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ORIGINAL ARTICLE

Relative contribution of clinicopathological variables,
genomic markers, transcriptomic subtyping and
microenvironment features for outcome prediction
in stage II/III colorectal cancer

R. Dienstmann1,2*, G. Villacampa1, A. Sveen3,4, M. J. Mason2, D. Niedzwiecki5, A. Nesbakken4,6,
V. Moreno7, R. S. Warren8, R. A. Lothe3,4 & J. Guinney2

1Oncology Data Science Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain; 2Computational Oncology Group, Sage Bionetworks, Seattle, USA;
3Department of Molecular Oncology, Institute for Cancer Research and K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo; 4Faculty of
Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; 5Department of Bioinformatics and Biostatistics, Duke University, Durham, USA;
6Department of Gastrointestinal Surgery, K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; 7Unit of Biomarkers and
Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology, Oncobell Program of IDIBELL, CIBERESP, University of Barcelona, Barcelona,
Spain; 8Department of Surgery, The Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, USA
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Fax: þ34-932746059; E-mail: rdienstmann@vhio.net

Background: It remains unknown to what extent consensus molecular subtype (CMS) groups and immune-stromal infiltration
patterns improve our ability to predict outcomes over tumor–node–metastasis (TNM) staging and microsatellite instability (MSI)
status in early-stage colorectal cancer (CRC).

Patients and methods: We carried out a comprehensive retrospective biomarker analysis of prognostic markers in adjuvant
chemotherapy-untreated (N¼ 1656) and treated (N¼ 980), stage II (N¼ 1799) and III (N¼ 837) CRCs. We defined CMS scores
and estimated CD8þ cytotoxic lymphocytes (CytoLym) and cancer-associated fibroblasts (CAF) infiltration scores from bulk
tumor tissue transcriptomes (CMSclassifier and MCPcounter R packages); constructed a stratified multivariable Cox model for
disease-free survival (DFS); and calculated the relative proportion of explained variation by each marker (clinicopathological
[ClinPath], genomics [Gen: MSI, BRAF and KRAS mutations], CMS scores [CMS] and microenvironment cells [MicroCells:
CytoLymþCAF]).

Results: In multivariable models, only ClinPath and MicroCells remained significant prognostic factors, with both CytoLym and
CAF infiltration scores improving survival prediction beyond other markers. The explained variation for DFS models of ClinPath,
MicroCells, Gen markers and CMS4 scores was 77%, 14%, 5.3% and 3.7%, respectively, in stage II; and 55.9%, 35.1%, 4.1% and
0.9%, respectively, in stage III. Patients whose tumors were CytoLym high/CAF low had better DFS than other strata [HR¼0.71
(0.6–0.9); P¼ 0.004]. Microsatellite stable tumors had the strongest signal for improved outcomes with CytoLym high scores
(interaction P¼ 0.04) and the poor prognosis linked to high CAF scores was limited to stage III disease (interaction P¼ 0.04).

Conclusions: Our results confirm that tumor microenvironment infiltration patterns represent potent determinants of the risk
for distant dissemination in early-stage CRC. Multivariable models suggest that the prognostic value of MSI and CMS groups is
largely explained by CytoLym and CAF infiltration patterns.
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Introduction

Management of locoregional colorectal cancer (CRC) is still

largely dictated by tumor–node–metastasis (TNM) status at diag-

nosis, despite the multitude of prognostic biomarker research

over the recent years. Depth of tumor wall invasion (pT1�pT4)

and lymph node (LN) involvement (pN0�pN2) are strongly

associated with 5-year disease-free survival (DFS), which ranges

from 30% to 90% [1, 2]. The decision to offer adjuvant chemo-

therapy, particularly in stage II relies on clinicopathological fea-

tures such as bowel obstruction or perforation at presentation,

number of LNs examined, lymphovascular or perineural invasion

and tumor grade [3]. The only molecular marker with clinical

utility in early-stage CRC is microsatellite instability (MSI),

which is universally recommended for diagnosis of Lynch

Syndrome, but also defines a stage II population (irrespective of

germline or sporadic background) with significantly improved

when treated with surgery alone [4]. There are no validated mo-

lecular markers to help identify patient populations with

increased benefit from adjuvant chemotherapy in locoregional

CRC.

Previously, we have estimated the value of clinicopathological

features, MSI and additional molecular markers, namely

BRAFV600E and KRAS exon 2 mutations, in prognostic models of

stage II/III (early-stage) CRC [4]. We found that incorporation

of MSI and driver gene mutation status to overall survival models

with TNM staging does improve the prognostic discriminatory

power, but only modestly increases prediction accuracy in multi-

variable models that include detailed clinicopathological annota-

tion, particularly in chemotherapy-treated patients. Importantly,

there was only one genomically defined subgroup of CRC with

consistently higher risk of death across multiple cohorts, namely

patients whose tumors were microsatellite stable (MSS) and

BRAFV600E mutated, which corresponded to only 6% of the stage

II/III population. Discovery of additional clinically relevant sub-

groups with potentially targetable pathway dependencies and/or

cancer microenvironment features has the potential to guide ad-

juvant treatment strategies in broader patient populations.

Tumor microenvironment markers have demonstrated inde-

pendent prognostic value in stage II/III CRC, with a high density

of CD8þ cytotoxic T lymphocyte (CytoLym) infiltration being

consistently associated with prolonged survival [5–8]. Indeed, an

immunohistochemistry-based scoring system has been developed

(termed Immunoscore
VR

) to quantify cytotoxic and memory T

cells in the tumor center/invasive margin, which proved to be a

strong prognostic index in early-stage CRC [8]. Several authors

have suggested that the dense CytoLym infiltrate could explain

the better prognosis of tumors displaying MSI, compared with

MSS CRC [9, 10]. In addition, a subset of MSS tumors harbors

prominent expression of immune cytotoxic markers (up to 30%

of the stage II/III population), and multivariable models revealed

that Immunoscore
VR

was superior to MSI status in predicting

disease-specific recurrence and patient survival [10].

Furthermore, gene expression signatures that reflect epithelial-

mesenchymal transition and tumor infiltration with cancer-

associated fibroblasts (CAFs) also constitute independent prog-

nostic indicators in early stages, with dismal outcomes for

patients with an invasive stromal-rich microenvironment [11,

12]. These markers are not as thoroughly validated as

Immunoscore(R), but they are reflected in the transcriptomic-

based consensus molecular subtypes (CMS) of CRC, which have

also been linked to patient outcome in early-stage CRC. High

CAFs content (CMS4 Mesenchymal) and CytoLym infiltration

(CMS1 MSI Immune) are important features of the tumor

microenvironment in early-stage CRC, with poor and good prog-

nosis, respectively. The dismal DFS rates for CMS4 tumors is in-

dependent of clinicopathological markers, KRAS or BRAFV600E

mutations and MSI status [13, 14]. Interestingly, CMS4 tumors

have high expression of genes specific for both CAFs and

CytoLym, counterbalanced by immunosuppressive cells, such as

Treg cells, myeloid-derived suppressor cells, monocytic derived

cells and TH17 cells [15], previously linked to chemotherapy re-

sistance [16, 17].

Given the known interactions between MSI, immune-stromal

markers and mesenchymal activation states, only an unbiased

multivariable prognostic model that incorporates TNM staging,

genomic markers, transcriptomic subtypes and microenviron-

ment features can identify the most critical drivers of disease re-

currence in CRC. It is unknown to what extent the combined

analysis of immune and stromal infiltration patterns improves

prediction of DFS over traditional clinicopathological/molecular

markers in stage II/III CRC and whether the potential prognostic

effect of microenvironment cells is modulated by adjuvant che-

motherapies. Here we describe the results of a comprehensive

retrospective biomarker analysis of prognostic markers in

chemotherapy-untreated and treated stage II/III CRCs from a

large aggregated cohort of clinical studies with molecular data.

Our hypothesis was that microenvironment features constitute

stronger determinants of disease recurrence in early-stage CRC

than genomic or transcriptomic subtypes. We aimed to perform

a holistic assessment of the prognostic value of well-known in-

trinsic biological features of CRC.

Methods—patient population and

molecular data

To perform this analysis, we aggregated data from multiple public

cohorts and collaborated with different academic groups to have

access to private data from prospective series and one clinical trial

(Alliance CALGB9581). This project was approved by the Vall

d’Hebron Institute of Oncology Ethics Committee. Patients

signed informed consent for exploratory biomarker research on

samples prospectively collected in accordance with the guidelines

of Institutional Review Boards from each organization/clinical

trial. Table 1 summarizes the final study population that included

2636 patients diagnosed with stage II/III CRC, untreated

(N¼ 1656) or treated (N¼ 980) with adjuvant chemotherapy,

with clinicopathological and molecular annotation for variables

of interest. Transcriptomic data were normalized following

standard bioinformatics procedures for CMSclassifier and

MCPcounter application independently in each cohort (see sup-

plementary Table S1, available at Annals of Oncology online for

details on gene expression platform and tissue source). We

obtained CMS1, CMS2, CMS3 and CMS4 Random Forest poster-

ior probabilities as a continuous value (each ranging from 0–1)

and final CMS labels using CMSclassifer R-package [13].

Annals of Oncology Original article

Volume 30 | Issue 10 | 2019 doi:10.1093/annonc/mdz287 | 1623

https://academic.oup.com/annonc/article-lookup/doi/10.1093/annonc/mdz287#supplementary-data
https://academic.oup.com/annonc/article-lookup/doi/10.1093/annonc/mdz287#supplementary-data


Likewise, the abundance of immune- and nonimmune-stromal

cell populations was estimated from gene expression data using

MCPcounter R-package [18]. Given the fact that MCPcounter

scores are affected by gene expression platform and tissue source,

microenvironment cell infiltration scores were scaled (from 0 to

1) first within three subgroups [Affymetrix in fresh frozen

samples; Agilent in fresh frozen samples; and Almac-Affymetrix

in formalin-fixed paraffin-embedded (FFPE) samples] and then

rescaled after data aggregation to facilitate cross-study compari-

sons. Multiple imputation of random missing values was carried

out via the mice R package in the aggregated cohort (supplemen-

tary Table S2, available at Annals of Oncology online).

Table 1. Patient’s and tumor characteristics

All (N 5 2636) No adjuvant
chemotherapy
(N 5 1656)

Adjuvant
chemotherapy
(N 5 980)

Dataset public Variable n % n % n %
E-MTAB-864 144 48.37% 144 49.15% 0 47.04%
GSE14333 183 99 84
GSE17536 109 55 54
GSE24550 76 57 19
GSE31595 37 26 11
GSE33113 87 87 0
GSE37892 128 71 57
GSE38832 72 34 38
GSE39582 439 241 198

Dataset private CRCSC 589 51.63% 110 50.85% 479 52.96%
Oslo 281 241 40
CALGB9581 393 393 0
Colonomics 98 98 0

Age Median (min�max) 69 (22� 97) 70 (24–97) 65 (22–97)
Sex Male 1382 52.43% 867 52.36% 515 52.55%

Female 1254 47.57% 789 47.64% 465 47.45%
Stage T1-2N0 5 0.19% 5 0.30% 0 0%

T3N0 1606 60.93% 1322 79.83% 284 28.98%
T4N0 188 7.13% 140 8.45% 48 4.90%
T1-2N1 41 1.56% 13 0.79% 28 2.86%
T3N1 461 17.49% 117 7.07% 344 35.10%
T4N1 54 2.05% 13 0.79% 41 4.18%
T1-2N2 6 0.23% 2 0.12% 4 0.41%
T3N2 232 8.80% 37 2.23% 195 19.90%
T4N2 43 1.63% 7 0.42% 36 3.67%

Primary site Right colon 1292 49.01% 860 51.94% 432 44.08%
Left colon 1177 44.65% 683 41.24% 494 50.41%
Rectum 167 6.34% 113 6.82% 54 5.51%

Microsatellite status Stable (MSS) 2184 82.85% 1343 81.10% 841 85.82%
Instable (MSI) 452 17.15% 313 18.90% 139 14.18%

BRAFV600E status Wt 2306 87.48% 1414 85.39% 892 91.02%
Mut 330 12.52% 242 14.61% 88 8.98%

KRAS codons 12/13 status Wt 1684 63.88% 1057 63.83% 627 63.98%
Mut 952 36.12% 599 36.17% 353 36.02%

CMS label CMS1 507 19.23% 339 20.47% 168 17.14%
CMS2 1062 40.29% 673 40.64% 389 39.69%
CMS3 337 12.78% 218 13.16% 119 12.14%
CMS4 551 20.90% 334 20.17% 217 22.14%
Mixed 179 6.79% 92 5.56% 87 8.88%

CMS4 score Median (IQR) 0.10 (0.02–0.38) 0.10 (0.02–0.35) 0.11 (0.02–0.43)
Cytotoxic lymphocyte (CytoLym)

infiltration score
Median (IQR) 0.43 (0.38–0.49) 0.43 (0.37–0.5) 0.43 (0.38–0.49)

Cancer-associated fibroblast (CAF)
infiltration score

Median (IQR) 0.59 (0.49–0.67) 0.59 (0.48–0.67) 0.59 (0.51–0.67)
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Methods—multivariable survival modeling

Our primary end point was DFS, measured from time of cancer

diagnosis until disease relapse or death from any cause. Survival

was censored at 72 months based on median follow-up of patients

alive. The covariates considered for inclusion in the prognostic

models were as follows:

(i) Clinicopathological features (ClinPath): AJCC version 7
pathological tumor stage (pT-stage; pT1, pT2, pT3 and
pT4) and pathological nodal stage (pN-stage: pN0, pN1
and pN2), age (continuous), sex (male versus female), pri-
mary tumor location [right (caecum to transverse colon)
versus left (splenic flexure to sigmoid) or rectum].

(ii) Genomic markers (Gen): MSI status (MSI high versus
MSS or MSI low), mutations in KRAS codons 12/13 or
BRAFV600E (versus wild-type).

(iii) Transcriptomic markers (CMS groups): CMS labels either
as categorical variables (CMS1, CMS2, CMS3 or CMS4) or
as independent continuous scores (CMS1 score, CMS2
score, CMS3 score, CMS4 score) from CMSclassifier R
package [13].

(iv) Microenvironment infiltration markers (MicroCells):
MCPcounter R package scores predict the abundance of 10
cell populations from transcriptomic profiles (CD3þ T cells,
CD8þ T cells [CytoLym], CTLs [cytotoxic lymphocytes],
NK [Natural Killer] cells, B lymphocytes, monocytic lineage
cells, myeloid dendritic cells, neutrophils, endothelial cells
and CAFs) [18] as a continuous variable.

Study methodology is summarized in supplementary Figure

S1, available at Annals of Oncology online. First, following data ag-

gregation and imputation, we assessed proportional hazards as-

sumption using survival R package. Sex did not hold the

assumption of proportional hazards (P< 0.05) and was included

in the survival models as a stratification variable, together with

gene expression profiling subgroups as defined above

(Affymetrix fresh-frozen; Agilent fresh-frozen; Affymetrix-Almac

FFPE) and adjuvant chemotherapy status. In order to select varia-

bles within the CMS and MicroCells categories with the highest

prognostic impact on DFS estimation, we carried out forward

and backward stepwise regression using the Bayesian information

criterion. Then, multivariable Cox proportional hazards models

were formulated using all factors that demonstrated statistical

significance for DFS in univariate models (with P< 0.1 according

to log-rank test). We investigated significant interactions among

genomic, transcriptomic, microenvironment infiltration markers

and clinicopathological features with impact on patient out-

comes (P< 0.05 according to ANOVA test). Next, the following

multivariable models were compared: (i) ClinPath þGen; (ii)

ClinPath þGen þCMS; (iii) ClinPath þGen þMicroCells; and

(iv) ClinPath þGen þCMS þMicroCells. We then calculated,

using multiple permutations, the relative proportion of explained

variation in DFS that was accounted for by the different

categories of predictor covariates using survMisc R package [19].

For illustration purposes, continuous scores (CMS and micro-

environment cell infiltration) were dichotomized based on the

maximization of the log-rank statistic to generate Kaplan�Meier

DFS curves using survminer R package. All analyses were carried

out using R statistical software version 3.2.5 [20].

Results

Demographics, tumor-related characteristics and molecular

markers of the numerous cohorts of patients with stage II or stage

III CRC included in survival models are described in Table 1.

Patients were recruited in the different studies between 1990 and

2005. Clinicopathological features of our population are in line

with other prospective biomarker series (non-clinical trial

cohorts), including a relatively elderly population, with stage II

representing 85% and 35% of the cases in the untreated and

chemotherapy-treated cohorts, respectively. Information on type

of adjuvant chemotherapy is missing in most public cohorts, but

given the standards of treatment at time of study recruitment, we

estimate that<10% of the combined public�private treated pop-

ulations received oxaliplatin in addition to 5-fluorouracil. The

prevalence of molecular markers also mirrors published litera-

ture, with 17% MSI tumors, 36% KRAS codons 12/13 mutated,

13% BRAFV600E mutated and 21% CMS4 tumors.

In the variable selection process, CMS4 as a continuous score

was a better predictor of DFS than CMS 1/2/3 scores or CMS 1/2/

3/4 labels. Also, from 10 MicroCells populations, CytoLym and

CAFs infiltration scores were the strongest predictors of DFS. We

found no significant inter-study heterogeneity when assessing

CytoLym and CAFs scores as dichotomous variables in DFS mod-

els (supplementary Figure S2, available at Annals of Oncology on-

line). On average, CytoLym infiltration scores were highest in

CMS1 samples, while CAF scores were highest in CMS4 samples

(supplementary Figure S3, available at Annals of Oncology on-

line). Indeed, 66% of CMS1 tumors fall in the CytoLym high cat-

egories, �65% of CMS2 and CMS3 samples are classified as

CytoLym low/CAF low and 49% of CMS4 samples are CytoLym

low/CAF high (supplementary Figure S3, available at Annals of

Oncology online). We also found high association between

CytoLym infiltration scores and microsatellite status, with 68%

of MSI tumors in the CytoLym high categories (supplementary

Figure S4, available at Annals of Oncology online).

Clinicopathological and genomic markers, together with con-

tinuous CMS4 scores and CytoLym/CAF infiltration scores, were

assessed in univariate and multivariable models detailed in

Table 2. Importantly, only age, pT stage, pN stage, primary tumor

location and immune-stromal infiltration scores were independ-

ent prognostic factors in multivariable models. Patients with

right-sided tumors had better DFS outcomes than left-sided pri-

maries, both in stage II and III CRC. MSI status and CMS4 scores

did not significantly improve prognosis prediction over ClinPath

features when CytoLym and CAFs infiltration scores were consid-

ered. Analysis of deviance showed that the addition of CytoLym

and CAF infiltration scores to ClinPathþ Genþ/� CMS models

provides significant prognostic information (ANOVA P< 0.05),

as detailed in supplementary Table S3, available at Annals of

Oncology online. We found a significant interaction between MSI

status and CytoLym scores on DFS models (interaction

P¼ 0.04), with MSS tumors having the strongest signal for

improved outcomes when displaying CytoLym high infiltration

scores.

Figure 1 illustrates adjusted Kaplan�Meier DFS curves by

CytoLym and CAF infiltration scores in chemotherapy-untreated

and treated cohorts, as well as stage II and III CRC populations.

Overall, CytoLym high/CAF low population represented 16% of
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samples, compared with 18% with CytoLym high/CAF high, 22%

with CytoLym low/CAF high and 44% harboring CytoLym low/

CAF low scores. Patients whose tumors were CytoLym high/CAF

low had better DFS than other strata [adjusted HR ¼0.71 (0.6–

0.9); P¼ 0.004]. In both untreated and treated cohorts

(Figure 1A and B), patients with CytoLym low/CAF high infiltra-

tion scores had the highest risk of disease recurrence. In the un-

treated population, patients with CytoLym high/CAF low tumors

had significantly better DFS than CytoLym low/CAF high tumors

(Figure 1A). In both untreated and stage II CRC, CytoLym infil-

tration scores were a critical determinant of prognosis, with sig-

nificant differences in DFS when comparing CytoLym high

versus CtyoLym low categories (Figure 1A and C). The same

associations were found in both chemotherapy-treated and stage

III CRC, but CAF infiltration scores helped segregate the strata

even further (Figure 1B and D). Indeed, the poor DFS outcomes

linked to high CAF infiltration scores were limited to stage III

CRC (interaction P¼ 0.04). We found no major differences in

CytoLym and CAF infiltration scores between stage III low-risk

(T1�3, N1) and high-risk (T4 or N2) groups (supplementary

Figure S5, available at Annals of Oncology online). However,

31.3% of high-risk stage III tumors are classified as CytoLym low/

CAF high, while 24.5% of low-risk stage III patients fall into this

category. Individual Kaplan�Meier DFS curves stratified by stage

plus adjuvant chemotherapy exposure can be found in supple-

mentary Figure S6, available at Annals of Oncology online.

Figure 2 illustrates the relative contribution of different factors

for prognosis prediction in early-stage CRC. Across all cohorts,

the explained variation in multivariable DFS models for clinico-

pathological features, microenvironment infiltration scores, gen-

omic markers and CMS4 scores were 83%, 11.4%, 3.7% and

1.9%, respectively. The relative contribution of clinicopathologi-

cal features in prognosis prediction was larger in stage II as

compared with stage III disease, while the impact of tumor

microenvironment features on DFS is not diminished in more

advanced stages of locoregional CRC (Figure 2C and D). In un-

treated and stage II cohorts (Figure 2A and C), in addition to

CytoLym infiltration scores, age was an important contributor to

DFS estimation, potentially associated with competing death

risks. In adjuvant chemotherapy-treated and stage III cohorts

(Figure 2B and C), CAF infiltration scores had substantial impact

on DFS estimation.

Discussion

In this study, we investigated whether intrinsic gene expression

signatures from cancer and microenvironment cells in stage II/III

CRC have significant impact on DFS models adjusted for clinico-

pathological and genomic markers. For the first time, we show

that the prognostic value of CMS groups is largely explained by

tumor microenvironment infiltration patterns. In fact, CytoLym

and CAF infiltration scores obviate the prognostic value of MSI

status and CMS4 scores in multivariable models. We found that a

high CytoLym infiltrated microenvironment is a critical deter-

minant of improved outcomes and this ‘protective’ effect is

strong across clinicopathological and genomic subgroups. Low

microenvironment cytotoxic lymphocyte counts associates with

higher chances of disease recurrence or death, particularly when

tumors have a stromal invasive phenotype infiltrated with CAFs.

Our results are in line with extensive literature built on pathology

assessments of the tumor microenvironment showing the pro-

tective role of high infiltration by CD8þ cytotoxic T cells (ap-

proximately one-third of early-stage CRC population) [8] and

the unfavorable outcome of patients whose tumors harbor high

infiltration with stromal fibroblasts (�40% of early-stage CRC

Table 2. Univariate and multivariable disease-free survival Cox models (stratified by sex, gene expression profiling platform and adjuvant chemotherapy
status)

Disease-free survival Cox models (all patients) (N 5 2 636 769 events)

Univariate analysis Multivariable analysis

HR 95% CI P value HR 95% CI P value

Age 1.01 1–1.02 <0.001 1.01 1–1.02 <0.001
pT2/pT1 versus pT3 1.07 0.65–1.75 0.8 0.86 0.52–1.43 0.56
pT4 versus pT3 1.37 1.11–1.69 0.003 1.46 1.18–1.81 <0.001
pN1 versus pN0 1.99 1.61–2.46 <0.001 2.05 1.65–2.55 <0.001
pN2 versus pN0 3.08 2.41–3.93 <0.001 3.15 2.45–4.05 <0.001
Rectum versus left 1.03 0.76–1.40 0.83 0.94 0.69–1.29 0.72
Right versus left 0.84 0.72–0.97 0.02 0.86 0.73–1.00 0.05
MSI versus MSS 0.76 0.61 –0.93 0.008 0.88 0.7–1.11 0.29
KRAS mut versus wild-type 1.04 0.9–1.21 0.55 � � �
BRAF mut versus wild-type 0.9 0.72� 1.13 0.35 � � �
CMS4 score 1.37 1.07–1.76 0.01 0.93 0.64–1.32 0.67
CAF infiltration score 1.6 0.93–2.74 0.09 2.54 1.08–6.02 0.03
CytoLym infiltration score 0.45 0.25–0.78 0.005 0.26 0.12–0.55 <0.001

CAF, cancer-associated fibroblast; CytoLym, cytotoxic lymphocytes. P values �0.05 displayed in bold.
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population) [21]. Our data also suggest that the worse outcomes

repeatedly seen in patients whose tumors display a mesenchymal-

like phenotype may be directly linked to a prometastatic immune

evasive and stromal-rich microenvironment. In fact, the impact

of CAF infiltration scores on DFS estimation was larger in

stage III and treated populations, which may be linked to a

chemotherapy-resistance phenotype [16, 17]. Still, most CRC

tumors have a ‘microenvironment desert’ phenotype, previously

linked to epithelial CRC subtypes (CMS2 Canonical and CMS3

Metabolic) [15], known to have intermediate prognosis in early-

stage disease. Here, the prognostic effect of cancer cell-intrinsic

genomic markers may be more profound, as previously illus-

trated for KRAS mutations [22].

Although our results confirm the notion that activated im-

mune cytotoxicity represents a potent determinant of the risk of

distant dissemination, it is also known that immune and stromal

infiltration patterns can be predicted by assessing intrinsic tumor

cell epithelial expression profiles in early-stage CRC samples

[23]. Moreover, interactions between immune cells, checkpoint

expression and MSI status do have a clinically significant impact

on prognosis. The expression levels of Immunoscore-like meta-

genes confers favorable prognosis in CRC patients with MSS

tumors displaying low levels of CytoLym and immune check-

points [24]. On the other hand, the expression levels of immune

checkpoints annuls the prognostic relevance of CytoLym in high-

ly immunogenic colon tumors and predicts a poor outcome in

MSI CRC patients. These results are in line with our data showing

a stronger signal for improved outcomes with CytoLym high

scores mainly in the MSS population. To summarize, these data

suggest that microenvironment markers must be analyzed along-

side cancer cell genomic and transcriptomic markers for proper

risk stratification.

Our study has limitations related to the retrospective, non-

randomized nature of most patient cohorts included in the ana-

lysis, with missing values for some genomic markers such as

KRAS, BRAFV600E mutations and MSI status in the range of

30%�50% in some cohorts. Therefore, no definite conclusions

can be obtained from our study on the role of genomic markers

for prognostication in early-stage CRC. Larger and more contem-

porary cohorts are needed to investigate whether the prognostic

effect of microenvironment cells is modulated by adjuvant che-

motherapies, particularly oxaliplatin-based. On the other hand,

our study describes the largest cohort of untreated early-stage

CRC patients with clinical, genomic and transcriptomic features,

the ideal setting for multivariable survival modeling. In addition,

prospective non-clinical trial series included in our analyses are

representative of ‘real world’ populations. Indeed, recent insights

on clinicopathological prognostic markers, such as primary

tumor location, were validated in our aggregated cohort. In a re-

cent SEER database study and a British Columbia cohort, stage II

right-sided cancers had better cause-specific survival and relapse-

free survival than the left-sided cancers, respectively [25, 26]. In

stage III disease, right-sided poorly differentiated mucinous

adenocarcinoma showed significantly better survival than left-

sided malignancies [25]. These results could be explained by the

higher prevalence of MSI in right-sided high-grade tumors. We

Figure 1. Adjusted disease-free survival (DFS) Kaplan�Meier curves stratified by CytoLym and CAF groups, estimated with multivariable Cox
proportional hazard model controlling for pT, pN, age, sex, primary tumor location, MSI status and CMS4 scores:chemotherapy untreated (A),
chemotherapy treated (B), stage II (C) and stage III (D) CRC cohorts.
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also found improved DFS for right-sided early-stage CRC when

compared with left-sided disease, both in stage II and III disease.

Interestingly, in a multivariable model, sidedness remained an in-

dependent prognostic factor when adjusting for MSI status. Our

findings may be partly explained by unique patient characteristics

included in population studies, such as a large proportion of eld-

erly females.

To conclude, our data reinforce the idea that tumor micro-

environment features should guide biomarker-drug co-develop-

ment in the adjuvant setting. With recent advances in targeted

immunotherapeutic interventions, we may be able to successfully

boost anticancer immune cytotoxicity or inhibit immunosup-

pressive pathway dependencies that facilitate metastatic spread.

The major impact of CAF infiltration scores on DFS of stage III

and chemotherapy-treated populations deserves further valid-

ation in recent clinical trial cohorts, such as the IDEA consor-

tium. We believe that our results will encourage clinical trial

design with novel agents capable of reverting a chemotherapy-

resistance phenotype linked to a distinct tumor microenvironment.

When combined with liquid biopsies for detection of minimal re-

sidual disease [27], tumor and microenvironment biomarkers will

eventually help personalize adjuvant therapies in early-stage CRC.
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