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STOCHASTIC GROWTH IN SCHUMPETERIAN DYNAMICS

Jati K. Sengupta*

ABSTRACT

This paper discusses three key elements of stochastic growth in the Schumpeterian dynamics.
These elements comprise the new entry of firms in an industry, the displacement of the old
technology by the new and the nonlinear impact of learning by doing on the growth of innovating
firms.  Each of these elements has important implications for the new theory of endogenous
growth.

                                                
* Department of Economics, University of California, Santa Barbara, California 93106, USA
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I.  INTRODUCTION

Two key variables have been strongly emphasized in the Schumpeterian view of growth:

innovations in new technology and the expected growth of knowledge in the form of R&D .  The

first often referred to as ‘the technology push hypothesis’, e.g., Kamien and Schwartz (1982)

generates competition in new technology: its adoption, development and continual improvement

through the process of ‘creative destruction’.  The second emphasizes the externalities and scale

economies effect of R&D capital.  Recently Thompson (1996) has developed this aspect of the

connection of technological opportunity and the growth of knowledge in Schumpeterian model,

which termed this economic framework as trustified capitalism in which innovations in big units

tend to be carried out by the R&D specialists and the firms’ market shares respond to innovations

by themselves and by others.

Since these two key variables play a central role in new growth theory it is important to

analyze their implications in a generalized Schumpeterian framework.  Two types of

generalizations are attempted here.  One is the stochastic aspect of the innovation process in new

technology and the other the substitution process underlying the growth of knowledge capital and

its diffusion.

One may mention two motivations for this study.  One is the overriding stochastic nature

of the innovation process in its inception, development, diffusion and survival or extinction.  In

modern endogenous growth many researchers have stressed the inherent uncertainties of R&D

investment and the fact that producers using new technologies rarely achieve commercial viability

until after they experience a prolonged period of learning by doing.  Secondly, this view of
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Schumpeterian growth allows the possibility of self sustained growth in per capita output, just like

the new growth theory but there are other possibilities also due to the stochastic nature of the

evolutionary process.  As a matter of fact we show that the stochastic nature of the nonlinear

growth processes such that the cost of output fluctuations measured by variance may tend to

retard the mean process of growth, unless the intermediate inputs are forever being improved at a

steady rate with a very low rate of variance.

The paper outline is as follows.  Section I discusses the innovation flow process in an

industry as a demographic process of births and deaths, where birth may refer to entry of new

firms, and death the exit of old firms.  Instead of firms one may refer to the technology used by

the firms and the new technology competes with the old in the process of ‘creative destruction’.

This is followed in Section II by a Markov process model with transition probabilities, where the

growth of knowledge is affected by past history and future expectations.  This section also

discusses the economic implications of nonlinearity in the growth process.  Section III analyzes

the implications of the output process, resulting from the continual improvement of intermediate

goods thereby raising productivity in the assembly of final output.  Section IV analyses the impact

of stochastic innovations on output and discusses the sources of nonlinear fluctuations in the

output process.  The cost of such fluctuations may sometimes affect the mean output levels

adversely, particularly for countries with high growth rates.

III.  A MODEL OF ENTRY AND EXIT

Consider technological innovations as a flow xt, where its expected change during a discrete

interval of time t to t+1 can be modelled in terms of the deterministic model

E(xt+1) = xt + Bt - Dt (1)
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where Bt and Dt are expected births and deaths during the interval.  Denoting expected birth rates

(or energy rates) and death rates (or exit rates) by bt and dt and assuming a simple birth and death

process model of population growth, the mean and variance of the innovation input may be easily

written as follows: see, e.g., Sengupta (1999a)

E(xt+1) = xt tre , rt = bt - dt (2)

var(xt+1) = (bt - dt)-1 (bt + dt) [ tre - 1] tre  xt

As in demographic models the birth and death rates may be considered as shocks to the

production process characterized by yt = f(xt).

Two economic interpretations of the xt  process are in order.  One is the entry and exit

interpretation of birth and death rates.  The other is the notion that xt represents the pool of

research knowledge in an industry, where bt is new contributions and dt is the obsolescence or

depletion.  Recently Lansbury and Mayes (1996) have empirically analyzed the time variations in

the average entry (bt) and exit (dt) rates in the different industrial sectors of UK manufacturing

industry over the period 1980 to 1990.  They found that exits have remained a relatively stable

share of the number of businesses over the whole period.  The range has been only 1½ percentage

points between 5¼ and 6¾ percent.  Entries however have varied more cyclically with a range

nearly four times as large, from 3½ to 9 percent.  Furthermore, the productivity of most new

entrants is higher than that of the sample as a whole in all years and most exits had a lower

productivity than the sample as a whole.

The idea of a pool of unexploited research knowledge providing the domestic and foreign

sources of innovation as engines of growth has been empirically explored by Kortum and Eaton

(1995) and also Helpman (1997).  In this model each country (or firm) undertaking research
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makes a potential contribution to the pool, while any country (or firm) adopting any of the

generated ideas depletes the pool in proportion to its size.  Their empirical model provided a high

degree of explanation of the differences in manufacturing productivity in the major industrial

countries over the last four decades 1950-1990.  International technological diffusion appears to

be the major source of productivity growth.

Consider the mean variance process (2).  Clearly if bt > dt, then the expected innovation

process is unbounded and hence there can be persistence in output growth as in new growth

theory.  In Schumpeterian dynamics the most favorable context for innovation is oligopolistic

competition with large firms, and the most important competitive pressure comes from technical

change that erodes any monopoly profits of a firm which fails to remain in the forefront of

technical change and knowledge frontier.

Given the stochastic innovation process (1) one may now consider the case where births

and deaths are endogenously determined as follows:

Bt = b0 + b1xt + b2xt-1; Dt = d0 + d1xt (3)

As in Lansbury and Mayes (1996) the deaths or exits are proportional to xt, whereas births or

entries depend on both xt and xt-1.  We obtain then the reduced form equation

xt = β0 - β1xt-1 + β2 E(xt+1) (4)

where β0 = (d0 – b0) β2, β1 = b2β2

β2 = (1 + b1 – d1)-1

In the more general case Dt = d0 + d1xt + d2xt-1 and this yields the same equation as (4) except that

β1 has to be redefined as β1 = β2(b2 – d2).

Several important implications follow from this fundamental equation (4) of the innovation

flow in Schumpeterian framework.  First of all, this equation captures the impact of the future by
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xt+1 and the immediate past by xt-1.  The future expectations may involve demand expectations,

whereas the past may reflect various costs due to risk aversion and input fluctuations.  Clearly we

have

∂xt/∂xt-1 < 0 and ∂xt/∂E(xt+1) > 0 (5)

and since β2 exceeds b2β2, entry would tend to dominate exit thus implying positive growth in

innovation rates.  One notes that the impact of past history and the future expectations may also

be more generalized in terms of more than one period, e.g.,

xt = β0 - )x(Ex 1t

m

1i i21t

m

1i i1 +=−=
∑ β+∑ β

Secondly, one may consider (4) as an optimal decision rule for the innovating firm, where xt+1

represents the forward looking view of the future, while xt-1 is the backward looking view.  This is

a class of forecast-based rules which feed back from expected values of future innovations (or

demands) to the optimal decision rules.  These forecast-based rules widely used in rational

expectations theory have a number of desirable features, which mean they may approximate the

optimal feedback rule of linear quadratic optimal control theory, see e.g., Taylor (1993).  For

instance the second order difference equation (4) can be easily formulated as the dynamic optimal

adjustment behavior of a rational innovating firm.  This behavior involves an optimizing decision

by the producer, who finds that his current factor uses are not consistent with the long run

equilibrium path ( , )* *x yt t  as implied by the stochastic model (4).  These values x yt t
* *,  of inputs

and output may also be interpreted as target levels implied by the current input prices and their

expected changes in the future.  Sengupta (1996) has recently applied a quadratic adjustment cost

model to explore the optimal time path of demand for capital and labor inputs in the growth
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process of Japan over the period 1965-90.  By following this model we postulate that the

innovating firm minimizes the expected present value of a quadratic loss function as follows

Min Et L

where L = [ ]ρt

t
t t t t t t t tX X A X X X X B X X

=

∞
− −∑ − ′ − + − ′ −

0
1 1(~ ~ ) (~ ~ ) (~ ~ ) (~ ~ )* * (6)

where Et(⋅) is expectation as of time t, ρ an exogenous discount rate, prime is transpose, A and B

are diagonal matrices with positive weights and *
tt X~,X~  are the vectors of input level and their

targets.  Here the first component of the loss function is disequilibrium cost due to deviations

from either the desired level or steady state equilibrium and the second component characterizes

the producer’s aversion to input fluctuations under market uncertainty.  Kennan (1979) and more

recently Callen et al. (1990) have applied this formulation to derive optimal input demand

equations which incorporate the producer’s response to market fluctuations.  On carrying out the

minimization in (6) for the research input ~x t1  say, one may easily derive the optimal adjustment

behavior as

~x t1  = b0 + b1 ~ ~x b xt t1 1 2 1 1− ++ (7)

where b0 = (a1 + a2 + a2ρ)-1 (a1
~*x t1 )

b1 = (a1 + a2 + a2ρ)-1 a2

b2 = (a1 + a2 + a2ρ)-1 (ρa2)

Similar equations for other inputs can be derived.  On comparing (4) and (7) one could easily

draw some interesting implications.  First of all, one could estimate this model (7) and if it turns

out that $ $b b2 1 0> > , or $ $b b2 10 0> < with , then the future expectations play a more dominant

role than the past history.  This is the normal response in a Schumpeterian growth process
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involving innovating firms and for countries with rapid growth episodes.  This may be empirically

tested.  Secondly, on using the nonexplosive characteristic root µ1 of the second order difference

equation (7), the optimal adjustment equation can be written as

∆~ ~ ~ ~x x x c g x h dt t t t t1 1 1 1 1 1 1 1 1 1= − = − +− − (8)

where d1t = (1 - µ1) µ1
0

1
s

s
t sx

=

∞
+∑ ~

,
*

Both Kennan (1979) and Gregory et al. (1993) have discussed two stage methods of estimating

this linear decision rule in a statistically consistent manner by using other instrument variables.

Finally, the gap between x1t and ~x t1 , i.e., x1t = ~x t1  + ε1t may be evaluated over time to

test if the planned inputs converge to the expected trend following from the stochastic process

model.  Indirectly it would provide an empirical test of the rational expectations hypothesis which

postulates a perfect foresight conditon in the sense that the {ε1t} process is purely white noise.

A third interpretation of model (1) arises when we consider a differential equation form of

the model

E(xt+1) = (1 + axt)-1 λxt; λ = 1+b-d

Bt = bxt; Dt = dxt

as tx& /xt = (r – axt); r = b-d (6)

where the solution is

xt = (1 + x0e-rt)-1 (r/a)

with r/a as the upper asymptote of the logistic solution, x0 is the initial state of the system and a is

a positive constant denoting the rate of decline of ( tx& /xt) in respect of the level of xt.  Now

consider the stochastic variations in parameter r, which may be due to the entry and/or exit
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process being random.  For the knowledge input this may be interpreted as firms which allocate

resources to R&D buying themselves a chance at developing some new targeted product.

Assume that r varies randomly as α + γ W(t), where W(t) is a Gaussian white noise process with

zero mean, α, γ being positive constants.  Then one can derive the infinitesimal mean µ(x) and

variance σ2(x) of the stochastic process {xt} as follows: see, e.g., Karlin and Taylor (1981)

µ(x) = x(α - ax) (7)

σ2(x) = γ2x2

On substitution the mean µ(x) can be expressed as a function of variance σ2(x)

µ(x) = (ασ(x)/γ) - aσ2(x)/γ2

It follows that

)x(

)x(
2σ∂

µ∂  < 0, if σ2(x) > (αγ/(2a))2 (8)

Otherwise ∂µ(x)/∂σ2(x) > 0.

If output is proportional to innovation flow, then the negative relationship in (8) would

imply that greater volatility leads to lower mean output.  Recently Ramey and Ramey (1991) and

Binder and Pesaran (1996) have empirically found for real GNP time series data in US a negative

and persistent relationship between mean and variance of output.  The major source of fluctuation

here is the randomness in productivity and demand shocks.  In Schumpeterian dynamics this

negative relationship holds only at higher levels of volatility when the second inequality in (8)

holds; otherwise both mean and variance may rise over time.  The asymmetry in the nonlinear

process of dynamics is of some importance here.

III.  MARKET SELECTION PROCESS
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A key element in Schumpeterian dynamics is the competition from new products.  Competition is

very broadly defined so as to include innovative ways of market penetration and displacement of

the old products using old technologies.  Two types of characterization of this market selection

process may be easily made.  One is the market share dynamics of newly entering firms using

newer technologies.  If zi(t) denotes the market share of this group of firms, then this selection

process may be modeled as

∆zi(t) = kzi(t-1) [Ci(t-1) – 1] (9)

where zi(t) = yi(t)/Y(t), yi(t) and Y(t) being output of firm group i and Y(t) the total industry

output and Ci(t-1) is a measure of relative competitiveness of firm i relative to the technological

level of other firms operating in the market.  Recently Perez (1997) has used this type of logistic

model of the market selection process to analyze rapid growth episodes of newly industrializing

countries (NICs) in Southeast Asia, which actively promote importation of modern technology

and the expansion of multinational enterprises.  In this framework the process of displacement of

the old technology by the new is strictly path dependent, since the absorptive capacity of the old

firms depends on their past levels of technological accomplishment and their ability to adopt

newer technologies through creative destruction.  Clearly this process involves transition

probabilities reflecting the knowledge spillover process.

A second type of characterization is in terms of overall output growth ∆y(t)/y(t), where

output growth is proportional to the profitability of new technology.

y&(t)/y(t) = b(D(p,γ) – y(t)) (10)

Here b is the adoptive coefficient assumed to be constant, dot is time derivative and D(p,γ) is the

long run demand curve for the new commodity with p = p(t) as price and γ is a shift parameter

indicating demand shocks.  If capacity growth is in equilibrium with demand growth and price is
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proportional to marginal cost, i.e., p = kc(x), one obtains a balanced diffusion path as a logistic

model:

y&(t)/y(t) = (α - βy(t)) (11)

where α = b(d0 – c0d1k), β = 1 – c1d1k

c(x) = c0 – c1x, D(p,γ) = d0 – d1p(γ)

This type of model has been explored in evolutionary economies by Metcalfe (1988), Bruckner

(1996) and others, who emphasized the stochastic nature of the balanced diffusion path, where the

parameters α, β admit of random variations due to uncertain entry and exit.  Note that this type of

model (11) assumes a flexible competitive price process p(t,γ) which varies so as to equilibrate the

growth of capacity and long run demand.  Here there exist three sources of output growth.  First

is the diffusion parameter which is affected by learning by doing and the scale economies in the

learning curve.  The higher the diffusion rate of new technology, the greater the output growth.

Secondly, if demand rises over time due, e.g., to lowering of prices and the substitution of new for

the old and the innovator has a forward looking view of market growth, it stimulates capacity

growth.  Finally, the marginal cost tends to decline due to knowledge spillover across different

firms and industries.  For example Norsworthy and Jang (1992) who estimated the effect of

technological change on productivity in three technology-intensive industries in US, e.g.,

microelectronics, computers and manufacturing, found for the period 1960-80 that the high rate

of technical change due to learning by doing led to steady rates of price decline and high rates of

obsolescence of capital in the computer and microelectronics industries.
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The nonlinear growth dynamics in (11) above exhibits however two different forces at

work.  One is the positive growth-enhancing effect captured by the parameters α and b.  This is

the forward looking view of the innovating firms expecting demand growth.  Then there is the

growth retarding effect due to the increase in the parameter β resulting from competitive

pressures and demand fluctuations.  To capture these two effects in a linear model one may

consider the dynamic model of adjustment mentioned before in (7) and (8).  In terms of the output

variable y(t) this adjustment may be written as

y(t) = b0 + b1 y(t-1) + b2 y(t+1) (12)

where it is assumed that the rational expectations hypothesis holds employing the  Et y(t+1) =

y(t+1), i.e., expected future output equals the observed level y(t+1).  Clearly one could estimate

this model in a statistically consistent way by a two-stage method, i.e., estimating Et y(t+1) by the

instrumental variable method in the first stage and then estimating the linear equation (12) with

y(t-1) and ŷ (t+1) as the independent variables, see e.g., Gregory et al. (1993).  If it turns out that

b̂ 2 > b̂ 1 > 0, or b̂ 2 > 0 and b̂ 1 ≤ 0, then one could conclude that the future expectations

represented by Et y(t+1) play a more dominant role than the past history represented by y(t-1).

The future expectations arise due to optimistic demand forecasts and productivity growth by the

innovating firms, while the past history reflects the cost structure of the old technology.  Clearly

when future expectations dominate the growth process, it would exhibit a process of creative

destruction in the Schumpeterian sense.  This would however be different from the creative

destruction model put forward by Aghion and Howitt (1998), which postulates that a successful

innovator drives out the previous incumbent by undercutting his process and creating a local

monopoly, e.g., through patents until driven out by the next innovator.  In our approach here the
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innovation follows a stochastic process, where the evolutionary growth in the leading edge

technology occurs through the market selection process.

We now present a market selection process model in terms of Markovian transition

probabilities for the market share variable zi(t) = yi(t)/Y(t), where for simplicity we assume that

there are three levels of technology i=1,2,3, i.e., low, medium and high.  Following Bruckner et al.

(1996) we model the transition of firms as a process of stochastic substitution, i.e., one plant or

firm substitutes the new technology for the old one, e.g., yi →  yi+1 and over time yi(t) →  yi(t+1).

By the Markovian property only one step is admissible as a transition.  The complete stochastic

substitution model may then be specified as follows:

zi(t) = t

3

1j qi

3

1j jji Eq)1t(zp ∑+∑ −
==

[zj(t+1)] (13)

where ∑∑ =
==

3

1i qi

3

1i ji qp  = 1 for all j=1,2,3

pji ≥ 0; qji ≥ 0, all i,j=1,2,3

Under the rational expectations hypothesis it holds that Et[zj(t+1)] = zj(t+1) and if residual errors

ui(t) are admitted in (13) to account for the difference between the actual and the estimated

occurrence of zi(t), then the sample observations may be assumed to be generated by the

following stochastic relation in vector matrix form:

z(t) = P′z(t-1) + Q′z(t+1) + u(t)

P, Q ≥ 0, ∑==∑
i jii ji q1p (14)

where Eu(t) = 0 and E(u(t) u′(t)) = D, D being a positive definite diaponal matrix with constant

positive elements in the diagonal.
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This type of linear Markov probability model with transition probabilities P and Q has

been frequently applied in marketing for brand loyalty studies and in labor economies for labor

mobility studies, see e.g., Lee, Judge and Zellner (1977).  There is one difference however due to

the presence of the expected future variable zj(t+1), which allows future (demand) expectations to

influence the current market share of innovating firms.  This variable captures the intensity of the

creative destruction process more directly.  For example, assume that we have two estimators of

P and Q as
















=

33

2322

1211)1(
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
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




=

33

22

11)2(

q00
0q0
00q

Q

such that q12 > p12, q23 > p23 and qii > pii then the future expected demand growth plays a more

dominant role than the past history.  The diagonal dominance in each row would indicate a low

degree of technological progress.

If we also consider the possibility of transition to a lower level of technology due to

obsolescence and lack of updating, then we may have situations where

p21 > p22, q21 > q22 and p32 > p33, q32 > q33

or, p21 > p12, q21 > q12 and p32 > p23, q32 > q23

implying a state of technological retroregression.  Empirical estimates of transition probabilities

would thus provide the direction of shift of the technological frontier.

This transition probability matrix formulation is closely connected with the innovative-

interaction matrix (IIM) empirically estimated by DeBresson (1996) and his associates.  Like
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Leontief input output table this IIM measures the interaction between sectors which are suppliers

of innovative activity and the other sectors which are users.  Empirical applications have been

made in recent times of this matrix for countries such as UK, France, Italy, Greece, Canada and

China.  Two types of hypotheses have been put forward in this context.  One is the Schumpeterian

hypothesis that the innovations tend to be concentrated in certain sectors due to substantial

economies of scale rather than evenly distributed over a large number of sectors.  DeBresson finds

substantial evidence for this hypothesis of innovative clusters in UK, Greece, Italy and other

countries.  A second hypothesis postulates a close positive correlation between the innovative

activity and the two sectoral linkages, forward (through users’ demand) and backward (through

input needs).  This is also borne out by DeBresson’s empirical studies.

IV.  TECHNICAL PROGRESS AND GROWTH

Recent advances in the economics of innovation and new technology have shown that the initial

development and final adoption of this technology is a lengthy complex process of evolutionary

adaptation.  Recently Antonelli (1995) has captured this adaptivity aspect in terms of a modified

neoclassical production function

Yt = A(t) Ka(t) Lb(t) I tK
c ( ) (13)

A(t) = f(IK(t))

where Y(t) is output, K(t) and L(t) are the usual capital and labor inputs and IK(t) is the stock of

information capital.  Due to the dependence of A(t) on the stock of information capital, significant

amounts of externalities or spillover effects may be generated.  Diffusion of technology embodied

in information capital is assumed to follow a logistic process

& ( )I tK /IK(t) = b(h - IK(t)) (14)
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where b is the positive rate of diffusion and h is the ceiling level of information capital.  It is clear

in this formulation that the general efficiency of each Cobb-Douglas production function (13)

shifts towards the right, as the overall level of information capital increases.  To empirically

implement this specification Antonelli (1995) estimated the regression function of the average rate

of growth of labor productivity on five sets of variables such as GDP per capita, average

investment to GDP ratio, ratio of total US patents, diffusion of information and communication

technologies (DICT), and a catching-up variable for 29 representative countries over the period

1980-88.  His estimates found the DICT variable to be highly significant in a statistical sense (t-

value 2.116) and his overall results confirm the finding that the diffusion rates of key technologies

in the communications and related fields have generated significant externalities through

knowledge spillover effects all throughout the economic system.

Two points are to be noted however in this formulation.  First of all, one needs separate

data on information capital IK(t).  The DICT variable and the number of patents are only proxy

variables.  Secondly, the cumulative experience embodied in the learning by doing models is not

directly introduced in this framework, although numerous recent studies have established the

learning curve effects of new innovation technology in such modern industries as

microelectronics, communications engineering and semiconductors, see, e.g., Norsworthy and

Jang (1992).  Hence we reformulate the system (13) as

Y(t) = A(T) Ka(T) Lb(t) (15)

A(t) = Zθ, 0 < θ < 1

where Z(t) = Y dt
0∫ ( )τ τ  is cumulative output representing the embodied form of all knowledge

capital and cumulative experience.  Clearly technological progress here is endogenous and the

externality effect of output growth is captured by the parameter θ.  On assuming a fixed saving
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ratio s and &L /L = n one could derive from (15) an equilibrium growth equation in terms of the

variable u = &Z (t)/Z(t) which is consistent with the saving-investment equilibrium:

&u (t)/u(t) = r(m - u(t)) (16)

where r = 1-θ-a, m = (1-θ-a)-1 (nb)

Alternatively this can be written as

&u (t)/u(t) = (1-θ) [B - u(t)] (17)

where B = (1 - θ)-1 (nb + asβ), β = Y(t)/K(t)

Clearly both equations (16) and (17) display a logistic evolution path, which incorporates both the

eternality parameter θ and the capital coefficient a in the production function.  Two important

types of stochasticity may arise in the models (16) and (17).  One is through the random variations

in parameter m due to shocks affecting the learning parameter θ and the capital coefficient a.  We

have discussed this case before.  The second arises when we rewrite the evolutionary equation

(16) in the framework of a stochastic differential equation as follows:

du = [(gu - hu2) dt] + dε (18)

where the first term under square bracket on the right hand side represents the systematic part and

the second term dε is an error term with a mean zero and variance (gu - hu2) dt.  Note that g = rm

and h = r here represent the learning and experience effects as before.

For the second case denote by µ the asymptotic mean of the u(t) process and let X(t) =

u(t) - µ.  Then

X(t + ∆t) - X(t) = [gu(t) - hu2(t)] dt + dε(t)

On taking expectations of both sides and letting ∆t →  0 one obtains

(g/h) µ - µ2 = σu
2
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This shows that ∂µ/∂σu
2  < 0 if 2µ > g/h.  Thus as the mean income level increases above the level

set by g/2h, higher variance of u leads to a lower mean.  But otherwise, the correlation between µ

and σu
2  is expected to be strongly positive.  The empirical studies by Ramey and Ramey (1991)

and Binder and Pesaran (1996) have found strong support for the phase when variance has a

negative impact on the mean output levels.  This derivation shows however that there exists

another phase when explosive or chaotic instability may occur.  Sengupta (1999b) has discussed

elsewhere some empirical tests of this Schumpeterian dynamics over the two high growth

economies of Korea and Japan.
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V.  CONCLUDING REMARKS

Stochastic sources of growth in Schumpeterian dynamics are discussed here in relation to the new

theory of endogenous growth.  Three key elements of dynamics are developed here and discussed

in relation to the growth of technology-intensive sectors of a modern economy.  These elements

comprise the process of entry and exit of new products and new innovations, the process of

substitution of the old technology by the new and the impact of learning by doing in the

technology diffusion process.

Two major hypotheses in the Schumpeterian framework are developed here.  One involves

the impact of fluctuations on the innovation induced output process and the other the dominance

of future expectations over the past history as sources of rapid growth.  These hypotheses are

amenable to easy empirical testing.  Hence it provides an analytical framework for a deeper

analysis of Schumpeterian dynamics which can provide new lights on the new growth theory.
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