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Abstract

This paper presents a new application of a particular machine
learning technique for improving wind forecasting. The technique,
known as kernel regression, is somewhat similar to fuzzy logic in
that both make predictions based on the similarity of the current
state to historical training states. Unlike fuzzy logic systems, kernel
regression relaxes the requirement for explicit event classifications
and instead leverages the training set to form an implicit multi-
dimensional joint density and compute a conditional expectation
given any available data.

The need for faster, highly accurate, and cost-effective predic-
tive techniques for wind power forecasting is becoming imperative
as wind energy becomes a larger contributor to the energy mix
in places throughout the world. Several approaches that depend
on large computing resources are already in use today; however,
high performance computing can help us not only solve existing
computational problems faster or with larger inputs, but also create
and implement new real-time forecasting mechanisms.

In wind power forecasting, like in many other scientific
domains, it is often important to be able to tune the trade-
off between accuracy and computational efficiency. The work
presented here represents the first steps toward building a portable,
parallel, auto-tunable forecasting program where the user can select
a desired level of accuracy, and the program will respond with
the fastest machine-specific parallel algorithm that achieves the
accuracy target.

Even though tremendous progress has been made in wind
forecasting in the recent years, there remains significant work
to refine and automate the synthesis of meteorological data
for use by wind farm and grid operators, for both planning
and operational purposes. This presentation will demonstrate
the effectiveness of computationally tunable machine learning
techniques for improving wind power prediction, with the goal of
finding better ways to deliver accurate forecasts and estimates in a
timely fashion.

1. Introduction

High performance computing is about more than just solving
existing computational problems faster or with larger inputs. It
is about changing the way we approach problems so that we
may create new real-time mechanisms for us to use. The need
for predictive techniques for wind power forecasting is becoming
apparent as wind energy becomes a larger contributor to the energy
mix in places throughout the world. There remains significant work
to refine and automate the synthesis of meteorological data for use
by wind farm and grid operators, for both planning and operational
purposes.

In this project, we explore the application of computationally
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intensive machine learning techniques to the area of near-term
wind speed and power estimation and prediction. We leverage our
research group’s high performance computing resources to deliver
faster estimates than we are able to achieve using a serial prediction
program. Our goal is to improve our methods to find better ways to
deliver accurate forecasts and estimates in a timely fashion.

The need for predictive techniques for wind power forecasting
is becoming apparent as wind energy becomes a larger contributor
to the energy mix in places like Denmark, Spain, and Texas (see
[1]). Recently, a rapid drop in wind output from wind farms in
West Texas nearly caused a statewide blackout. While numerous
companies are springing up to fill this forecasting gap, there
remains significant work to refine and automate the synthesis of
meteorological data for use by wind farm and grid operators, for
both planning and operational purposes.

High speed computing techniques will be particularly beneficial
as we look to short-term and real-time prediction of wind output.
Forecasting wind several days ahead allows grid operators to better
schedule non-wind generation assets, and reduce overall costs.
Near real time, hours-to-minute, predictions of changes in wind
across areas of the regional power grid informs grid operators
about real-time power reserves, reducing uncertainty, increasing
reliability, and avoiding the potential need for backup generation.

In this paper, we present an hour-ahead forecast analysis for
a site on the MIT campus. Using very basic kernel regression
techniques, we attained a 40 percent improvement over persistence
and a 12.5 percent improvement over linear regression (using mean
squared error versus actual wind speed as a metric). Further, we
demonstrate the tunable nature of the kernel regression algorithm,
where the user may trade off accuracy of the result for a faster
computation time. For example, by allowing the mean squared error
of our estimate to increase by 46 percent, one can increase the speed
of computation a factor of 2.2x. Depending on the application, the
ability to make trade-offs such as these could be critical to the user.

1.1 Outline

Section 2 describes the Nadaraya-Watson kernel regression tech-
nique used. Section 3 describes the utilization of high performance
computing resources in our estimation framework. Section 4
describes other relevant implementation details. Section 5 describes
our experimental setup and results. Section 6 covers related work.
Finally, Sections 7 and 8 describe future work and conclusions.

2. Nadaraya-Watson kernel regression
2.1 Motivation

Kernel density estimation constructs a non-parametric model that
does not assume any particular structure for the target distribution
(linear, quadratic, etc). It uses a historical data set to construct
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Figure 1. Illustration of a 1-D kernel density estimation. A
probability mass in the shape of the selected kernel function (in
this case, a Gaussian function) is placed at the coordinate of each
data point in the training set. The normalized sum of the probability
masses gives an estimate of the underlying probability distribution
function. See Section 2 for further details.

a conditional probability density function to make estimates. The
density estimate is similar to a histogram. On each data point, we
put a probability mass and then sum all the point masses to get the
joint density estimate. Figure 1 illustrates this process graphically.

Kernel density estimation is our algorithm of choice because
it has lots of “knobs” to adjust the power of the algorithm. In
one situation, we could turn the knobs to utilize a server farm’s
worth of computation for multiple hours to yield highly accurate
results. In another scenario, we may need to make an estimate in
a more timely fashion, so we can adjust the algorithm to sacrifice
some accuracy in favor of expediency. As computational hardware
becomes more complex, there will no longer be a one-size-fits-all
solution. We will need tunable algorithms such as this to make the
best use of the hardware at hand.

2.2 Technical details

Let the rarget variable Y be the random variable we wish to
estimate (typically the wind speed at target location), and let
the observed variables X1, Xo, ..., X} (predictor variables) be
the known data that are inputs into the estimation computation
(typically observed quantities such as wind speed at a relatively
earlier time and prediction model outputs).

As an example, we may set Y to be the wind speed at the
target location at some point in time ¢ and set (X1, X2) equal to
the wind direction and speed at the target location at time ¢ — 1,
(X3,X4) equal to the wind direction and speed at a neighboring
site at time ¢ — 1, and X5 equal to the predicted wind speed at
some neighboring grid point at time ¢. Then the random variables
Y, X1, X2, X3, X4, X5 have a joint density based on what values
those variables might take at some random time ¢.

Given N historical training data points {z;,;, y; }i=1...k,j=1...N,
the kernel density estimate is

N k
1
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where K is our kernel density function [2, pg.182]. In practice,
each kernel function can have a different width as appropriate to
the data (these are parameters that must be tuned). Our kernel

regression estimate of Y given X1 = z1, X2 = x2,..., Xk = zi
is then:
f(z,y)
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where X = (X1, Xo,...,Xg) and x = (v1, 22, ...,zk). Thus
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We used a Gaussian kernel because it is easy to compute and
exhibits good spatial locality (nearby points are weighed much
more heavily than far away points) while still allowing far away
points to influence our estimate when no nearby points are
available.
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Figure 2. Various algorithms to solve a problem can be plotted
according to their accuracy and their performance. Those that lie on
the lower right boundary of the figure form a set of Pareto-optimal
algorithms. We may then choose an algorithm from this optimal set
depending on the accuracy and speed requirements of the user.

In the limiting case where our kernel density estimate converges
to the true joint density, this estimator for Y is optimal in the
sense that we minimize the expected squared error (conditioned on
the state of the predictor variables). Of course, our estimated joint
density is not the true density, so there will be some estimation error
whose magnitude decreases as the size of our training set increases.

There are several nice things about the form of this expression.
Note that we can use any sort of variable for the predictors.
Wind speed, wind direction, temperature, time of day, day of year
can all be predictor variables. These variables can come from
multiple sites, including the site where the estimate is being made,
neighboring measurement sites, and grid points from a numerical
weather forecast (such as the NAM 12km model). It is because
of this flexibility that we can use this approach for different
application types; not only for wind and power forecasting, but also
for measure-correlate-predict analyses for site selection.

Further, during parallelization the algorithm can be broken
down into relatively independent pieces to minimize the commu-
nications burden on a distributed memory machine.

3. High performance computational approach

The recent trend in computing has been towards increasingly
parallel machines. This is not just in the space of high performance
computing (i.e. supercomputing), but also for everyday machines
such as desktops, notebooks, and even embedded devices! Because
power consumption increases with the cube of the clock frequency,
chip designers are now favoring massive parallelism over faster
single core performance. As the number of cores increases,
everything around them becomes more complex, especially the
memory subsystem. The hardware problem has thus become
a software problem. Designing portable, maintainable software
that can harness the power of parallel computers is of utmost
importance.

Figure 2 illustrates a potential set of algorithms plotted by their
accuracy and computation time. The algorithms that lie along the
lower-right border (denoted by blue squares), represent a Pareto-
efficient frontier of algorithms. Each algorithm on the frontier
represents the best accuracy one can achieve for a given amount
of compute time (among the algorithms plotted).

By trading one algorithm on the frontier for another, the user
can trade computation time for accuracy. For example, if we need



an answer quickly and are willing to sacrifice some accuracy, we
would pick an algorithm on the left side of the frontier. If we want
a very high accuracy and are flexible in the amount of time to get
a result, then we can pick an algorithm on the right side of the
frontier.

For the experiments presented in this paper, we utilized two
high performance computing resources. The first was Interactive
Supercomputing’s Star-P®(now part of Microsoft) running on
an SGI Altix 350, a 12 processor shared-memory small-scale
supercomputer. The shared memory NUMA (non-uniform memory
access) architecture utilized in the Altix 350 is in many ways
a predecessor to today’s multi-core, multi-socket architectures
such as that used in the Intel Nehalem and AMD Opteron
Microprocessors.

The second resource we used was the MATLAB®Parallel
Computing Toolbox running on a cluster of dual-processor nodes
each equipped with two single-core 2.2 GHz Intel Xeons. Both
parallel computing resources were invaluable to the parameter
identification process, providing faster regression and search for
the optimal kernel widths and predictor variable weights.

In order to better manage and automate the search for the family
of Pareto-efficient algorithms, in the future we plan to leverage a
new programming language and compiler, called PetaBricks [3][4],
to search the space of forecast estimation algorithms for the one that
will work best given our accuracy requirements and hardware and
time constraints.

4. Implementation Details

This section describes some of the details of the implementation,
including some of the difficulties encountered and how we
addressed them.

4.1 Geometry of density estimate

In the case of wind speed, the range of values is simply the positive
real line. For wind direction, the range is circular between [0,
360). To deal with the circular nature of wind direction, we wrap
the kernel function around the circle so that relative differences
between directions are simply taken to be between —180 and 180.

A renormalization is normally needed to make the kernel
function a proper probability density function; however, since
we are only interested in relative weighting of samples, this
normalization can be ignored. Conceptually, the joint density of
wind speed and direction is embedded in a multidimensional space
where speed dimensions are half lines and direction dimensions are
circular. Whether this or another geometry is the best approach is
open for exploration.

4.2 Utilization of historical data

Since the quality of a kernel regression relies on a large quantity
of historical data to estimate the joint density, we want to use as
many data points as possible. Unfortunately, many historical data
points may be incomplete. For example, suppose we are using wind
and direction data from a neighboring sites in a six hour window; if
any one of those data is missing then we cannot apply the standard
kernel regression formula.

The way we overcame this difficulty to leverage incomplete data
points was to make another estimate as to what effect the missing
value would have had in the kernel regression formula. We replaced
K(x; — x;,;) with E[K (z; — X;)] whenever x; ; was unavailable.
This simple heuristic does not take advantage of any of the other
data available around the missing point; however, computing an
estimate based on nearby data is somewhat circular since this is
what we are doing in the first place.

5. Experiments and results

The following subsections describe the experimental setup, our
statistical results, the computational performance aspects, and a

Figure 3. Satellite image of eastern Cambridge, Boston, and
surrounding areas. The location of MIT’s Green Building is given
by the red marker A. The NAM grid point used for reference during
regression is given by the orange marker to the south-west, across
the Charles River. Logan Airport can be seen on the right side of
the map.

scalability analysis showing algorithm performance as we increase
the number of processors working on the problem.

5.1 Experiment

To evaluate the effectiveness of our methodology, we analyzed a
test site on the MIT campus, an urban environment. For the farget
site for estimation, data was taken from sensors on the top of the
MIT Green Building (Building 44), a 70 meter tall building on the
east side of campus (42.360349 N, 71.089289 W). For the reference
site, we chose to use the North American Mesoscale (NAM) 12km
model output at the grid point closest to the target site (42.34874
N, 71.10034 W). See Figure 3 for a map of both locations relative
to downtown Boston and Logan airport.

In this study, we chose to evaluate our methodology using a
small number of predictor variables to keep things fast and simple.
We synthesized an hourly wind speed and direction data set by
interpolating available NAM model output at the reference site and
observed data collected at the target site. We then forecasted wind
speed one hour ahead at the target site using observed wind speed in
the preceding hours at the target site and modeled wind speed and
direction at the reference site (the NAM grid point) in both the past
and future. We applied this methodology to data over the entire year
of 2009 to make predictions and compared the performance of our
kernel density regression estimates against persistence and linear
regression.

Although we are presenting a simplified version of the
algorithm, the algorithm itself is scalable to use more predictor
variables (such as humidity, temperature, season, etc.) as well
as data from additional sites (such as nearby observation towers
or airports), increasing both the accuracy and the computational
complexity of the estimation process. We plan to investigate the
improvements in accuracy that result from this.

5.2 Statistical results

Figure 4 shows the average mean squared error of each of
the three evaluated techniques over the year 2009. Our kernel
density estimator performed better than both other techniques,
outperforming persistence by roughly 40 percent on average and
linear regression by 12.5 percent on average over the course of the
year.

Figure 5 shows the performance of the three prediction
techniques by month over the course of the year. Even though
the magnitude of the errors fluctuated significantly throughly the
year, the order of the three algorithms remained the same. We
speculate that the higher mean wind speeds during the winter
contributed to relatively larger prediction errors. Throughout the
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Figure 4. Comparison of the three evaluated estimation algo-
rithms. The vertical axis shows the mean squared error of the
estimate averaged over the entire 2009 hourly data set. The kernel
regression estimator performed 40 percent better than persistence
and 12.5 percent better than linear regression.
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Figure 5. Monthly performance of each of the three evaluated
estimation algorithms over the year 2009. Even though the
magnitude of the errors fluctuated significantly throughly the year,
the order of the three algorithms remained the same.

year, the kernel regression algorithm managed to outperform both
techniques, especially persistence.

5.3 Computational performance

Figure 6 shows how tuning the “knobs” of the algorithm can
allow us to trade off accuracy for faster computation time. The
vertical axis shows the combined computation time to evaluate the
kernel regression estimate for every hour of the year 2009, and
the horizontal axis shows the mean squared error of the resulting
estimates. The more predictor variables we used, the higher the
accuracy we were able to achieve, but at a higher computational
cost.

In Figure 6, the only knob we are turning is the number of hours
of data before the hour of prediction we use to make our estimate.
Since this is a fairly simplistic version of the kernel regression
algorithm, we seemed to hit a wall for reducing mean squared error.
After including the past couple of hours, there starts to be less and
less value for including more past data, so the accuracy does not
improve much as we increase the number of predictor variables.

Figure 6. Accuracy vs. performance trade-off in the kernel
regression algorithm. As we increase the number of predictor
variables used during estimation, both the accuracy level and
the computation time increase. Depending on the circumstances,
the user may wish to trade accuracy for speed (or vice versa),
and choose a different algorithm along the line of Pareto-optimal
choices.
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Figure 7. Speedup curve showing parallel performance compared
to the performance of a reference serial algorithm

We expect that using different classes of predictor variables,
such as temperature, humidity, and also data from other geograph-
ical sites or other model outputs would be more effective in giving
us better estimates. In that case, we would see a more continual
improvement in the accuracy of our algorithm as we increase the
amount of computation time available.

5.4 Scalability analysis

The kernel regression algorithm we explored parallelizes fairly
easily, essentially breaking down into a map operation followed by
a reduce operation. Once the algorithmic components were written
and tested serially in MATLAB, we were able to leverage STAR-
P’s task-based parallelism support in conjunction with optimized
MEX files, implemented in C for increased performance.

The resulting parallelized code is several times faster than
optimized seriall MATLAB / C code. A speedup curve of our
algorithm is shown in Figure 7, showing the performance of
our parallelized code compared to the use of a single processor.
Please note that the data shown here was collected from our
algorithm doing a measure-correlate-predict analysis rather than a



forecast analysis; however, since the same algorithm is used in both
situations, the parallel scalability should be very similar. Overall,
using all 12 processors on the machine, we were able to achieve a
8.9x speedup compared to serial performance.

6. Related work

Existing methods for localizing weather forecast outputs from large
weather simulation models (such as the Global Forecast System
and the Weather Research and Forecasting Model) to turbine
locations include Model Output Statistics (MOS) techniques. MOS
techniques typically rely on multiple linear regression to transform
predictions at grid output points from the numerical simulation
models to predictions at the desired target site [5]. Nonlinear
behavior is modeled by using nonlinear functions of source data
as predictors.

Other research has also attempted to address this shortcoming.
A fuzzy logic system was built and evaluated in [6] to predict
wind speeds in Greece. In their system, rules were explicitly
created, classifying wind speeds as low, medium, and high at
different locations, and devising separate prediction functions for
each classification. The need for the explicit determination of
nonlinear predictor functions in MOS and the fuzzy rule sets in
[6] effectively shifts the burden of predictive modeling from the
computer to the person writing the functions or rules. Since there is
no guarantee that the person will be correct, we tried an approach
that automatically infers nonlinear behavior from the training data
set.

As mentioned in Section 2, kernel regression is not limited
to forecasting applications, but may also find use in the arena of
site evaluation and wind resource assessment. In particular, it may
be useful for doing estimations in the style of measure-correlate-
predict (MCP) algorithms. In [7] the variance-ratio method was
identified as a high quality regression algorithm for doing MCP
analysis. In [8] this technique was used to fill in gaps in historical
wind speed data from NOAA buoys to analyze potential emissions
offsets and revenue for offshore sites in the Northeast United States.
In our preliminary studies, we found that the our kernel regression
algorithm was able to fill in missing historical data with a mean
squared error 25 percent better than the variance ratio method.

7. Future work

We have started to explore a modification of this algorithm using a
form of kernel regression which solves for regression coefficients
to minimize the least squares error over the training set plus a
regularization term, which helps with generalization (the behavior
of the system when applied to data not used in the training set).
This estimation algorithm is more complex, involving solving a
large symmetric linear system to solve for the exact objective
minimization.

We plan to explore ways of solving this linear system by
trading accuracy of the objective minimization for performance
using auto-tuning techniques, such as those provided by the
PetaBricks programming language [3] [4]. Because there are
parallel components of the algorithm that are relatively data-
independent and components that require a tighter data-sharing
connection between nodes, the tuning of the parallelization strategy
could be a fertile area for improvement.

Although our current methodology has shown measurable
improvements over certain existing methods, our goal is to
achieve results competitive to much more complex state-of-
the-art prediction methodologies currently in use in industry.
Such methodologies typically use higher-resolution physics and
dynamics-based numerical weather prediction (NWP) models in
combination with statistical methods like the ones we are currently
exploring.

The use of such high-resolution model output is critical to the
accuracy of the produced forecasts since they provide a targeted,
high resolution version of the weather forecast. For our next set

of experiments, we plan on utilizing a high-resolution model and
feeding the results into our statistical framework in a manner
similar to the NAM model output. We could then produce localized
wind speed and power forecasts for specific turbine locations and
analyze the benefits of upgrading the model’s resolution.

8. Conclusions

‘We have shown that the use of tunable kernel density estimation and
regression techniques can be applied effectively when leveraging
high performance parallel computing resources. Not only are the
results achieved better than those produced when using methods
such as persistence and linear regression, but also the algorithms
are tunable to allow the user to trade accuracy for computational
performance and vice versa to suit the user’s needs.

These types of techniques will become ever more important
as parallel computing becomes ubiquitous across all types of
computing platforms. As software developers struggle to update
their programming practices to utilize these types of resources,
techniques such as the automatic tuning of performance parameters
to achieve the user’s desired results will become extremely
valuable. In the future, we plan to implement these techniques with
the PetaBricks programming language, which will do automatic
algorithm selection and parameter tuning to achieve high per-
formance, portable, parallel, variable accuracy software for wind
prediction applications.
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