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ABSTRACT Pyrazinamide is an important component of both drug-susceptible and
drug-resistant tuberculosis treatment regimens. Although approximately 50% of rifam-
pin-resistant isolates are also resistant to pyrazinamide, pyrazinamide susceptibility test-
ing is not routinely performed due to the challenging nature of the assay. We investi-
gated the diagnostic accuracy of genotypic and phenotypic methods and explored the
occurrence of pyrazinamide heteroresistance. We assessed pyrazinamide susceptibility
among 358 individuals enrolled in the South African EXIT-RIF cohort using Sanger and
targeted deep sequencing (TDS) of the pncA gene, whole-genome sequencing (WGS),
and phenotypic drug susceptibility testing. We calculated the diagnostic accuracy of
the different methods and investigated the prevalence and clinical impact of pncA het-
eroresistance. True pyrazinamide susceptibility status was assigned to each isolate using
the Koser classification and expert rules. We observed 100% agreement across geno-
typic methods for detection of pncA fixed mutations; only TDS confidently identified
three isolates (0.8%) with minor variants. For the 355 (99.2%) isolates that could be
assigned true pyrazinamide status with confidence, phenotypic DST had a sensitivity of
96.5% (95% confidence interval [Cl], 93.8 to 99.3%) and specificity of 100% (95% Cl,
100 to 100%), both Sanger sequencing and WGS had a sensitivity of 97.1% (95% Cl,
94.6 to 99.6%) and specificity of 97.8% (95% Cl, 95.7 to 99.9%), and TDS had sensitivity
of 98.8% (95% Cl, 97.2 to 100%) and specificity of 97.8% (95% Cl, 95.7 to 99.9%). We
demonstrate high sensitivity and specificity for pyrazinamide susceptibility testing
among all assessed genotypic methods. The prevalence of pyrazinamide heteroresist-
ance in Mycobacterium tuberculosis isolates was lower than that identified for other
first-line drugs.

KEYWORDS pyrazinamide, resistance, pncA, sequencing, Mycobacterium tuberculosis

he World Health Organization (WHO) estimates that 465,000 new cases of rifam-

pin-resistant TB (RR-TB) occurred in 2019, of which the majority had concurrent iso-
niazid resistance (i.e.,, multidrug-resistant TB [MDR-TB]) (1). MDR-TB has a high mortality
rate and is responsible for about one-third of deaths related to antimicrobial resistance
globally (2). Rapid identification and initiation of effective treatment regimens is crucial
for improving the treatment outcome of patients with RR-TB.
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Pyrazinamide (PZA), a prodrug that is hydrolyzed to its active form, pyrazinoic acid
(POA), by the pncA-encoded pyrazinamidase, is a strong sterilizing component of the
current treatment regimens for both drug-susceptible and drug-resistant TB (1, 3-6).
PZA is likely to continue to play a crucial role in TB treatment as evidenced by its inclu-
sion in many regimens assessed in ongoing clinical trials (1; https://clinicaltrials.gov/
ct2/show/NCT04311502). While PZA monoresistance occurs in fewer than 3% of isonia-
zid (INH) and rifampin (RIF)-susceptible strains, high rates of PZA resistance have been
noted in MDR-TB (~50%) (7, 8). PZA-resistant TB may also promote amplification to
pre-extensively drug-resistant TB (XDR-TB) when PZA is included in second-line treat-
ment in the presence of undetected PZA resistance (9). Nevertheless, PZA drug suscep-
tibility testing (DST) is rarely performed prior to initiation of PZA-containing regimens
(7, 8, 10) due to the complexity of culture-based phenotypic PZA DST.

Since the 1990s, it has been known that mutations in the Mycobacterium tuberculo-
sis-specific pncA gene are the primary determinants of PZA resistance, as these pncA
variants often lead to decreased pyrazinamidase activity (11-15). Sequencing of pncA
has 87 to 95% sensitivity and 93% to 99% specificity for detection of PZA resistance
compared to phenotypic DST methods (7, 8). Imperfect sensitivity may be explained by
resistance caused by variants in other genes, such as panD (16, 17), rspA (18, 19), and
clpC1 (20-22), or by heteroresistance (23). Suboptimal specificity is due to the occur-
rence of synonymous mutations in pncA and errors in the technically challenging phe-
notypic DST methods (24, 25). Only recently was a commercially assay line probe assay
(Nipro Genoscholar PZA-TB [Osaka, Japan]) approved by the WHO to rapidly detect
PZA resistance (26-29).

In order to advance the development of rapid genotypic DST for PZA, we assessed
the performance of key genotypic methods in identifying resistance-associated variants
(RAVs) in the pncA gene and promoter region among RR-TB patients in South Africa.
Accordingly, the primary aims of the study were to compare the diagnostic accuracy of
single-molecule overlapping read (SMOR) targeted deep sequencing (TDS) (30), Sanger
sequencing, and whole-genome sequencing (WGS). In addition, we explored the preva-
lence of PZA heteroresistance in M. tuberculosis isolates and describe the PZA phenotype
of PZA-heteroresistant isolates and the impact of the presence of PZA heteroresistance
on treatment outcome.

MATERIALS AND METHODS

Clinical isolates. Sputum samples were collected through a prospective cohort (EXIT-RIF study) of
patients diagnosed with RR-TB by MTBDRplus (Hain Lifescience, Nehren, Germany) or Xpert MTB/RIF
(Cepheid Inc., Sunnyvale, CA, USA) between November 2012 and December 2013 in three South African
provinces (Free State, Eastern Cape, and Gauteng) (31).

Laboratory procedures. Sputum samples were cultured in MGIT media (BD Diagnostic Systems, NJ,
USA) following decontamination with N-acetyl-L-cysteine-sodium hydroxide (NALC-NaOH). Phenotypic
susceptibility to PZA was performed using the nonradiometric MGIT 960 method, which makes use of
modified test media to support the growth at a pH of 5.9. A critical concentration of 100 wg/ml PZA was
used to distinguish between resistant and susceptible isolates (32). MIC testing was used to determine
resistance at PZA concentrations of 25, 50, 70, 100, and 200 wg/ml.

DNA was extracted from cultured isolates using the phenol-chloroform extraction method followed
by ethanol precipitation (33).

Sanger sequencing and bioinformatic analysis. The entire pncA gene (561 bp), as well as 80 bp of
the upstream sequence, was Sanger sequenced according to the method of Streicher et al. (34). PCR
products were electrophoresed on an ABI 3730xI genetic analyzer (Applied Biosystems, Foster City, CA,
USA). Sequences were analyzed on the BioEdit sequence alignment editor with H37Rv as the reference
strain.

Whole-genome sequencing and bioinformatics analysis. DNA was prepared for WGS following
the method of Baym et al. (35) or using lllumina’s DNA prep kit as per the manufacturer’s instructions.
Pooled libraries were sequenced on an lllumina HiSeq 2500 system or an lllumina MiniSeq system as per
the manufacturer’s protocol. Reads were quality checked using FastQC and aligned to the reference ge-
nome H37Rv (GenBank accession no. NC_000962.3) using BWA-MEM (36). Genome coverage was
assessed, and a minimum of 40x median coverage was required for inclusion in the analysis. Joint vari-
ant calling was conducted by GATK4 using the MarkDuplicates, HaplotypeCaller, GenotypeGVCFs, and
Variant Quality Score Recalibration tools (37).

Targeted deep sequencing and bioinformatics analysis. M. tuberculosis DNA was amplified and
prepared for targeted sequencing and SMOR analysis as previously described (30). After the initial gene-
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TABLE 1 M. tuberculosis pncA-specific primers with universal tail sequences®

Journal of Clinical Microbiology

Primer (direction) Sequence Final concn in PCR reaction (uM)
pncAf-55 (forward) ACCCAACTGAATGGAGCCTGCCGCGTCGGTAGGCAAACTGC 400

pncAf102 (forward) ACCCAACTGAATGGAGCCTGGCCGAAGCGGCGGACTACCATC 75

pncAf223 (forward) ACCCAACTGAATGGAGCGTACTCCCGGCGCGGACTTCCATCC 300

pncAf361 (forward) ACCCAACTGAATGGAGCGGCAACGCGGCGTCGATGAGGTC 200

pncAr238 (reverse) ACGCACTTGACTTGTCTTCCAGTCGCCAGGAGGGCCGCGCC 400

pncAr344 (reverse) ACGCACTTGACTTGTCTTCCTTCCTCAGCTGCTCTTGCCGTGCGG 75

pncAr462 (reverse) ACGCACTTGACTTGTCTTCCCATGCGTTACCGAACCGGTGGTCC 300

pnAr+44 (reverse) ACGCACTTGACTTGTCTTCGACAACCGCCGCCACCTCGCG 200

aPrimer sequences are shown for the tiled amplification of the entire pncA gene, including the promoter region. Previously published universal tail sequences are

highlighted in bold (30).

specific PCR, a single 1.0x AMPure XP bead (Beckman Coulter, Brea, CA, USA) cleanup was performed to
remove primer-dimer and remnant PCR artifacts. The pncA-specific multiplex reaction contains eight pri-
mers that span the gene and promoter region (Table 1), resulting in four overlapping amplicons of simi-
lar concentrations. The target for sequence coverage was 40,000 raw reads per amplicon. Numerous “no
template” negative-control reactions were included to ensure absence of well-to-well sample contami-
nation. DNA from a pan-susceptible M. tuberculosis strain (H37Ra; ATCC 25177) was used as a positive
control for all sequencing runs.

The previously published TB Amplicon Sequencing Analysis Pipeline (ASAP) (38) was used in con-
junction with SMOR analysis to automate the process of sequence alignment and quantify alleles of in-
terest for each overlapping read pair, as previously described (30). The ASAP json file was updated to
screen for any variant in the pncA gene against the standard H37Rv reference genome (38). Because the
SMOR analysis module within ASAP excludes paired reads from the same molecule whose sequences
disagree, this method results in a higher level of confidence to call low-level (<1%) variant subpopula-
tions than single-read analysis. In the analysis, the minor variant calling threshold was set to 1% to
ensure a very high confidence in heteroresistance calls.

Data analysis. We first investigated and resolved any discrepancies among genotypic methods and
between genotypic and phenotypic PZA methods. Genotypic-phenotypic discrepant results were
defined as isolates that were phenotypically susceptible in the presence of pncA gene variants or isolates
that were phenotypically resistant but maintained a wild-type pncA gene sequence. In the latter case,
we conducted PZA MIC to confirm the PZA-resistant phenotype and used WGS to investigate the occur-
rence of variants in the panD, rpsA, clpC1, Rv1258¢c, PPE35, and Rv3236¢ genes, which have been listed by
WHO as PZA resistance candidate genes (39). When a pncA variant-containing isolate was phenotypically
PZA susceptible, we conducted PZA MIC testing to confirm the susceptible phenotype. In addition, we
consulted the Koser classification of the variant (40), which incorporates phenotypic DST, MIC, genotypic
DST, homoplasy, and interpretative approaches to assign pncA variants to one of five levels of confi-
dence for association with resistance as follows: group A, associated with resistance; B, likely associated
with resistance; C, inconclusive evidence; D, likely neutral; and E, neutral. We classified isolates contain-
ing group A or B pncA variants as PZA resistant and isolates containing group D or E pncA variants as
PZA susceptible, and we excluded those classified as group C from the analysis (40). For pncA variants
not included in the Koser classification, we applied the expert rules used in the Koser study (40). A true
PZA status (resistant/susceptible) was then assigned to each isolate and used as the reference to deter-
mine the diagnostic accuracy (sensitivity, specificity, positive predictive value [PPV], and negative predic-
tive value [NPV]) of the SMOR TDS, Sanger sequencing, WGS, and phenotypic DST.

To determine the prevalence of minor pncA variants, variant calling thresholds were set at 1% for
TDS (30) and 10% for WGS, as WGS cannot confidently distinguish minor variants from sequencing error
at lower thresholds (41, 42). The association between genomic PZA heteroresistance and phenotypic
PZA resistance was assessed. TB treatment outcome data were reviewed for patients whose isolate con-
tained minor (<10%) pncA variants to investigate the clinical relevance of PZA heteroresistance.

All statistical analyses were performed with R Studio (https://www.R-project.org; Foundation for
Statistical Computing, Vienna, Austria).

Power estimation. Based on an expected 50% prevalence of PZA resistance in RR-TB patients and
an expected point estimate for sensitivity of 90% for detection of PZA resistance, the sample of 358 cul-
ture isolates would achieve a small (4%) margin of error for the sensitivity of PZA detection by genotypic
methods (43).

Ethics. All patients gave written informed consent for participation in the EXIT-RIF cohort study and
DST and genotypic analysis of their culture isolates. The study was approved by the institutional review
board of the University of North Carolina, Chapel Hill, United States, the Human Ethics Research
Committee of the University of the Witwatersrand, Johannesburg, South Africa, and the Stellenbosch
University Health Research Ethics Committee (reference no. $12/01.020).

RESULTS

Cohort description. Among the 749 participants from the EXIT-RIF study, 389
(52%) had a history of TB treatment, and 581 (77.6%) were HIV positive. M. tuberculosis
culture isolates were available for phenotypic PZA DST, WGS, Sanger sequencing of the
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FIG 1 Distribution of pncA variants across the entire pncA gene, with resistant-associated variants shown on top and susceptible-
associated variants on the bottom.

pncA gene and its promoter region, and TDS of the pncA gene for 358 (47.8%) partici-
pants, of which 243 (68%) were MDR-TB. Phenotypic MGIT 960 DST classified 169
(47.2%) of the 358 isolates as resistant to PZA at a critical concentration of 100 ng/ml.
Genotypic results. Sanger sequencing and WGS both classified 178 (49.7%) isolates
as wild type for the pncA gene and detected the following same variants in 180
(50.3%) isolates: a single nucleotide polymorphism (SNP) (n = 89), a frameshift variant
(insertion or deletion [indel]) (n = 80), a double pncA variant (n = 9), and a pncA pro-
moter variant (n = 2). In total, 48 distinct pncA variants (40 SNPs and 8 indels) were
observed (Fig. 1). By WGS, all identified variants were fixed (>90% of the M. tuberculo-
sis population) without evidence of heteroresistance.
TDS (average 34,392 reads/amplicon) classified 175 (48.9%) of the isolates as wild
type for the pncA gene while identifying the same fixed variants reported by WGS and
Sanger sequencing in 180 isolates. In addition, three isolates (0.8%; 95% confidence
interval [Cl], 0.3 to 2.4%) contained a minor pncA variant. These isolates included a
Q10P mutation, an A134V mutation, and a W68G mutation present at 2%, 3%, and 7%,
respectively, of the total M. tuberculosis population. These minor variants were not

detected by Sanger sequencing or WGS.

Investigation of discrepancies between tests and assignment of PZA status.
Genotype-phenotype discrepancies were observed in 14 of the 358 isolates (3.9%).
Four isolates were phenotypically resistant without demonstrated pncA RAVs, and
seven isolates were phenotypically susceptible but contained a fixed pncA variant
(Table 2). The three heteroresistant isolates were phenotypically susceptible.

For the four phenotypically resistant isolates without demonstrated pncA RAV, all
were wild type for panD, rpsA, Rv1258¢c, PPE35, and Rv3236¢; one isolate demonstrated
a previously undescribed cIpCT synonymous variant (N806N). MIC results confirmed re-
sistance phenotype in two isolates (MIC 100 to 200 wg/ml); the other two could not be
tested due to contamination. A PZA-resistant status was assigned to the two confirmed
resistant isolates, and the two contaminated isolates were excluded from the accuracy

analysis.
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TABLE 2 Summary of results of different methods to detect variants in the pncA gene

Journal of Clinical Microbiology

No. of TDS result True PZA
samples pncA Sanger result pncA WGS result (% of reads) PZA DST result status Comment
171 Wild type Wild type Wild type Susceptible Susceptible
1 Wild type Wild type 29 A—C(2.03) Susceptible Resistant ~ Minor variant
1 Wild type Wild type 202 T—G (6.7) Susceptible Resistant ~ Minor variant
1 Wild type Wild type 401 C—T(3.06) Susceptible Resistant ~ Minor variant
2 Wild type Wild type Wild type Resistant (>100, =200) Resistant  Discordant
genotype/
phenotype
2 Wild type Wild type Wild type Resistant Resistant  Discordant
genotype/
phenotype
1 —11A—-G -11A—G =11 A—G(99.98) Resistant Resistant
1 —-7T—C —-7T—C —7 T—C(99.95) Resistant Resistant
1 29 A—C 29 A—C 29 A—C (99.97) Resistant Resistant
5 Frameshift 33C—CG Frameshift 33C—CG Frameshift 33 C—CG Resistant Resistant
(=98.4)
10 40 T—C 40 T—C 40 T—C(=99.93) Resistant Resistant
1 92 T—A 92 T—A 92 T—A (99.88) Resistant Resistant
2 92 T—G 92 T—G 92 T—G (=99.92) Resistant Resistant
1 100 T—G 100 T—G 100 T—G (99.96) Resistant Resistant
3 104 T—G 104 T—G 104 T—G (=98.89) Susceptible (>25, <75) Susceptible Neutral
mutation (40)
2 152 A—C 152 A—C 152 A—C(=99.7) Resistant Resistant
1 173T—C 173T—C 173 T—C (99.96) Resistant Resistant
4 175 T—C 175 T—C 175 T—C (=99.85) Resistant Resistant
1 185 C—T 185 C—T 185 C—T (99.98) Resistant Resistant
8 195 C—T 195 C—T 195 C—T(=98.16) Susceptible Susceptible Silent mutation
1 196 T—C 196 T—C 196 T—C (99.94) Resistant Excluded
1 202 T—C 202 T—C 202 T—C (99.95) Resistant Resistant
2 202 T—G 202 T—G 202 T—G (=99.84) Resistant Resistant
4 211 C—T 211 C—=T 211 C—T(=99.94) Resistant Resistant
1 214 T—G 214 T—G 214 T—G (99.96) Susceptible (=75) Resistant Not classified
(40)
3 289 G—T 289 G—T 289 G—T(=99.97) Resistant Resistant
9 290 G—A 290 G—A 290 G—A (=99.94) Resistant Resistant
1 293 C—T + 523 A—G 293 C—T+ 523 A—-G 293 C—T(99.95) + 523 Resistant Resistant
A—G (99.97)
1 298 A—C 298 A—C 298 A—C (99.96) Resistant Resistant
4 298 A—C + 561 A—G 298 A—C + 561 A—G 298 A—C(=99.79) + 561 Resistant Resistant
A—G (=99.84)
299 C—T + 478 A—G 299 C—T+ 478 A—=G 299 C—T(=99.94) + 478  Resistant Resistant
A—G (=99.62)
1 305C—T 305C—T 305 C—T(99.97) Resistant Resistant
2 305 C—T 305C—T 305 C—T (=99.94) Susceptible (>25 < 75) Resistant Resistant (40)
2 307 T—C 307 T—C 307 T—C(=99.93) Resistant Resistant
2 309 C—G 309 C—G 309 C—G (=99.78) Resistant Resistant
1 310 A—C 310 A—C 310 A—C(99.94) Resistant Resistant
1 322 G—C 322 G—C 322 G—C(99.9) Resistant Resistant
1 341 C—T 341 C—T 341 C—T (99.98) Susceptible (<25) Susceptible Likely neutral
mutation (40)
1 359 T—C 359 T—C 359 T—C(99.9) Resistant Resistant
2 Frameshift 389 T—_ Frameshift 389 T—_ Frameshift 389 T—_ Resistant Resistant
(=94.87)
1 Frameshift 389 T—TG Frameshift 389 T—=TG  Frameshift 389 T—TG Resistant Resistant
(93.26)
1 Frameshift 390 G—GGT  Frameshift 390 G—GGT Frameshift 390 G—GGT Resistant Resistant
(95.75)
1 394 G—A 394 G—A 394 G—A (99.82) Resistant Resistant
1 395 G—C 395 G—C 395 G—C (99.94) Resistant Resistant
1 401 C—A 401 C—A 401 C—A (=99.96) Resistant Resistant
2 401 C—T 401 C—T 401 C—T (=99.91) Resistant Resistant
6 403 A—C 403 A—C 403 A—C(=99.71) Resistant Resistant
(Continued on next page)
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TABLE 2 (Continued)

Journal of Clinical Microbiology

No. of TDS result True PZA
samples pncA Sanger result pncA WGS result (% of reads) PZA DST result status Comment
1 416 T—C 416 T—-C 416 T—C(99.92) Resistant Resistant
3 416 T—G 416 T—G 416 T—G (=99.94) Resistant Resistant
3 Frameshift 454 G—GC Frameshift 454 G—GC  Frameshift 454 G—GC Resistant Resistant
(95.13)
1 Frameshift 458 (8 bp del) Frameshift 458 (8 bp Frameshift 458 (8 bp del) Resistant Resistant
del) (=99.93)
6 460 A—G 460 A—G 460 A—G (99.92) Resistant Resistant
3 Frameshift 478 Frameshift 478 Frameshift 478 Resistant Resistant
A—ACAGCGGGTGTG A—ACAGCGGGTGTG A—ACAGCGGGTGTG
(=97.47)
64 Frameshift 515 T—TG Frameshift 515 T—TG Frameshift 515 T—TG Resistant Resistant
(=92.15)
1 545 T—C 545 T—C 545 T—C (99.96) Resistant Resistant

For the seven phenotypically susceptible isolates with fixed pncA variants, our MIC
results confirmed the susceptible phenotype in all seven isolates (MIC below the criti-
cal concentration of 100 ng/ml). Four different SNPs in the pncA gene occurred in the
seven susceptible isolates L35R (n = 3), C72G (n = 1), A102V (n = 2), and T114M (n = 1).
The L35R and T114M variants are considered PZA susceptible per the Késer classifica-
tion (groups E and D, respectively) (40). Consequently, a PZA-susceptible status was
assigned to the four isolates containing the L35R or T114M variant. Because the A102V
variant is classified as PZA resistant by the K&ser classification (group B) (40), the two
isolates containing an A102V variant were assigned a PZA-resistant status for the accu-
racy analysis. The C72G variant is not included in the Koser classification list but is
deemed PZA resistant according to the expert rule (40).

The three isolates containing minor variants (Q10P, A134V, and W68G) were all phe-
notypically susceptible, consistent with the phenotypic PZA DST limit of detection of
10% (32). Because these variants are associated with PZA resistance by Koser classifica-
tion (class A and B) (40), we classified these isolates as resistant (40). The treatment out-
comes of three patients with heteroresistant M. tuberculosis isolates were as follows:
the patient with RIF-monoresistant M. tuberculosis with an A134V mutation defaulted
treatment, and the two patients with isolates demonstrating Q10P and W68G muta-
tions successfully completed PZA-containing second-line treatment (as defined by cul-
ture conversion). The patient with MDR-TB with a Q10P mutation (2%) received PZA
for 24 months; the patient with drug-susceptible M. tuberculosis demonstrating a
W68G mutation (7%) received PZA for 13 months. Unfortunately, there were no serial
isolates obtained for these patients.

Overall, we could assign a true PZA status to 355 of 358 (99.2%) isolates as follows:
183 of the 358 isolates were classified PZA susceptible (171 isolates wild type, 8 isolates
with a silent mutation, and 4 isolates with a pncA variant that does not confer resist-
ance). One hundred seventy-two of 358 (48.0%) isolates were classified as PZA resistant
(170 isolates with demonstrated RAVs [including the three isolates with resistance-
associated minor variants detected by TDS] and 2 isolates phenotypically resistant but
genotypically wild type). Three isolates were excluded: one isolate could not be classi-
fied with confidence due to the presence of a variant of unknown phenotype (K&ser
group C) (40), and two isolates were phenotypically PZA resistant without a pncA vari-
ant but unable to undergo MIC confirmation due to contamination.

Diagnostic accuracy of DST methods. Based on the results of the 355 isolates for
which we could assign a PZA status with high confidence, phenotypic DST had a sensi-
tivity of 96.5% (95% Cl, 93.8 to 99.3) and specificity of 100% (95% Cl, 100 to 100), with
a PPV of 100% and NPV of 96.8%. Sanger sequencing and WGS both has a sensitivity of
97.1% (95% Cl, 94.6 to 99.6) and specificity of 97.8% (95% Cl, 95.7 to 99.9), a PPV of
97.7%, and an NPV of 97.3%. SMOR TDS had a sensitivity of 98.8% (95% Cl, 97.2 to 100)
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and specificity of 97.8% (95% Cl, 95.7 to 99.9), a PPV of 97.7%, and an NPV of 98.9%. A
sensitivity analysis, including the two isolates which were pncA wild type but pheno-
typically PZA resistant assigned as PZA resistant, or the three isolates with resistant
minor variants but with susceptible phenotype reassigned as PZA susceptible, did not
significantly change the diagnostic accuracy of assessed phenotypic or genotypic
methods.

DISCUSSION

Using a multifaceted reference standard, we demonstrate a high diagnostic accu-
racy for the detection of PZA resistance for SMOR TDS (sensitivity, 98.8% [95% Cl, 97.2
to 100]); specificity, 97.8% [95% Cl, 95.7 to 99.9%)]), as well as conventional genotypic
methods (Sanger sequencing and WGS, sensitivity 97.1% [95% Cl, 94.6 to 99.6%]; speci-
ficity, 97.8% [95% Cl, 95.7 to 99.9%]), and phenotypic DST (sensitivity, 96.5% [95% CI,
93.8 to0 99.3%)]; specificity, 100% [95% Cl, 100 to 100%]). We believe these estimates are
highly accurate, as we confirmed standard phenotypic DST with MIC testing in an
experienced laboratory and reclassifying silent and neutral pncA mutations as suscepti-
ble using the Késer classification (40). SMOR TDS showed a slightly higher sensitivity
than Sanger and WGS due to the ability of the technique to identify the presence of
minor variants below 10% of the total mycobacterial population.

The diagnostic accuracy of the genomic DST methods assessed was higher than
that reported for Sanger sequencing in two studies from China, which reported a sensi-
tivity of 78% and 90% (44, 45). The sensitivity and specificity were also higher than that
of the high-resolution melt (HRM) methods (89% sensitivity and 82% specificity) (46);
the heteroduplex HRM method had a slightly lower sensitivity (97%) and similar speci-
ficity (96%) compared to what we observed in our study (46). The linear after the expo-
nential (LATE) PCR method, which uses fluorescent probes to detect the presence of
mutations in the pncA gene, also reported a slightly lower sensitivity (97%) and similar
specificity (97%) (47). A recent WHO-commissioned systematic review was conducted
to investigate the diagnostic accuracy of the commercial Nipro PZA line probe assay
(LPA) in comparison to other methods to detect PZA resistance (29). A pooled sensitiv-
ity of 81.2% and specificity of 97.8% using PZA DST as a reference and a pooled sensi-
tivity of 96.4% and specificity of 100% using genotypic detection as a reference were
reported (29). While these are promising results, the LPA technique does not allow the
detection of exact pncA mutation or insight into possible heteroresistance.

Fourteen isolates (3.9%) had discrepant genotype-phenotype results for PZA sus-
ceptibility. Several studies have described a small minority of isolates as phenotypically
resistant without an observed pncA variant (44, 45, 48-50). Previous investigators have
attributed this false-positive resistance to the technical challenges associated with phe-
notypic DST or to another mechanism of resistance (e.g., resistance-associated variants
in panD, rpsA, and cIpCT). In two of four isolates, we clearly observe a high MIC
(>100 ng/ml) coupled with excellent sensitivity and specificity; in these cases, a false-
positive phenotypic DST is highly unlikely. Therefore, an alternative mechanism is likely
operative, though we failed to observe any explanative variants in genes previously
associated with PZA resistance (39). A genome-wide association study (GWAS)
approach to discover novel resistance-associated genes in larger data sets may further
enhance our understanding of alternative mechanisms of PZA resistance.

In addition, we observed four pncA variants (L35R, C72G, A102V, and T114M) associ-
ated with phenotypically susceptible isolates (<100 wg/ml). While L35R and T114M
have been previously associated with susceptibility (40), A102V is associated with re-
sistance in the Koser classification (40). Interestingly, examination of the supplemental
data reveals a mix of resistant and susceptible liquid cultures, which may suggest that
this variant’s PZA MIC may be close to the threshold of 100 pg/ml. Finally, although
C72G is not included in the Koser classification, we observed a MIC of =75 ug/ml; this
may therefore be a false-susceptible phenotypic DST result or a variant with a critical
concentration close to the threshold.
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The SMOR TDS method identified minor variants that remained undetected by
Sanger sequencing, WGS, and even phenotypic DST. While the clinical relevance of
PZA heteroresistance less than 10% of the total M. tuberculosis population could not
be determined in our study due to the low number (n = 3) of cases and lack of serial
isolates, studies examining other anti-TB drug classes have suggested that detecting
these subpopulations before and during treatment may be clinically relevant (23, 51,
52). The prevalence of PZA minor variants was less than that observed for other anti-TB
drugs (e.g., fluoroquinolone microheteroresistance [<5%] occurs among 3/66 of unse-
lected isolates) (23). We hypothesize that among RR-TB patients, this lower prevalence
was due to primary transmission of already PZA-resistant strains; conventional selective
determinants of microheteroresistant subpopulations (i.e., fitness cost, drug-specific
mutation rates [53] and drug exposure and mechanism) are likely similarly important
in the earlier phases of PZA resistance acquisition.

Compared to the LPA and LATE PCR assays, the SMOR TDS approach has added
value, as it identifies all variants in the pncA gene. This is critically important since not
all mutations in pncA are associated with resistance (40, 54). The targeted approach
also presents some limitations vis-a-vis WGS by focusing on preidentified targets (i.e.,
pncA variants), given there are several other candidate genes for PZA resistance (e.g.,
panD [16, 171, rspA [18, 19], clpC1 [20-22], Rv1258c, PPE35, and Rv3236¢ [39]); however,
the majority of these emanate from in vitro studies with little support from clinical iso-
lates. In our study, only one of the four phenotypically resistant isolates with the wild-
type pncA gene had a variant in one of these genes, but this variant (in c/pC7) was a
synonymous SNP and therefore most likely does not explain the phenotype of the iso-
late. It is possible that there are other unknown mechanisms of resistance that occur at
extremely low frequencies. Additional validated non-pncA mutations associated with
PZA resistance can be included in future TDS assays.

Several limitations to the study should be noted. First, we could not confidently
identify the “true” PZA resistance profile in two discordant isolates because the pheno-
typic status could not be confirmed by MIC. While exclusion of these isolates in the
analysis may have overestimated concordance between the genomic assays, a sensitiv-
ity analysis revealed that inclusion of these isolates as discordant did not change the
results. Second, the prevalence of heteroresistance could have been underestimated,
as TDS was done on culture isolates, which may have introduced a culture bias (52).
Third, the amplification step of TDS may cause an uneven amplification of subpopula-
tions, which may further introduce bias in the observed heteroresistance. We believe
that this may have been minimal as primer concentrations were modified to ensure
equal concentrations of all amplicons.

Conclusions. Given the central place for PZA in both drug-susceptible and drug-resist-
ant TB regimens, development of an accurate molecular assay for PZA resistance is a high
priority. This study demonstrates the high accuracy of the genomic methods to identify
variants in the pncA gene and determine PZA resistance; in addition, targeted deep
sequencing of pncA identified the presence of minor variants, the clinical importance of
which remains to be validated. While WGS could, in theory, explore the role of other genes
in PZA resistance, we were not able to confirm a role of any of the other candidate genes
(panD, rpsA, clpC1, Rv1258c, PPE35, and Rv3236¢) in clinical PZA resistance. Future large
multicountry studies should be performed using culture-free genotypic DST to accurately
estimate the prevalence and clinical relevance of pncA heteroresistance and the clinical
role of genes other than pncA in PZA resistance.
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