box attacks.

The gradient-based attacks are the most efficient ways to generate adversarial ex-

amples. In SNNs, the gradient-based attack for the spike and digital inputs can be

formulated as

ẋ′
n+1 = ẋ′

n + F [▽ẋ′
n
L(θ, ẋ′

n, yorg)], spike input,

x̂′
n+1 = x̂′

n +

∑
t F [▽ẋ′

n
L(θ, ẋ′

n, yorg)]

T
, digital input.

(6.3)
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We use ẋ′ and x̂′ to represent the spike and digital adversarial examples, i.e., x′ = x+ δ.

L and θ are the loss function and parameters of the model, respectively. The adversarial

example is constructed by adding the gradient of inputs with the original label (yorg) in

loss function. F is a filter function that samples, clips, and generates spike compatible

noise. For the digital inputs, the binary noises are averaged along the time steps (t)

to construct the floating-point noise. During the attack, attackers can compute the

adversarial examples iteratively once the current adversarial example cannot fool the

model successively. We use n to denote the attack iteration.

6.1.3 Certified Training

Recently, the certified training [45, 46, 47] has been demonstrated to improve the

guaranteed robustness of a neural network. In this work, we leverage the CROWN-IBP

method [46], one of the state-of-the-art certified training that can achieve tighter bounds

in accepctable training cost. Considering a digital input data bounded with ℓ∞-norm,

the goal of CROWN-IBP is to identify whether arbitrary input data within the boundary

can fool the model. The CROWN-IBP contains two parts of bounding methods: IBP [45]

and CROWN [119].

IBP

In IBP processing, the lower and upper bounds of each layer’s feature map are com-

puted along the forward propagation, i.e. start from the input layer to the output layer.

During the bound computation, the linear operation can be easily bounded once we know

the maximum and minimum values of input. However, the upper and lower bound after

the non-linear operations need to be dedicated to analysis. Once we acquire the bounds

of output we can evaluate the robustness of the model for the given input purbation set.
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CROWN

Unlike IBP, CROWN bounds the model in a backward propagation manner recur-

sively. The goal of CROWN is to formulate the output bounds as a linear equation of

input. In order to achieve this goal, every operation in an NN model should be bounded

by two linear equations.

Although CROWN can achieve very tight bounds, the computinal cost is remarkably

higher than IBP. So CROWN-IBP, by combining the fast IBP bounds in a forward

bounding pass and CROWN in a backward bounding pass can efficiently and consistently

outperforms IBP baselines on training verifiably robust neural networks.

6.2 Robust Training on SNN

From previous studies, certification training is an efficient methodology to improve

the robustness of a neural network model. However, existing methods cannot be directly

applied to the SNNs. The main reason is that the non-linear function in SNNs (fire and

temporal update) and the input boundary formalization are special in SNNs. In order

to achieve certification training in SNNs, we designed S-IBP and S-CROWN to tackle

the non-linear neuron behavior in SNNs. Also, we analyzed the input boundary for both

spike and digital data.

6.2.1 S-IBP & S-CROWN

As described in Section 6.1.3, the core mission of certification training is to find the

bound of IBP and CROWN for each function. The information propagation in SNNs

includes fire, temporal update and spatial update as shown in Figure 2.3(a). In this

subsection, we detail the upper bound and lower bound of S-IBP and S-CROWN for each
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function.

Fire

The fire function describes the relation between the membrane potential mt and

spike st of a neuron as Equation 2.1, i.e. once the neuron’s membrane potential is greater

than a threshold thf , the neuron will fire a spike. Assume we have already acquired

the S-IBP upper bound mu
t and lower bound ml

t for membrane potential (note that for

symbol ml
t, l does not indicate the layer number, instead l represents the lower bound

of an intermediate data), the S-IBP bounds for spike can be calculated with

sut = fire(mu
t − thf ), slt = fire(ml

t − thf ). (6.4)

During S-CROWN, we need to find two linear equations to bound the fire function.

When the S-IBP upper bound of membrane potential mu
t is smaller than the threshold

thf , we can conclude that the neuron must not fire. Also, when the S-IBP lower bound

ml
t is greater than the threshold, we can make sure the neuron must fire. Thus, we mainly

need to consider the unstable case, i.e., ml
t < thf ≤ mu

t . In order to achieve the lowest

bound relaxation, we design two boundary systems as Figure 6.2(a) and (b). We use the

red line to represent the fire function. The blue and yellow lines represent the boundary

functions. In our design, when the S-IBP lower bound of membrane potential ml
t far

smaller than th, we set the S-CROWN lower bound to st = 0 and the S-CROWN upper

bound is a line that crosses (ml
t, 0) and (th, 1). On the contrary, when mu

t is far larger

than th, we set the S-CROWN upper bound to st = 1 and the S-CROWN lower bound

is a line that passes (thf , 0) and (mu
t , 1). Overall, the S-CROWN boundary for the fire

function under different cases can be summarized as
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0 ≤ st ≤ 0, mu
t < thf ,

1 ≤ st ≤ 1, ml
t ≥ thf ,

0 ≤ st ≤ mt−ml
t

thf−ml
t
, 0 ≤ mu

t − thf < thf −ml
t

mt−thf

mu
t −thf

≤ st ≤ 1, mu
t − thf ≥ thf −ml

t > 0

(6.5)
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Figure 6.2: S-CROWN upper and lower bounds for the fire function when (a) ml
t

far smaller than th and (b) mu
t far larger than th. (c) Non-linear temporal part of

memory potential update. (d) S-CROWN upper and lower bounds for the temporal
part of memory potential update (unstable case).

Temporal Update

According to Equation 2.2, the temporal update of membrane potential can be for-

malized as αmt(1− st). Since α is a constant factor, in this subsection we do not include

it in the boundary analysis. Assume zt = mt(1 − st), and the S-IBP upper and lower

106



Toward Robust Spiking Neural Networks Against Adversarial Perturbation Chapter 6

bound for membrane potential at time step t has been acquired. The relation between mt

and zt can be described through Figure 6.2(c). Based on the LIF model, the membrane

potential will be reset to 0 once its value acrosses the pre-defined threshold th. Thus,

the S-IBP bounds for zt can be computed with


zut = mu

t , zlt = ml
t, mu

t < thf ,

zut = zlt = 0, ml
t ≥ thf ,

zut = thf , zlt = min(0,ml
t), ml

t < thf ≤ mu
t .

(6.6)

Ituitivly, when mu
t < thf or ml

t ≥ thf , there is no boundary relaxation in S-IBP. We only

need to care about the boundary when ml
t < thf ≤ mu

t (unstable case). From Fgiure

6.2(c) we can find that the zt ∈ [min(0,ml
t), thf ) for unstable case.

During S-CROWN, zt can be also bounded without relaxation when mu
t < thf and

ml
t ≥ thf . The S-CROWN upper bound (blue plane) and lower bound (yellow plane) for

zt when ml
t < thf ≤ mu

t is shown in Figure 6.2(d). Here we use an additional (1 − st)

axis to help us build the boundary. Note that the membrane potential is related to the

spike status. Once st = 1 → (1 − st) = 0, mt must greater than thf and zt = 0. When

st = 0 → (1 − st) = 1, mt must smaller than thf and zt = mt. Thus we need to find

two planes to bound these two function (red lines in Figure 6.2(d)). In summary, the

S-CROWN boundary for the temporal update can be formulated as


mt ≤ zt ≤ mt, mu

t < thf ,

0 ≤ zt ≤ 0, ml
t ≥ thf ,

(1− st)m
l
t < zt < (1− st)thf , ml

t < thf ≤ mu
t .

(6.7)

Thus, in our design, the S-CROWN boundaries for the temporal update are the functions
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of st under the unstable case.

Spatial Update

The spatial update in SNNs is shown in Equation 2.2 and 2.3. Similar to ANNs, the

spatial update in SNNs is composed of CONV/FC/POOL (in this work we focus on the

CONV and FC). In SNNs CONV/FC takes spike events and weight as input. Since the

spike events are in binary format, the S-IBP of spatial update can be implemented with


center = w[k]⊗ slt[k] + b[k],

sput [k + 1] = center + w[k]+ ⊗ (slt[k] = 0 ∩ sut [k] = 1),

splt[k + 1] = center + w[k]− ⊗ (slt[k] = 0 ∩ sut [k] = 1).

(6.8)

We use spt to represent the result of the spatial update. ⊗ denotes CONV/FC operation.

In Equation 6.8, slt[k] = 1 represents those pre-synaptic neurons in layer k who are must

fire. The stable fired pre-synaptic neurons contribute the same for both S-IBP upper

and lower bound of spt. The unstabled pre-synaptic neurons can be represented with

(slt[k] = 0∩ sut [k] = 1), whose upper and lower bound for spike status are 1 and 0. These

unstable pre-synaptic neurons will perform CONV/FC with the positive and negative

weights to affect the S-IBP upper and lower bound of spt.

Since the spatial update is a linear operation, the S-CRWON for spatial update does

not have relaxation, which is the same as the case in ANNs. During the S-CROWN phase,

we do not need to design boundary functions to bound the spatial update in SNNs.

6.2.2 Input Boundary Formalization

In SNNs, except for the distinct non-linear behavior of information propagation, the

input layer of an SNN model only accept binary spike. The special data format for the
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input layer leads to different boundary formalizations for spike and digital images.

Spike Input

An example of spike input is shown in Figure 5.2. All elements in a spike data are

in binary format which is compatible with the input layer of an SNN model. For each

element ẋt[i] in a spike input, the boundary of that element can be either stable cases:

ẋu
t [i] = ẋl

t[i] = 0; ẋu
t [i] = ẋl

t[i] = 1 or unstable case: ẋu
t [i] = 1, ẋl

t[i] = 0. For a spike input

with uncertainty noise, we can only control how many data points in the spike input

are unstable. Thus, the boundary for a spike input can be formulated with ℓ0-norm.

Specifically, we can pick size(ẋ)× ϵ elements from a spike input and set them as unstable

points. Also, the ℓ0-norm boundary can be interpreted as the probability of an element

is unstable, which can be formulated as

P (ẋu
t [i] = 1, ẋl

t[i] = 0) = ϵ ⇔ |ẋ′ − ẋ|0 ≤ size(ẋ)× ϵ (6.9)

Here, ẋ′ is an arbitrary adversarial example that has at most size(ẋ) × ϵ data points

different from ẋ.

Note that we can only certify the robustness of a spike input after we have picked

the unstable data points. Under our robustness formulation, we cannot guarantee the

robustness of a spike input under a given ℓ0-norm. The reason is that the search space

for ℓ0-norm cannot be bounded.

Digital Input

Unlike spike inputs, digital inputs need an additional Bernoulli sampling before feed-

ing the data to the input layer as Equation 6.1. After the sampling, the digital input x̂

is converted to a spike input ẋ which fits the input layer of an SNN. Note that we have
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Figure 6.3: Relation between ℓ∞-norm digital input doundary and ℓ0-norm spike input
boundary. In this example, ϵ = 0.2.
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defined the ℓ0-norm boundary for a spike input. We need to further explore how to define

a boundary for a digital input when its sampled data is bounded with ℓ0-norm. Based

on our analysis, we find that the corresponding digital input boundary can be formalized

with ℓ∞-norm as Figure 6.3. We use randt to represent a rand mask to achieve Bernoulli

sampling for each time step:

ẋt[i] =


1, x̂[i] > randt[i],

0, otherwise.

(6.10)

After we bound the digital input with ℓ∞-norm, the upper bound of digital image becomes

x̂u = x̂ + ϵ/2 and the lower bound is x̂l = x̂ − ϵ/2. For all elements in x̂, the difference

between the upper bound and the lower bound is ϵ, i.e., x̂u[i]− x̂l[i] = ϵ. For each time

step, x̂u and x̂l use the identical random map randt to sample the corresponding spike

inputs ẋu
t and ẋl

t. Based on the sampling processing, the probability of an element in

input layer is unstable can be formulated as

P (ẋu
t [i] = 1, ẋl

t[i] = 0) = x̂u[i]− x̂l[i] = ϵ. (6.11)

The unstable probability here is exactly the same as the case for spike input as Equation

6.9. Thus, from the static perspective, the ℓ∞-norm boundary for digital input is equiv-

alent to the ℓ0-norm boundary for spike input. Since ϵ usually very small, we ignore the

corner cases, i.e., when x̂[i] is close to 0 or 1 after normalization.

For digital inputs, although we can bound the input with ℓ∞-norm, we cannot guaran-

tee the robustness of the input under such boundary. The reason is that during inference,

the corresponding spike input is generated through sampling. Thus, for an arbitrary in-

put, the possible sampled results are equivalent to the entire space (each element in the
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spike input can be 1 or 0), which cannot be bounded.

6.2.3 Robust Training Algorithm

In previous subsections, we have analyzed the S-IBP and S-CROWN for each function

in SNNs. Also, we formalized the input boundaries for different input formats. Here, we

present the end-to-end robust training for an SNN.

Flexible Time Steps: Usually, the time steps of an SNN (trained with BPTT) is

10 to 20, however, it is still large when considering robustness training. We note that for

each SNN layer, the parameters (weight and bias) are shared among different time steps.

Thus, we can set arbitrary time steps T ′ for the robust training.

S-IBP: During the robust training, the inputs first pass the S-IBP as Algorithm 6. At

the beginning, the input is bounded according to the input type. Then, the intermediate

data are bounded along the forward direction. Finally, the upper and lower bound of all

intermediate data are stored which will be used during the S-CROWN phase.

S-CROWN: Note that the goal of S-CROWN is to formulate the output bounds of

a model as linear equations of input’s upper and lower bounds. Also, the boundary is

computed from the backward direction. The detailed steps of S-CROWN are shown in

Algorithm 7.

In the output layer, the S-CROWN boundary can be formulated as

f(ẋ) ≥
∑
t

I/T ′︸︷︷︸
Ast[K]

∗ st[K]. (6.12)

Here, I is the identity matrix. We use Ast[K] to represent the linear matrix respect to

the output, where t denotes the time step and st[K] represents the spike events in the

output layer. Suppose we formulate each non-linear operation as qt = g(pt), where pt
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Algorithm 6: S-IBP

Input:
spike input ẋ or digital input x̂; input boundary ϵ; robust training time steps T ′;
Func:
for t = 1 to T ′ do
// input boundary formalization
if x̂ then
generate random map randt;
ẋu
t = (x̂+ ϵ/2)− randt > 0 ? 1 : 0;

ẋl
t = (x̂− ϵ/2)− randt > 0 ? 1 : 0;

else
Randomly pick size(ẋt)× ϵ elements from ẋt and label the picked
elements with pickt;

ẋu
t = ẋl

t = ẋt; ẋu
t [pickt] = 1; ẋl

t[pickt] = 0;

end if

sut [0] = ẋu
t ; slt[0] = ẋl

t;

inital mu
t [k] = ml

t[k] = 0 for all layers.
//S-IBP
for k = 1 to K do
//spatial update (Equation 6.8)
mu

t [k]+ = sput [k]; ml
t[k]+ = splt[k]

//temporal update (Equation 6.6)
if t < T ′ then
mu

t+1[k] = α ∗ zut ; ml
t+1[k] = α ∗ zlt;

end if
//fire (Equation 6.4)
sut [k] = fire(mu

t [k]− thf ); slt[k] = fire(ml
t[k]− thf );

end for
end for
Return upper and lower bound of intermediate data ẋu

t , ẋ
l
t, m

u
t , m

l
t, s

u
t , s

l
t
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Algorithm 7: S-CROWN

Input:
ẋu
t , ẋ

l
t, m

u
t , m

l
t, s

u
t , s

l
t from S-IBP; robust training time steps T ′;

Func:
//S-CROWN
build identity I matrix; Ast[K] = I/T ′;
for k = K to 1 do
initial Amt[k] = 0 for all time steps
for t = T ′ to 1 do
//fire (Equation 6.5)
build mt[k] ∗ d1l + b1l ≤ st[k] ≤ mt[k] ∗ d1u + b1u;
Amt[k] + = Ast[k]

− ∗ d1u + Ast[k]
+ ∗ d1l;

bias + = Ast[k]
− ∗ b1u + Ast[k]

+ ∗ b1l;
//temporal update (Equation 6.7)
if t > 1 then
build mt−1[k] ∗ d2l + (1− st−1[k]) ∗ d3l ≤ zt−1[k];
build mt−1[k] ∗ d2u + (1− st−1[k]) ∗ d3u ≥ zt−1[k];
Amt−1[k] = α ∗ (Am−

t [k] ∗ d2u + Am+
t [k] ∗ d2l);

tmps = α ∗ (Am−
t [k] ∗ d3u + Am+

t [k] ∗ d3l);
Ast−1[k] − = tmps; bias + = sum(tmps);

end if
//spatial update;
Ast[k − 1] = Amt[k] ∗ w[k − 1]; bias + = Amt[k] ∗ b[k − 1];

end for
end for
Return

∑
t

(
Ast[0] ∗ (ẋu

t + ẋl
t)/2− |Ast[0]| ∗ (ẋu

t − ẋl
t)/2

)
+ bias

and qt represent the input and output of non-linear function g(·). Based on our analysis

of the fire function and temporal update, we can bound each non-linear operation with

linear upper and lower bounds, which can be represented as

pt ∗ dl + bl ≤ g(pt) ≤ pt ∗ du + bu. (6.13)

Here d and b represent the slope and intercept of a linear function. Then, the lower
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bound of the output can be formulated as

f(ẋ) ≥
∑

t Aqt ∗ g(pt) +B

≥
∑

t (Aq
−
t ∗ du + Aq+t ∗ dl)︸ ︷︷ ︸

Apt

∗ pt +

(Aq−t ∗ bu + Aq+t ∗ bl +B)︸ ︷︷ ︸
new bias B

.

(6.14)

We use A+ and A− to represent the positive and negative values in matrix A. Equa-

tion 6.14 can be used to process the fire and temporal update in SNN. For the linear

operation, i.e., qt = w ∗ pt + b, the boundary propagation can be formulated as

f(ẋ) ≥
∑

tAqt ∗ (w ∗ pt + b) +B

≥
∑

t (Aqt ∗ w)︸ ︷︷ ︸
Apt

∗ pt + (Aqt ∗ b+B)︸ ︷︷ ︸
new bias B

.

(6.15)

Now, we can follow the computation process provided in Algorithm 7 to compute the

slope matrix and bias of the bounded spike input (ẋu and ẋl). Finally, we can follow the

robust training method provided in [46] and use the lower bound of S-CROWN to train

the SNN model.

6.3 Evaluation

6.3.1 Experiment Setup

Dataset and Network Structure: In this work, we evaluate our robust training

method on three datasets: MNIST [79], FMNIST [117] and NMNIST [82]. MNIST and
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FMNIST are digital datasets and NMNIST is spike dataset. For each dataset, we use

two network structures in experiments, i.e., a three-layers FC network and a four-layers

CONV network. The detailed setting for datasets and network structures are shown in

Table 6.3.1. We set the firing threshold thf and decay factor α to 0.25 for the neuron

modeling in Equation 2.1 and 2.2.

MNIST FMNIST NMNIST
Input Type digital digital spike

Size 1*28*28 1*28*28 2*34*34
Time Step 10 10 10
FC Acc 98.45% 87.58% 98.30%

CONV Acc 99.09% 89.53% 99.05%

FC X-FC512-FC256-FC10
CONV X-C64K3S2-C128K3S2-FC256-FC10

Table 6.1: Datasets and network structure

Original and Robust Training: In original training, we adopt BPTT based train-

ing method [20]. We train 80 epochs for each SNN model. During the original training,

the learning rate is set to 0.01 at the beginning, it decays to 0.001 at the 55th epoch.

In robust training, we use the lower bound of S-CROWN as the loss function. During

robust training, we set ϵ to 0 at the beginning. It will increase linearly to the final ϵ

during the first 250 training epochs. In the last 50 training epochs, ϵ is unchanged.

Adversarial Attack: In this work we adopt the untargeted white-box gradient-

based attack in SNN, which is introduced in Chapter 5. In our experiment, we select 300

examples for each dataset to apply adversarial attack. In order to bound the noise of

adversarial examples, we involve additional constraints during the attack. Specifically,

for digital inputs, we clip the adversarial example for each attack iteration to make the

adversarial example stay in the boundary. For spike inputs, each attack iteration we limit

the amount of changed elements to size(x̂) ∗ ϵ/2 and size(x̂) ∗ ϵ/6 for FC and CONV

networks to achieve the highest attack efficiency.
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Figure 6.4: Impact of robust training time steps T ′ on (a) original accuracy and (b)
S-CROWN loss. (CONV model; MNIST dataset; ϵ = 0.12)

6.3.2 Robust Training in SNNs

Selection of Robust Training Time Steps T ′

We do not follow the original time steps during the robust training. Because the

spatial computations in SNNs share the same parameters between different time steps,

we can use arbitrary robust training time steps T ′. In Figure 6.4 we analyzed the impact

of T ′ on original accuracy and S-CROWN loss. Note that we would like to keep a

higher original accuracy but reduce the S-CROWN loss after the robust training. From

the result, we can find that T ′ = 3 gives the optimal solution. It implies that a too

smaller T ′ cannot capture the temporal dynamics of SNNs and a larger T ′ may cause

the boundary functions in S-CROWN to become too loose. Also we find that the robust

training time for each epoch is 2.6×, 7.7×, and 12.9× with respect to the original plain

training when we set T ′ to 1, 3, and 5. Thus, the selection of T ′ also influences the robust

training efficiency. In the rest of our evaluations, we set T ′ = 3 for all robust training.

Robust Training on Variaous Datasets

: The analysis of robust training on different datasets with various ϵ and network

structures is shown in Figure 6.5. From the result, we have the following observations:
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1. During the robust training, it is more stable for a fully connected network(yellow

curves are smoother than blue curves) because of the simpler network structure. 2. With

a larger ϵ, the original accuracy is dropped more after the robust training. Also, it is

more difficult to achieve a smaller robust error with larger ϵ. 3. In the MNIST dataset,

when the network structure is CONV, the robust training is more stable as ϵ becomes

larger. The potential reason is that when ϵ is small, the flipped regions in spike inputs

are more diverse. 4. In FMNIST and NMNIST datasets, when the network structure is

CONV, the robust training is much more fluctuating. For FMNIST dataset, the unstable

may be caused by the more complicated input data (cloths) and the lower convergence

in original training (final accuracy is 89.53%). For NMNIST dataset, the unstable may

come from the larger input data size. A larger input size indicates the potential input

regions that can be attacked becomes more. By considering the original accuracy and

S-CROWN result after the robust training, we select the ϵ as shown in Table 6.3.2. We

use FC-ϵ and CONV-ϵ to represent the noise boundary we selected for different network

structures during robust training.

Network Robustness Evaluation

We use untargeted white-box adversarial attack to compare the robustness between

the original model and the model after robust training. The robustness comparison is

shown in Table 6.3.2. We use the original error rate to reflect the accuracy of a model

on the 300 test data. The original error may have variance during the evaluation for the

digital image dataset because of the input sampling mechanism. In our experiment, we

select the attack ϵ to achieve approximately 20%, 30%, 40%, and 50% attack error rate

on the original model. From the result, we can find that after the robust training, the

models are harder to be attacked with adversarial example in all cases. We also find that

the model after robust training is more secure when the attack ϵ is larger, even though
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the ϵ for robust training is far smaller. The potential reason is that the binary behavior

of the spike events causes the boundary propagation to diverge quickly, which makes

the final boundary cover more noisy inputs. Finally, we find that model robustness can

be improved more when the network structure is CONV, since more paramters can be

adjusted under the CONV model. From the result, we find that the CONV model in

MNIST achieves the highest robustness improvement, i.e. the attack error rate reduces

37.7% with 3.7% original accuracy loss when the attack ϵ equals 0.190.

6.4 Conclusion

For ANNs, training a neural network with certified methods not only shows remark-

able efficiency to improve the model’s robustness but also presents flexibility to cooperate

with other robust training methods. In this Chapter, we aim to design an efficient robust

training method for SNNs based on the certified methods. Specifically, we design S-IBP

and S-CROWN to tackle the distinct non-linear neuron behaviors in SNNs. Also, we for-

mulate the input boundary for different input types. We evaluate the models’ robustness

to untargeted white-box adversarial attack. Based on our results, we can achieve at most

37.7% attack error reduction with 3.7% original accuracy loss, which demonstrates the

efficiency of our proposed method.
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Chapter 7

Summary & Future Work

7.1 Summary

Recently, extensive studies on spiking neural networks (SNNs) are motivated by bio-

plausible neuron modeling, based on the observations that neurons use spike signals to

represent information and communicate with each other. How to train an SNN model

with expected functionality is an essential topic. In the early stage, the bio-inspired

unsupervised learning methods are designed to train an SNN model, such as STDP.

However, these training methods always suffer low accuracy issues. In order to improve

the accuracy of SNNs, the BPTT-based learning method is designed that makes SNNs

can achieve considerable accuracy for general tasks.

However, the BPTT-based learning method is not optimized by the mainstream plat-

form for neural network training such as GPUs. In this dissertation, we first propose an

accelerator H2Learn to optimize different training stages in BPTT-based training accord-

ing to their characteristics. Specifically, we design LUT-based architecture to utilize the

binary format of the spike during the Forward Pass and Weight Update phases. In the

Backward Pass, we design sparse-aware architecture to efficiently reduce the computation
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overhead for sparse input and output.

In the meantime, we also want to investigate whether the BPTT-based SNN train-

ing efficiency can be improved on GPUs. Based on our observations, we find that the

temporal update and batch-normalization occupy non-trivial memory and computation

resources. According to the observations, we redesign the dataflow during the training.

Specifically, we only store the result after convolution and matrix multiplication in the

forward pass to save the memory consumption. The abandoned intermediate data will

be recomputed in the weight update and backward pass phases. In order to accelerate

the computation, we design kernels to fuse temporal update and batch normalization.

With the optimized kernels, the kernel launching time is reduced significantly.

Besides improving the BPTT-based training efficiency, this dissertation also explores

the security issue for SNNs. In the beginning, we investigate the adversarial attack on

SNNs. We design a framework to generate adversarial examples for both spike and digital

inputs. Our framework also includes techniques to reduce the noise in the adversarial

examples and handle the gradient vanishing problem during the adversarial example

generation. Based on our evaluation, we find that the gradient-based attack may fall

into a ‘trap’ region because of the rate coding on the output neurons. We further adjust

the firing threshold to make the adversarial attack in SNNs more effective.

At last, we propose a robust training method for SNNs against adversarial examples.

Certified defense is one of the most efficient methods to train a robust neural network

model. However, existing methods cannot be directly applied to the SNNs. Firstly, the

spike inputs or Bernoulli-based sampling on digital inputs require new input boundary

formulations. Secondly, the temporal update behavior is different from the existing non-

linear functions in ANNs. Thus, we formalize ℓ0-norm and ℓ∞-norm boundaries for spike

and digital inputs, respectively. Also, we design S-IBP and S-CROWN to tackle the

non-linear fire function and temporal update in SNNs which firstly introduce SNNs to
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Summary & Future Work Chapter 7

the linear relaxation-based verification family.

In conclusion, this dissertation focuses on providing an efficient and robust neuromor-

phic system. We hope this dissertation would help to enhance the architecture design for

the neuromorphic chips, and inspire the algorithm development for the security-aware

applications when adopting the neuromorphic system.

7.2 Future Work

Recently, SNNs achieve considerable accuracy improvement in general tasks. How-

ever, many research fields of SNNs are still not deeply explored. Here we list several

potential directions for future work on SNNs.

Application & Network Model: Currently, for most applications, the accuracy

of SNNs is still hard to surpass the accuracy of ANNs such as Transformers. Thus, it

is urgent to find a more suitable task for SNNs especially after considering the energy

consumption during the inference. In general, SNNs have the potential to handle appli-

cations with continuous temporal activities. Instead of focusing on the application, it is

also interesting to explore how to apply the characteristics of SNNs to other NN models

such as Graph Neural Networks (GNNs) and Transfromers.

Neuromorphic Chips: Since SNNs show distinguishable characteristics compared

to ANNs, it is promising to design neuromorphic chips to make the SNN inference and

training more efficient. Furthermore, building an integrated neuromorphic chip is another

interesting direction. Specifically, SNNs have different coding mechanisms (i.e., rate

coding, temporal coding, phase coding, etc), neuron modeling (LIF model, IF model,

etc), and learning methods (BPTT, STDP, ANN-SNN conversion, etc). It is meaningful

to build a neuromorphic chip that can support multiple SNN features and reuse most of

the hardware resources.
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Secure Neuromorphic System: A secure neuromorphic system includes many

aspects. Firstly, we need to improve the robustness of an SNN against adversarial attacks.

Here, we suggest analyzing the SNN robustness with different SNN features like coding

mechanisms, neuron modeling, and learning methods, even for the different input formats.

Instead of considering the adversarial attack, how to protect an SNN model to be stoled

by an attacker is important, since the SNN model is the intellectual property of the model

provider. Also, the spike inputs from the client-side should be protected at the same time,

since the inputs may expose the client’s privacy, especially for biological applications.
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